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Abstract

A linear array network consists of k + 1 processors P0; P1; : : : ; Pk with links only

between Pi and Pi+1 (0 � i < k). It is required to compute some boolean function

f(x; y) in this network, where initially x is stored at P0 and y is stored at Pk . Let

Dk(f) be the (total) number of bits that must be exchanged to compute f in worst

case. Clearly, Dk(f) � k �D(f), where D(f) is the standard two-party communication

complexity of f . Tiwari proved that for almost all functions Dk(f) � k(D(f)�O(1))

and conjectured that this is true for all functions.

In this paper we disprove Tiwari's conjecture, by exhibiting an in�nite family of

functions for which Dk(f) is essentially at most 3
4k �D(f). Our construction also leads

to progress on another major problem in this area: It is easy to bound the two-party

communication complexity of any function, given the least number of monochromatic

rectangles in any partition of the input space. How tight are such bounds? We exhibit

certain functions, for which the (two-party) communication complexity is twice as large

as the best lower bound obtainable this way.

1 Introduction

The linear array network consists of k + 1 processors P0; P1; : : : ; Pk with links only between

Pi and Pi+1 (0 � i < k). The processors are to compute a boolean function f(x; y) where
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initially x is stored in processor P0 and y is stored in processor Pk. The complexity of a

protocol is the total number of bits exchanged on all links at worst case. Let Dk(f) be the

(worst case) complexity of (the best protocol for) f . Obviously,Dk(f) � k�D(f), whereD(f)

is the standard two-party communication complexity of f (as de�ned in [14]; see also [6] for

an extended background on communication complexity). This is because the processors can

simulate an optimal two-party protocol for f (P0 simulates one party, Pk simulates the other

party, and the intermediate processors behave as relays and just propagate the messages

they receive). The question is whether better protocols exist. This problem was extensively

studied by Tiwari [13], who conjectured that the above naive protocol is essentially optimal.

More speci�cally, he conjectured that for every boolean function f ,

Dk(f) � k � (D(f) �O(1)):

Tiwari did establish his conjecture in every instance where a lower bound on D(f) is provable

either by fooling set arguments [14, 7] or by the rank method [8]. These results create an

interesting state of a�airs, where �nding a counterexample to Tiwari's conjecture entails

developing a new method for proving lower bounds, since the two standard methods of

communication complexity cannot be employed. Furthermore, Tiwari's argument implies

that his conjecture is valid for almost all functions.

In this paper we disprove this conjecture, by exhibiting an in�nite family of functions for

which

Dk(f) �

�
3

4
+ o(1)

�
� k �D(f)

thus, proving that the intermediate processors can take a role in the computation more active

than just relaying messages.1 As Tiwari's results imply, we do develop a novel technique for

proving a lower bound on D(f). The proof is based on a careful analysis of the protocol

tree, and involves some graph theoretic arguments.

Ever since Yao's early study of two-party communication complexity [14], all lower bounds

on communication complexity are derived from estimates on C(f), the least number of

monochromatic rectangles in any partition of the input space.2 Obviously,

D(f) � log2C(f);

and the determination of the exact relationship betweenD(f) and log2C(f) is a fundamental

problem in the �eld of communication complexity.3 Results on nondeterministic communi-

cation complexity [1] imply that D(f) = O((log2C(f))
2). However, no cases are known

1The above bound holds for even values of k; for odd k the bounds is slightly larger; see Corollary 4.
2The only exception to this statement is the study of k-round protocols [11, 3, 9].
3Recently much e�ort was devoted to study the power of various lower bound techniques in communication

complexity, e.g., the rank method [12, 10] and the rectangle size method for the nondeterministic case [5].

We also take this opportunity for the usual disclaimer that all logarithms are to base 2.
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where such a gap occurs.4 As mentioned, the communication complexity of the function

f , that disproves Tiwari's conjecture, is bounded via a nonstandard method, whence f is a

candidate for establishing such a gap. Indeed, f does exhibit the presently largest known

gap, i.e.,

D(f) � (2 � o(1)) � log2C(f):

In other words, the actual communication complexity is twice as large as the best lower

bound obtainable for this function by considering partitions of the space.

