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Abstract

Communication between processors is the essence of distributed computing: clearly, without

communication distributed computation is impossible. However, as networks become larger and

larger, the frequency of link failures increases. The end-to-end communication problem asks how

to e�ciently carry out fault-free communication between two processors over a network, in spite

of such frequent link failures. The sole minimum assumption is that the two processors that are

trying to communicate are not permanently disconnected (i.e., the communication should proceed

even in the case that there does not (ever) simultaneously exist an operational path between the

two processors that are trying to communicate).

We present a protocol to solve the end-to-end problem with logarithmic-space and polynomial-

communication at the same time. This is an exponential memory improvement to all previous

polynomial-communication solutions. That is, all previous polynomial-communication solutions

needed at least linear (in n, the size of the network) amount of memory per link.

Our protocol transfers packets over the network, maintains a simple-to-compute O(logn)-

bits potential function at each link in order to perform routing, and uses a novel technique of

packet canceling which allows us to keep only one packet per link. The computations of both our

potential function and our packet-canceling policy are totally local in nature.
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1 Introduction

In this paper we address the problem of communication in distributed systems: How can two processors

(a sender and a receiver) communicate over an unreliable communication network? This question was

considered in many di�erent settings, which can be divided into two groups depending on the frequency

of link failures.

Communication During Infrequent Faults: If link failures are \infrequent", then after each

failure a new communication path between the two communicating processors can be computed, which

will be operational until the next fault. That is, in case failures occur rarely, it is possible, upon a

failure, to \reset" the network and compute a new path between the communicating processors (e.g.,

[Fin79, AAG87, AS88, AAM89, AGH90]). In a related model, a communication path can also be

computed in a \self-stabilizing" manner (e.g., [Dij74, AKY90, KP90, APV91, AV91, AKM+93, AO94,

IL94]), which essentially means that after faults stop for a su�ciently long period of time, the protocol

\stabilizes" to its correct behavior (i.e., establishes a new path). We emphasize that both the above

reset and self-stabilizing solutions work only if faults are not too frequent, as they require that a

message is transmitted over the computed path.

Communication During Frequent Faults:We consider a setting where failures occur frequently.

The so-called end-to-end communication problem [AG88, AMS89, AGR92] is to deliver, in �nite time,

data-items from a sender processor to a receiver processor, where data-items are given in an on-line

fashion to the sender, and must be output in the same order, without duplication or omission at the

receiver processor. This should be done even if there does not exist, at any time, a path of simultane-

ously active links that connects the two communicating processors. The sole assumption is that the

two communicating processors are not separated by a cut of permanently failed links1. Solutions to

the problem are evaluated according to their Communication Complexity and Space Complexity.

1.1 Frequent faults model

Communication Complexity: One possible solution to the above problem is to give data-items

\unbounded sequence numbers" and to \ood" the network with each item [Vis83, AE86]. However,

this solution has the drawback that the message size increases unboundedly with the number of items

sent; hence, the amount of communication needed per data-item grows unboundedly with the number

of data items. Recently, the study of end-to-end protocols with bounded communication complexity

received a lot of attention [AG88, AMS89, APV91, AG91, AGR92]. In this paper, we concentrate on

bounded (in fact, polynomial) communication-complexity protocols.

Space Complexity: Another important complexity measure is the space complexity | the amount

of space needed at the processors, per incident link. Notice that the \unbounded sequence numbers"

solution requires unbounded memory as well. The question of reducing memory requirements, while

maintaining e�ciency, received a lot of attention in the \self-stabilizing" setting (e.g., [MOOY92,

AO94, IL94]), where it was shown that, in the case of infrequent memory faults, small memory and

1See Section 2 for a formal description of the model.
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communication e�ciency are simultaneously attainable. In contrast, all end-to-end protocols that were

e�cient in terms of their communication complexity, were not e�cient in their space complexity: more

precisely, all end-to-end communication protocols that had polynomial communication complexity,

required at least linear (in the number of processors of the network) amount of space, at each processor,

per incident link. Protocols with smaller space complexity were only presented at the cost of (at least)

exponential communication complexity: Afek and Gafni [AG88] give a protocol which uses logarithmic

amount of space, but has exponential communication complexity, and another protocol which uses

constant amount of space but has unbounded communication complexity.

1.2 Our Result

The question whether there exists an end-to-end communication protocol with sub-linear space com-

plexity and at the same time polynomial communication complexity remained open. In this paper, we

give an a�rmative answer to this question: we give a protocol that has logarithmic (O(log n+D)) space

complexity and polynomial (O(n2mD)) communication complexity, where n and m are the number of

processors and links in the network respectively, and D is the data-item size. This is an exponential

space complexity improvement over all known polynomial-communication protocols. Notice that this

is achieved at a slight increase of the communication complexity comparing to the best known solution

[AG91]. We compare our result to the previous work in the table below:

Paper reference Communication

Complexity

(total num-

ber of bits)

Space Complexity

(bits per in-

cident link)

[Vis83, AE86] unbounded: 1 unbounded: 1

[AG88], Alg. 1. unbounded: 1 constant: O(D)

[AG88], Alg. 2. exponential: O(D � exponential(n)) logarithmic: O(logn+D)

[AMS89] polynomial: O(n9 +mD) polynomial: O(n5 +D)

[AGR92] polynomial: O(n2mD) linear : O(nD)

[AG91] polynomial: O(nm logn +mD) linear: O(n+D)

present work polynomial: O(n2mD) logarithmic: O(logn+D)

