
Secure Computation with Honest-Looking Parties:

What if nobody is truly honest?

(Extended Abstract)

Ran Canetti� Rafail Ostrovskyy

April 28, 1999

Abstract

In a secure multi-party computation a set of mutually distrustful parties interact in order

to evaluate a pre-de�ned function of their inputs, without revealing the inputs to each other.

In this scenario, the trust in other parties should be minimal. In the classic formulation of
this problem, most of the parties are trusted to exactly follow the prescribed protocol, except

for a limited number of parties that are corrupted by a centralized adversary and are allowed

to deviate from the protocol in an arbitrary way. However, an assumption of a totally honest

behavior of most parties can not be veri�ed. In particular, if an \honest-looking" party diverges

from its protocol in a way that is indistinguishable from a totally honest player, it can do so
with \impunity".

In this paper, we consider the situation where all parties (even uncorrupted ones) may deviate

from their protocol in arbitrary ways, under the sole restriction that most of the parties do not

risk being detected by other parties as deviating from the protocol execution.

The question whether secure protocols exist in this scenario was raised in the past, and
solutions for very limited deviations from the protocol (i. e., refraining from erasing data) were

given. Yet, solving the general problem was believed hard, if at all possible. Contrary to this

belief, we show that if secure communication channels are provided (and one-way functions

exist) then any polynomial function can be securely computed in this scenario.

�IBM T.J. Watson Research Center. e-mail:canetti@watson.ibm.com
yBell Communications Research, MCC-1C365B, 445 South Street, Morristown, New Jersey 07960-6438, e-mail:

rafail@bellcore.com

1

1 Introduction

The discipline of cryptographic protocols is, generally speaking, geared towards �nding ways for

mutually distrustful parties to perform some joint functionality in a \secure way". Here security

usually means some combination of correctness requirements from the outputs, along with secrecy

requirements on the local inputs. A classical formulation of the above problem, put forward by

Yao, and by Goldreich, Micali and Wigderson [29, 17] proceeds as follows: There are some number,

n, of parties, some of which are \honest" in the sense that they follow the prescribed protocol. The

rest of the parties behave maliciously in an arbitrary, centrally controlled way. (Figuratively, they

are controlled, or corrupted, by an adversary.) In this model it was shown by Goldreich, Micali and

Wigderson [17], Ben-Or, Goldwasser and Wigderson [5], Chaum, Crepeau and Damgard [10] and

Goldreich [16] how to securely perform any functionality of the parties' inputs when the adversary

corrupts up to a constant fraction of the parties. Limited security can be maintained even if the

majority of the parties are corrupted as was shown by Beaver and Goldwasser [4] and Goldwasser

and Levin [19].

Is it reasonable to assume that (even uncorrupted) parties scrupulously follow their protocol? In

a distributed environment where no party is thoroughly

trusted it may sometimes be more reasonable to assume that any party would deviate from its

protocol, if this deviation may carry some gains, and as long as the deviation is guaranteed to

remain undetected by its peers. (This is, of-course, in addition to the corrupted parties who are

not deterred by being uncovered and may run an arbitrary protocol.) Protocols that guarantee

security even in this scenario are the focus of this paper.

Limited types of \externally undetectable" deviation from the prescribed protocol were studied

in the past. (Slightly modifying a term from Canetti, Feige, Goldreich and Naor [7], we call parties

that carry out such deviations honest-looking.) Refraining from erasing local data is an example of

limited honest-looking behavior. Ben-Or, Goldreich and Wigderson [5] and Chaum, Crepeau and

Damgard [10] general constructions remains secure even in the presence of such deviation, if secure

channels are provided. In Canetti, Feige, Goldreich and Naor [7] it is shown how to maintain this

property even when the security of the channels is obtained via encryption, and even when the

adversary is adaptive, i.e., it corrupts parties during the course of the computation in an adaptive

way. Other limited forms of honest-looking behavior, and methods for protecting against such

behavior using a trusted dealer, were also discussed in Canetti at al. [7]. However, they argue that

protecting against more permissive forms of honest-looking behavior is hard (if at all possible).

In this paper, we study such (more permissive) behavior. Instead of assuming that most of

the players are totally honest and follow the prescribed protocol, we only assume that most of the

players behave in a manner that guarantees that they will not be caught \cheating" (i.e., caught

deviating from a prescribed protocol). We argue that this may be a more realistic assumption

from a `sociological' point of view, since detection that a processor \cheats" usually carries some

negative stigma or punishment.

Our results: We consider the setting where secure channels among all parties exist and the

adversary is computationally bounded. In this setting, we show how honest-looking behavior can

be dealt with. We �rst de�ne two types of honest-looking behavior. The �rst is similar to the most

permissive notion of Canetti, Feige, Goldreich and Naor work [7]; the other is even more permissive.