We believe that our technique may help in other problems about communication com-

plexity.

Subsequent Work: After the conference version of our paper was published, Dietzfel-

binger [2] was able to prove a weaker version of Tiwari's conjecture. Namely, he showed

that for every function f , the linear-array complexity satis�es Dk(f) �  � k �D(f), for some

constant  < 0:3. Therefore, up to the question of determining the exact constant, our work

together with Dietzfelbinger's work [2] completely solves the linear-array problem.

2 Preliminaries

The linear array network consists of k + 1 processors P0; P1; : : : ; Pk with links only between

Pi and Pi+1, for 0 � i � k � 1. The processors are to compute a function f(x; y) where

the input x is initially stored in processor P0 and the input y is initially stored in processor

Pk. The complexity of a protocol is the total number of bits exchanged over all links on

the worst input pair (x; y). Let Dk(f) be the complexity of the best protocol for computing

the function f on such a linear array. Obviously, Dk(f) � k � D(f), where D(f)
4
= D1(f)

is the standard two-party communication complexity of f (as de�ned in [14]; the reader

is referred to [6] for an extended background on communication complexity including more

formal de�nitions). A simple general lower bound forDk(f) is given by the following lemma5.

Lemma 1 For every function f , Dk(f) = k �
�

(
q
D(f))� log k

�
.

Proof: We show that for every function f , R0(f) �
Dk(f)

k
+ log k, where R0(f) is the

randomized zero-error communication complexity of f (in the two-party model)6. Since it is

known [1] that R0(f) = 
(
q
D(f)), the lemma follows. Given a protocol for the linear array

4This should not be confused with nondeterministic communication complexity where covers (and not

necessarily partitions) of the input space are relevant. In that case, functions that exhibit a quadratic gap

are known.
5As mentioned above, this bound was already improved by Dietzfelbinger [2].
6I.e., we measure the expected number of bits exchanged on the worst input (x; y).
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network that uses a total of Dk(f) bits, we construct a randomized, zero-error, two-party

protocol for f . The �rst player, Alice, chooses uniformly at random, one of the k links

(Pi; Pi+1) and sends i to the second player, Bob (at a cost of log k bits). Alice and Bob

simulate the linear array protocol, where Alice (who holds x) simulates P0; : : : ; Pi and Bob

(who holds y) simulates Pi+1; : : : ; Pk. Note that the only bits that Alice and Bob actually

need to exchange are those that go across the chosen link. The expected number of bits that

are transmitted in the simulation is therefore at mostDk(f)=k. Hence, R0(f) �
Dk(f)
k

+log k.

2

3 The Results

The de�nition of our function f depends on another function g : f0; 1gn � f0; 1gn ! f0; 1g.

For our purposes, almost any function can play the role of g, but the speci�c properties that

are required, will be discussed only in Section 4.1.

De�nition 2 Let f : f0; 1g2n �f0; 1g2n ! f0; 1g. The value f([x1; x2]; [y1; y2]) is de�ned by

f([x1; x2]; [y1; y2])
4
=

(
g(x1; y2) if g(x1; y1) = 1

g(x2; y1) if g(x1; y1) = 0

where x1; x2; y1; y2 2 f0; 1g
n.

Theorem 3 For almost every choice of the function g,

(2 � o(1)) � n � D(f) � 2 � n+ 1:

The upper bound is trivially true, regardless of the choice of g. (In fact, clearly even

D(f) � 2D(g), for every function f .) We defer the proof of the lower bound, which is the

most technical part of this paper, to Section 4. Following are corollaries to Theorem 3,

starting with a refutation of Tiwari's conjecture:

Corollary 4 Assume that k is even. For almost every choice of the function g, the function

f of De�nition 2 satis�es:

Dk(f) � (
3

4
+ o(1)) � k �D(f):

(If k is odd, then the bound is Dk(f) � (3
4
+ 1

4k
+ o(1)) � k �D(f).)

