
Efficient Error-Correcting Codes
for Sliding Windows

Ran Gelles1, Rafail Ostrovsky1,2,�, and Alan Roytman1

1 Department of Computer Science, University of California, Los Angeles
2 Department of Mathematics, University of California, Los Angeles

{gelles,rafail,alanr}@cs.ucla.edu

Abstract. We consider the task of transmitting a data stream in the
sliding window model, where communication takes place over an adver-
sarial noisy channel with noise rate up to 1. For any noise level c < 1 we
design an efficient encoding scheme, such that for any window in which
the noise level does not exceed c, the receiving end decodes at least a
(1−c−ε)-prefix of the window, for any small ε > 0. Decoding more than
a (1−c)-prefix of the window is shown to be impossible in the worst case,
which makes our scheme optimal in this sense. Our scheme runs in poly-
logarithmic time per element in the size of the window, causes constant
communication overhead, and succeeds with overwhelming probability.

1 Introduction

As data continues to grow in size for many real world applications, streaming
algorithms play an increasingly important role. Big data applications, ranging
from sensor networks [9] to analyzing DNA sequences [5], demand streaming
algorithms in order to deal with the tremendous amount of information being
generated in a very short period of time. For certain applications, it is useful to
only maintain statistics about recent data (rather than the entire stream). For
instance, we may be interested in analyzing stock market transactions within
the last hour, or monitoring and analyzing packets entering a network to detect
suspicious activity, or identifying patterns in genomic sequences. This model
is known as the sliding windows model, in which we care about a fixed-length
window of time (say, 1 hour), which “slides” forward as time moves on (e.g., the
last one hour, etc.).

While in the standard sliding window model, the aim is to maintain some
statistics of an input stream (usually, using only polylogarithmic memory), our
� Research supported in part by NSF grants CNS-0830803; CCF-0916574; IIS-1065276;

CCF-1016540; CNS-1118126; CNS-1136174; US-Israel BSF grant 2008411, OKAWA
Foundation Research Award, IBM Faculty Research Award, Xerox Faculty Re-
search Award, B. John Garrick Foundation Award, Teradata Research Award, and
Lockheed-Martin Corporation Research Award. This material is also based upon
work supported by the Defense Advanced Research Projects Agency through the U.S.
Office of Naval Research under Contract N00014-11-1-0392. The views expressed are
those of the authors and do not reflect the official policy or position of the Depart-
ment of Defense or the U.S. Government.

V. Geffert et al. (Eds.): SOFSEM 2014, LNCS 8327, pp. 258–268, 2014.
c© Springer International Publishing Switzerland 2014

Efficient Error-Correcting Codes for Sliding Windows 259

focus is applications in which the stream is generated in one place and then
communicated to another place, as is the case for sensor networks, for instance.
Inevitably, such applications are particularly vulnerable to data corruption while
transmitting symbols: sensors are often placed in harsh environments connected
to a base unit by a wireless channel which is susceptible to various kinds of
errors (a weak signal, noise from other nearby transmitters, physical blockage
of the transmitting medium, or even physical damage to the sensor). A natural
question arises, how can we handle this constant stream of corrupted data while
still being able to make sense of the information?

Our paper precisely aims to answer this question. We study encoding schemes
for transmitting data streams in the sliding windows setting. We aim to design
encoding schemes that can tolerate a high amount of errors while keeping the
added redundancy low. Informally, we mainly consider noise rates above 1/2,
while adding only a constant overhead.1 Another requirement of our scheme is
to be efficient, that is, the encoding and decoding time (per element) must be
at most polylogarithmic in the window size N .2

Before we describe our result in more details, let us explain why simple so-
lutions for this task fail to work. Assume that an encoding scheme is meant to
protect against a burst of noise of length n. A straightforward solution would
be to cut the stream into chunks of size N = (2 + ε)n and encode each chunk
using some standard error-correcting code that can deal with a fraction of errors
of almost 1/2 (e.g., a Shannon error-correcting code [12] with good distance).
This solution has three downsides. First, if the noise within one block is even
slightly more than n, there are some messages for which the entire block will be
incorrectly decoded. Second, the receiving side will be able to decode a block
only after receiving the block entirely, which implies a delay of 2n. Last, and
maybe the most important downside, is that the rate of errors in one window
using this solution cannot exceed 1/2. We can replace the Shannon code with
a code that resists a fraction of noise arbitrarily close to 1, such as the code of
Micali, Peikert, Sudan, and Wilson [8], however this code uses an alphabet size
that grows with the block size, and the obtained scheme would have a super-
constant overhead. No codes over a constant-size alphabet are known to resist
more than 1/2 fraction of errors.