Next, we show how both types of honest-looking behavior can be dealt with.

2

Let us �rst describe the two forms of honest-looking behavior considered in this work. The

more \conservative" behavior allows arbitrary \internal" deviation from the protocol, as long as

the deviation is undetectable by the joint view of all parties running the protocol (as long as the

party remains uncorrupted). Figuratively, such a party makes sure to remain undetected even if the

entire community joins forces to decide whether it is honest. We call this type of behavior globally

honest-looking (GHL). Indeed, GHL behavior becomes potentially harmful only in the presence of

an adaptive adversary. Such an adversary may gather much more information from corrupting a

party that kept additional or di�erent data to that prescribed in the protocol.

An even more \bold" type of honest-looking behavior allows arbitrary deviation as long as the

deviation is undetectable by any single party until the point of corruption. We call this type of

behavior locally honest-looking (LHL). We remark that LHL parties may be harmful even if the

adversary is non-adaptive.

Note that both GHL and LHL parties \do not collaborate", in the sense that parties should

be unable to tell whether any of their peers is totally honest or not. In addition, honest-looking

parties should remain \indistinguishable" from totally honest parties with the same inputs. This

follows the approach that inputs are set externally and are beyond the control of the parties.

We de�ne protocols that are robust to honest-looking behavior. These are protocols where the

functionality of the honest parties (i.e., of the parties that follow the prescribed protocol) remains

unchanged even when any number of other parties are only honest-looking. Next we show how

any protocol can be transformed into a robust one. In particular, this means that the general

constructions of Ben-Or, Goldreich and Wigderson [5] and Chaum, Crepeau and Damgard [10] and

Rabin, Ben-Or [27] can be made robust to honest-looking behavior (both GHL and LHL).

Our constructions are far from practical and should be regarded only as a \proof of feasibility",

of something conjectured impossible before. In particular, we assume that t, the maximum number

of corrupted parties, satis�es t < n� where � > 0 is some �xed constant (that comes from our

proof), and that the number of parties is polynomially related to the security parameter. (Still, it

was conjectured in [7] that such a result is impossible.)

We complement our protocols by strengthening an example from Canetti, Feige, Goldreich and

Naor [7] into a generic protocol that is not robust even to GHL parties, if claw-free pairs exist.

This example can be extended to show that practically all known protocols for general multiparty

computation, and in particular all protocols mentioned above, are insecure even against GHL parties

(under the same assumption). (Thus, our complier gives the �rst protocol robust for both HGL

and LHL behavior.)

The technical di�culties and our solution. The main di�culty with protecting against

general honest-looking parties (even GHL ones) is that such parties may use their internal random-

ness in ways that make a proof of security impossible. For instance, an honest-looking party can

\embed" a commitment to its input in any random string that it is instructed to send. While this

behavior looks \harmless" (and is undetectable as long as the party remains uncorrupted), it has

devastating e�ects for the proof of security. (In a nutshell, it becomes impossible to \simulate" the

information learnt by the adversary when this party gets corrupted later.)

Our solution is based on the observation that this seemingly unavoidable behavior depends on

the fact that the (honest) protocol instructs the party to use a large (i.e., polynomial in the security

parameter) number of random bits. If the party were instructed to use only few random bits then

this behavior would be prevented. In particular, the �rst step in our proof shows, basically, that

3

if a protocol is secure in the standard sense (and does not instruct parties to erase local data),

and if each party is instructed to use only logarithmic number of random bits, then the protocol is

also secure against GHL parties. We stress that this holds even if the honest-looking party tosses

polynomially many coins.

Consequently, our transformations require each party to use only a small number of random

bits. In fact, each party uses only a single random bit1. The random bits are then collected, over

private channels, at some special parties who input the (polynomially many) collected bits to some

standard pseudorandom number-generator, and then send long pseudorandom sequences back to

all the parties. The parties now use these pseudorandom sequences as external \random" inputs for

the original protocol. This simple idea, however, does not work as such. The problem, in essence,

is that the adversary should not be able to distinguish between the case where the parties use real

random strings for their random input for the original protocol, and the case where the random

inputs come from our construction; this should hold even if the Adversary corrupts the parties that

generated and expanded those strings. Solving this seemingly circular problem is one of the main

technical issues addressed in this paper. In particular, the solution involves constructing a new

evasive protocol for distributed pseudo-random number generation.

Dealing with LHL behavior is achieved by a reduction to GHL behavior. In LHL behavior, the

parties only care about being detected by individual parties (rather than by the entire community).

Here we use random, public \auditing" of parties to make sure that any deviation that can be

detected by the entire community will actually become known to all parties (with some non-

negligible probability). That is, �rst we make sure that each message sent during the protocol is

\recorded" within su�ciently many parties. Next, at the end of each execution of the protocol,

the parties jointly choose a single party and perform a public \audit" of this party. The audit uses

(deterministic) Byzantine agreements in order to determine the messages sent and received by this

party during the computation; once the messages are known the party's correct behavior is globally

veri�ed. Of course, additional care is taken not to reveal the private input of party that is being

audited.