Proof: Assume that k is even. Theorem 3 implies that D(f) � (2 � o(1)) � n for almost

every choice of the function g. Here is a protocol to compute f on the linear array (for

any g): Initially, P0 holds [x1; x2] and Pk holds [y1; y2]. Processor P0 sends x1 to Pk=2, and
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processor Pk sends y1 to Pk=2. The total cost of these steps is (k=2) � n bits each. Now, Pk=2
computes g(x1; y1) and it broadcasts this bit to all the processors (this costs total of k bits

and it indicates to every processor how the protocol is going to proceed). If g(x1; y1) = 0,

processor Pk=2 sends y1 to P0 so that it can compute g(x2; y1) (in this case the role of Pk in the

protocol is over; this was indicated to it by broadcasting the value of g(x1; y1)). Otherwise,

if g(x1; y1) = 1, then Pk=2 sends x1 to Pk for it to compute g(x1; y2) (in this case the role of

P0 in the protocol is over which again was indicated by broadcasting the value of g(x1; y1)).

The processor that computed the output bit sends this bit to all other processors (additional

k bits of communication). The total cost of the protocol is 3k
2
� n+2k bits and the corollary

follows. For odd k, Dk is only slightly larger { the term 3k
2
is replaced by 3k+1

2
. 2

We next turn to show a gap between the two-party communication complexity and the

logarithm of the partition number.

Corollary 5 For almost every choice of the function g, the function f of De�nition 2 sat-

is�es:

D(f) � (2 � o(1)) � log2C(f):

Proof: Again we start from the inequality D(f) � (2 � o(1))n (that holds for almost

every choice of the function g), and show that C(f) � 4 � 2n (for every function g), whence

log2C(f) � n + 2. For each string w 2 f0; 1gn and bit b 2 f0; 1g de�ne two rectangles

(altogether 4 � 2n rectangles) as follows:

Rw;b = f([x1; x2]; [y1; y2]) j x1 = w;

g(x1; y1) = 1;

g(x1; y2) = b g;

and

Sw;b = f([x1; x2]; [y1; y2]) j y1 = w;

g(x1; y1) = 0;

g(x2; y1) = b g:

Note that these are indeed rectangles and that they are f -monochromatic. Moreover, these

rectangles are disjoint and cover all the inputs. To see this, consider an input ([x1; x2]; [y1; y2])

and note how to �nd the unique rectangle to which it belongs. If g(x1; y1) = 1 this rectangle

is Rx1;g(x1;y2) while if g(x1; y1) = 0 it belongs to Sy1;g(x2;y1) and only to it. 2

4 Proof of Theorem 3

In this section we prove our main theorem (Theorem 3). We start by specifying the function

g (subsection 4.1) and then, based on this choice, we provide the details of the proof.
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4.1 Choosing the Function g

While the upper bound on the two-party communication complexity of f does not depend

on the choice of g, the lower bound does require a careful choice of g. The intuition is that a

\complicated" function g would force the two players to �rst compute g(x1; y1) and, further-

more, that this computation may turn out useless for the remainder of the computation (of

either g(x1; y2) or g(x2; y1)). The notion that a \complicated" g is sought, should be taken

with a grain of salt, though. For example, the inner-product function, is \di�cult" for many

purposes in the theory of communication complexity (formally, the inner-product function

is de�ned by IP (x; y)
4
=
Pn

i=1 xiyi mod 2). It is instructive to see that this choice will not

do in our setting, and the bound D(f) � 1:5n + O(1) holds in this case: Alice sends the

n=2 most signi�cant bits of x1 to Bob who responds with the n=2 least signi�cant bits of

y1. With the exchange of two more bits, both players will know the inner product of x1 and

y1. According to the answer they need to compute either the inner product of x1 and y2 or

the inner product of x2 and y1. In either case, one of the players already has n=2 bits of the

other input so by receiving the complementary n=2 bits it can complete this computation.