Contributions and Techniques. We provide a family of constant-rate encod-
ing schemes in the sliding window model such that for any c < 1, if the rate of
noise in the last window is less than c, the decoding of a (1 − c)-prefix of the
window succeeds with overwhelming probability. Our scheme has polylogarith-
mic time complexity per element and linear space complexity. Formally,

1 Loosely speaking, the overhead of a scheme is the amount of data communicated in
one window divided by the amount of input data in that window, as a function of
the windows size N .

2 A similar polylogarithmic bound on the memory consumption would also be desired.
However, at least for the sender, we show that the memory consumption must be at
least linear in the window size, Ω(N).

260 R. Gelles, R. Ostrovsky, and A. Roytman

Theorem 1. For any c < 1 and any ε > 0, there exists an efficient encod-
ing/decoding scheme for streams in the sliding window model with the following
properties.

For any window W of size N , if the fraction of errors within W is less than c,
then except with negligible probability N−ω(1), the decoder correctly decodes a
prefix of W of size at least (1 − c − ε)N . The decoding takes poly(log N) time
per element and the encoding takes O(1) amortized time.

Clearly, for a noise rate c, there is no hope of decoding more than a (1 − c)-
prefix of the window (e.g., consider decoding at time N when the channel was
“blocked,” i.e. fully corrupted, starting at time (1 − c)N), and our protocol is
optimal in this aspect. Although a suffix of the current window may not be
decoded, the data is not lost and will be decoded eventually as the window slides
(if the noise rate is below c). Moreover, the delay of our scheme is (c+ε)N , since
we only guarantee that the receiver correctly decodes the first (1 − c − ε)N
symbols in each window, even though N symbols have already been received.
Given that our goal is to decode as large a prefix as possible, and that we cannot
hope to decode more than a (1− c)-prefix of the window, any scheme must incur
a delay of at least cN , and hence the delay of our scheme is near-optimal.

To provide some intuition and insight into the techniques we use, we begin
with the work of Franklin, Gelles, Ostrovsky, and Schulman for encoding streams
in the unbounded model [1]. Roughly speaking, their scheme works as follows. At
any particular time n (i.e., the length of the stream seen so far), the stream is split
into blocks of size log n, each of which is encoded using an online coding scheme
called a tree-code [10,11]. At each time step, a constant number of blocks are
chosen uniformly at random and the next symbol is sent (in each chosen block)
according to the encoding determined by the tree code (it is assumed that the
sender and receiver have access to a shared random string, so the receiver knows
which random blocks are chosen by the sender). This encoding is concatenated
with a weak message-authentication code, that detects a large fraction of errors
and effectively makes the scheme resistant to higher noise rates. We observe that
tree codes have several shortcomings. First, decoding a codeword using a tree
code takes exponential time in the block size. Second, tree codes (with constant
rate) are known to exist, but take exponential time to construct (though efficient
relaxations exist, see [2]). These shortcomings imply that any efficient scheme is
restricted to using tree codes on words of at most logarithmic length, and thus
obtain at least a polynomially small failure probability.

Our scheme takes inspiration from the ideas in [1]. We also divide our win-
dow into blocks of equal size, however we consider only blocks that are in the
window. The key observation is that we no longer need the “online” property
of tree-codes. This is because, in the sliding window model, we care only about
a fixed window size N , and the blocks within this window are well defined in
advance. Hence, the blocks do not increase in size when more elements arrive,
as in the unbounded case [1]. To completely avoid the need for an “online” cod-
ing, our scheme waits until an entire block arrives and then encodes it using an

Efficient Error-Correcting Codes for Sliding Windows 261

error-correcting block code.3 This allows us to replace the tree-code with a very
efficient block code, e.g., the almost-optimal linear-time code of Guruswami and
Indyk [3], and improve upon the efficiency in [1] to constant amortized time for
the sender and polylogarithmic time for the receiver per time step. Moreover, we
are not bound to logarithmic block size anymore, and by using polylogarithmic
block size we reduce the failure probability from polynomially small as in [1] to
negligible4, while keeping the scheme time-efficient.