Our Techniques and Previous Work: The starting point of our investigation is the Slide proto-

col of [AGR92] and the Majority algorithm of [AAF+90, AGR92]. The Slide protocol requires storing

n packets per incident link, and the decision on the recency of the received item is taken only at the

receiver processor (using the technique of [AAF+90]). If we wish to reduce the space per link, we can

no longer a�ord storing n di�erent packets, but must keep far fewer packets per link, and we can no

longer a�ord the Majority algorithm of [AAF+90, AGR92], which collects a large number of packets
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arriving at the receiver and then calculates the value representing the majority among the received

values. Thus, we must somehow \drop" all but several packets, and decide which to keep at each of

the processors. Moreover, we must design an \on-line" analogue of the majority calculation, where

we can \discard" packets as soon as they arrive at the receiver processor, yet, manage to compute

the majority value. However, if we begin to \drop" packets everywhere, is it no longer the case that

the technique of deciding which packet is the correct one to output (at the receiver), still works. To

overcome both di�culties, we combine two ingredients:

� A potential function that controls the ow of data-items in the network, which is an analogue to

the potential function of the Slide protocol; and

� A novel data-item cancelling policy which makes sure that in any processor there will be at most

two distinct values of data-items per link. The same policy is used both in the intermediate

processors and in the receiver processor.

We show that a combination of these two techniques yields the desired result. Hence, even in the pres-

ence of frequent link failures, it is possible to achieve both polynomial communication and logarithmic

space. As in [AMS89, AGR92], our solution has the additional bene�t that it is totally local in nature.

For example, the locality of Slide was used for establishing its self-stabilizing extension in [APV91];

similar local techniques were also used for various multi-commodity ow problems in dynamic graphs

[AL93, AL94].

1.3 Organization

Section 2 contains all the necessary background including the formal de�nitions of the model and the

problem. Section 3 contains the description of the protocol; we start with an informal description

(Section 3.1), and then give a formal description (Sections 3.2 and 3.3). Then, we show some of the

properties of the protocol (Section 3.4 with some proofs deferred to Appendix A). We conclude with

its proof of correctness and complexity (Section 4).

2 Model and Problem Statement

2.1 The Network Model

A communication network is associated with an undirected graph G(V;E), jV j = n, jEj = m, where

nodes correspond to processors and edges correspond to links of communication. We denote by E(v),

for v 2 V , the set of edges which are adjacent to v. Processors are modeled as identical (except the

sender and the receiver) deterministic �nite state transducers with O(log n) memory per edge (We

do not require processors to have unique identi�ers). We model each undirected communication link

as consisting of two directed links, delivering messages in opposite directions. Each transmission of

a message is associated with a send event and a receive event; each event has its time of occurrence
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according to a global time, unknown to the processors. Without loss of generality, we assume that no

two events occur exactly at the same time. A message is said to be in transit in any time after its

send event and before its receive event. As discussed in the introduction we would like to deal with

networks whose links may fail and recover frequently. Each failure and recovery is eventually reported

to both end-points of the link. When a link fails, messages that are in transit over it are lost. In

the following we give a formal de�nition of a somewhat simpler-to-discuss model that we use in the

sequel. Intuitively, the main di�erence between the models is that in the model we de�ne below links

never recover if they fail, and that such a failure is not reported to the processors. It is known that

this simpler model, which was also used in [AG88, AMS89, AGR92], does not cause any reduction in

power (for completeness we prove this fact in Section 2.4). In our model each directed link satis�es the

following properties:

� Each link has constant capacity; that is, the protocol must obey the rule that only a constant

number of messages are in transit on a given link at any given time.

� Communication over links obeys the FIFO rule; that is, at any time, the sequence of messages

received over the link is a pre�x of the sequence of messages sent over the link.

� Communication is asynchronous; that is, there is no a-priori bound on message transmission delays

over the links.

A directed link is called non-viable if starting from somemessage and on it does not deliver any message;

the transmission delay of this message and any subsequent message sent on this link is considered to be

in�nite. The sequence of messages received over the link is in this case a proper pre�x of the sequence

of messages sent. Otherwise, the link is viable. An undirected link is viable if both directed links that

it consists of are viable.

We say that the sender is eventually connected to the receiver if there exists a (simple) path from

the sender to the receiver consisting entirely of viable (undirected) links. Note that if there is a cut of

the network, disconnecting the sender from the receiver, such that all the directed links crossing the

cut are non-viable links, then eventually it becomes impossible to deliver messages from the sender to

the receiver.

Remark: Notice that we model an undirected graph as a bi-connected directed graph. Hence we

assume that either both directed links are viable or both are not viable. In this case, the above

assumption about the eventual connectivity of the sender and the receiver is in fact the minimal

possible for communication between them. On the other hand, in the model of directed graphs, it

could be the case that there is a directed path from the sender to the receiver, and maybe (another)

directed path from receiver to sender, yet, all undirected edges are non-viable. We do not consider

such (more di�cult) case, and are in fact dealing only with undirected graphs.
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2.2 The End-to-End Communication Problem

The purpose of an end-to-end communication protocol is to establish a (directed) \virtual link" to be

used for the delivery of data-items from one special processor, called the sender, to another special

processor, called the receiver. Each data-item is a character of some alphabet of size 2D; that is, each

data-item can be encoded by D bits. It is required that if the sender is eventually connected to the

receiver then the \virtual link" established by the protocol will be viable. This virtual link should

have the same properties as a \regular" network link; namely, it should satisfy:

Safety: The sequence of data-items output by the receiver, at any time, is a pre�x of the sequence of

data-items input by the sender.

Liveness: If the sender is eventually connected to the receiver, then each data-item input by the sender

is eventually output by the receiver.

A protocol for the end-to-end communication problem is given, in an on-line fashion, a sequence

of data-items at the sender (i.e., every data-item must be delivered without the knowledge of the next

data-item to be transmitted) and generates a sequence of data-items at the receiver, that obey the

safety and liveness properties.