The total number of bits that are transmitted is 1:5n + O(1). Similar arguments hold for

other natural choices of g as well.

Instead, we pick a random g. Denote N
4
= 2n. Let 0 � � � 1 and � � 1 be constants;

speci�cally, we choose � = 1=32 and � su�ciently large as required by the proof of Lemma 6

below. Denote L = �n. Any function g : f0; 1gn � f0; 1gn ! f0; 1g is also represented

through its table � = �g, which is an N �N 0-1 matrix. Let R1 consist of L disjoint pairs

of rows and similarly, let R2 be a set of L disjoint pairs of columns in �. Correspondingly,

the rectangle (minor)7 R1 �R2 of � consists of L2 disjoint 2� 2 squares, each of which can

have any one of the 24 = 16 possible patterns. The R1 � R2 minor is called �-balanced if

each of these 16 patterns appears at least �L2 times. De�ne the following property:

(P1) All minors of dimensions 2L� 2L in �g are �-balanced.

Lemma 6 Almost every function g satis�es property (P1).

Proof: Consider a particular rectangle. That is, choose L disjoint pairs of rows, R1, and L

disjoint pairs of columns, R2. Fix one of the 16 possible patterns. If the function g is selected

uniformly at random, the expected number of appearances of this pattern in the rectangle

is exactly L2=16. By Cherno�'s inequality, the probability that this pattern appears fewer

than L2=32 = �L2 times is at most 2��(L
2). The probability that some pattern appears less

than L2=32 times is at most 16 times larger, and still 2��(L
2). In other words, any particular

7The term rectangle and the termminor have both the same meaning: a sub-matrix de�ned by some subset

of the rows and some subset of the columns; the term rectangle comes from the theory of communication

complexity while the term minor comes from matrix theory; we use these two terms interchangeably.
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2L � 2L rectangle fails to be �-balanced with probability at most 2��(L
2). The number of

such rectangles can certainly be bounded by [
�
N

2L

�
� (2L)!]2 = NO(L) = 2O(nL). Therefore,

the probability that some rectangle is not �-balanced does not exceed 2O(nL) � 2��(L
2). But

L = �n, so for a su�ciently large constant �, this probability is at most 2��(L
2). The lemma

follows. 2

The proof of the lower bound repeatedly uses property (P1), as well as the following

immediate consequences of (P1):

(P2) The matrix �g contains no L� L monochromatic rectangle.

(P3) In every 2L� L rectangle of �g, each of the four 2 � 1 patterns appears at least �L2

times. Similarly, in every L�2L rectangle of �g, each of the four 1�2 patterns appears

at least �L2 times.

A row x is said to be balanced with respect to a set of columnsB, if the fraction of zeros in row

x within this set is between 8� and 1�8� (i.e., 8�jBj � jfy 2 B : g(x; y) = 0gj � (1�8�)jBj).

We de�ne what it means for a column y to be balanced with respect to a set of rows A, in

the natural way.

(P4) Let A�B be a minor of �g. If jBj � L then at most 2L rows in A are imbalanced with

respect to B. Likewise, if jAj � L then B has at most 2L columns that are imbalanced

with respect to A.

The next property is never used in the actual proof, but may help in guiding the reader's

intuition (it follows from property (P4) and the monochromatic rectangle-size bound).

(P5) Consider any k � k minor of �g and the associated communication problem. The

complexity of this problem is at least log k �O(log logN).