Related work. Canetti, Feige, Goldreich and Naor [7] use the term semi-honest behavior

to denote general internal deviation from the protocol. Three types of semi-honest behavior are

de�ned, all di�erent from the ones here. The �rst type, called non-erasing, deviates by simply

failing to erase data. The second type, called honest-looking, deviates arbitrarily as long as it

remains undetected by any external test made by the entire community. The third type, called

weakly honest, remains undetected by the entire community when the actual protocol is being run.

In addition to a solution for non-erasing parties, they sketch a solution for honest-looking ones,

given a trusted dealer in a pre-processing stage. GHL parties are similar to the weakly honest

parties of Canetti at al. [7]. LHL parties allow even more extreme deviations from the protocol,

not considered there at all.

Our protocols should be contrasted with the protocols that protect against a dishonest majority

of corrupted parties of Beaver and Goldwasser [4] and Goldwasser and Levin [19]. There is a crucial

di�erence in the problem formulations, (and the results achieved): we are not concerned with large

coalitions of arbitrarily malicious parties. Instead, we show how to deal with a situation where in

addition to a modestly sized totally dishonest coalition all other parties are only honest-looking.

1The fact that we can implement secure function evaluation where each player tosses only a single random bit

might be of independent interest.

4

In particular, our results guarantee correctness of the outputs based on the true inputs of most of

the parties, whereas Beaver, Goldwasser [4] and Goldwasser, Levin [4, 19] allow most of the parties

to freely change their inputs. Moreover, our protocols deal with adaptive adversaries and do not

allow \early stopping".

Our construction uses a wide variety of tools (and introduces several new ones.) In particu-

lar, we use pseudo-random generators of Hastad, Impagliazzo, Levin and Luby [21]; deterministic

Byzantine Agreement of Garay and Moses [15]; arguments regarding limited randomness for general

secure computation of Kushilevitz, Ostrovsky and Rosen [24] and Canetti, Kushilevitz Ostrovsky

and Rosen [8]; the ways to recycle random bits in private computation of Kushilevitz and Rosen [22]

and Kushilevitz Ostrovsky and Rosen [25]; the use of perfect hash functions of Fredman Komlos and

Szemeredi [14] to boost resilience (also used by Fiat and Naor [13]); and the general completeness

theorems of Ben-Or, Goldreich and Wigderson [5] and Chaum, Crepeau, and Damgard [10].

We stress that the security of the channels plays a crucial role in our solution. In fact, it is easy

to see that in a setting where the adversary sees all communication (and private communication

is achieved via probabilistic encryption [20]) each party must locally toss polynomially many coins

for encryption. This makes our solution impossible since we use in a crucial way the fact that

each party tosses only logarithmically many coins. (Alternatively, probabilistic encryption can be

regarded as a separate module over which an honest-looking party has no control).

Organization. Section 2 de�nes honest-looking parties and robustness of protocols to such par-

ties. General \compilers" of robust protocols are also de�ned. Section 3 contains two propositions

that demonstrate the intimate relations between the amount of randomness used in the protocol

and security against honest-looking parties. Section 4 describes how to transform any protocol to

one that is robust to GHL behavior. Section 5 extends the protocol from Section 4 to deal with

LHL behavior.

2 De�nitions

This section de�nes the two variants of honest-looking parties, as well as robustness of protocols

to such parties. General compilers of protocols into robust ones are also de�ned. Secure function

evaluation in the presence of honest-looking parties is then outlined (we defer formal de�nition to

the full version).

We start with a reminder of the notion of ensembles and indistinguishability [20, 28]. A proba-

bility ensemble X = fX(k; a)gk2N;a2f0;1g� is an in�nite sequence of probability distributions, where

a distribution X(k; a) is associated with each values of k 2 N and a 2 f0; 1g�. The distribution

ensembles we consider in the sequel describe computations where the parameter a corresponds to

various types of inputs, and the parameter k is taken to be the security parameter.

De�nition 1: We say that two distribution ensembles X and Y are computationally indistinguish-

able (and write X
c

� Y) if for any c > 0, for every algorithm D that is probabilistic polynomial-

time in its �rst input, for all su�ciently large k, and all a we have that jProb(D(1k; a;X(k; a)) =

1)�Prob(D(1k; a; Y (k; a)) = 1)j < k�c:2

2We use the same notation in the case where X(k; a) and Y (k; a) are distributions over f0; 1g. Here X
c
� Y simply

means that jProb(X(k; a) = 1)� Prob(Y (k; a) = 1)j < k�c:

5

The model of computation. An n-party protocol � is a collection of n interactive, probabilistic

Turing machines, where the ith machine is associated with the ith party, Pi. Each Pi has input

xi and random input ri, as well as the security parameter k. Each two parties are connected

via a communication channel. In this work we assume secure channels. That is, every two parties

may communicate so that no other party, nor the adversary, learns the exchanged information.

