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Abstract
Given a stream of data, a typical approach in streaming algorithms is to design a sophisticated
algorithm with small memory that computes a specific statistic over the streaming data. Usually,
if one wants to compute a different statistic after the stream is gone, it is impossible. But what
if we want to compute a different statistic after the fact? In this paper, we consider the following
fascinating possibility: can we collect some small amount of specific data during the stream that
is “universal,” i.e., where we do not know anything about the statistics we will want to later
compute, other than the guarantee that had we known the statistic ahead of time, it would have
been possible to do so with small memory? This is indeed what we introduce (and show) in this
paper with matching upper and lower bounds: we show that it is possible to collect universal
statistics of polylogarithmic size, and prove that these universal statistics allow us after the fact
to compute all other statistics that are computable with similar amounts of memory. We show
that this is indeed possible, both for the standard unbounded streaming model and the sliding
window streaming model.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Streaming Algorithms, Universality, Sliding Windows

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2015.573

∗ This material is based upon work supported in part by the National Science Foundation under Grant No.
1447639, by the Google Faculty Award and by DARPA grant N660001-1-2-4014. Its contents are solely
the responsibility of the authors and do not represent the official view of DARPA or the Department of
Defense.

† Research supported in part by NSF grants DMS-9206267; CNS-0430254; CNS-0716835; CNS-0716389;
CNS-0830803; CCF-0916574; IIS-1065276; CCF-1016540; CNS-1118126; CNS-1136174; US-Israel BSF
grants BSF-2002354; BSF-2008411; OKAWA Foundation Research Award, IBM Faculty Research Award,
Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata Research Award, and
Lockheed-Martin Corporation Research Award. This material is also based upon work supported by the
Defense Advanced Research Projects Agency through the U.S. Office of Naval Research under Contract
N00014-11-1-0392. The views expressed are those of the author and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

‡ The work of Alan Roytman was partially supported by the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement number
337122, and in part by the Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11).

© Vladimir Braverman, Rafail Ostrovsky, and Alan Roytman;
licensed under Creative Commons License CC-BY

18th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’15) /
19th Int’l Workshop on Randomization and Computation (RANDOM’15).
Editors: Naveen Garg, Klaus Jansen, Anup Rao, and José D.P. Rolim; pp. 573–590

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.573
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


574 Zero-One Laws for Sliding Windows and Universal Sketches

1 Introduction

With the vast amount of data being generated today, algorithms for data streams continue
to play an important role for many practical applications. As the data being generated
continues to grow at a staggering rate, streaming algorithms are increasingly becoming more
important as a practical tool to analyze and make sense of all the information. Data streams
have recently received a lot of attention with good reason, as evidenced by their wide array
of applications. In particular, applications for streaming algorithms which operate over
input that arrives on the fly and use a small amount of memory are numerous, ranging from
monitoring packets flowing across a network to analyzing patterns in DNA sequences. In
practice, such applications generate vast amounts of data in a very short period of time, so
it is infeasible to store all this information. This presents a pressing question: when is it
possible to avoid storing all the information while still providing approximate solutions with
good theoretical guarantees?

Typically, algorithms are developed for data streams in the unbounded model, where
some statistic is maintained over the entire history of the stream. For certain applications,
it is useful to only compute such statistics over recent data. For instance, we may wish to
analyze stock market transactions in a particular timeframe or monitor packets transmitted
over a network in the last hour to identify suspicious activity. This framework is known as the
sliding window model, where we maintain statistics over the current window of size at most
N , which slides as time progresses. In the sequence-based model, exactly one element arrives
and expires from the window per time step. In the timestamp-based model, any number of
elements may arrive or expire. Clearly, the timestamp-based model is more general.

In a landmark paper that influenced the streaming field, the work of Alon, Matias and
Szegedy [3] studied the following fundamental framework. For a universe U = {1, . . . , n}
and an input stream (i.e., a sequence of integers drawn from U), let M = (m1, . . . ,mn) be
the vector where mi denotes the frequency that element i ∈ U appears in the stream. At
any point in time, the paper of [3] showed how to approximate various frequency moments
in sublinear space. Informally, for the kth frequency moment Fk =

∑
i∈U m

k
i , it was shown

that F0, F1, and F2 can be approximated in polylogarithmic space, while for k > 2, an upper
bound of O∗(n1−1/k) was shown (the notation O∗(f(n)) hides polylogarithmic factors). In
addition, a lower bound of Ω(n1−5/k) was shown for every k ≥ 6. As discussed in [3], such
frequency functions are very important in practice and have many applications in databases,
as they indicate the degree to which the data is skewed. The fundamental work of Indyk and
Woodruff [24] showed how to compute Fk for k > 2 in space O∗(n1−2/k), which was the first
optimal result for such frequency moments. They reduced the problem of computing Fk to
computing heavy hitters, and indeed our construction builds on their methods. Recently, Li,
Nguyễn, and Woodruff [28] showed that any one-pass streaming algorithm that approximates
an arbitrary function in the turnstile model can be implemented via linear sketches. Our
work is related, as our algorithms are based on linear sketches of [3].

Such works have opened a line of research that is still extremely relevant today. In
particular, what other types of frequency-based functions admit efficient solutions in the
streaming setting, and which functions are inherently difficult to approximate? In our paper,
we strive to answer this question for frequency-based, monotonically increasing functions
in the sliding window model. We make progress on two significant, open problems outlined
in [2] by Nelson and [1] by Sohler. Specifically, we are the first to formalize the notion of
universality for streaming over sliding windows (since the sliding window model is more
general than the standard unbounded model, our universality result is also the first such
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contribution in the unbounded model). Our main result is the construction of a universal
algorithm in the timestamp-based sliding window model for a broad class of functions. That
is, we define a class of functions and design a single streaming algorithm that produces
a data structure with the following guarantee. When querying the data structure with a
function G taken from the class, our algorithm approximates

∑n
i=1 G(mi) without knowing

G in advance (here, mi denotes the frequency that element i appears in the window). This
is precisely the notion of universality that we develop in our paper, and it is an important
step forward towards resolving the problem in [2].

Along the way, we design a zero-one law for a broader class of monotonically increasing
functions G which are zero at the origin that specifies when

∑n
i=1 G(mi) can be approximated

with high probability in one pass, using polylogarithmic memory. If G satisfies the conditions
specified by the test, then given the function G we construct an explicit, general algorithm
that is able to approximate the summation to within a (1± ε)-factor using polylogarithmic
memory. If the function G does not pass the test, then we provide a lower bound which
proves it is impossible to do so. This result generalizes the work of [9] to the sliding window
setting, and makes important progress towards understanding the question posed in [1].

1.1 Contributions and Techniques
Our contributions in this paper make progress on two important problems:
1. We are the first to formally define the notion of universality in the streaming setting.

We define a large class of functions U such that, for the entire class, we design a single,
universal algorithm for data streams in the sliding window model which maintains a data
structure with the following guarantee. When the data structure is queried with any
function G ∈ U , it outputs a (1± ε)-approximation of

∑n
i=1 G(mi) without knowing G

in advance (note that the choice of G can change). Our algorithm uses polylogarithmic
memory, makes one pass over the stream, and succeeds with high probability.