Remark: The correctness of our lower bound depends only on the leading term in the

asymptotics of D(f). At this level of resolution, it is not essential for L to be only O(logN),

as stated and proved. Rather, the leading asymptotic term remains unchanged as long as

L = No(1). Unfortunately, no explicit construction is currently known for functions g that

satisfy the above conditions with L = O(logN) (this is essentially the notorious question of

explicit constructions for Ramsey graphs). However, if we settle for L = No(1), then such

constructions are known [4]. Consequently, the main statements of our article hold also with

an explicitly constructed f .
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4.2 The Lower Bound

Let g be any function that satis�es (P1). Consider an optimal protocol for computing f and

the tree T of this protocol. We seek a node � in T such that many bits must be exchanged

by the players in order to reach this node, but still many bits need to be transmitted to

complete the computation of f . The next paragraph presents the recipe for �nding such a

node �, and subsequently all relevant arguments are proved.

Each node z in T , is naturally associated with two directed graphs G1 and G2 on vertex

set f0; 1gn: If input ([x1; x2]; [y1; y2]) is consistent with the protocol reaching node z, then

(x1; x2) and (y1; y2) are directed edges in G1 = (V1; E1) and in G2 = (V2; E2), respectively.

To derive our bound, we traverse the tree T starting from the root on a path along which the

protocol progresses \slowly": At each step in the protocol either E1 or E2 (but not both) is

partitioned into two parts, and the two edges out of node z in the tree T correspond to these

parts. Our traversal of the tree always follows the edge that corresponds to the larger of the

two parts. As we traverse the tree we also \prune" the graphs G1 and G2: Certain edges

in these graphs are declared \bad" along the traversal and are henceforth eliminated from

the corresponding graph. The speci�cs of this pruning process will be explained later, but

note that the elimination of edges can only decrease the depth of T , so it may only become

harder to prove lower bounds on communication complexity. Isolated vertices are essentially

irrelevant to our discussion, so we de�ne, for each node of T , the set Vi of all non-isolated

vertices in Gi. The quantity
jEij

jVij
(i.e., the average out-degree of non-isolated vertices in Gi)

is denoted �i, and � is minf�1; �2g. The desired node � in T is the �rst one we encounter

where:
L3

2
< � � 2L3 (1)

The very existence of a node � in T that satis�es Condition (1) is not clear at this stage.

The �rst step towards showing the existence of such a �, is to study the leaves of T (note

that at the root of the tree � = 2n), and prove:

Lemma 7 At every leaf of T , � � 2L.

Proof: We claim that in a leaf of T , it is impossible for both graphs, G1 and G2, to have a

matching of size L. Otherwise, consider the 2L � 2L minor of �g, whose rows and columns

correspond to the vertices in G1 and G2 that participate in these matchings. Since we are

dealing with a leaf, it follows that the value of f is already uniquely de�ned, whence (by the

de�nition of f) only 8 of the 16 patterns may appear in this minor, contrary to Property

(P1).

Note that if M is an inclusion-maximal matching in a graph with e edges and v vertices,

then M has at least e
2v

edges: Given jM j and v, the number of edges, e, is maximized by

making every pair of vertices adjacent, except if neither of them is covered by the matching.
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Therefore, we get that e � 2jM jv. In particular, the largest matching in a graph without

isolated vertices has at least �=2 edges, and the conclusion follows. 2

We also need to control the rate at which �; jE1j and jE2j decrease, as we traverse T .

This will allow us to establish the existence of the desired node �, as well as to bound the

time to reach this node in the protocol.

We now introduce pruning, a process that will be applied at every node during the

traversal. Assume that at the current node the edge set E1 is split. (Otherwise, interchange

the roles of G1 and G2.) Consider the situation just after E1 is split. Let V
+
2 � V2 consist

of all vertices in G2 with a positive out-degree, and consider the V1�V +
2 minor of �g. Since

jV +
2 j �

jE2j

jV2j
= �2 � L3=2, by Property (P4) at most 2L vertices in V1 are imbalanced with

respect to V +
2 . All edges that are incident on these vertices are considered bad and are

removed from G1. When pruned and unpruned graphs need to be distinguished, we use bars

to denote pruned graphs and their parameters. Pruning can isolate vertices, and consequently