The resulting scheme is very similar to, and can be seen as an extension of
the “code scrambling” method suggested by Lipton [7]. Lipton’s scheme encodes
a single message by chopping the message into blocks, with encoding and decod-
ing being done per block. Then, the scheme permutes the entire message and
adds a random mask to the permuted string, using some shared randomness.
The scheme has a negligible failure probability for any random, computationally
bounded channel with error probability p < 1/2. In contrast, our scheme works
in the sliding window model and potentially encodes an infinite message. This
requires a more clever “scrambling” technique than simply permuting the entire
message. The random mask performed in [7] is replaced with an error-detection
code, which increases the resilience of our scheme. We analyze our scheme against
an unbounded adversary and show that it can handle a corruption rate that is
arbitrarily close to 1 while guaranteeing a constant rate and a negligible failure
probability.

While our scheme resists fully adversarial channels, it requires a large amount
of shared-randomness. We can reduce the amount of shared randomness via
standard techniques (same as in [7]), under the assumption of a computationally
bounded channel. In this case a short random key is assumed to be shared
between the parties from which randomness is expanded as needed via a pseudo-
random generator.

Other Related Work. Coding schemes that assume the parties pre-share some
randomness first appeared in [13], and were greatly analyzed since. The main
advantage of such codes is that they can deal with adversarial noise, rather than
random noise. Langberg [6] showed codes that approach Shannon’s bound and
require only O(log n) randomness for a block size of n, as well as an Ω(log n)
lower bound on the amount of necessary randomness. The construction of Lang-
berg also implies an efficient code with O(n log n) randomness. This result was
improved to n+o(n) randomness by Smith [14]. Explicit constructions with o(n)
randomness are not yet known (see [14]).

2 Preliminaries

For a number n we denote by [n] the set {1, 2, . . . , �n�}, and for a finite set Σ
we denote by Σ≤n the set ∪n

k=1Σk. Throughout the paper, log() denotes the
3 For a block size B, this incurs an additional delay of O(B), but since our goal is to

decode a (1 − c − ε)-prefix of the window, we already have an inherent delay of cN
in any case (clearly, B will be sub-linear in N).

4 See Section 2 for a formal definition of a negligible function.

262 R. Gelles, R. Ostrovsky, and A. Roytman

binary logarithm (base 2). A data stream S is a (potentially infinite) sequence
of elements (a0, a1, a2 . . .) where element at ∈ {1, . . . , u} arrives at time t. In the
sliding window model we consider at each time t ≥ N the last N elements of
the stream, i.e. the window W = {at−(N−1), . . . , at}. These elements are called
active, whereas elements that arrived prior to the current window {ai | 0 ≤ i <
t − (N − 1)} are expired. For t < N , the window consists of all the elements
received so far, {a0, . . . , at}. Finally, we say that a function f(N) is negligible if
for any constant c > 0, f(N) < 1

Nc for sufficiently large N .

Shared Randomness Model. We assume the following model known as the shared-
randomness model. The legitimate users (the sender and the receiver) have access
to a random string Rand of unbounded length, which is unknown to the adversary.
Protocols in this model are thus probabilistic, and are required to succeed with
high probability over the choice of Rand. We assume that all the randomness
comes from Rand and that for a fixed Rand the protocols are deterministic.

Error-detection Codes: The Blueberry Code. The Blueberry-Code (BC) is a ran-
domized error-detection code introduced by Franklin, Gelles, Ostrovsky, and
Schulman [1], in which each symbol is independently embedded into a larger
symbol space via a random mapping. Since the mapping is random and unknown
to the adversary, each corruption is detected with some constant probability.

Definition 2. For i ≥ 1 let BCi : ΣI → ΣO be a random and independent
mapping. The Blueberry code maps a string x ∈ Σ∗

I into a string BC(x) ∈ Σ∗
O

of the same length where BC(x) = BC1(x1)BC2(x2) · · ·BCn(xn).