2. We give a complete, algebraic characterization for the class of tractable functions over
sliding windows. We define a broader set of functions T such that, for any non-decreasing
function G with G(0) = 0, if G ∈ T , then we have an algorithm that gives a (1 ± ε)-
approximation to

∑n
i=1 G(mi), uses polylogarithmic space, makes one pass over the

stream, and succeeds with high probability. Moreover, if G 6∈ T , we give a lower bound
which shows that super-polylogarithmic memory is necessary to approximate

∑n
i=1 G(mi)

with high probability. This extends the work of [9] to the sliding window model.

Our algorithms work in the timestamp-based sliding window model and maintain the
sum approximately for every window. The value ε can depend on n and N , so that the
approximation improves as either parameter increases. Our construction is very general,
applying to many functions using the same techniques. In stark contrast, streaming algorithms
typically depend specifically on the function to be approximated (e.g., F2 [3, 22] and
F0 [17, 13, 3]). The problems we study have been open for several years, and our construction
and proofs are non-trivial. Surprisingly, despite us using existing techniques, their solutions
have remained elusive.

For our main result, item 1, it is useful to understand our techniques for solving item 2.
When designing the correct zero-one law for tractable functions, a natural place to begin
is to understand whether the predicate from [9] suffices for designing an algorithm in the
sliding window model. As it turns out, there are some functions which are tractable in the
unbounded model but not the sliding window model, and hence the predicate is insufficient.
Part of the novelty of our techniques is the identification of an extra smoothing assumption
for the class of tractable functions over sliding windows.

APPROX/RANDOM’15
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If a function does not satisfy our smoothing assumption, we show a super-polylogarithmic
lower bound, inspired by the proof of [15]. For our positive result, we observe that the
sliding window model adds extra error terms relative to the unbounded model, which our
smoothness condition can bound. We also draw on the methods of [9, 10, 24] by finding
heavy elements according to the function G, and then reducing the sum problem to the
heavy elements problem. Our work sheds light on the question posed in [1], by exhibiting
a strict separation result between the unbounded and sliding window models. A function
which serves as a witness to this separation (i.e., tractable in the unbounded model as defined
in [9] but not in the sliding window model) is a monotonically increasing, piecewise linear
function that alternates between being constant and linearly increasing. The function can be
seen as a linear approximation to log(x).

To obtain our main result, we observe that one can remove the assumption from our
initial constructions that G is given up front (so that all applications of G happen at the
end of the window). However, some technical issues arise, as our construction relies on some
parameters of G that stem from our zero-one law. To address these issues, we parameterize
our class of functions U by a constant, allowing us to build a single algorithm to handle the
entire parameterized class.

1.2 Related Work
The paper of Braverman and Ostrovsky [9] is the most closely related to our paper. We
extend their result from the unbounded model to the timestamp-based sliding window model
(by formalizing a new characterization of tractable functions) and by designing a universal
algorithm for a large class of functions. Our results build on [9, 10, 24].

Approximating frequency moments and Lp norms has many applications, and there are
indeed a vast number of papers on the subject. Compared to such works, we make minimal
assumptions and our results are extremely broad, as we design general algorithms that can
not only handle frequency moments, but other functions as well. Flajolet and Martin [17]
gave an algorithm to approximate F0 (i.e., counting distinct elements), and Alon, Matias, and
Szegedy [3] showed how to approximate Fk for 0 ≤ k ≤ 2 using polylogarithmic memory, while
for k > 2 they showed how to approximate Fk using O∗(n1−1/k) memory. They also showed
an Ω(n1−5/k) lower bound for k ≥ 6. Indyk [22] used stable distributions to approximate
Lp norms for p ∈ (0, 2]. Indyk and Woodruff [24] gave the first optimal algorithm for Fk
(k > 2), where an O∗(n1−2/k) upper bound was developed. In a followup work, Bhuvanagiri,
Ganguly, Kesh, and Saha [6] improved the space by polylogarithmic factors. Bar-Yossef,
Jayram, Kumar, and Sivakumar [4] gave an Ω(n1−(2+ε)/k) lower bound, which was improved
to Ω(n1−2/k) by Chakrabarti, Khot, and Sun [11] for any one-pass streaming algorithm. The
literature is vast, and other results for such functions include [23, 31, 5, 12, 13, 16, 18, 26, 27].

There is also a vast literature in streaming for sliding windows. In their foundational paper,
Datar, Gionis, Indyk, and Motwani [15] gave a general technique called exponential histograms
that allows many fundamental statistics to be computed in optimal space, including count,
sum of positive integers, average, and the Lp norm for p ∈ [1, 2]. Gibbons and Tirthapura [19]
made improvements for the sum and count problem with algorithms that are optimal in
space and time. Braverman and Ostrovsky [8] gave a general framework for a large class
of smooth functions, which include the Lp norm for p > 0. Our work complements their
results, as the functions they studied need not be frequency based. Many works have studied
frequency estimation and frequent item identification, including [20, 25, 14, 32, 21, 30, 7].
Many of our constructions rely on computing frequent elements, but we must do so under a
broad class of functions.
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1.3 Roadmap
In Section 2, we describe notation used throughout this paper, give some definitions, and
formalize the main problems we study. In Section 3, we give a lower bound for functions that
are not tractable (i.e., we show the “zero” part of our zero-one law) and we give an algorithm
for any tractable function (i.e., we show the “one” part of our zero-one law). Finally, in
Section 4, we show the main result of this paper by giving a universal streaming algorithm.

2 Notation and Problem Definition

We have a universe of n elements [n], where [n] = {1, . . . , n}, and an integer N . A stream
D(n,N) is a (possibly infinite) sequence of integers a1, a2, . . ., each from the universe [n],
where N is an upper bound on the size of the sliding window. Specifically, at each time step,
there is a current window W that contains active elements, where |W | ≤ N . The window W

contains the most recent elements of the stream, and elements which no longer belong in the
window are expired. We use the timestamp-based model for sliding windows (i.e., any number
of elements from the stream may enter or leave the window at each time step). We denote the
frequency vector by M(W ), where M(W ) = (m1, . . . ,mn) and each mi is the frequency of
element i ∈ [n] in window W (i.e., mi = |{j | aj = i ∧ j is active}|). For the window W , the
kth frequency moment Fk(M(W )) =

∑n
i=1 m

k
i . For a vector V = (v1, . . . , vn), we let |V | be

the L1 norm of V , namely |V | =
∑
i |vi|. For a vector V = (v1, . . . , vn) and a function f , we

define the f -Vector as f(V ) = (f(v1), . . . , f(vn)). We say that x is a (1± ε)-approximation
of y if (1− ε)y ≤ x ≤ (1 + ε)y. We define O∗(f(n,N)) = O(logO(1)(nN)f(n,N)). We say a
probability p is negligible if p = O∗

( 1
nN

)
. Consider the following problem:

I Problem 1 (G-Sum). Let G : R → R be an arbitrary non-decreasing function such
that G(0) = 0. For any stream D(n,N), any k, and any ε = Ω(1/ logk(nN)), output a
(1± ε)-approximation of

∑n
i=1 G(mi) for the current window W .

