
Brief Announcement: Proactive Secret Sharing with a
Dishonest Majority

Shlomi Dolev
Ben-Gurion University

Beer-Sheva, Israel
dolev@cs.bgu.ac.il

Karim ElDefrawy
HRL Laboratories

Malibu, California, USA
kmeldefrawy@hrl.com

Joshua Lampkins
HRL Laboratories

Malibu, California, USA
jdlampkins@hrl.com

Rafail Ostrovsky
University of California Los

Angeles
Los Angeles, California, USA

rafail@cs.ucla.edu

Moti Yung
Snapchat & Columbia

University
New York, New York, USA
moti@cs.columbia.edu

ABSTRACT
In a secret sharing scheme a dealer shares a secret s among
n parties such that an adversary corrupting up to t par-
ties does not learn s, while any t + 1 parties can efficiently
recover s. Over a long period of time all parties may be cor-
rupted thus violating the threshold, which is accounted for
in Proactive Secret Sharing (PSS). PSS schemes periodically
rerandomize (refresh) the shares of the secret and invalidate
old ones. PSS retains confidentiality even when all parties
are corrupted over the lifetime of the secret, but no more
than t during a certain window of time, called the refresh
period. Existing PSS schemes only guarantee secrecy in the
presence of an honest majority with less than n/2 total cor-
ruptions during a refresh period; an adversary corrupting a
single additional party, even if only passively, obtains the
secret. This work is the first feasibility result demonstrating
PSS tolerating a dishonest majority, it introduces the first
PSS scheme secure against t < n passive adversaries without
recovery of lost shares, it can also recover from honest faulty
parties losing their shares, and when tolerating e faults the
scheme tolerates t < n−e passive corruptions. A non-robust
version of the scheme can tolerate t < n/2− e active adver-
saries, and mixed adversaries that control a combination of
passively and actively corrupted parties that are a majority,
but where less than n/2 − e of such corruptions are active.
We achieve these high thresholds with O(n4) communica-
tion when sharing a single secret, and O(n3) communication
when sharing multiple secrets in batches.

Keywords
secret sharing, dishonest majority, proactive security, proac-
tive secret sharing, non-robust secret sharing

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PODC’16 July 25-28, 2016, Chicago, IL, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3964-3/16/07.

DOI: http://dx.doi.org/10.1145/2933057.2933059

1. BACKGROUND AND RELATED WORK
Over a long period of time all parties in a secret sharing

scheme [9, 3] may be compromised and the threshold may
be temporarily violated. The proactive security model [7]
deals with an adversary’s ability to eventually compromise
all the parties, it protects against a mobile adversary capable
of corrupting all parties in a distributed system or protocol
during the execution but with the following limitations: (1)
only a constant fraction of parties can be corrupted during
any round of the protocol; (2) parties are periodically re-
booted (or reset) to a predictable and pristine initial state,
guaranteeing a small fraction of corrupted parties, assuming
that the corruption rate is not more than the reboot rate.

Existing Proactive Secret Sharing (PSS) schemes, e.g., [7,
5, 8, 1, 2], are insecure when a majority of the parties are
compromised, even if the compromise is only passive. Such
schemes typically store the secret as the free term in a poly-
nomial of degree t < n/2, thus once an adversary compro-
mises t+1 parties (even if only passively), it can reconstruct
the polynomial and recover the secret. New and different
techniques other than the above are required to construct
PSS secure against dishonest majorities. Developing such
techniques and the first PSS scheme secure against dishon-
est majorities is the main contribution of our work. Our PSS
scheme provides security against t < n passive adversaries
without recovery of lost shares, it can also recover from hon-
est faulty parties losing their shares, and when tolerating e
faults it is secure against t < n − e passive corruptions. A
non-robust version of the scheme can tolerate t < n/2 − e
active adversaries, and mixed adversaries that control a com-
bination of passively and actively corrupted parties that are
a majority, but where less than n/2− e of such corruptions
are active. Existing PSS schemes cannot handle such high
combined corruption thresholds.