�i may even increase as we traverse T . However, to show that Condition (1) is satis�ed

sometime, whence � exists, it su�ces to show that � never decreases too rapidly. Indeed,

pruning does not speed much the rate at which � decreases, since the number of pruned

edges is never too big: Clearly, jE1j � L3jV1j=2 and so j �E1j � jE1j � 2LjV1j � (1 � 4
L2 )jE1j,

and in particular, ��1 � (1 � 4
L2 )�1. It follows that in passing from a node in T to its child,

� may, at worst, get multiplied by a factor of 1
2
(1� 4

L2 ). Since, by Lemma 7, � � 2L at the

leaves, and the bounds in Condition (1) di�er by a factor of four, it follows that � exists.

We turn to bound the time for reaching � in the protocol, and claim that until this time,

at least

t1 � log
N4

jE
�
1j � jE

�
2 j
� o(1) (2)

bits must be exchanged (where E�
1 and E

�
2 are the edge sets corresponding to the graphs in

the node � under consideration): At the protocol's outset jE1j�jE2j = N4 and in each step this

quantity can be reduced by at most a factor of 1
2
(1� 4

L2 ). But log(
1
2
(1� 4

L2 )) = �(1+O(L�2)),

so Equation (2) follows where the o(1) term is, in fact O(L�1).

We now turn to the main part of the proof, in which we show that to complete the

protocol, starting from �,

t2 � log
jE�

1 j � jE
�
2j

N2
�O(log L) (3)

additional bits must be transmitted. (From now on, whenever referring to the graphs G1; G2

or to the associated sets V1; V2; E1 and E2 we refer to the graphs corresponding to node

�; henceforth, we omit � from the notation.) By summing the bounds in (2) and (3), it

follows that the communication complexity is at least 2 logN � O(log logN), as claimed.

The intuition behind the proof of (3) is that since jE1j � L3jV1j=2, there are still viable

inputs, for which the bits communicated so far are of the \wrong type". To illustrate this
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idea, suppose that at �, the graph G1 has a vertex u with a large out-degree. It follows that

many inputs of the form (u; v) reach �. If it so happens that g(u;w) = 0 for many w 2 V +
2

(the set of vertices in G2 of positive out-degree), then the evaluation of f , starting at � is

still complex: It entails, at least, the evaluation of g on a large minor of �g. The rows of this

minor correspond to all those v with (u; v) 2 E1, the columns correspond to every w 2 V +
2

with g(u;w) = 0. The function g has a high communication complexity (Property (P5)), so

the bound follows in this case.

Note that this is only a rough idea for a proof, and several di�culties arise in attempting

to implement it as we see below. The reader is encouraged, however, to keep this intuition

in mind.

To recap, we may assume that starting from �, the protocol computes the value of f on

pairs of inputs from E1 � E2, where:

(A1) L3=2 � �1 � 2L3 < �2.

(A2) All vertices in V1 are balanced with respect to V +
2 .

We need the following graph-theoretic fact: In a graph with no isolated vertices there

is a collection of vertex-disjoint proper stars that cover all vertices, where \proper" means

stars with two vertices or more. (For the purpose of this de�nition we ignore the direction of

the edges.) To prove this, construct a spanning forest in the graph. Any tree in this forest

which is of diameter 1 or 2 is already a star and can be added to the list of stars. In a tree

R of larger diameter, pick a diametrical pair of vertices x; y, and remove an edge h from

the x; y path that is not incident on x nor on y. It is not hard to see that each of the two

components of R n fhg has at least two vertices. Proceed with this process until only proper

stars remain.

Apply this fact to the underlying graph of the digraph G1, to obtain a collection of

vertex-disjoint stars with a total of at least jV1j=2 edges. We distinguish two cases: (I) at

least half of the edges in the stars are oriented away from the stars' centers; and (II) at least

half of the edges are oriented towards the centers. Denote B
4
= jE1jjE2j

8N2L3 . We now deal with

each of these two cases.