We also assume synchronous communication. A probabilistic polynomial time (ppt) adaptive t-

limited real-life adversary A is another interactive (computationally bounded) Turing machine that

starts o� with random input and some auxiliary input. It may choose to corrupt parties during the

computation based on the information known to it, and as long as at most t parties are corrupted

altogether. Once a party is corrupted the party's input, random input, auxiliary input and the

entire history of the messages sent and received by the party become known to the adversary. From

this point on the party follows the instructions of A, regardless of protocol �.

Honest-looking parties. Intuitively, honest-looking parties are parties that, until the point of

corruption, are indistinguishable by the other parties from totally honest parties. Globally honest-

looking (GHL) parties may arbitrarily deviate from their protocol as long as they remain undetected

given the combined views of all parties and the adversary. Locally honest-looking (LHL) parties

deviate from the protocol in an arbitrary way, as long as no single party can distinguish them from

honest parties.

The following de�nitions are aimed at capturing these intuitive notions. An execution of a

protocol is the process of running the protocol with a given adversary on given inputs, random

inputs, and auxiliary input for the adversary. The con�guration of an uncorrupted party at some

round of an execution consists of the contents of all tapes of this party, the head position and

the control state, taken at the end of this round. In particular, the con�guration includes all the

messages sent to this party at this round. The internal history of a party at some round of an

execution is the concatenation of all the past con�gurations of this party in this execution. The

internal history of the adversary is identical to its current con�guration. The global history of the

system at some round of an execution is the concatenation of the internal histories of the parties

and the adversary at this round.

Let ih�;A;l(k; ~x; z; ~r)0 denote the internal history at round l of adversaryA when interacting with

parties running protocol � on inputs ~x = x1 : : : xn, auxiliary inputs z and random input ~r = r0 : : : rn
and with security parameter k, as described above (r0 and z for A, xi and ri for party Pi).

Let ih�;A;l(k; ~x; z; ~r)i denote the internal history of party Pi at round l of this execution.

Let gh�;A;l(k; ~x; z; ~r) = ih�;A;l(k; ~x; z; ~r)0,

ih�;A;l(k; ~x; z; ~r)1; : : : ; ih�;A;l(k; ~x; z; ~r)n be the

global history of this run. Given an execution of a protocol, let l�i denote the last round in which

party Pi is uncorrupted. (If Pi is never corrupted in this execution then l�i is the last round of

the execution.) Let gh
(i)
�;A(k; ~x; z; ~r) denote gh�;A;l�

i
(k; ~x; z; ~r) where the internal history of Pi is

removed. Let ih
(i;j)
�;A (k; ~x; z; ~r) denote ih�;A;l�

i
(k; ~x; z; ~r)j . That is, gh

(i)
�;A(k; ~x; z; ~r) describes the

global history of the system, except for Pi, right before Pi is corrupted; ih
(i;j)
�;A (k; ~x; z; ~r) denotes the

internal history of Pj right before Pi is corrupted.

Let gh
(i)
�;A(k; ~x; z) denote the probability distribution of gh

(i)
�;A(k; ~x; z; ~r) where ~r is uniformly

chosen. Let gh
(i)
�;A denote the probability ensemble

6

fgh
(i)
�;A(k; ~x; z)gk2N;h~x;zi2f0;1g�.

3 Let ih
(i;j)
�;A be analogously de�ned with respect to ih

(i;j)
�;A (k; ~x; z; ~r).

Given n-party protocols � and �0 and a subset I � [n], let �=(I;�0) be the protocol where the parties

in I run protocol �0 and all other parties run �. Let �I = [n]� I .

De�nition 2: Let n 2 N and let �; �0 be n-party protocols. Say that protocol �0 is globally honest-

looking (GHL) for protocol � if for any ppt t-limited adversary A, any I � [n], and any party Pi we

have

gh
(i)
�(I;�0);A

c

� gh
(i)
�;A: (1)

(Although the quanti�cation is over all I � [n], the interesting cases are when i 2 I .)

De�ning LHL parties requires some more care. A �rst attempt may be to simply replace

condition (1) in De�nition 2 with the condition that for any two parties Pi 6= Pj we have

ih
(i;j)
�(I;�0);A

c

� ih
(i;j)
�;A : (2)

However, this requirement is too restrictive. To see that, let us reformulate condition (2) as follows:

Let T be a ppt test that takes for input the view of Pj and outputs a binary value, interpreted

as an \opinion" whether Pi has followed its protocol. Then, condition (2) is equivalent to saying

that any test T has the same output distribution (up to negligible di�erence) in the case where Pi

runs the original protocol � and in the case where Pi runs the modi�ed protocol �0. Quantifying

over all tests allows also tests where Pj 's opinion is a�ected by the adversary in an arbitrary way.