We first give some definitions which will be useful throughout the paper and help us
define our notion of tractability, beginning with the local jump:

I Definition 2 (Local Jump). ∀ε > 0, x ∈ N, we define the local jump πε(x) as

min {x,min {z ∈ N | G(x+ z) > (1 + ε)G(x) ∨G(x− z) < (1− ε)G(x)}}.

That is, πε(x) is essentially the minimum amount needed to cause G to jump by a (1±ε)-factor
by shifting either to the left or right of x.

I Definition 3 (Heavy Element). For a vector V = (v1, . . . , vn), parameter d > 0, and function
f , we say an element i is (f, d)-heavy with respect to the vector V if f(vi) > d

∑
j 6=i f(vj).

I Definition 4 (Residual Second Moment). If there is an (F2, 1)-heavy element vi with respect
to V = (v1, . . . , vn), we define the residual second moment as F res2 (V ) = F2(V ) − v2

i =∑
j 6=i v

2
j .

I Definition 5 (Sampled Substream). For a stream D(n,N) and function H : [n]→ {0, 1},
we denote by DH the sampled substream of D consisting of all elements that are mapped to
1 by the function H. More formally, DH = D ∩H−1(1).

We analogously define WH to be the corresponding window for the sampled substream DH .
We are now ready to define our zero-one law.

APPROX/RANDOM’15
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I Definition 6 (Tractability). We say a function G is tractable if G(1) > 0 and:

∀k ∃N0, t ∀x, y ∈ N+ ∀R ∈ R+ ∀ε :(
R > N0,

G(x)
G(y) = R, ε >

1
logk(Rx)

)
⇒

((
πε(x)
y

)2
≥ R

logt(Rx)

)
and (1)

∀k ∃N1, r ∀x ≥ N1 ∀ε : ε > 1
logk(x)

⇒ πε(x) ≥ x

logr(x) . (2)

We let Tractable be the set of functions that satisfy the above predicate. We now turn to our
universal setting and develop an analogous notion of tractability in the context of universality.
It is similar to Definition 6, except we need to upper bound some parameters by a constant.

I Definition 7 (Universal Tractability). Fix a constant C. Let U(C) denote the set of
non-decreasing functions G where G(0) = 0, G(1) > 0, and:

∀k ≤ C ∃N0, t ≤ 10C ∀x, y ∈ N+ ∀R ∈ R+ ∀ε :(
R > N0,

G(x)
G(y) = R, ε >

1
logk(Rx)

)
⇒

((
πε(x)
y

)2
≥ R

logt(Rx)

)
and (3)

∀k ≤ C ∃N1, r ≤ 10C ∀x ≥ N1 ∀ε : ε > 1
logk(x)

⇒ πε(x) ≥ x

logr(x) . (4)

Some examples of functions that are tractable in the universal sense include the moments xp
for p ≤ 2, for which πε(x) = Ω(εx), along with other functions such as (x+ 1) log(x+ 1).

I Definition 8 (Universal Core Structure). A data structure S is a universal core structure for
a fixed vector V = (v1, . . . , vn) with parameters ε, δ, α > 0, and a class of functions G, where
G ∈ G satisfies G : R → R, if given any G ∈ G, S outputs a set T = {(x1, j1), . . . , (x`, j`)}
such that with probability at least 1− δ we have: 1) For each 1 ≤ i ≤ `, (1− ε)G(vji) ≤ xi ≤
(1 + ε)G(vji), and 2) If there exists i such that vi is (G,α)-heavy with respect to V , then
i ∈ {j1, . . . , j`}.

I Definition 9 (Universal Core Algorithm). An algorithm A is a universal core algorithm
with parameters ε, δ, α > 0, and a class of functions G, where G ∈ G satisfies G : R→ R, if,
given any stream D(n,N), A outputs a universal core structure for the vector M(W ) with
parameters ε, δ, α, and G.

I Definition 10 (Universal Sum Structure). A data structure S is a universal sum structure
for a fixed vector V = (v1, . . . , vn) with parameters ε, δ > 0, and a class of functions G, where
G ∈ G satisfies G : R→ R, if given any G ∈ G, S outputs a value x such that with probability
at least 1− δ we have: (1− ε)

∑n
i=1 G(vi) ≤ x ≤ (1 + ε)

∑n
i=1 G(vi).

I Definition 11 (Universal Sum Algorithm). An algorithm A is a universal sum algorithm
with parameters ε, δ > 0, and a class of functions G, where G ∈ G satisfies G : R → R, if,
given any stream D(n,N), A outputs a universal sum structure for the vector M(W ) with
parameters ε, δ, and G.

In this paper, our main result is the proof of the following theorem:
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I Theorem 12. Fix a constant C and let U(C) be the universally tractable set from Defi-
nition 7. There is a universal sum algorithm that has parameters ε = Ω(1/ logk(nN)) (for
0 ≤ k ≤ C), δ = 0.3, and G = U(C), uses polylogarithmic space in n and N , and makes a
single pass over the input stream D(n,N).

We can reduce the constant failure probability to inverse polynomial via standard methods.
To formalize our other main result, we define the following class:

I Definition 13 (STREAM-POLYLOG). We say function G ∈ STREAM-POLYLOG if ∀k =
O(1), ∃t = O(1) and an algorithm A such that for any universe size n, window size N ,
ε ≥ 1/ logk(nN), and stream D(n,N): 1) A makes one pass over D, 2) A uses O(logt(nN))
space, and 3) For any window W , A maintains a (1± ε)-approximation of |G(M(W ))| except
with probability at most 0.3.

Note that the constant error probability can be made to be as small as an inverse
polynomial by standard techniques. Our other main result is the following:

I Theorem 14. Let G be a non-decreasing function such that G(0) = 0. Then we have
G ∈ STREAM-POLYLOG⇐⇒ G ∈ Tractable.

3 A Characterization for Tractable Functions

In this section, we prove Theorem 14 by first giving a lower bound for non-tractable functions.
We first show a deterministic lower bound for any algorithm that approximates G-Sum. Our
technique is inspired by the lower bound proof in [15] for estimating the number of 1’s for
sliding windows.

I Theorem 15. Let G be a function such that G 6∈ Tractable. Then, any deterministic
algorithm that solves the G-Sum problem with relative error ε′ = 1/ logb(nN) (for some
constant b) must use space at least Ω(loga(nN)), where a is arbitrarily large.

Proof. We construct a set of input streams such that, for any pair of data streams in the set,
the algorithm must distinguish between these two inputs at some point as the window slides.
Therefore, the space of the algorithm must be at least logarithmic in the size of this set.