2. PRELIMINARIES
Below are preliminaries for the rest of the paper.

2.1 System and Network Model
We consider a set of n parties P = {Pi}ni=1 connected via a

synchronous network, and an authenticated broadcast chan-
nel. Each pair of parties also establish private secure authen-



ticated communication channels which can be instantiated
via appropriate encryption and digital signature schemes.

Time Periods and Refresh Phases: We assume that all
parties are synchronized via a global clock. Time is divided
into time periods or epochs; at the beginning of each period
all parties engage in an interactive refresh protocol (also
called refresh phase). At the end of the refresh phase all
parties hold new shares for the same secret, and delete their
old shares. We note that honest parties must delete their
old shares so that if they get compromised in future periods,
the adversary cannot recover their shares from old periods.

2.2 Variations of Secret Sharing
A Secret Sharing (SS) scheme consists of two protocols,

Share and Reconstruct. Share allows a dealer to share a se-
cret, s, among n parties such that it remains secure against
an adversary that controls up to t parties, while allowing
any group of t + 1 or more uncorrupted parties to recon-
struct the secrets via Reconstruct. A problem with stan-
dard secret sharing, e.g., Shamir’s scheme [9], is that a dis-
honest dealer may deal inconsistent shares from which t+ 1
or more parties may not be able to reconstruct the secret.
This malicious behavior can be prevented by augmenting the
secret sharing scheme with homomorphic commitments; this
is essentially what a Verifiable Secret Sharing (VSS) scheme
achieves. A VSS scheme allows parties to verify that a dealer
has correctly shared a secret. We utilize the VSS scheme
of Feldman [4], where security is based on the hardness of
computing discrete logarithms over Zp for a large prime p.
The definition of a Proactive Secret Sharing (PSS) scheme
is similar to that of a standard SS scheme, with the addition
of two new protocols to perform Refresh and Recovery for
securing the secrets against a mobile adversary that can cor-
rupt all n parties over a long period of time. The Refresh

protocol refreshes data to prevent a mobile adversary from
collecting (over a long period) a large number of shares that
could exceed the reconstruction threshold and thus reveal
the secret. The Recovery protocol allows rebooted parties,
or faulty honest ones, to recover their shares and thus pre-
vents the adversary from destroying the shared secret(s).

3. PROACTIVE SECRET SHARING SECURE
AGAINST A DISHONEST MAJORITY

This section first overviews our PSS scheme and the in-
tuition behind it, it then focuses on the two new protocols
for refreshing and recovering shares; protocols for sharing
and reconstructing a secret in our PSS scheme are similar
to [6] and are briefly described due to space constraints. All
protocols are secure against a dishonest majority.

3.1 Intuition and Overview of Operation
Field operations occur over a finite field Zp for some prime

p. Let α be a generator of Z∗
p and let β = α−1. In the

case of multiple secrets, secrets will be stored at locations
that are multiples of β, i.e., if f(x) is a sharing polynomials
then f(β1) and f(β2) will evaluate to secret 1 and secret 2
respectively, while shares will be computed as the evaluation
of f(x) at different values of α, i.e., f(α1) and f(α2) are the
shares of party 1 and 2 respectively. We note that in the
case of sharing a single secret, only one β is needed, and in
that case it will not be the inverse of α, traditionally it has
been the case that for single secrets β = 0, thus the secret

s is stored at the free term of the sharing polynomial, i.e.,
f(0) = s. The shares for a single secret can be evaluations
of f(x) at indices of the parties, i.e. f(1), f(2) . . . f(n), or
at pre-agreed upon points corresponding to each party such
as f(α1), f(α2), . . . , f(αi).

To simplify the illustration we assume here and in de-
scription of our share, reconstruct and refresh protocols (DM-
Share, DM-Reconstruct, and DM-Refresh), that the adver-
sary only compromises nodes temporarily, so only refreshing
of shares is needed. If parallel share recovery (DM-Recover)
for rebooted nodes is required, the tolerated threshold is de-
creased by the maximum number of nodes to be rebooted in
parallel or that can loose their shares (this can also be due
to non-malicious faults). If nodes are serially rebooted such
that only a single share is to be recovered at any instant,
then the tolerated thresholds are decreased by 1.