Such tests may unnecessarily restrict �0, and do not capture our intuitive notion that the adversary

should be unable to \frame" truly honest parties. We thus relax the de�nition of LHL parties as

follows. First we de�ne valid tests; these are tests that are not a�ected by the adversary in the case

where the tested party follows its protocol:

De�nition 3: Let n 2 N and let �; �0 be n-party protocols. A ppt machine T with binary output

is a valid test for protocols �; �0 if for any two ppt t-limited adversaries A and A0, any I � [n] with

i 6= I , and any parties Pi and Pj we have

T (gh
(i;j)
�(I;�0);A

)
c

� T (gh
(i;j)
�(I;�0);A

0) (3)

where T (gh
(i;j)
�(I;�0);A

) denotes the probability ensemble

fT (gh
(i;j)
�;A (k; ~x; z))gk2N;h~x;zi2f0;1g�.

A LHL protocol is now required to pass only all valid tests:

De�nition 4: Let n 2 N and let �; �0 be n-party protocols. Let n 2 N and let �; �0 be n-party

protocols. Say that protocol �0 is locally honest-looking (LHL) for protocol � if for any ppt t-limited

adversary A, any I � [n], any two parties Pi and Pj , any valid test T we have

T (gh
(i;j)
�(I;�0);A

)
c

� T (gh
(i;j)
�;A): (4)

3Let h~x; zi denote some natural encoding of ~x; z as a single string.

7

Remarks:

(I). It is stressed that the global histories in the two sides of (1) (resp., (2)) are based on the

same inputs for the parties. Furthermore, the distinguisher has access to these inputs. In other

words, we require an honest-looking party to be indistinguishable from an honest party running

the protocol on the same input. This models the fact that we regard inputs as �xed and external

to the protocol, rather than decidable by the party.

(II). The requirement that an honest-looking party must remain indistinguishable from honest (by

all other parties and the adversary) implies that honest-looking parties (both GHL and LHL) do

not collaborate. In other words, honest-looking parties do not `pool' their local information and

are not jointly controlled by an adversary.

(III). In [7] two other notions of internal deviation from the protocol are de�ned: Honest-looking

parties are those that are indistinguishable from honest ones by any external e�cient text; weakly

honest parties need only be indistinguishable from honest by parties running the (honest) protocol,

when no adversary is present. Our de�nition of GHL parties is similar to that of weakly honest

parties, except that we require the GHL party to be indistinguishable from honest even in the

presence of an adversary. The de�nition here may better capture the intuitive notion of weakly

honest parties.

Robustness of protocols against honest-looking parties. Intuitively, a protocol � is

\robust" against honest-looking behavior if for any protocol �0 that is honest-looking for � and for

any subset I of parties that run �0, the functionality of the parties in �I remains unchanged from

the case where all parties run �.

This intuitive notion is formalized roughly as follows. We say that � is t-robust against GHL

(resp., LHL) parties if for any protocol �0 that is GHL (resp., LHL) for �, for any subset I of parties

that run �0, and for any adversary A0, there exists an adversary A such that the outputs of the

parties in �I when running �(I;�0) and interacting with A0, is distributed identically to the outputs

of the parties in �I when all parties are running � and interacting with A.

More precisely, we �rst formalize the global output of a protocol �. Let adv�;A(k; ~x; z; ~r) de-

note the output of real-life adversary A with auxiliary input z and when interacting with parties

running protocol � on input ~x = x1 : : :xn and random input ~r = r0 : : :rn and with security pa-

rameter k, as described above. Let exec�;A(k; ~x; z; ~r)i denote the output of party Pi from this

execution. (If Pi is uncorrupted then this is the output speci�ed by �; if Pi is corrupted then

exec�;A(k; ~x; z; ~r)i =?.) Let exec�;A(k; ~x; z; ~r) =

adv�;A(k; ~x; z; ~r); exec�;A(k; ~x; z; ~r)1; : : :,

exec�;A(k; ~x; z; ~r)n: denote the global output of this run. Let exec�;A(k; ~x; z) denote the probability

distribution of exec�;A(k; ~x; z; ~r) where ~r is uniformly chosen. Let exec�;A denote the probability

ensemble

fexec�;A(k; ~x; z)gk2N;h~x;zi2f0;1g�. Given a set I � [n] of parties, let exec�;A;I denote the vec-

tor exec�;A restricted to the output of the adversary and the parties in I .