Since G 6∈ Tractable, in Definition 6, either Predicate (1) or Predicate (2) does not
hold. If Predicate (1) is not true, then the lower bound from [9] applies and the theorem
follows. Hence, we assume that Predicate (2) does not hold, which implies the following:
∃k,∀r,N1,∃x ≥ N1, ε : ε > 1

logk(x) ∧ πε(x) < x
logr(x) . Let k be given, and let r be arbitrarily

large. This negation implies that there are infinitely many increasing points x1, x2, x3, . . .

and corresponding values ε1, ε2, ε3, . . ., where εi > 1
logk(xi)

and πεi(xi) < xi
logr(xi) .

Surprisingly, we construct our lower bound with a universe of size n = 1, namely U = {1}.
For each xi, we construct a set of streams with a fixed, upper bounded window size of N = xi,
and argue that the algorithm must use memory at least logr(xi) (note that, as the xi are
monotonically increasing, our lower bound applies for asymptotically large N). We assume
without loss of generality that G(xi − πεi(xi)) < (1− εi)G(xi). Our constructed streams are
defined as follows. For each N = xi, note that our window consists of elements which have
arrived in the past xi time steps. For the first xi time steps, we construct many streams
by choosing b xi

πεi (xi)c of these time steps (each choice defining a different stream). For each
chosen time step, we insert πεi(xi) 1’s into the stream, and for each time step that is not
chosen, we insert zero elements. For technical reasons, we pad the last time step xi in the
first window with xi − πεi(xi)b xi

πεi (xi)c 1’s. Note that the number of elements in the first

APPROX/RANDOM’15
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window at time xi is πεi(xi)b xi
πεi (xi)c + (xi − πεi(xi)b xi

πεi (xi)c) = xi. We insert nothing at
time step xi + 1. For the remaining time steps xi + 2, . . . , 2xi − 1, we simply repeat the
first xi − 2 time steps of the stream (i.e., if time step t was chosen in the first xi time steps,
1 ≤ t ≤ xi − 2, then we insert πεi(xi) 1’s at time step xi + t+ 1).

Now, we argue that for any such pair of constructed streams A, B which are different,
any algorithm with relative error smaller than ε′ = 1/ logk(nN) must distinguish between
these two inputs. To see this, consider the earliest time d when the two streams differ (note
that 1 ≤ d ≤ xi − 1). Let WA be the window for stream A (similarly, we define WB as the
window for stream B). Let c be the number of chosen time steps in the first d time steps of
stream A. Without loss of generality, we assume that time step d was chosen in stream A but
not in stream B. Hence, the number of chosen time steps in stream B up to time d is c− 1.
Consider the windows at time step xi+d. The number of elements inWA at this time is given
by πεi(xi)[b xi

πεi (xi)c− c+ (c− 1)] +xi−πεi(xi)b xi
πεi (xi)c = xi−πεi(xi). Moreover, the number

of elements in WB is given by πεi(xi)[b xi
πεi (xi)c− (c− 1) + (c− 1)] +xi−πεi(xi)b xi

πεi (xi)c = xi.
Hence, the G-Sum value at time xi + d for WA is G(x − πεi(xi)) < (1 − εi)G(xi). As
long as the algorithm has relative error ε′ = 1/ logk(nN) < εi, streams A and B must be
distinguished at some point in time as the window slides.

Thus, the algorithm’s memory is lower bounded by the logarithm of the number of

constructed streams, of which there are
( xi
b xi
πεi

(xi)
c
)
for each xi. We have log

(( xi
b xi
πεi

(xi)
c
))
≥

b xi
πεi (xi)c log(πεi(xi)) ≥

logr(xi)
2 log(πεi(xi)). If πεi(xi) = 1, we repeat the proof inserting two

1’s at each time step and the proof goes through. Observing that r can be made arbitrarily
large gives the proof. J

We now have a randomized lower bound by appealing to Yao’s minimax principle [29]
and building on top of our deterministic lower bound, similarly to [15] (applying the principle
with the uniform distribution suffices).

I Theorem 16. Let G be a function where G 6∈ Tractable. Then, any randomized algorithm
that solves G-Sum with relative error smaller than ε′ = 1/ logb(nN) for some constant b and
succeeds with at least constant probability 1− δ must use memory Ω(loga(nN)), where a is
arbitrarily large.

We now complete the proof of Theorem 14 by first approximating heavy elements (note
that we reduce the G-Sum problem to the following problem):

I Problem 17 (G-Core). We have a stream D(n,N) and parameters ε, δ > 0. For each
window W , with probability at least 1−δ, maintain a set S = {g′1, . . . , g′`} such that ` = O∗(1)
and there exists a set of indices {j1, . . . , j`} where (1−ε)G(mji) ≤ g′i ≤ (1+ε)G(mji) for each
1 ≤ i ≤ `. If there is a (G, 1)-heavy element mi with respect to M(W ), then i ∈ {j1, . . . , j`}.

We begin solving the above problem via the following lemma (taken from [9]).

I Lemma 18. Let V = (v1, . . . , vn) be a vector with non-negative entries of dimension n

and H be a pairwise independent random vector of dimension n with entries hi ∈ {0, 1} such
that P (hi = 1) = P (hi = 0) = 1

2 . Denote by H ′ the vector with entries 1− hi. Let K > 104

be a constant, and let X = 〈V,H〉 and Y = 〈V,H ′〉. If there is an (F1,K)-heavy element
vi with respect to V , then: P ((X > KY ) ∨ (Y > KX)) = 1. If there is no (F1,

K
104 )-heavy

element with respect to V , then: P ((X > KY ) ∨ (Y > KX)) ≤ 1
2 .

We now give some lemmas related to how approximating values can affect the function G.
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I Lemma 19. Let 0 < ε ≤ 1
2 , and let x, u, v, y ≥ 0 satisfy |x − u| ≤ 0.1πε(x) and v, y <

0.1πε(x), where πε(x) > 1. Then (1− 4ε)G(u+ v + y) ≤ G(u) ≤ (1 + 4ε)G(u− v − y).

Proof. First, we note that u+ v + y ≤ x+ 0.1πε(x) + v + y ≤ x+ 0.3πε(x) ≤ x+ πε(x)− 1
(recalling πε(x) > 1). We can similarly get that u − v − y ≥ x − (πε(x) − 1). Hence, we
get that (1 − ε)G(x) ≤ G(x − (πε(x) − 1)) ≤ G(u − v − y) ≤ G(u) ≤ G(u + v + y) ≤
G(x+ (πε(x)− 1)) ≤ (1 + ε)G(x).

We conclude by noting: (1+4ε)G(u−v−y) ≥ (1+4ε)(1−ε)G(x) ≥ (1+4ε)(1−ε)
1+ε G(u) ≥ G(u).

Similarly, we get (1− 4ε)G(u+ v + y) ≤ (1− 4ε)(1 + ε)G(x) ≤ (1−4ε)(1+ε)
1−ε G(u) ≤ G(u). J

I Lemma 20. Let x, u, v, y ≥ 0 be such that |x − u| ≤ v + y, and let 0 < ε < 1. If
(1− ε)G(u+ v + y) ≤ G(u) ≤ (1 + ε)G(u− v − y), then (1− ε)G(x) ≤ G(u) ≤ (1 + ε)G(x).