Conditioned on the fact that the legitimate users use a message space ΣI ⊂ ΣO,
each corruption can independently be detected with probability 1 − q, where
q = |ΣI |−1

|ΣO|−1 (hence, q is the probability that it remains undetected). The users
are assumed to be sharing the random mappings BCis at the start of the protocol.

Linear-time Error-correcting Codes. We will use error-correcting codes which
are very efficient (i.e., linear-time in the block size for encoding and decoding).
Such codes were initially (explicitly) constructed by Spielman [16] (see also [15]).
Specifically, we use a linear-time error-correcting code with almost optimal rate
given by Guruswami and Indyk [3]:

Lemma 3 ([3]). For every rate 0 < r < 1, and all sufficiently small δ > 0,
there exists an explicit family of error-correcting codes ECC : Σrn → Σn,
ECC−1 : Σn → Σrn over an alphabet of size |Σ| = Oε,r(1) that can be encoded
and (uniquely) decoded in time linear in n from a fraction e of errors and d of
erasures provided that 2e + d ≤ (1 − r − δ).

Communication and Noise Model. Our communication model consists of a chan-
nel ch : Σ → Σ subject to corruptions made by an adversary (or by the channel
itself). For all of our applications we assume that, at any given time slot (i.e.,

Efficient Error-Correcting Codes for Sliding Windows 263

for any arriving element of the stream), a constant number R of channel instan-
tiations are allowed. We say that R is the blowup or overhead of our scheme.

The noise model is such that any symbol σ sent through the channel can turn
into another symbol σ̃ ∈ Σ. It is not allowed to insert or delete symbols. We
assume the noise is adversarial, that is, the noise is made by an all-powerful
entity that is bounded only in the amount of noise it is allowed to introduce (the
adversarial noise model subsumes the common noise models of random-error and
burst-error). We say that the corruption rate in the window is c, if the fraction
of corrupted transmissions over the last N time steps is at most c.

3 A Polylogarithmic Sliding Window Coding Scheme

We consider the problem of streaming authentication in the sliding windows
model. In this setting, we have a fixed window size N (assumed to be known
in advance). At each time step, one element expires from this window and one
element arrives.

The idea is the following. The sender maintains blocks of size s of elements
from the current window, which means there are N

s blocks in the window. All
the blocks have the same amount of active elements, except the last block which
may only be partially full, and the first one which may have several elements that
have already expired. When all the elements of the first block have expired we
remove it and re-number the indices; additionally, when the last block becomes
full we introduce a new (empty) block to hold the arriving elements.

When the sender has received an entire block5 from the stream, the block is
encoded using a linear-time error-correcting code [3]. At each time step, one of
the N

s blocks is chosen uniformly at random and the next (unsent) symbol of
the encoded string is communicated over the channel after being encoded via
an error-detection code (this gives us better rate, and maximizes the amount of
decoded information). The protocol is described in Algorithm 1.

We now continue to analyze the properties of Algorithm 1, and show how to
fix its parameters so it will satisfy the conditions of Theorem 1.

Proposition 4. Suppose that the rate of corruptions in the window, for a given
time t, is at most c < 1. Fix a small enough ε > 0. Denote by TOTALk the
number of total transmissions for Bk up to time t; by CORRUPTk the number of
transmissions in Bk up to time t which are corrupted; and by ERRk the number
of errors in Bk up to time t (i.e., corrupted transmissions that were not identified
by the error-detection code BC). Then, for any k ∈ [(1 − c − ε)N

s] the following
holds.

1. (c + ε)Rs ≤ E[TOTALk] ≤ Rs.
2. E[CORRUPTk] ≤ cRs.
3. E[ERRk] ≤ cqRs.
5 We assume only complete blocks, that is, the scheme skips the last block until it

contains exactly s elements. This causes an additional delay of s time slots.

264 R. Gelles, R. Ostrovsky, and A. Roytman

Let the parameters of the protocol c, ε < 1 be fixed. Let s, R ∈ N be such that
s < N . Assume an online (symbol-wise) error-detection code BC with failure
probability q per corrupted symbol. Assume a linear-time error-correction
code ECC() : Σs → Σs/r with a rate r < 1 to be fixed later.