De�nition 5: Let n 2 N, let t < n, and let � be an n-party protocol. Protocol � is t-robust to GHL

parties (resp., t-robust to LHL parties) if for any n-party protocol �0 that is GHL (resp., LHL) for �,

and any t-limited adversary A0, there exists an adversary A such that for any subset I � [n] we have

exec�(I;�0);A
0;�I

c

� exec�;A;�I :

8

Remarks GHL parties are a security concern only in the presence of adaptive adversaries. (It

follows from the de�nition of GHL parties that if the identities of the corrupted parties are �xed

in advance then any protocol is t-robust to GHL parties, for any t.) However, LHL parties are,

potentially, a security threat even in the presence of static adversaries.

General compilers of robust protocols. In the sequel we present general constructions for

transforming any protocol into an \equivalent" one, that in addition is robust against honest-looking

parties. We formalize this notion as follows. Let C be a transformation that takes (descriptions of)

n-party protocols and outputs (descriptions of) n-party protocols. We say that C is a t-emulating

compiler if for any n-party protocol � and for any adversary A0 there exists an adversary A such

that execC(�);A0

c

� exec�;A: A compiler is t-robust against GHL parties (resp., t-robust against LHL

parties) if it is t-emulating, and for any given protocol � the protocol C(�) is t-robust to GHL

(resp., LHL) parties.

Secure function evaluation with honest-looking parties. The standard notion of secure

function evaluation, as de�ned in [26, 19, 3, 6] and elsewhere, concentrates on the case where all

uncorrupted parties follow the prescribed protocol. In a nutshell, a protocol � securely evaluates

a function f if it emulates an ideal process for distributively evaluating f , in the following sense:

For any adversary A that interacts with parties running �, there should exist an adversary S that

interacts with the ideal process, and such that the global output of the ideal process interacting

with S is indistinguishable from the global output of running � with A.

A natural extension of this de�nition may say that � securely evaluates f in the presence of

honest-looking parties, if for any protocol �0 that is honest-looking for �, and for any subset I � [n],

the protocol �(I;�0) emulates the ideal process of evaluating f (when the outputs of the parties in

I are disregarded).

Adopting this formalization, we now get as an easy corollary that if a protocol � is t-robust

against GHL (resp., LHL) parties, and in addition � t-securely evaluates a function f , then �

t-securely evaluates f in the presence of GHL (resp., LHL) parties. We leave the formalization of

this de�nition and claim out of the scope of this paper.

Protocol families. De�nitions 2, 4 and 5 treat n, the number of parties, as a constant. In

the sequel we discuss protocol families, where the number of parties is polynomially related to the

security parameter, and in particular tends to in�nity. Robustness of protocol families is de�ned

as follows. Let � = f�n
gn2N be a family of multi-party protocols (�n is an n-party protocol).

Then, � is t(n)-robust to GHL/LHL parties if for all large enough n, �n is t(n)-robust to GHL/LHL

parties. For simplicity, we identify n with the security parameter, k.

3 GHL-security versus local entropy

We show that security against honest-looking parties is intimately related to the amount of internal

randomness used by the (honest) protocols, in the following way: First we show an example that

suggests that proving robustness to GHL parties of protocols where parties `use a lot of locally

generated randomness' is implausible. Next we show that if the protocol instructs each party to

use only a small (i.e., logarithmic in the security parameter) amount of randomness then robustness

to GHL parties is guaranteed. This fact plays a central role in the construction of the next section.

A protocol that is not robust to GHL parties. It was observed in [7] that even the

seemingly innocuous protocol where each party is instructed to send only a single random string,

9

independent from its input, cannot be proven robust to even GHL parties if one-pass black-box

simulation is used. Using a technique from [9], we generalize this example and in particular remove

the restriction to black-box simulation.

Recall that a family of permutation pairs G =

fgm;0; gm;1gm2f0;1g� (i.e., for each value of m, both gm;0 and gm;1 are permutations on a common

domain Dm) is claw free if no ppt adversary can, given m
R
 f0; 1gn, �nd with non-negligible (in n)

probability values v0; v1 2 Dm such that gm;0(v0) = gm;1(v1). A function family H = fhmgm2f0;1g�

is collision-free if no ppt adversary can, given m
R
 f0; 1gn, �nd with non-negligible probability

values v0; v1 2 Dm such that hm(v0) = hm(v1). Existence of claw free permutation pairs implies

existence of collision-free functions [12].

Proposition 1: Assume claw-free permutation pairs exist, and let t =
(n�) for some 0 < � < 1. Let

� = f�n
gn2N be the following protocol family, where P1 has an input m 2 f0; 1gn and all other parties

have binary input. First, party P1 broadcasts m; next, each party chooses and broadcasts a random

value in the domainDm of a claw-free permutation pair Gfgm;0; gm;1g. The protocol has empty output.

Then, � is not t-robust to GHL parties.