2.3 The Complexity Measures

We consider the following complexity measures:

Communication: The number of bits transferred in the network in the worst case, per data-item

delivered. More precisely, the total number of bits sent in the worst case in the period of time

between two successive data-item output events at the receiver (measured in terms of n;m

and D).

Space: The maximumamount of space per incident link required by a processor's program throughout

the protocol (measured in terms of n;m and D).

In addition, we require that the local computation of the processors be polynomial for each send/receive

event at each processor (in fact, our protocol uses a constant number of computational steps per event).

2.4 Relations to other Models

The model described above is called the \1-delay model" in [AG88], and the \fail-stop model" in

[AM88]. As mentioned, we would like to deal with networks where links fail and recover frequently;

in such dynamic networks, links may fail and recover many times (yet processors never fail) (see

[AAG87]), and each failure or recovery of a network link is eventually reported at both its end-points

by some underlying link protocol. This model should be contrasted with the self-stabilizing model (e.g.,

[Dij74]), where both processors and links can start in an inconsistent state, but it is assumed that they
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never fail after the computation begins. As was discussed in the introduction, the self-stabilizing model

corresponds to infrequent memory faults, and is incomparable to the model of frequent link failures

addressed here. The question how, in addition to frequent failures of links, one can allow inconsistent

initial memory states was addressed in the end-to-end setting in [APV91, DW93].

As pointed out in [AG88], one can design protocols in the fail-stop model and convert them to the

dynamic model. For this, a message to be forwarded on a link is stored in a bu�er until the link recovers

and the previously sent message has been delivered. A protocol similar to the data-link initialization

protocol of [BS88] is used to guarantee that no message is lost or duplicated. Each link in the dynamic

network, that fails and never recovers for a long enough period to allow the delivery of a message,

is represented by a non-viable link. Note that the only space used by the above transformation is

for storing the bu�ers (i.e., per each link it is the capacity of the link, times the size of the longest

message)2.

3 The Protocol

3.1 High-level Description

Our starting point is a linear space, yet simple, solution of [AGR92]. Their solution combines (as

black-boxes) two components: the Slide protocol and the Majority algorithm. Before explaining our

protocol, we give a short overview of the approach taken in [AGR92]. The Slide is used to transfer

tokens (packets containing a data-item) in the network. This is done by letting each processor maintain

a stack of tokens for each of its links. On each link, if active, tokens move from a larger stack of tokens

to a smaller stack of tokens. The sender always has a large stack of tokens so it only sends tokens

out, and the receiver always has an empty stack hence it only receives tokens. The Majority algorithm

enables the receiver to decide, by collecting a su�ciently large number of tokens (containing data-

items) and taking the majority value, what is the sequence of data-items sent by the sender. It is

proved in [AGR92] that the combination of these two components yields a polynomial-communication

solution to the end-to-end problem.

In order to make the space requirements of the protocol logarithmic per edge, we can no longer

use the Slide as a method to establish the virtual link between the sender and the receiver and we

can no longer use the Majority algorithm. The reason is that the Slide needs a lot of space to store

the stack of tokens (for each link), and the Majority algorithm needs even more space to collect the

tokens in order to decide on the correct value to output. To overcome this, we introduce the following

procedure:

� While transferring packets from the sender to the receiver, our protocol \cancels" some of these

packets both en route and upon their arrival at the receiver processor. More precisely, it replaces

some packets by \nil" packets.

2The communication is increased by a multiplicative factor of the number of failures of the link.
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� The cancelling policy is designed so as to guarantee that at most two di�erent packet-values are

to be stored at each processor (including the receiver) at any given time { a \real" packet, and a

\nil" packet. We use a potential function that only counts the number of packets of both types,

rather than storing all of them, and use this function to control the ow of tokens. We prove that

two counters (of dlog ne bits each) per link are su�cient for this. Altogether, we use only two

counters per link and store only one data-item per processor.

Note that, usually, protocols that change the values of packets are undesirable. However, our protocol

changes these values in a very restricted way { it may only replace a \real" packet by a \nil" packet.

Our \canceling" policy does not e�ect the routing properties of the Slide protocol: it guarantees that

if the sender and the receiver are eventually connected, then tokens will be transferred from the sender

to the receiver. Moreover, our protocol guarantees an upper bound on the number of tokens that are

in the network at any given time. Denote this upper bound by C. For each data-item to be sent, the

sender transmits to the receiver, 2C + 1 packets (tokens) that contain that data-item. The receiver

in an on-line, space-e�cient fashion, \collects" the same number (i.e., 2C + 1) of tokens (some of

which, but no more than C, may be old tokens remained in the network from previous transmissions),

and outputs the data-item that represents the majority amongst the tokens received, ignoring the nil

tokens3. We emphasize that the receiver computes this majority without storing the tokens; rather, it

does so by using the same \canceling policy" as in the intermediate processors.

As it is clear from the above description, the heart of our protocol is the new (local) \cancelling

policy", described below. Whenever a token arrives into a processor on a given edge e we do the

following:

� If it is a nil token, then the counter of nil tokens of edge e is augmented by one.

� If it is a \real" data token and the data-item is identical to the data-item currently

stored in the processor, then the data tokens counter of edge e is augmented by one.

� If it is a \real" data token and the data-item is di�erent from the data-item currently

stored in the processor, then the arriving token, and one data token already accounted

for in the processor are both \cancelled" and become two nil tokens (that is, the counter

of nil tokens of edge e is augmented by one, and for some edge e0, whose data tokens

counter is greater than 0, the counter of nil tokens is augmented by one, and the counter

of data tokens is decreased by one). If as a result there are no more \real" data tokens

accounted for in the processor (over all edges), we erase the current data-item stored

in the processor.