Sender: Maintain blocks Bk of size at most s for 1 ≤ k ≤ � N
s

� + 1; any arriving
element is appended to the last non-empty block.6 If all elements in the first
block expire, add a new (empty) block and remove B1. Reindex the blocks so
that the first block in the window is B1 and the last is B� N

s
�+1.

Maintain a counter countk for each block (initialized to 0 when the block is
added).
foreach time step t do

for j = 1, . . . , R do
Choose k ∈ [N

s
] uniformly at random.

countk ← countk + 1.
Send the next symbol of BC ◦ ECC(Bk) which has not yet been sent
according to countk (send ⊥, if all the symbols were communicated).

end
end

Receiver: The receiver maintains the same partition of the stream into blocks
(with consistent indexing).
foreach time step t do

for j = 1, . . . , R do
Assume the sender, at iteration (t, j), sent a symbol from Bk. Let xk

denote the string obtained by concatenating all the symbols received so
far that belong to the same Bk (preserving their order of arrival).
Let B′

k = ECC−1 ◦ BC−1(xk).
end

end
Output B′

k for any k ∈ [N
s

].
Algorithm 1. Sliding window error-correcting scheme

Proof.

1. Define TOTALk to be the number of times bucket Bk is chosen up to time t
(here, we mean the same bucket of data, regardless of the fact that its index
k is changed over time). Since the number of elements which appear in the
window after Bk is at least N −ks and at most N −(k −1)s, and because Bk

is chosen with probability exactly s
N , we have that E[TOTALk] = Θ(R(N −

ks)· s
N). Specifically, for any k, R(N −ks) s

N ≤ E[TOTALk] ≤ R(N −ks+s) s
N .

The result follows since k ≤ (1 − c − ε)N
s .

6 For the very first elements of the stream, we artificially create a window of size N
with, say, all 0’s (as if the scheme had already been running for N time steps) and
similarly divide it up into blocks. This is done to keep notation consistent.

Efficient Error-Correcting Codes for Sliding Windows 265

2. CORRUPTk is the amount of corrupted transmissions in Bk up to time t.
The number of corrupted transmissions in the window is at most cRN ,
and since each transmission has probability s/N of belonging to Bk, we
get E[CORRUPTk] ≤ RcN · s

N = cRs.
3. We use an error-detection code in which any change is caught with probabil-

ity 1 − q but makes an error with probability q. Assuming that the rate of
corruptions in the window is at most c, we have E[ERRk] ≤ cRN ·q· s

N = cqRs.

�

Proposition 5. Suppose the current window’s corruption rate is at most c for
some constant c > 0, and let ε > 0 be any sufficiently small constant. Suppose we
divide up the stream into blocks of size s. Then there exist constants R, q, r, δ =
Oc,ε(1) such that, except with probability N2−Ω(s), Bk is correctly decoded by the
receiver for every k ∈ [(1 − c − ε)N

s].

Proof. We consider the worst-case scenario in which the adversary corrupts a
c-fraction of the transmissions, and moreover all corruptions occur in the last
cRN transmissions (as this simultaneously maximizes the expected number of
corruptions in each block Bk with k ∈ [(1 − c − ε)N

s], since the expected number
of corruptions of such blocks grows with time as long as the block remains in
the window).

For a specific k, the probability of incorrectly decoding block Bk is bounded
by Pr[2ERRk + DELk > (1 − r − δ) s

r]. Here, r and δ are the two parameters
of the error-correction scheme specified in Lemma 3. Namely, 1

r is the overhead
incurred due to encoding each block of size s and δ is a parameter which trades
off error tolerance against alphabet size.

By Proposition 4, we know E[ERRk] = cqRs. Hence, using Chernoff bounds
we know that for any ξ > 0, we have Pr[ERRk ≥ (1 + ξ)E[ERRk]] ≤ e− ξ2

3 cqRs.
Deletions in block Bk come from two sources. The first source, denoted by D1

k,
stems from choosing block Bk less than s/r times (i.e., TOTALk is small). The
second source, denoted by D2

k, comes from the BC code detecting corruptions
(note that DELk = D1

k + D2
k).