Case (I): Let D be the set of edges oriented away from the stars' centers. Condition (A1),

implies that

jDj �
jV1j

4
�
jE1j

8L3
�
jE1jjE2j

8L3N2
= B

and

jV +
2 j �

jE2j

N
�
jE1jjE2j

2N2L3
� B:

Consider the following communication problem, denoted �, which is de�ned on D�V +
2 . On

inputs (x1; x2) 2 D and y1 2 V +
2 , if g(x1; y1) = 0, then output g(x2; y1), but if g(x1; y1) = 1,
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then any output is acceptable. This problem is represented again by a matrix with 0; 1 and

\*" entries, the latter corresponding to the \don't care" case. Since our protocol computes

f , the sub-protocol starting from node � solves the problem �. We conclude the desired

Inequality (3) from a lower bound for this problem.

The proof is in two steps: we �rst compute the e�ective area of the jDj�jV +
2 j matrix, i.e,

the number of non-\*" entries. Consider a speci�c row in the matrix, say row (x1; x2). By

Property (A2), x1 is balanced with respect to V
+
2 . Therefore, a fraction of at least �0 = 8� of

the y1's in V
+
2 , satisfy g(x1; y1) = 0, yielding a non-\*" entry. This holds for each individual

row, whence also for the whole matrix D � V +
2 . Consequently, the e�ective area of this

matrix is at least �0jDjjV +
2 j.

As usual, any protocol for the communication problem � partitions D � V +
2 into �-

monochromatic rectangles. In the ensuing discussion, a minor is \�-monochromatic" if

either 0 or 1 are missing from it. In other words, if the value of � on all the entries of the

minor is either b or \*", for some b 2 f0; 1g. It will be shown that every �-monochromatic

rectangle has a small e�ective area, whence their number is large, and the protocol must

be long. Consider a �-monochromatic rectangle R � S with some output value b 2 f0; 1g,

where without loss of generality jSj � L (otherwise, the e�ective area of this rectangle is

clearly smaller than D � L which will make this an easy case). Recall that rows are indexed

by ordered pairs (x1; x2), so we can speak of the slice �x1 � R of those rows in R with this

x1 (and we will bound the e�ective area of R � S by using this partition of R into slices).

First, we show that the number of slices cannot be larger than L. For this, we pick from each

slice �~x1 one of its rows (~x1; ~x2). For every such pair (~x1; ~x2), consider the corresponding

pair of rows in �g. Note that by choosing the pairs (~x1; ~x2) as edges from vertex-disjoint

starts (with the ~x1 as the centers) if follows that all these pairs are disjoint. Hence, we can

consider the minor of �g with this set of rows and with the set of columns S, and make a

census of its 2� 1 minors. By assumption, none of these 2� 1 minors satis�es g(x1; y1) = 0

and g(x2; y1) = �b. Therefore, the number of slices must be at most L as otherwise we get

a contradiction to property (P3). Next, we call a slice wide if it has at least L rows, and

we call it narrow otherwise. Suppose that �x1 is a wide slice. The only contribution to

the e�ective area within this slice comes from columns in Sx1, the set of those y1 2 S with

g(x1; y1) = 0. Let Rx1 be the set of all x2 such that (x1; x2) 2 �x1. It follows that every

entry in the Rx1 � Sx1 minor of �g is b. Since jRx1j = j�x1j � L, it follows by property (P2)

that jSx1j � L. Hence, this slice's contribution to the e�ective area of the rectangle does not

exceed j�x1 j � L. By adding these inequalities together, the total contribution of wide slices

to the e�ective area of the rectangle R� S is at most jDj � L.