Proof sketch: Consider the following protocol family �0. Let xi denote Pi's input. Instead of

sending a random value in Dm, each party Pi, i 6= 1, chooses ri
R
 Dm and sends gm;xi(ri) to all

other parties. Clearly �0 is GHL for �, since the g's are permutations. We show that if �0 satis�es

De�nition 5 (as a protocol family) then claws can be found in G.

Let H = fhmg be a function family that is collision-free if G is claw-free, and where hm :

(Dm)
n�1
! [n]t�1, where n = jmj. Let A0 be the following adversary, operating against �0. A0

gets n and auxiliary input (which is ignored). First, A0 corrupts P1, and interprets P1's input as an

index m of a domain Dm for family G. A0 lets P1 announce m and records the values s2:::sn 2 Dx1

sent by the parties. Then, A0 feeds s = s2:::sn to function hm and interprets the result as a set, C,

of t � 1 more parties to corrupt. It then corrupts these parties and outputs s, C, and the internal

random choices rC , and inputs xC , of the parties in C.

Now, let n 2 N and let I = [n] (i.e., all parties are running �0n). Assume that there exists an

adversary A such that adv�n
(I;�0n)

;A0

c

� adv�n;A. That is, A has the following functionality: �rst it

gets auxiliary and random input. Next it corrupts P1, learns m, records the messages sent by the

other parties, corrupt a set of parties and learns their inputs. (It can be seen that A must comply

with this order of events.) Next A generates an output Ô = (ŝ; Ĉ; r̂C ; v̂C) that is indistinguishable

from a real output of A0 interacting with �0 on inputs ~x = m; x2:::xn for the parties (and some

auxiliary input).

We construct an algorithm D that, on input m
R
 f0; 1gn, uses A to either �nd claws in G or to

�nd collisions in H. D starts by running A on some random input �. When A corrupts P1 it is given

input value m for P1. Whenever A corrupts other parties, it is told that the corresponding inputs

are 0. Finally A generates an output Ô = (ŝ; Ĉ; r̂C; x̂C). Clearly this output has the property that

hm(ŝ) = (Ĉ) (that is, hm(�rst round communication) = fidentities of corrupted partiesg.) Next,

D runs A again, on the same random input �, but now when A corrupts the last party, D tells A

that the input of this party is 1. Let P� denote this party. Next A generates an output Ô0.

Note that Ĉ, the set of corrupted parties, is the same in Ô and in Ô0. This is so since until the

point where all corruptions are done, the view of A is the same in both runs. This fact is used by

D as follows.

10

Let ŝ� and ŝ0� denote the values sent by P� in Ô and in Ô0, respectively. Let r� and r0� be the

corresponding internal random choices of P�. Now, if ŝ� = ŝ0� then by the validity of A we have

that gm;0(r̂�) = gm;1(r̂
0
�) = ŝ�, and D has found a claw in G. If, on the other hand, ŝ� 6= ŝ0� then

of-course ŝ 6= ŝ0. However, by the validity of A we have that hm(ŝ) = hm(ŝ
0) = Ĉ, and D has found

a collision in H.

Remarks:

(I). The example protocol analyzed in Proposition 1 is quite generic. In fact, most known protocols

for secure function evaluation can be shown in a similar manner to not withstand GHL parties.

Furthermore, it seems that in the computational setting, where no ideally secure channels exist, it

is necessary to have each party use a `large amount of randomness' in a way that does not allow

security against GHL parties.

(II). The proof of Proposition 1 requires n, the number of parties, to grow to in�nity. We remark

that if we restrict the simulator to one-pass black-box simulation then similar examples can be

shown where the number of parties is a small as n = 2.

Small local entropy implies robustness to GHL parties. We show that any protocol that

instructs each uncorrupted party to use only a small (i.e., logarithmic in the security parameter)

number of random bits is t-robust to GHL parties, for any t. Interestingly, the result holds even if

the GHL protocol uses as many random bits as it wishes.

Proposition 2: Let t = t(n) < n, and let � = f�n
gn2N be a protocol family where the random input

of each party is of size at most O(logn). Then � is t-robust to GHL parties.

Proof sketch: Let n 2 N Let �0 be a GHL protocol for �, and let A0 be an adversary. We

construct an adversary A such that for all families of subsets I = fI � [n]gn2N it holds that

exec�(I;�0);A
0;�I

c

� exec�;A;�I :

Let n 2 N and let I � [n]. Adversary A runs a copy of A0, follows the instructions of A0,

and forwards all the gathered information to A0, with the following exception. When A0 wishes to

corrupt a party Pi that runs the GHL protocol �0n (that is, when i 2 I), A proceeds as follows.

First, A corrupts Pi, obtains Pi's input, xi, and hands it to A0. Next, A has to provide A0 with

random input for Pi, according to protocol �n. This is done as follows: A0 chooses a value ri
uniformly at random from all the possible random inputs of Pi that are consistent with xi and Pi's

past messages that are already known to A0. Next, A hands ri to A
0 and the interaction continues.