Note that D1
k = max (s/r − TOTALk, 0), and in order to make it small

with high probability, we can require E[TOTALk] > s/r. Using Proposition 4,
E[TOTALk] ≥ (c + ε)Rs, thus by choosing R = (1+ξ)

r(c+ε) for some ξ > 0, and
applying Chernoff bounds, we get that

Pr
[
TOTALk ≤ s

r

]
≤ Pr

[
TOTALk <

(
1 − ξ

1 + ξ

)
E[TOTALk]

]
< e− ξ2s

2(1+ξ)r .

Hence, except with exponentially small probability, we know TOTALk ≥ s
r , which

implies that D1
k = 0. Next, observe that ERRk + D2

k = CORRUPTk and that by
Proposition 4 and by applying the Chernoff bound we know that for any ξ > 0,
Pr[CORRUPTk > (1 + ξ)cRs] < e− ξ2

3 cRs.
Putting these bounds together, we know that for any constant ξ > 0,

2ERRk + DELk = ERRk + CORRUPTk ≤ (1 + ξ)cqRs + (1 + ξ)cRs (1)

266 R. Gelles, R. Ostrovsky, and A. Roytman

(except with probability exponentially small in s). As long as this term is smaller
than (1−r−δ) s

r , then by Lemma 3 block Bk will be decoded correctly. Recalling
that we set R = (1+ξ)

r(c+ε) and substituting into the right-hand side of Eq. (1), we
get the following constraint on r:

r ≤ 1 − δ − c

c + ε
(1 + ξ)2(1 + q). (2)

Hence, for any constant rate 0 < r < 1 − c
c+ε , we can always choose sufficiently

small constants δ, q, ξ = Oc,ε(1) so that the constraint in Eq. (2) is satisfied.
So far we have only argued that we can decode one block Bk correctly except

with probability exponentially small in s. We simply apply the union bound to
get that, except with probability N2−Ω(s), every block Bk for k ∈ [(1 − c − ε)N

s]
can be decoded correctly.
�
Hence, with very high probability, we are able to guarantee that the entire prefix
of the window can be decoded correctly at each time step. We now seek to analyze
the efficiency of our scheme.

Proposition 6. For any time t, the time complexity of Algorithm 1 is O(1)
(amortized) for the sender, and O(s) for the receiver.

Proof. Omitted.
�
Finally, we set s = ω(log N) and obtain Theorem 1 immediately from Propo-

sition 5 and Proposition 6.

Memory Consumption. We now consider the memory requirements of the sender
and receiver. We focus on the space required for the “work” memory, which we
consider to be any memory required to perform computation that is separate
from the space for input, output, and randomness bits.

It is easy to see that, in our scheme, both the sender and receiver take linear
space O(N). For the sender, we obtain a matching Ω(N) lower bound: consider
the case that the channel is completely “jammed” between time 0 and cN (each
symbol is replaced with a random symbol), and then no more errors happen until
time N . Since the noise rate in the first window is c, we expect the decoder to
correctly output elements a1, . . . , a(1−c)N at time N . Since no information passed
through the channel until time cN , at that time, the sender must possess (at
least) the information a1, . . . , acN , thus his memory is lower bounded by cN =
Ω(N).

As for the decoder, technically, the size of the output memory must be Ω(N)
in order to decode a prefix of the window. However, if we wish to obtain a lower
bound on the decoder’s “work” memory, we note the following. In order for the
decoder to guarantee at most a negligible probability of failure, the decoder’s
“work” memory must be ω(log N). Otherwise, the decoder can save at most
O(log N) transmissions, where a proportion c of them is corrupt in expectation.
Regardless of the coding used for these elements, it would fail with non-negligible
probability. Closing the memory-gap for the decoder is left for further research.

Efficient Error-Correcting Codes for Sliding Windows 267

Effective Window. Since the decoder is able to decode a (1 − c − ε)-prefix of the
current window, we can think of him as effectively decoding, at each time t a
sliding window of size N ′, where N ′ = (1 − c − ε)N , whose start point is the
same as the real window. The effective window ends cN time steps before the
real window of the stream, which is precisely why the delay of our scheme is cN .

4 Conclusions and Open Questions

We have shown an efficient (polylogarithmic-time) coding scheme for data
streams in the sliding window model. Somewhat surprisingly, while solving a
problem in the sliding window model is usually a more difficult task than in
the unbounded model, the case of communicating a stream in the sliding win-
dow model is simpler than the unbounded case. This allows us to improve on
the methods built for the unbounded case [1] and achieve a more simple and
efficient scheme for sliding windows.