� If it is a \real" data token and there is no data-item currently stored in the processor,

we store the arriving data-item as the current one, and set the counter of data tokens

of e to 1.

3for the �rst data-item only C + 1 tokens are collected.
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The essential idea of the above \canceling" policy is that from the point of view of the majority

calculation done by the receiver, the above cancelation of two data-items into nil tokens has only a

minor e�ect; the receiver only needs to ignore the nil tokens. Intuitively, since one of the properties

of the old Majority algorithm is that, without these cancelations, the \correct" data-item would have

more than half the tokens in any block of 2C + 1 tokens then, in worst, if any of the cancelled data-

items is the correct one then the other canceled data-item is an old one. Therefore, the majority of

the correct data-item is maintained, while storing only one data-item per processor, and two counters

per link.

3.2 A Formal Description of the Protocol

We begin by describing the data-structures and messages used by our protocol. The protocol uses the

following types of messages:

token messages: to carry data-items (either \real" data-items or the \nil" data-item).

token left messages: to announce over a link e that a token, accounted for in the counters of link e,

has been sent away.

ack token and ack token left messages: are used to acknowledge the arrival of a tokenmessage

or a token left message, respectively.

The following data is stored at each processor v:

� A variable current message that stores a single data-item to be duplicated and sent in token

messages.

� For each incident link e, there are two counters message tokens[e] and nil tokens[e]. The

variable message tokens[e] records a value associated with the number of tokens that arrived on

e carrying the value current message; however, the value stored is not exactly this number as

sometimes a stored token is converted from a message token into a nil token, at which event the

value of message tokens[e] is decreased by one and the value of nil tokens[e] is increased by

one.

� For each incident link e, a variable bound[e] that stores an estimate on the sum of the above

counters on the other side of the link. This bound is initialized to 1, incremented by one every

time a token is sent over the outgoing link, and decremented by one every time a token left

message is received over the corresponding incoming link.

� For each incident link e = (v; u), a counter called tokens left pending[e], which counts the

number of token messages that were sent from v (possibly on other links) on \the account"

of e (i.e., caused the counters of e to decrease), but have not yet been reported as such to u.

This counter is initialized as 0, incremented by one when a token leaves the counters of e, and

decremented by one when a token left message is sent over e.
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� For each incident link e, a ag free for token indicating if an ack token message has already

been received for the previous token message sent on e, and a ag free for token left, indi-

cating if an ack token left message has already been received for the previous token left

message sent on e.

The sender and the receiver store some additional data. The sender stores the last message it has

received to transmit (current input), together with a count of how many such packets are still to

be sent (left to send). In addition, it stores part of the above stated data relative to an additional

\virtual link" through which it introduces new tokens into the network. Although we call it a virtual

link, in what follows it is not included in the set E. The receivermaintains a counter storing the number

of packets it received since the time of the last output event (count), and another counter storing the

number of packets that contained the message stored in current message (current message count).

It also maintains a single bit ag first item.

Throughout the proofs we assume a global time, unknown to the processors, and we denote the

value of variables in a processor at a given time by a subscript of the processor and a superscript of

the time (e.g., X t
v). We also use the following notation to count the number of di�erent messages on a

given link at a given time: Let tokenstu!v be the number of token messages in transit from u to v at

time t. Let tokens lefttu!v be the number of token left messages in transit from u to v at time t.

In our protocol the nodes do not store tokens, but merely store a single message-value and several

counters. However, for our proofs we sometime use the terminology that tokens are stored, or present,

in the nodes. The analogy is straightforward: when a counter counts k nil-tokens, we sometimes refer

to it as if the node stores k nil-tokens, etc. This enables us to talk about the \number of tokens in

the network", rather than about the \sum of values of the counters in the network", and make our

arguments more readable.

3.3 The Code

In this section, we present the code of our protocol. Following [AMS89, AGR92], the presentation of

the code is based on the language of guarded commands of Dijkstra [DF88] where the code of each

process is of the form

Select G1 ! A1 2 G2 ! A2 2 : : : 2 Gl ! Al End Select:

The code is executed by repeatedly selecting an arbitrary i from all guards Gi which are true, and

executing Ai. Each guard Gi is a conjunction of predicates.

The predicate Receive M is true when a messageM is available to be received. If the statements

associated with this predicate are executed, then prior to this execution the message M is actually

received. The message may contain some values that are assigned, upon its receipt, to variables stated

in the Receive predicate (e.g., Receive token(data)). The command Send M on e sends the

message M on the link e.

We present the code of a regular processor (Figure 1), which is every processor except the sender and

the receiver. The code of the receiver is presented separately (Figure 3). The sender has an additional
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\virtual link" (which does not belong to the set E) through which new tokens are introduced into the

network. This virtual link is denoted in the code by I. The code of the sender is composed of two

parts: the code of a regular processor, and additional special code (Figure 2). Upon initialization, the

sender executes the two initialization procedures (of a regular processor, and the additional one), and

then regards the two select commands as a uni�ed one.

3.4 Properties of the Protocol

In this section we present properties of the protocol which later allow us to prove its correctness and

complexity. The structure of the proof follows the structure of the proofs in [AGR92], and some of the

proofs are analogous to those of [AMS89, AGR92]. We �rst state the following technical lemmas (we

postpone their proofs to Appendix A).

Consider an edge e = (u; v) 2 E. The following lemma relates the estimate bound[e]tu which

u has on the number of tokens that are stored in v (in the counters corresponding to the same

edge e). It shows that this estimate essentially equals to the actual number of tokens stored (i.e.,

message tokens[e]tv+ nil tokens[e]tv) plus those that have left, but were not yet reported as such, and

those which are still in transit (i.e., tokenstu!v + tokens lefttv!u).