Proof. We have (1 − ε)G(x) ≤ (1 − ε)G(u + v + y) ≤ G(u) ≤ (1 + ε)G(u − v − y) ≤
(1 + ε)G(x). J

We now give a useful subroutine over sliding windows which we use in our main algorithm
for approximating heavy elements and prove its correctness (there is a similar algorithm and
proof in [9], though it must be adapted to the sliding window setting).

1 for i = 1 to O(log(nN)) do
2 for j = 1 to C = O(1) do
3 Generate a random hash function H : [n]→ {0, 1} with pairwise independent

entries.
4 Let H ′ = 1−H (i.e., h′k = 1− hk, where hk is the kth entry of H).
5 Let fH be a (1± .1)-approximation of F2 on DH (with negligible error

probability), via the smooth histogram method for sliding windows [8].
6 Let fH′ be a (1± .1)-approximation of F2 on DH′ (with negligible error

probability), via the smooth histogram method for sliding windows [8].
7 Let Xij = 10 min{fH , fH′}.
8 Let Yi = Xi1+···+XiC

C (i.e., Yi is the average of C independent Xij ’s).
9 Output r =

√
mediani{Yi} for the current window W .

Algorithm 1: Residual-Approximation(D)

I Lemma 21. Let D(n,N) be any input stream. Algorithm Residual-Approximation makes
a single pass over D and uses polylogarithmic space in n and N . Moreover, if the current
window W contains an (F2, 2)-heavy element mi with respect to M(W ), then the algorithm
maintains and outputs a value r such that 2

√
F res2 (M(W )) < r < 3

√
F res2 (M(W )) (except

with negligible probability).

Proof. Assume the current window W has an (F2, 2)-heavy element mk with respect to
the vector M(W ). Due to the properties of smooth histograms from [8], we know that
.9F2(M(WH)) ≤ fH ≤ 1.1F2(M(WH)), where M(WH) is the multiplicity vector of the
current window in substream DH (similarly for fH′). Hence, the random variable Xij =
10 min{fH , fH′} is a (1± .1)-approximation of the random variable Z = 10

∑
` 1H(`) 6=H(k)m

2
`

(here, 1H(`)6=H(k) is the indicator random variable which is 1 if H(`) 6= H(k) and 0 otherwise).
To see why, suppose that element k is mapped to 1 by H, so that k belongs to the sampled
substream DH . Then observe that

fH ≥ .9F2(M(WH)) ≥ .9m2
k > 1.8

∑
` 6=k

m2
` ≥ 1.1

∑
`

1H(`) 6=H(k)m
2
` ≥ fH′ .

APPROX/RANDOM’15
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Thus, the minimum of fH and fH′ is indeed a (1± .1)-approximation to
∑
` 1H(`)6=H(k)m

2
` ,

since this is the second moment of the vector M(WH′) (the case is symmetric if element k is
mapped to 0 by H).

Now, since H is pairwise independent, we have that E(Z) = 5F res2 (M(W )). In particular,
since we always have 0 ≤ Z ≤ 10F res2 (M(W )), we can bound the variance by V ar(Z) ≤
E(Z2) ≤ 100(F res2 (M(W )))2. If we denote by A the random variable which is the average of
C independent Z’s, then we have V ar(A) = 1

CV ar(Z) ≤ 100
C (F res2 (M(W )))2. Hence, if we

choose C to be sufficiently large, then by Chebyshev’s inequality we have:

P (|A− 5F res2 (M(W ))| ≥ 0.1F res2 (M(W ))) ≤ 100V ar(A)
(F res2 (M(W )))2 ≤

104

C
≤ 0.1

(for instance, C = 105 is sufficient).
Now, if we take the median T of O(log(nN)) independent A’s, then by Chernoff bound

this would make the probability negligible. That is, we have 4.9F res2 (M(W )) ≤ T ≤
5.1F res2 (M(W )) except with negligible probability. We can repeat these arguments and
consider the median of O(log(nN)) averages (i.e., the Yi’s) of O(1) independent Xij ’s. Since
there are only O(log(nN)) Xij ’s total (with each one being a (1± .1)-approximation to its
corresponding random variable Z, except with negligible probability), then by the union
bound all the Xij ’s are (1 ± .1)-approximations except with negligible probability (since
the sum of polylogarithmically many negligible probabilities is still negligible). Therefore,
the median of averages would give a (1± .1)-approximation to T . Taking the square root
guarantees that 2

√
F res2 (M(W )) < r < 3

√
F res2 (M(W )) (except with negligible probability).

Note that the subroutine for computing an approximation to F2 on sliding windows using
smooth histograms can be done in one pass and in polylogarithmic space (even if we demand
a (1± .1)-approximation and a negligible probability of failure). J

Now, we claim that Algorithm Compute-Hybrid-Major solves the following:

I Problem 22 (Hybrid-Major(D, ε)). Given a stream D and ε > 0, maintain a value r ≥ 0
for each window W such that: 1) If r 6= 0, then r is a (1 ± 4ε)-approximation of G(mj)
for some mj, and 2) If the current window W has an element mi such that πε(mi) ≥
205
√
F res2 (M(W )), then r is a (1± 4ε)-approximation of G(mi).

1 Let a be a (1± ε′)-approximation of L2 for window W using the smooth histogram
method [8] (with negligible probability of error), for ε′ = 1

logΩ(1)(N) .
2 Repeat O(log(nN)) times, independently and in parallel:
3 Generate a uniform pairwise independent vector H ∈ {0, 1}n.
4 Maintain and denote by X ′ a (1± .2)-approximation of the second moment for the

window WH using a smooth histogram [8] (with negligible probability of error).
5 Similarly define Y ′ for the window W1−H .
6 If X ′ < (20)4Y ′ and Y ′ < (20)4X ′, output 0 and terminate the algorithm.
7 In parallel, apply Residual-Approximation(D) to maintain the residual second moment
approximation, let b denote the output of the algorithm.

8 If (1− 4ε)G(a+ b+ 2ε′a) > G(a) or G(a) > (1 + 4ε)G(a− b− 2ε′a), output 0.
9 Otherwise, output G(a).

Algorithm 2: Compute-Hybrid-Major(D, ε)

Before delving into the proof, we show the following lemma.
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I Lemma 23. Suppose the current window W has an (F2, 1)-heavy element mi. Moreover,
let a be a (1 ± ε′)-approximation of the L2 norm of the current window W , where ε′ < 1.
Then −ε′mi ≤ a−mi ≤ (1 + ε′)

√
F res2 (M(W )) + ε′mi ≤ 2

√
F res2 (M(W )) + ε′mi.

Proof. Since a is a (1 ± ε′)-approximation of the L2 norm of the vector M(W ), we know
(1− ε′)

√∑n
k=1 m

2
k ≤ a ≤ (1 + ε′)

√∑n
k=1 m

2
k. Hence, we have that

a−mi ≤ (1 + ε′)

√√√√ n∑
k=1

m2
k −mi ≤ (1 + ε′)mi + (1 + ε′)

√∑
j 6=i

m2
j −mi

≤ ε′mi + (1 + ε′)
√
F res2 (M(W )).