We turn to bound the contribution of narrow slices to the e�ective area of R� S. Obvi-

ously, there are no more than L narrow slices (since we proved that even the total number of

slices is at most L). A narrow slice has L rows or less, so the total area of narrow slices does
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not exceed L2jV +
2 j. We conclude that the e�ective area of a �-monochromatic rectangle is

no more than L2(jDj+ jV +
2 j). So, in partitioning the matrix to �-monochromatic rectangles,

the number of rectangles is at least

�0jDjjV +
2 j

L2(jDj + jV +
2 j)

�
�0B

2L2
=
�0jE1jjE2j

16N2L5
:

Finally, since the communication complexity is at least the logarithm of this expression it

yields (3) as desired.

Case (II): This case is handled similarly; hence, we skip some of the details and mainly

emphasize the di�erences between the two cases. Let C be the set of leaves in the vertex-

disjoint stars that were extracted from G1. Recall that in case (II), we concentrate on those

stars that are oriented towards their centers, so vertices in C play the role of x1. Also, by

assumption, jCj � jV1j=4 � B. At this point we need to prune the graph G2 (this is in

addition to the pruning of G1 that was made in this node �), and remove those vertices of

V +
2 that are imbalanced with respect to C. Since jV1j �

jE1j

jV1j
= �1 � L3=2, it follows that

jCj � L3=8. Hence property (P4) may be used, to conclude that at most L vertices of G2

are eliminated in this pruning. Also no more than LjV2j edges are thus lost, i.e., at most
jE2j

2L2 , since, by assumption jE2j � 2L3jV2j. We henceforth assume, then that all vertices in

V +
2 are balanced with respect to C.

Consider the set V �
2 of those vertices in G2 that have a positive in-degree. Clearly,

jV �
2 j �

jE2j

N
�

jE1jjE2j

2N2L3 > B. Let F be a set of jV �
2 j edges that is obtained by picking one

edge (y1; y2) for each y2 2 V �
2 . Consider the following communication problem, denoted �0,

de�ned on C �F . For x1 2 C and (y1; y2) 2 F , if g(x1; y1) = 1 the output is g(x1; y2), while

if g(x1; y1) = 0, any output is acceptable. Again we use \*" to denote this \don't care"

situation. As before, the original sub-protocol starting from node � solves this problem

�0. Again, the lower bound is proved by considering e�ective areas. Consider any column

(y1; y2) 2 F . Since y1 is in V
+
2 it is balanced with respect to C, and so a fraction of at least

�0 = 8� of the entries in the column are non-\*" (for those x1 2 C where g(x1; y1) = 1). By

summing over all of F , the matrix has total e�ective area of at least �0jCjjV �
2 j. To bound the

e�ective area of any �0-monochromatic rectangle R � S (where, without loss of generality,

jRj � L), we de�ne the slice �y1 as the set of columns with y1 as the �rst element of the pair.

As in Case (I), we start by bounding the number of slices. Here the argument is slightly

di�erent and we only show that this number is at most 3L (rather than L in Case (I)). First,

we pick from each slice �~y1 one of its columns (~y1; ~y2). Note that, by the choice of F , all the

~y2 are distinct; moreover, since we picked one column from each slice all the ~y1 are distinct.

It may be though that some ~y1 is equal to some ~y2. However, it is always possible to pick (at

least) 1=3 of the pairs so that they are all distinct. We concentrate on these pairs and for

each of them consider the corresponding pair of columns in �g. Hence, we can consider the
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minor of �g with this set of columns and with the set of rows R. The argument proceed, as

in Case (I), to show that the number of columns is at most L (again, by using property (P3))

and hence the number of slices is at most 3L.

Again, we say that a slice is wide if it contains at least L columns and otherwise we say

that the slice is narrow. As in Case (I), the bound on the number of slices immediately yields

a bound on the e�ective area of all narrow slices. It remains to estimate the e�ective area

within wide slices (those with at least L columns). If row x1 2 C satis�es g(x1; y1) = 0, there

are only \*" in this row and so it does not contribute to the e�ective area. If g(x1; y1) = 1, a g-

monochromatic rectangle is obtained which by property (P2) has at most L rows. Altogether,

wide slices contribute L � jV �
2 j to the e�ective area.
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