Lemma 1 At any time t, and for any e = (u; v) 2 E,

bound[e]tu � 1 = message tokens[e]tv + nil tokens[e]tv

+ tokens left pending[e]tv + tokenstu!v + tokens lefttv!u :

The next lemma gives the main intuition for the progress in the protocol.

Lemma 2 Consider a token message sent from processor u to processor v, on link e = (u; v). Let e0

be the link whose counter at processor u decreased when the message was sent. If just before the message

is sent message tokens[e0]u + nil tokens[e0]u = i and just after it is received message tokens[e]v +

nil tokens[e]v = j, then j < i.

Since all the tokens in the network are either \stored" in the processors or in transit over links, the

following lemma and corollary will allow us to give a bound on the capacity of the network (property

(P1) below).

Lemma 3 At any time t and for any e = (u; v),

bound[e]tu � n :

Corollary 4 The following hold for any time t,
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Select

Initialization �!

C := n � (2m+ 1) ;

current message=empty;

for every incident link e 2 E(v)

bound[e]:=1; message tokens[e]:=0; nil tokens[e]:=0; tokens left pending[e]:=0;

free for token[e]:=true; free for token left[e]:=true;

2

Receive token left on e �!

bound[e]:=bound[e]-1;

Send ack token left on e;

2

Receive token(data) on e �!

if (data=nil) then

nil tokens[e]:=nil tokens[e]+1;

else

if (current message=empty or current message=data) then

message tokens[e]:=message tokens[e]+1;

current message:=data;

else

nil tokens[e]:=nil tokens[e]+1;

for some e0 2 E(V ) s.t. message tokens[e0] >0

nil tokens[e0]:=nil tokens[e0]+1;

message tokens[e0]:=message tokens[e0] -1;

if (for every e message tokens[e]=0) then current message:=empty;

endif

endif

Send ack token on e;

2

Receive ack token on e �!

free for token[e]:=true;

2

Receive ack token left on e �!

free for token left[e]:=true;

2

9e; e0 2 E(v) s.t. nil tokens[e0]+message tokens[e0] > bound[e] and free for token[e]=true �!/* possibly e0 = e */

if (nil tokens[e0] > 0) then

Send token(nil) on e

nil tokens[e0]:=nil tokens[e0] - 1;

else

Send token (current message) on e;

message tokens[e0]:=message tokens[e0] - 1;

endif

free for token[e]:=false;

bound[e]:=bound[e]+1;

tokens left pending[e0]:= tokens left pending[e0] + 1;

2

9e 2 E(v) s.t. tokens left pending[e] > 0 and free for token left[e]=true �!

send token left on e;

free for token left[e]:=false;

tokens left pending[e]:=tokens left pending[e]- 1;

End Select

Figure 1: Code of ordinary processor v
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Select

Initialization �!

C := n � (2m+ 1) ;

current input=nil;

left to send:=0;

message tokens[I]:=0;

nil tokens[I]:=0;

tokens left pending[I]:=0;

2

left to send = 0 �!

current input := input data-item;

left to send:= 2C + 1;

2

message tokens[I] < n and left to send > 0 �!

message tokens[I]:=message tokens[I] +1;

left to send:=left to send - 1;

2

9e 2 E(v) s.t. message tokens[I] > bound[e] and free for token[e]=true �!

Send token (current input) on e;

message tokens[I]:=message tokens[I] - 1;

free for token[e]:=false;

bound[e]:=bound[e]+1;

End Select

Figure 2: Additional code for the sender
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Procedure check and output

if �rst item and count=C + 1 then /* �rst data-item */

output(current message);

current message := empty;

count:= 0;

current message count:= 0;

�rst item:=false;

else

if (not �rst item) and count= 2�C + 1 then /* all other data-items */

output(current message);

current message := empty;

count := 0;

current message count:= 0;

endif

endif

End Procedure

Initialize �!

C := n � (2m+ 1) ;

current message := empty;

current message count:=0;

count:=0;

�rst item:=true;

for every incident link e 2 E(u)

bound[e]:=0 ;

message tokens[e]:=0;

nil tokens[e]:=0;

tokens left pending[e]:=0;

free for token left[e]:=true;

2

Receive token(data) on e �!

count:=count + 1;

if (data 6= nil) then

if (current message=empty or current message=data) then

current message count:=current message count+1;

current message:=data;

else

current message count:=current message count -1;

if (current message count=0) then current message:=empty;

endif

endif

tokens left pending[e]:= tokens left pending[e] + 1;

Send ack token on e;

call check and output;

2

Receive ack token left on e �!

free for token left[e]:=true;

2

9e 2 E(u) s.t. tokens left pending[e] > 0 and free for token left[e]=true �!

send token left on e;

free for token left[e]:=false;

tokens left pending[e]:=tokens left pending[e]- 1;

End Select

Figure 3: Code of the receiver u
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1. For any e = (u; v) 2 E,

message tokens[e]tv + nil tokens[e]tv + tokenstu!v � n ;

tokens left pending[e]tv � n :

2. for e = I,

message tokens[e]tv + nil tokens[e]tv � n ;

tokens left pending[e]tv � n :

We use the above lemmas to prove the following theorem:

Theorem 3.1 The protocol has the following properties:

P1. At any time t, the number of tokens in the network is bounded by C = n � (2m+ 1).

P2. Consider a time interval in which knew new tokens are inserted into the network. During this time

interval at most O(n2m+ knew � n) token messages are sent in the network.

P3. If the sender and the receiver are eventually connected, the sender will eventually insert a new

token into the network.