We conclude by noting that mi − a ≤ mi − (1 − ε′)
√∑n

k=1 m
2
k ≤ mi − (1 − ε′)mi, which

gives the lemma. J

I Lemma 24. For any function G ∈ Tractable, Algorithm Compute-Hybrid-Major solves the
Hybrid-Major problem with negligible probability of error.

Proof. First, we show that if there is no (F2, 2)-heavy entry in the current window W , then
the output is 0 except with negligible probability. Consider a single iteration of the main
loop of the algorithm. Let M ′ be the vector with entries m2

i and denote X = 〈M ′, H〉, Y =
|M ′| − 〈M ′, H〉. Since we have an F2 approximation over sliding windows, except with
negligible probability, X ′ and Y ′ are (1± .2)-approximations of X and Y , respectively. Hence,
4
5X ≤ X ′ ≤ 5

4X and 4
5Y ≤ Y ′ ≤ 5

4Y . By Lemma 18, except with probability at most
0.5+o(1): X ′ ≤ 5

4X ≤
5
2 (10)4Y < (20)4Y ′ and Y ′ < (20)4X ′. Thus, the algorithm outputs 0

except with negligible probability.
Assume that there is an (F2, 2)-heavy entry mi. Then, applying Lemma 23 with some 0 <

ε′ < 1 to be set later, we know |mi−a| ≤ 2
√
F2(M(W ))+ε′mi and a ≥ (1−ε′)mi (except with

negligible probability). By Lemma 21, it follows that 2
√
F res2 (M(W )) < b < 3

√
F res2 (M(W ))

except with negligible probability. Hence, we have |mi − a| ≤ b + ε′mi ≤ b + 2ε′a, since
2ε′a ≥ 2ε′(1− ε′)mi ≥ ε′mi (assuming ε′ ≤ 1

2 ). Now, observe that if the algorithm outputs
G(a), then it must be that (1− 4ε)G(a+ b+ 2ε′a) ≤ G(a) ≤ (1 + 4ε)G(a− b− 2ε′a). Thus,
by applying Lemma 20 with parameters x = mi, u = a, v = b, and y = 2ε′a, it follows that if
the algorithm outputs G(a), then G(a) is a (1± 4ε)-approximation of G(mi). Thus, the first
condition of Hybrid-Major follows.

Finally, assume πε(mi) ≥ (20)5
√
F res2 (M(W )). By definition, mi ≥ πε(mi) and so mi

is (F2, 2010)-heavy with respect to M(W ). By Lemma 18, we have (except with negligible
probability): X ′ > 204Y ′ or Y ′ > 204X ′. Hence, except with negligible probability, the
algorithm does not terminate before the last line. Let N1 be the constant given by the
definition of tractability in Definition 6 (N1 may depend on the parameter k from Definition 6,
but we apply the definition for k = O(1) determined by ε). We assume mi ≥ N1 (otherwise
the number of elements in the window is constant). Also, let r be given by Definition 6.
By applying Lemma 23 with ε′ = 1

logr+1(N) , we have |mi − a| ≤ 2
√
F res2 (M(W )) + ε′mi ≤

0.01πε(mi) + 1
logN

mi
logr(mi) ≤ .01πε(mi) + πε(mi)

logN ≤ .02πε(mi) for sufficiently large N (since
G is tractable) and b ≤ 3F res2 (M(W )) < 0.01πε(mi). Since b ≤ .1πε(mi) and 2ε′a ≤
2ε′(mi + b+ ε′mi) ≤ 2 · (.03πε(mi)) ≤ .1πε(mi), then by Lemmas 19 and 20 (which we apply
with the same parameters, x = mi, u = a, v = b, and y = 2ε′a), the algorithm outputs G(a)
which is a (1± 4ε)-approximation of G(mi). Thus, the second condition of Hybrid-Major
follows, which gives the lemma. J

APPROX/RANDOM’15
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Consider the following lemma, which is from [9] (the proof of Lemma 25 uses Predicate
(1) from Definition 6).

I Lemma 25. Let G be a non-decreasing tractable function. Then for any k = O(1), there
exists t = O(1) such that for any n,N and for any ε > log−k(nN) the following holds.
Let D(n,N) be a stream and W be the current window. If there is a (G, 1)-heavy element
mi with respect to M(W ), then there is a set S ⊆ [n] such that |S| = O(log(N)) and:
π2
ε (mi) = Ω

(
log−t(nN)

∑
j /∈S∪{i}m

2
j

)
.

We now give the algorithm Compute-G-Core, which solves G-Core (i.e., Problem 17), and
prove its correctness. A similar algorithm appears in [9], we repeat it here for completeness,
and to help design and understand our main result on universality.

1 Generate a pairwise independent hash function H : [n] 7→ τ , where τ = O∗
(

1
p

)
.

2 ∀k ∈ [τ ], compute in parallel ck = Compute-Hybrid-Major(DHk ,
ε
4 ), where

Hk(i) = 1H(i)=k.
3 Output S = {ck : ck > 0}.

Algorithm 3: Compute-G-Core(D, ε, p)

I Theorem 26. Algorithm Compute-G-Core solves the G-Core problem, except with proba-
bility asymptotically equal to p. The algorithm uses O∗(1) memory bits if p = Ω(1/ logu(nN))
and ε = Ω(1/ logk(nN)) for some u, k ≥ 0.

Proof. Let W denote the current window. First, except with negligible probability, every
positive ci is a (1± 4 · ε4 )-approximation of some distinct entry G(mj), which implies that ci
is a (1± ε)-approximation of G(mj). Second, assume that there exists a (G, 1)-heavy entry
mi with respect to M(W ). Denote X =

∑
j 6=im

2
j1H(j)=H(i). By pairwise independence of

H, we have E(X) = 1
τ (F2(M)−m2

i ). By Lemma 25, there exists a set S and t ≥ 0 such that
|S| = O(logN) and:

π2
ε (mi) = Ω

(∑
j /∈S∪{i}m

2
j

logt(nN)

)
. (5)

Let L be the event that π2
ε (mi) > 2010X, and let B be the event that ∀j ∈ S : H(j) 6= H(i).

By Markov’s inequality, by pairwise independence of H, and by Equation (5), there exists
τ = O∗

(
1
p

)
such that:

P (¬L) = P (¬L | B) · P (B) + P (¬L | ¬B) · P (¬B)

≤ E(X | B)2010

π2
ε (mi)

· 1 + 1 · O(logN)
τ

≤ O∗
(

1
τ

)
= p.

If L occurs, which happens with probability at least 1−p, then cH(i) is a (1±ε)-approximation
of G(mi) except with negligible probability (by Lemma 24). Thus, the final probability of
error is approximately equal to p.