Per the discussion in Section 1, to tolerate a dishonest
majority it is not enough to store secrets in the free term,
or as other points on a polynomial. What is needed is to
encode secrets in a form resistant to a dishonest majority
of up to n − 1 parties. This can be achieved by first addi-
tively sharing the secret into n random summands (this pro-
vides security against t < n passive adversaries), then those
random additive summands may be shared and proactively
refreshed using methods that can tolerate t < n/2 active ad-
versaries with aborts, i.e., if less than n/2 of the parties are
actively corrupted their misbehavior will be detected and
flagged by the rest of the honest parties (constituting a ma-
jority) while ensuring confidentiality of the shared secret,
even if up to n/2 passively corrupted parties exist among
the remaining parties. This is the blueprint that we fol-
low. Specifically, we start from the gradual secret sharing
schemes from [6], develop two new protocols to verifiably
generate random refreshing polynomials with the required
properties, i.e., they have a random free term that encodes
random additive shares that add up to zero. To recover
shares with the above security guarantees, we observe that it
is enough that the recovery protocol ensures security against
t < n/2 (t < n/2 − e with e faults) active adversaries, as
passive adversaries only generate random polynomials and
send them to the recovering party, i.e., if they respect the
polynomial generation process, and as long as one party gen-
erates a random polynomial, the rest of the n−1 potentially
passively corrupted parties will only see new random poly-
nomials with the appropriate degrees.

3.2 Sharing and Reconstructing Secrets
DM-Share: to share a secret s the first step is to split it

into n random summands, s = rs1 + rs2 + · · ·+ rsn. These
n random summands are then each verifiably shared using
a verifiable linear secret sharing scheme, e.g., using a verifi-
able version of Shamir’s scheme (that relies on homomorphic
commitments such as Feldman’s scheme [4]) where each
random summand rsi is stored in the free term of a random
polynomial of a specific degree. These n random sharing
polynomials are of increasing degrees, where the degree of
polynomial pi is i where i ∈ {0, 1, 2, . . . , n − 2, n − 2}; note
that the first one is a constant and that two of the polyno-
mials have degree n−2 if recovery of shares of one rebooted
or faulty node is required. If only refreshing is required then
degrees of the polynomials go up to n− 1 instead.
DM-Reconstruct: to reconstruct a secret, each party broad-

casts its shares, and each party then interpolates the n ran-



dom sharing polynomials pi(x) and recovers the n random
summands from the free terms, i.e., rsi = pi(0). The secret
is reconstructed as the summation of all the recovered free
terms, s =

∑n−1
i=0 rsi =

∑n−1
i=0 pi(0) when degrees are from

0 to n− 1.

3.3 Refreshing Shares for Dishonest Majority
DM-Refresh: In our refresh protocol, each party gener-

ates n random refreshing polynomials with the appropriate
degrees (i.e., from a single constant term, corresponding to
degree 0, to degree n− 1); each party then verifiably shares
these refreshing polynomials with the other parties by com-
mitting to their coefficients and distributing shares of these
polynomials as their evaluation at the indices of the parties
similar to Feldman’s VSS [4]. These refreshing polynomials
should satisfy the following condition: they have random
constant coefficients that add up to 0 (to match the case
when a single secret is shared in the free term). This can be
ensured by homomorphically checking that the polynomials
shared by each party have this property. This condition en-
sures that the shared secret remains unchanged. Once each
party receives all the shares generated by other parties, they
add them to their local shares and delete the shares that re-
sulted from the previous execution of the refresh protocol.