Proof: Every token in the network is either in transit on a link, or accounted for in some counter at

a processor. For every edge e = (u; v) 2 E we consider its two directions. For the direction from u to

v (v to u) Corollary 4 states that at any given time the number of tokens in transit from u to v (v to

u) plus the number of tokens accounted for at the counters of e at node v (node u) is at most n. Thus

we get at most n � 2m tokens. At most n additional tokens can be accounted for at the counters of the

\virtual link" I, altogether n � (2m+ 1) tokens. This concludes the proof of property (P1).

We can now also prove property (P2). De�ne the following potential function. For any processor

v and for any incident link e = (v; u), and for e = I if v = s, denote J t(v; e) = message tokens[e]tv +

nil tokens[e]tv and let H t(v; e) =
PJt(v;e)

k=1 k =
�
Jt(v;e)

2

�
. Let P t be the set of token messages in

transit at time t. For p 2 P t let t0 be the time just before the token message p was sent, say

from v to u. If e0 is the link whose counters accounted for the token sent, then we de�ne T t(p) =

message tokens[e0]t
0

v +nil tokens[e0]t
0

v (that is, the token \carries" the \number" of tokens in v, at link

e0, just before it left this processor). Denote the sender by S. The potential function is

�t = H t(S; I) +
X

e=(u;v)2E

[H t(v; e) +H t(u; e)] +
X

p2P t

T t(p):

This potential function may change upon one of the following three events:

1. A new token enters the network { the potential function increases by at most n.

2. A token is sent { the potential function does not change, since the relevant H function decreases

by exactly the value of the relevant new T function that is added to the sum.
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3. A token is received { the potential function decreases by at least 1. This follows from Lemma 2,

as the value of the function T that is extracted from the sum, is larger by at least 1 than

the sum message tokens + nil tokens at the accepting link, which is the exact increase in the

corresponding function H.

Since by Corollary 4,

message tokens[e]tv + nil tokens[e]tv � n;

and since there is at most one token in transit on each link at any given time, the value of � is at

most 2m � (
�
n

2

�
+ n) +

�
n

2

�
; also � is clearly always non-negative. For each token received, � decreases

by 1, and it can increase only upon the entry of a new token to the network and by at most n. Thus

if in a given time interval knew new tokens are introduced, then an upper bound on the number of

token receipts in this time interval is 2m � (
�
n

2

�
+ n) +

�
n

2

�
+ knew � n, since otherwise the potential

function � would become negative. Since by the code a token message is sent on link e only after

an acknowledgment on the previous token message is received, the number of token messages sent

in the time interval is at most 2m more than the number of token messages received in the time

interval. Thus, we get property (P2).

We now turn to the proof of property (P3). By way of contradiction, assume that t is the last

time at which a new token enters the network. As a result of property (P2) and as there is at most

one token left message per token message, and one ack message (of the corresponding type)

per token and token left message, there is a time t0 � t after which no token, token left,

ack token, or ack token left messages are sent. As the sender, S, and the receiver, R, are

eventually connected, there is a path R = v0; v1; : : : ; vk�1; vk = S, k < n, such that for each 0 � i �

k � 1, the edge e = (vi; vi+1) is viable, hence there is a time t00 � t0 by which all messages between

vi and vi+1, in both directions, are delivered. Note that we enumerate the nodes on the path in the

direction from the receiver to the sender.

Next, note that this implies that tokens left pending[e]vi = 0, for any i, and for any time after t00.

We now prove by induction on the length of the viable path from vi to R, that for any link e incident

to vi, after time t00, message tokens[e]vi +nil tokens[e]vi � i. The receiver, v0, has no tokens stored at

all, thus the induction basis holds. Let e = (vi�1; vi) (for i � 1), and apply the induction hypothesis to

the link e, in node vi�1, i.e.,message tokens[e]vi�1+nil tokens[e]vi�1 � i�1. Applying Lemma 1, and

since after t00 there is no message in transit between vi�1 and vi, and tokens left pending[e]vi�1 = 0,

we get bound[e]vi � i. As t00 � t0, no token is sent after t00, but according to the code this can happen

only if for any time after t00, and any e incident to vi, message tokens[e]vi+nil tokens[e]vi � i, proving

the induction step.

Thus for the \virtual link" I at the sender S, message tokens[I]S + nil tokens[I]S � k < n, and

by the code of the sender a new token is introduced into the network, contradicting the assumption.

Property (P3) follows. 2

4 Correctness Proof of the Protocol

In this section we prove the Safety and Liveness properties of the protocol.
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Theorem 4.1 (Safety) At any time the output of the receiver is a pre�x of the input of the sender.

Proof: Denote by IN = (I1; I2; : : :) the input to the sender, and by OUT = (O1; O2; : : :) the output

of the receiver. Denote by ti; i > 0 the time at which Oi is output.

By the code the receiver outputs at ti the value in current message as the next output. We will

therefore show that at ti the value of current message is Ii. For this, we consider the tokens received

by the receiver in the time interval between the time data item i� 1 and data item i are output. We

use the following de�nitions:

De�nition 1 Let in(t;t
0] be the number of tokens introduced into the network by the sender in interval of

time (t; t0]. Let out(t;t
0] be the number of tokens received by the receiver in the interval of time (t; t0].

First note that the total number of tokens (either nil-tokens or message-tokens) received by the

receiver by time ti is

out(t0;ti] = C + 1 + (i� 1)(2�C + 1):

By Theorem 3.1, the capacity of the network is C, thus the total number of tokens sent by the sender

by any time t is at most C more than the total number of tokens received by the receiver by the same

time, t. Thus,

in(t0;ti] � i(2�C + 1):

Since the sender sends successively 2C + 1 tokens for each data item, this implies that all tokens sent

by time ti carry the value Ij for some j � i.