It is not too hard to see that Algorithm Compute-G-Core uses polylogarithmic memory.
The subroutine depth is constant, and there are only polylogarithmically many subroutine
calls at each level. At the lowest level, we only do direct computations on the stream that
require polylogarithmic space or a smooth histogram computation for F2 or L2, which also
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requires polylogarithmic space. We get that for any constant k, there exists a constant t
such that we can solve G-Core (except with probability p) using O(logt(nN)) space, where
ε ≥ log−k(nN). J

In Appendix A, we show how to reduce the G-Sum problem to the G-Core problem. In
particular, we prove the following theorem. The algorithm and proof of correctness follow
from [10]. We restate the algorithm and results using our notation for completeness.

I Theorem 27. If there is an algorithm that solves G-Core using memory O∗(1) and makes
one pass over D except with probability O(log−u(nN)) for some u > 0, then there is an
algorithm that solves G-Sum using memory O∗(1) and makes one pass over D except with
probability at most 0.3.

We can reduce the failure probability to inverse polynomial using standard methods.
Combining this with Theorem 26 and Theorem 16, we have Theorem 14.

4 Universality

In this section, we show the main result of this paper, Theorem 12, by designing a universal
sum algorithm. We first construct a universal core algorithm, which we call UCA. That
is, given a data stream, the algorithm produces a universal core structure with respect to
the frequency vector (m1, . . . ,mn) defined by the current window W without knowing the
function G to be approximated in advance. Let C be a constant and let U(C) be the set
according to Definition 7. The structure guarantees that, when queried with any function G
from U(C) (after processing the stream), it outputs the set T according to Definition 8.

Universal Core Algorithm (UCA): The algorithm constructs a universal core structure S
and our techniques build on the results from Section 3. Algorithm Residual-Approximation
from Section 3 does not depend on the function G, and hence it clearly carries over to our
universal setting.

Algorithm Compute-Hybrid-Major depends on G, so we modify it accordingly. We do
not rewrite the whole algorithm, as there are only a few modifications. In Step 1, we set
ε′ = 1

log10C+1(N) . We get rid of Steps 8 and 9, and instead create a new Step 8 where we find
the index j of an (F2, 2)-heavy element mj , if it exists (finding such an index can be done
using standard methods, the details of which we omit for brevity). We also create a new
Step 9 where we output the triple (a, b, j) (assuming none of the parallel copies from Step 2
outputs 0).

We also modify Algorithm Compute-G-Core. In particular, the value of τ in Step 1
should depend on C, and we set it to be log10C+2(nN)

p . Moreover, we remove Step 3 from
the algorithm and store ck for each k ∈ [τ ] as part of our data structure S (recall that ck
is either 0 or a triple (ak, bk, jk), where ak, bk are the values computed in the kth parallel
instance of the subroutine Compute-Hybrid-Major and jk is the index of the corresponding
(F2, 2)-heavy element).

Querying the Structure: Given a function G ∈ U(C) as a query to our universal core
structure, we explain how to produce the set T according to Definition 8. For each stored
ck in the data structure S (k ∈ [τ ]), if ck = 0, then we do not include it in our output
set T . Otherwise, if ck is a triple (ak, bk, jk), then we include the pair (G(ak), jk) in our
set T as long as (1 − 4ε)G(ak + bk + 2ε′ak) ≤ G(ak) ≤ (1 + 4ε)G(ak − bk − 2ε′ak) (recall
ε′ = 1

log10C+1(N) ).

APPROX/RANDOM’15
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I Theorem 28. Fix a constant C and let U(C) be the set of tractable functions corresponding
to the definition of universal tractability. Then UCA is a universal core algorithm with
parameters ε = Ω(1/ logk(nN)) (for 0 ≤ k ≤ C), δ = Ω(1/ logu(nN)) (for u ≥ 0), α = 1,
and G = U(C).

Proof. The correctness of UCA essentially follows from the proofs of the results in Section 3.
In particular, Lemma 21 still holds since Algorithm Residual-Approximation is unchanged.

Lemma 24 still mostly holds without much modification. Using the same notation as
in the original proof, if there is no (F2, 2)-heavy element, then the proof of Lemma 24
can still be applied and the modified version of Compute-Hybrid-Major outputs 0 (except
with negligible probability). In such a case, the universal core structure stores the value
0. If there is an (F2, 2)-heavy element mik and the structure stores (ak, bk, ik), then again
the proof applies. The reason is that, when querying the universal core structure with a
function G, we check if (1− 4ε)G(ak + bk + 2ε′ak) ≤ G(ak) ≤ (1 + 4ε)G(ak − bk − 2ε′ak), in
which case the proof argues that G(ak) is a (1± 4ε)-approximation of G(mik). In the case
that πε(mik) ≥ (20)5

√
F res2 (M(W )), the proof still goes through since we apply Lemma 23

with ε′ = 1
log10C+1(N) , and we have |mik − ak| ≤ 2

√
F res2 (M(W )) + ε′mik ≤ 0.01πε(mik) +

1
logN

mik
log10C(mik ) ≤ 0.01πε(mik) + 1

logN
mik

logr(mik ) ≤ .01πε(mik) + πε(mik )
logN ≤ .02πε(mik) (here,

similarly to Lemma 24, r is the constant given by the definition of universal tractability for
U(C), and hence r ≤ 10C).

Finally, we must argue the correctness of Theorem 26. Using some notation taken
from the proof, consider an output ck = (ak, bk, ik) (if ck = 0, the data structure does
not output it to the set T ) and observe that G(ak) for any ak satisfying (1 − 4ε)G(ak +
bk + 2ε′ak) ≤ G(ak) ≤ (1 + 4ε)G(ak − bk − 2ε′ak) is a (1 ± 4 · ε4 )-approximation of a
distinct entry G(mik). Moreover, if there is a (G, 1)-heavy element mik , then we again have
π2
ε (mik) = Ω

(
log−(t+1)(nN)

∑
j /∈S∪{ik}m

2
j

)
. In fact, delving into the proof of Lemma 25

(found in [9]), we see that the specific value of t depends on G, and is given by the definition
of universal tractability for U(C). Since t ≤ 10C and we choose τ = log10C+2(nN)

p , we get the
probability of the bad event ¬L (using the same notation from Theorem 26) is bounded by:

E(X | B)2010

π2
ε (mik) + O(logN)

τ
=

2010 logt+1(nN)
∑
j /∈S∪{ik}m

2
j

τ
∑
j /∈S∪{ik}m

2
j

+ O(logN)
τ

≤ p.

The rest of the proof goes through in the same way, and hence this gives the theorem. J

We now argue how to use our universal core algorithm UCA as a subroutine to give the
main result of the paper. The proof of the theorem below can be found in Appendix B, the
argument of which follows a similar one found in [10].

I Theorem 29. Fix a constant C and let U(C) be the set of tractable functions from the
definition of universal tractability. Suppose there is a universal core algorithm that has
parameters ε = Ω(1/ logk(nN)) (for 0 ≤ k ≤ C), δ = Ω(1/ logu(nN)) (for u ≥ 0), α = 1,
and G = U(C), uses polylogarithmic memory in n and N , and makes one pass over D. Then
there is a universal sum algorithm that has parameters ε = Ω(1/ logk(nN)) (for 0 ≤ k ≤ C),
δ = 0.3, and G = U(C), uses polylogarithmic space in n and N , and makes one pass over D.