3.4 Recovering Shares for Dishonest Majority
DM-Recover: To be able to recover shares of a single party,

then instead of initially sharing the n additive summands
with polynomials of degrees n−1 to 0 (i.e., a single constant),
the degrees will be n − 2 to 0, with two of the summands
shared with two different polynomials of degree n− 2. This
allows n−1 parties to recover shares of a single party that is
rebooted. (For e parallel recoveries polynomial degrees will
be n− e−1 to 0.) In each refresh period there are n current
sharing polynomials with degrees ranging from n − 2 to 0,
and each party has a share for each of these polynomials.
When a single party Prc is rebooted and needs to recover
its shares, i.e., the evaluation of each of the current sharing
polynomials at Prc’s evaluation point αrc, the other parties
need to generate and verifiably share n random polynomi-
als that evaluate to the same values as the current sharing
polynomials at αrc. To achieve this, parties generate and
verifiably share n random recovery polynomials that eval-
uate to 0 at αrc. All parties add their local shares of the
current sharing polynomials to the shares of these random
recovery polynomials; this results in n shared random recov-
ery polynomials that have only the point at αrc in common
with the current sharing polynomials. All parties then send
their shares of these n shared random recovery polynomi-
als to Prc, and Prc can then interpolate these polynomials
without learning anything about the secret or the actual
sharing polynomials of the current period. We note that
passively corrupted parties in the recovery will execute the
protocol correctly, and actively corrupted parties are limited
to t < n/2−e with e faults; we only need a recovery protocol
secure against active adversaries because only the recover-
ing party receives information. Every other party generates
random data and shares it with the rest of the parties, so
there is no information related to the secret that is revealed
to any party. As long as there is a single honest party, the
random recovery polynomials that party generates ensures
randomness of the overall recovery polynomials; this ensures
that the only information Prc learns are its n shares at αrc.

4. CONCLUSION AND OPEN QUESTIONS

We present the first feasibility result for Proactive Secret
Sharing (PSS) for a dishonest majority and the first such
PSS scheme. Our main PSS scheme is secure against t < n
passive adversaries without recovery of lost shares, and when
tolerating e faults that result in lost shares the scheme re-
sists t < n− e passive corruptions. A non-robust version of
the scheme can tolerate t < n/2− e active adversaries, and
mixed adversaries that control a combination of passively
and actively corrupted parties that are a majority, but where
less than n/2− e of such corruptions are active. The follow-
ing issues remain open: (i) It is unclear what is the lowest
possible communication required for a PSS scheme secure
against a dishonest majority. We achieve O(n3) for batches
of secrets, it remains open if this can be reduced to O(n)
or O(1). We conjecture that O(n) is the lower bound for
our PSS blueprint which first shares the secret via an addi-
tive sharing scheme. Such an additive scheme does not seem
to be amenable to batching in a straightforward manner; it
is currently not obvious to us how to batch it without de-
stroying the secret. (ii) There are currently no PSS schemes
secure against dishonest majorities of up to n − 1 and that
operate over asynchronous networks.

5. REFERENCES
[1] J. Baron, K. ElDefrawy, J. Lampkins, and

R. Ostrovsky. How to withstand mobile virus attacks,
revisited. In Proceedings of the 2014 ACM Symposium
on Principles of Distributed Computing, PODC ’14,
pages 293–302, New York, NY, USA, 2014. ACM.

[2] J. Baron, K. ElDefrawy, J. Lampkins, and
R. Ostrovsky. Communication-optimal proactive secret
sharing for dynamic groups. In Proceedings of the 2015
International Conference on Applied Cryptography and
Network Security, ACNS ’15, 2015.

[3] G. R. Blakley. Safeguarding cryptographic keys. Proc.
of AFIPS National Computer Conference, 48:313–317,
1979.

[4] P. Feldman. A practical scheme for non-interactive
verifiable secret sharing. In Proceedings of the 28th
Annual Symposium on Foundations of Computer
Science, SFCS ’87, pages 427–438, Washington, DC,
USA, 1987. IEEE Computer Society.

[5] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung.
Proactive secret sharing or: How to cope with
perpetual leakage. In CRYPTO, pages 339–352, 1995.

[6] M. Hirt, U. Maurer, and C. Lucas. A Dynamic Tradeoff
between Active and Passive Corruptions in Secure
Multi-Party Computation. In R. Canetti and J. A.
Garay, editors, Advances in cryptology - CRYPTO 2013
: 33rd Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013 :
proceedings, volume 8043 of Lecture notes in computer
science, pages 203–219, Heidelberg, 2013. Springer.

[7] R. Ostrovsky and M. Yung. How to withstand mobile
virus attacks (extended abstract). In PODC, pages
51–59, 1991.

[8] D. Schultz. Mobile Proactive Secret Sharing. PhD
thesis, Massachusetts Institute of Technology, 2007.

[9] A. Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.