As to the �rst data-item this guarantees that all token messages received by time t1 carry the

�rst data-item, and since at the beginning of the run current message is initialized to empty, this

guarantees that at time t1 current message is I1.

To prove the claim for i > 1 we �rst show that more than half of the tokens received by the receiver

in (ti�1; ti] that carry a data item when received (as opposed to nil tokens), carry the value Ii. Since

in(t0;ti] � i(2�C + 1) no token carrying Ik, for k > i is present in the network by time ti. Therefore,

and since out(t0;tl] = (l � 1)(2C + 1) + (C + 1), any token received in (ti�1; ti] is a token that is either:

� Sent with value Ii (note that no such token can be received by ti�1).

� Sent with value Ik, k < i, and not received by time ti�1. There can be at most C such tokens, as

the total number of tokens ever sent with Ik (k < i), is (i� 1)(2C + 1).

The set of tokens received in (ti�1; ti] is thus some subset of size 2C + 1 of the above 2C + 1 + C

tokens. We argue that in any subset of size 2C +1 of these tokens, more than half of the \real" tokens

carry the value Ii. This is true along time, even after occurrence of \cancelation" events that cause

two tokens to become nil. At ti�1 the claim is true since no one of the 2C +1 tokens to be sent with Ii
is sent yet, thus they still \carry" Ii, while there are at most C other tokens. Consider any cancelation

event, then if the number of tokens carrying Ii is reduced as a result of one such token becoming nil,

then also a token carrying a value Ik, k < i, becomes nil.
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We now show that indeed at time ti the value of current message is Ii. Consider the sequence of

2C +1 tokens received during the interval (ti�1; ti]. For the purpose of the proof we give to each token

that arrives at the receiver in the time interval (ti�1; ti], a number which is its number in the sequence

of the tokens that arrive after time ti�1. Let 1 � T1 < T2 < Tj : : : < Tk � 2C+1 be the token numbers

that upon their arrival the value of curret message changes from empty to another value. Let V alj be

the new value assigned to curret message. We show that at time ti current message is not empty,

and that the last \real" value assigned to it, V alk, is Ii. Consider the set of tokens with numbers

Tj � l < Tj+1, for j < k. If at Tj+1 a new, non empty, value is assigned to current message, then

current message count was 0 at this time, which means that it has become such at the receipt of token

number Tj+1 � p, for some p � 1, and any token with number s, such that Tj+1 � p+ 1 � s < Tj+1 (if

any) was a nil token. Thus, we conclude that among the tokens Tj � l < Tj+1 that carry a data-item

(i.e., are not nil tokens) exactly half carry V alj. Whatever the value V alj is, at most half of the above

tokens carry Ii. If upon the receipt of token 2C + 1 current message is empty (and is thus empty at

time ti), we have that over the whole sequence the number of tokens carrying Ii is at most half the

number of tokens carrying any value. Thus, this cannot happen (i.e., current message is not empty

at time ti). Next, assume that V alk 6= Ii (and this is the value at time ti). Then more than half the

tokens Tk � l � 2C + 1, that are not nil-tokens, carry value V alk. Then, over the whole sequence the

tokens carrying Ii are less than half the number of tokens carrying any value, a contradiction again.

2

Theorem 4.2 (Liveness) If the sender and the receiver are eventually connected, then the receiver

eventually outputs any data-item input to the sender.

Proof: If the sender inputs the i'th data-item, then it tries to send i(2�C+1) tokens (counted over the

whole run). As the sender and the receiver are eventually connected, by Property (P3) all these tokens

are eventually input into the network. Since the network can delay at most C tokens, the receiver will

eventually receive i(2�C + 1) � C tokens, and thus outputs the i'th data-item. 2

4.1 The Complexity of the Protocol

Lemma 5 The number of messages sent by the protocol in any time interval where knew new tokens are

added to the network is O(n2m+ knew � n).

Proof: Each message is a token, token left, ack token, or ack token left message. By

Property (P2), the number of token messages sent in the time interval is O(n2m + knew � n). The

number of token left messages sent is at most the sum of the counters token left pending at the

beginning of the interval, plus the number of tokenmessages sent in the time interval. By Corollary 4

and the above, this sums to O(2nm + n2m+ knew � n).

The number of ack token and ack token left messages sent, in the time interval under con-

sideration, is at most the number of token and token left messages sent in this time interval, plus

the number of messages that were in transit when the time interval started. Since the capacity of each
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link is constant the number of messages in transit at any given time is O(m), and we have a bound

on the number of ack messages (of both types) of O(n2m+ knew � n+ 2mn +m). 2

Lemma 6 The message complexity of the protocol is O(n2m) messages.

Proof: For every time interval (ti�1; ti] the receiver receives 2�C + 1 tokens during the interval. Since

the capacity of the network is C tokens, at most 3�C + 1 tokens are sent by the sender in (ti�1; ti]. As

C = O(nm), the lemma follows from Lemma 5. 2

Since messages have size at most the size of the data-item, we establish the following theorem:

Theorem 4.3 (Communication Complexity) The communication complexity of the above protocol

is O(n2mD) bits.

Theorem 4.4 (Space Complexity) The space required at each processor is O(D + log n) bits per

incident link.

Proof: The list of variables used by each processor (per incident link) is given at Section 3.2. By Corol-

lary 4, the value of each of the counters message tokens, nil tokens, and

tokens left pending is at most n, hence requires only O(log n) bits. By Lemma 3, the same is

true for the counter bound. In addition there is a constant number of a single-bit ags, per link.