While standard error-correcting schemes can resist a noise rate of at most 1/2
(in one window), our scheme allows any error rate less than one at the cost of
requiring the parties to pre-share some randomness before running the scheme.
Our scheme is also advantageous in terms of delay.

While we aimed at achieving a constant-rate scheme, we have not analyzed
the minimal possible rate as a function of the noise (R is clearly lower bounded
by 1/(1 − c)). Achieving an efficient scheme with optimal rate remains as an
open question.

Finally, we mention that we can obtain a scheme that assumes no shared
randomness, if we restrict the error rate up to 1/2, and assume an additive
(a.k.a. oblivious) adversary. Here, the channel fixes an error string to be added
to the transmitted codeword, without seeing the transmitted codeword (though
it can depend on the message and the coding scheme). This is done by employing
the techniques of Guruswami and Smith [4]. Although this construction is some-
what technically involved, there are no novel techniques. We omit the details
due to lack of space. Since the error rate is bounded by 1/2, the only advantage
this scheme has over the naïve approach described in Section 1, is reducing the
delay.

References

1. Franklin, M., Gelles, R., Ostrovsky, R., Schulman, L.J.: Optimal coding for stream-
ing authentication and interactive communication. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 258–276. Springer, Heidelberg
(2013)

2. Gelles, R., Moitra, A., Sahai, A.: Efficient and explicit coding for interactive com-
munication. In: FOCS 2011, pp. 768–777 (2011)

3. Guruswami, V., Indyk, P.: Linear-time encodable/decodable codes with near-
optimal rate. IEEE Trans. on Information Theory 51(10), 3393–3400 (2005)

4. Guruswami, V., Smith, A.: Codes for computationally simple channels: Explicit
constructions with optimal rate. In: FOCS 2010, pp. 723–732 (2010)

268 R. Gelles, R. Ostrovsky, and A. Roytman

5. Kienzler, R., Bruggmann, R., Ranganathan, A., Tatbul, N.: Large-scale DNA se-
quence analysis in the cloud: a stream-based approach. In: Alexander, M., et al.
(eds.) Euro-Par 2011, Part II. LNCS, vol. 7156, pp. 467–476. Springer, Heidelberg
(2012)

6. Langberg, M.: Private codes or succinct random codes that are (almost) perfect.
In: FOCS 2004, pp. 325–334. IEEE Computer Society, Washington, DC (2004)

7. Lipton, R.: A new approach to information theory. In: Enjalbert, P., Mayr,
E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 699–708. Springer,
Heidelberg (1994)

8. Micali, S., Peikert, C., Sudan, M., Wilson, D.A.: Optimal error correction against
computationally bounded noise. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378,
pp. 1–16. Springer, Heidelberg (2005)

9. Munir, S., Lin, S., Hoque, E., Nirjon, S., Stankovic, J., Whitehouse, K.: Addressing
burstiness for reliable communication and latency bound generation in wireless
sensor networks. In: IPSN 2010, pp. 303–314 (2010)

10. Schulman, L.J.: Deterministic coding for interactive communication. In: STOC
1993, pp. 747–756 (1993)

11. Schulman, L.J.: Coding for interactive communication. IEEE Transactions on In-
formation Theory 42(6), 1745–1756 (1996)

12. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mo-
bile Computing and Communications Review 5(1), 3–55 (2001), originally appeared
in Bell System Tech. J. 27, 379–423, 623–656 (1948)

13. Shannon, C.E.: A note on a partial ordering for communication channels. Informa-
tion and Control 1(4), 390–397 (1958)

14. Smith, A.: Scrambling adversarial errors using few random bits, optimal informa-
tion reconciliation, and better private codes. In: SODA 2007, pp. 395–404 (2007)

15. Spielman, D.: Computationally efficient error-correcting codes and holographic
proofs. Ph.D. thesis, Massachusetts Institute of Technology (1995)

16. Spielman, D.: Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory 42(6), 1723–1731 (1996)

	Efficient Error-Correcting Codes for Sliding Windows
	Introduction
	Preliminaries
	A Polylogarithmic Sliding Window Coding Scheme
	Conclusions and Open Questions