We can reduce the failure probability to inverse polynomial using standard techniques.
Our main result, Theorem 12, follows from Theorem 28 and Theorem 29.
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A G-Sum from G-Core

We now show how to reduce the G-Sum problem to the G-Core problem. In particular, we
prove the following theorem. The algorithm and proof of correctness follow from [10]. We
restate the algorithm and results using our notation for completeness.

I Theorem 30. If there is an algorithm that solves G-Core using memory O∗(1) and makes
one pass over D except with probability O(log−u(nN)) for some u > 0, then there is an
algorithm that solves G-Sum using memory O∗(1) and makes one pass over D except with
probability at most 0.3.

Note that we can reduce the failure probability from constant to inverse polynomial
using standard techniques. Combining this with Theorem 26 and Theorem 16, we have
Theorem 14.

Let G be a tractable function according to Definition 6, and let D(n,N) be a stream given
as input. We show how to construct an algorithm that solves the G-Sum problem by using our
algorithm for G-Core as a subroutine. In particular, consider the Compute-G-Core algorithm
that solves the G-Core problem. Note that for the output set S = {g′1, . . . , g′`} maintained by
Compute-G-Core, using standard techniques one can easily obtain the explicit set of indices
{j1, . . . , j`} such that (1 − ε)G(mji) ≤ g′i ≤ (1 + ε)G(mji) for each 1 ≤ i ≤ `. Hence, we
assume that Compute-G-Core outputs a set of pairs of the form {(g′1, j1), . . . , (g′`, j`)}.

In the language of [10], Compute-G-Core produces a (1, ε)-cover with respect to the vector
G(M(W )) = (G(m1), . . . , G(mn)) with probability at least 1− δ, where ε = Ω(1/ logk(nN))
(for any k ≥ 0) and δ = Ω(1/ logu(nN)) (for any u ≥ 0). Given the tractable function G, our
algorithm for G-Sum is as follows:

1 Generate φ = O(log(n)) pairwise independent, uniform zero-one vectors
H1, . . . ,Hφ : [n]→ {0, 1}, and let hki = Hk(i). Let Dk be the substream defined by
DH1H2...Hk , and let G(M(Wk)) denote (G(m1), . . . , G(mn)) for the substream Dk and
window W (where k ∈ [φ]).

2 Maintain, in parallel, the cores Qk = Compute-G-Core(Dk,
ε2

φ3 , ε,
1
φ ) for each k ∈ [φ].

3 If F0(G(M(Wφ))) > 1010, then output 0.
4 Otherwise, precisely compute Yφ = |G(M(Wφ))|.
5 For each k = φ− 1, . . . , 0, compute Yk = 2Yk+1 −

∑
(g′
i
,ji)∈Qk(1− 2hkji)g

′
i.

6 Output Y0.
Algorithm 4: Compute-G-Sum(D, ε)

Note that, in our paper, Compute-G-Core(D, ε, δ) only takes three parameters (the stream
D, error bound ε, and failure probability δ), while the algorithm from [10] assumes four
parameters of the form Compute-G-Core(D,α, ε, δ). Here, D, ε, and δ have the same meaning
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as in our paper. The parameter α controls how heavy an element needs to be (according to
the function G) in order to necessarily be in the output set of Compute-G-Core. That is, in
the set T = {(g′1, j1), . . . , (g′`, j`)} output by Compute-G-Core, if there is an i such that mi

is (G,α)-heavy with respect to M(W ), then i ∈ {j1, . . . , j`}. We solve the G-Core problem
for α = 1, but Algorithm Compute-G-Sum needs the problem solved for α = ε2

φ3 . However,
using standard techniques, we can reduce the problem of solving G-Core for α = ε2

φ3 to the
same problem for α = 1.

I Theorem 31. For any tractable function G, Algorithm Compute-G-Sum outputs a (1± ε)-
approximation of |G(M(W ))| except with probability at most 0.3, where ε = Ω(1/ logk(nN))
for any k ≥ 0. The algorithm uses memory that is polylogarithmic in n and N .

Proof. The proof of this theorem follows directly from Theorem 1 in [10]. J

B Universal Sum from Universal Core

We now prove Theorem 29. The algorithm and proof are similar to that of the reduction
from the G-Sum problem to the G-Core problem found in Appendix A, except that we need
to carry out the argument within our universal framework. As mentioned, the algorithm and
correctness follow from [10]. We do not rewrite the whole algorithm, but instead describe
the necessary modifications that need to be made from Appendix A.

Let D(n,N) be a stream given as input to our universal sum algorithm. Let UCA be our
universal core algorithm from Theorem 28, Section 4, the parameters of which are specified
in our universal sum algorithm description.

Universal Sum Algorithm: We describe the modifications that need to be made to Algorithm
Compute-G-Sum from Appendix A.

In Step 2, instead we need to maintain and store the output Qk = UCA with parameters
α = ε2

φ3 , ε (i.e., the one given as input to our universal sum algorithm), δ = 1
φ , and G = U(C)

for each k ∈ [φ] (in the kth parallel iteration, UCA is given the stream Dk as input). As
in Appendix A, we construct a universal core structure for α = 1, but we can reduce the
problem of α = ε2

φ3 to α = 1. Note that Qk is of the form {(a1, b1, j1), . . . , (a`, b`, j`)} (Qk
may have 0’s as well, which we simply ignore). For each such triple (ai, bi, ji), we also store
the value of hkji = Hk(ji).

In Step 3, instead we check if F0(M(Wφ)) ≤ 1010, and if so we store M(Wφ) (recall
M(Wφ) denotes the frequency vector (m1, . . . ,mn) for the substream Dφ induced by W ).
We remove Steps 4, 5, and 6.

Querying the Structure: Now, given a function G ∈ U(C), we explain how to query the
universal sum structure output by our universal sum algorithm to approximate |G(M(W ))|.
In particular, for each k we first query the universal core structure output by UCA to get
a set Q′k = {(x1, j1), . . . , (x`′ , j`′)}. Then, we compute Yφ = |G(M(Wφ))| and, for each
k = φ− 1, . . . , 0, we recursively compute Yk according to:

Yk = 2Yk+1 −
∑

(xi,ji)∈Qk

(1− 2hkji)xi.

Once each Yk has been computed for 0 ≤ k ≤ φ, we output Y0.
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I Theorem 32. Fix a constant C and let U(C) be the set of tractable functions corresponding
to the definition of universal tractability. There is a universal sum algorithm with parameters
ε = Ω(1/ logk(nN)) (for 0 ≤ k ≤ C), δ = 0.3, and G = U(C). The algorithm uses
polylogarithmic space in n and N and makes a single pass over D. When querying the
universal sum structure (output by the universal sum algorithm) with a function G ∈ U(C),
it outputs a (1± ε)-approximation of |G(M(W ))| except with probability at most 0.3.

Proof. The proof of this theorem follows directly from Theorem 1 in [10]. J
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