Finally, the processors store a single variable, current message of size D bits. 2

5 Conclusions

In this work, we give an end-to-end communication protocol that has polynomial communication

complexity and at the same time logarithmic space complexity. Thus we show that it is possible to

attain polynomial communication complexity and sub-linear space complexity at the same time. It

remains, however, open, whether constant space complexity (more precisely, space complexity O(D))

allows for polynomial, or even merely bounded, communication-complexity protocols in the above

setting.
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A Proofs of Technical lemmas

Proof of Lemma 1: Upon initialization, the invariant holds, since the variable bound[e] is initialized

to 1, the counters message tokens[e], nil tokens[e] and tokens left pending[e] are initialized to 0, and

no message is in transit in the network. By induction on the events that change any of the values

participating in the invariant, we show that the invariant holds for any time t. There are six types of

events to be considered: send and receive events of token messages from u to v on e; send and receive

events of token left messages from v to u on e; send events of token messages from v, when the

token sent is accounted for in the counters of e in v; and receive events of a token at v, when this

arrival causes a token accounted for at e to become a nil token.

If both v and u are not the receiver then the following describes the e�ects of any of the events:

� Send event of a token message from u to v on e: bound[e]u is incremented by 1, but so is

tokensu!v.

20



� Receive event of a token message at v on link e: The sum message tokens[e]v+nil tokens[e]v is

incremented by 1, but tokensu!v is decremented by 1.

� Send event of a token left message from v to u on e: tokens left pending[e]v is decremented

by 1, but tokens leftv!u is incremented by 1.

� Receive event of a token left message at u from v, on e: bound[e]u is decremented by 1, but so

is tokens leftv!u.

� A Send event of a tokenmessage from u on some link e0, when the token sent was accounted for at

the counters of e: message tokens[e] and nil tokens[e] is decremented by 1, but tokens left pending[e]

is incremented by 1.

� A Receive event of a token message at v (on some link) may cause a token accounted for at

the counters of e to become nil: message tokens[e] is decremented by 1, but nil tokens[e] is

incremented by 1.

If v is the receiver:

� Send event of a token message from u to v on e: bound[e]u is incremented by 1, but so is

tokensu!v.

� Receive event of a tokenmessage at v on e: tokensu!v is decremented by 1 but tokens left pending[e]

is incremented by 1.

� Send event of a token left message from v to u on e: tokens left pending[e]v is decremented

by 1, but tokens leftv!u is incremented by 1.

� Receive event of a token left message at u from v, on e: bound[e]u is decremented by 1, but so

is tokens leftv!u.

� A Send event of a token message from u on some link e0, when the token sent was accounted for

at the counters of e: One of the counters message tokens[e] and nil tokens[e] is decremented by

1, but tokens left pending[e] is incremented by 1 (However, note that this event cannot happen,

since u never receives any token on e).

� AReceive event of a tokenmessage at v (on some link) never changes the values ofmessage tokens[e]

or nil tokens[e].

If u is the receiver:

� A send event of a token message from u no e cannot happen, by the code.

� Receive event of a token message at v on link e: The sum message tokens[e]v+nil tokens[e]v is

incremented by 1, but tokensu!v is decremented by 1 (note, however, that such an event cannot

happen as u does not send token messages).

� Send event of a token left message from v to u on e: tokens left pending[e]v is decremented

by 1, but tokens leftv!u is incremented by 1 (note that this event cannot happen too).

� Receive event of a token left message at u from v, on e: bound[e]u is decremented by 1, but so

is tokens leftv!u (note that this event cannot happen).
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� A send event of a token message accounted for at u cannot happen, by the code.

� A Receive event of a token message at v (on some link) may cause a token accounted for at

the counters of e to become nil: message tokens[e] is decremented by 1, but nil tokens[e] is

incremented by 1.

2

Proof of Lemma 2: Let t be the time just before the token is sent from u, and t0 the time just

before it is received at v. Because the sum of message tokens and nil tokens can increment only

when tokens arrive on the link, and because the links are FIFO, we have:

message tokens[e]t
0

v + nil tokens[e]t
0

v � message tokens[e]tv + nil tokens[e]tv + tokenstu!v:

By Lemma 1,

message tokens[e]tv + nil tokens[e]tv + tokenstu!v + 1 � bound[e]tu :

Thus,

message tokens[e]t
0

v + nil tokens[e]t
0

v + 1 � bound[e]tu:

By the code i > bound[e]tu and j = message tokens[e]t
0

v + nil tokens[e]t
0

v + 1, hence i > j. 2

Proof of Lemma 3: We prove the claim by contradiction. Assume bound[e]tu > n for some t; u,

and e = (u; v). Then a token must have been sent over e from u to v when bound[e]u � n. By

the code, this can happen only if, for some e0 2 E [ fIg, message tokens[e0]u + nil tokens[e0]u > n.

However, for any e0, the value of message tokens[e0]u + nil tokens[e0]u is initialized to 0. Therefore,

consider the �rst time that, for some e0 and u, message tokens[e0]u + nil tokens[e0]u > n. For the

\virtual link" I at the sender this cannot happen by the code. For every e0 = (u; v0) 2 E, the value of

message tokens[e0]u+nil tokens[e0]u increases only when a token is received at u over e0. Consider the

token that upon its receipt the value ofmessage tokens[e0]u+nil tokens[e
0]u became strictly larger than

n, and denote by e00 the link incident to v whose counters accounted for this token before it was sent

from v. By Lemma 2, when the token was sent from v the value ofmessage tokens[e00]v+nil tokens[e
00]v

was already strictly greater than n, contradicting the fact that we are considering the �rst such event.

2

Proof of Lemma 4: For e = I, the claim follows from the code. For any e 2 E, by Lemmas 1 and

3,

message tokens[e]tv + nil tokens[e]tv + tokenstu!v � bound[e]tu � 1 � n� 1 ;

and

tokens left pending[e]tv � bound[e]tu � 1 � n� 1 :

2
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