(If no consistent ri is found then A halts.) Finally, A outputs whatever A0 outputs.

We �rst note that A runs in polynomial time, since there are only polynomially many possible

random inputs for each Pi. Next assume that there is a distinguisher D between exec�n
(I;�0n)

;A0;�I(n; ~x; z)

and

exec�n;A;�I(n; ~x; z) for some n; ~x; z. Then D can be used to distinguish between gh
(i)
�n
(I;�0n)

;A(n; ~x; z)

and

gh
(i)
�;A(n; ~x; z) for some Pi; n; ~x; z, thus contradicting the premise that � is GHL for � (see De�nition

2). We omit further details from this abstract.

11

4 Robust protocols for GHL parties

We begin by stating the main theorem of this section. Recall that private channels between parties

are provided, and that the adversary is probabilistic-polynomial time. In addition, we assume

existence of pseudorandom number generators (PRGs), which is equivalent to assuming existence

of one-way functions.

Theorem 3: Assume that one way-way functions exist, and let t(n) � n�20. Then4 there exists a

compiler that is t-robust to GHL parties.

By Proposition 2, it su�ces to describe a t-emulating compiler C such that, given any protocol

�, the protocol C(�) instructs each party to use at most O(logn) random bits. Our compiler follows

this path. In fact, each party will use at most one random bit.

Protocol outline. The protocol consists of two main phases. The �rst phase is independent

of the inputs, and its sole goal is to generate randomness for the second phase. The second phase

consists of running the original protocol, using the randomness generated in the �rst phase. We

stress that the second phase is entirely deterministic; its only source of randomness is the �rst

phase.

We motivate our (rather complex) construction of the �rst phase. A naive attempt at con-

structing this phase may proceed as follows: each party chooses one random bit and sends it to a

special party, called the generator. The generator collects all random bits, feeds them to a PRG,

and hands each party a su�ciently long piece of the PRG's output. Each party now uses this string

as its random input for phase two.

This solution, however, clearly does not work. A �rst problem is that the generator may be

corrupted. This problem can be easily solved, at the expense of reducing t: have t + 1 distinct

generators, and n
t+1 distinct randomness suppliers for each generator. Each party will bitwise-xor

the strings received from all generators, and use the outcome for phase two. However, this is also

not su�cient. A more subtle problem remains: we must show that the pseudo-randomness supplied

to phase two does not compromise the security of the underlying protocol. Technically, in order to

make the proof work, the phase one protocol should be accompanied with a \simulator" that has

the following property: Whenever a party is corrupted the simulator gets as input some arbitrary

string, �, of the appropriate length, and comes up with a view of the adversary that is of the right

distribution conditioned on the event that the party's output of phase one is �. Guaranteeing this

property is the driving force behind our construction, outlined next.

Protocol setup: Let k be a security parameter. We will need n � k17 parties, and will allow

t � k2. We start by splitting the parties to two sets A and B of equal size. The parties in A

produce randomness for the parties in B, and vice versa. That is, each party doubles up both as

a producer and as a consumer of randomness. We describe how the parties in A play as producers

and how the parties in B play as consumers. The activity with reversed roles is identical. The

parties in A are partitioned into O(t4 logn) groups. Each group consists of O(t4) generators, one of

which is called the leader, and of O(t4k) suppliers. With each generator we associate k suppliers.

We remark that, in our protocol, each group will play the role played by single generator in the

above naive protocol.

4We remark that the exponent 20 here is not optimized and can be somewhat reduced.

12

Each party in B (taking the role of a consumer) is assigned to O(t3 log n) groups in A, as follows.

We use a family H of O(t logn) perfect hash functions h : f1; : : :ng ! f1; : : : ; O(t2)g. With each

function h and each point in f1; : : : ; O(t2)g we associate t + 1 distinct groups. Consumer Pi is

assigned to the groups associated with h(Pi) for all h 2 H . This assignment guarantees that any

newly corrupted consumer will have t+1 groups that are not assigned to any other consumer that

is already corrupted. Consequently, when a consumer is corrupted there is at least one group that

is assigned to this consumer, and whose outputs are completely unknown to the adversary.

Protocol moves: The protocol starts by having each of the suppliers send a random bit to the

generator associated with it. Next, each generator puts aside log t random bits, feeds the remaining

k� log t random bits to a PRG, and obtains a pseudorandom string, T , of the appropriate length.

Next, the generators in each group form a \random path" of length t2 among themselves, with

the leader being the �rst in the path. This is done as follows: �rst the leader chooses (using the

log t remaining random bits) another generator g in the group, and noti�es g that it is the second

in the path. Next, g chooses the next generator in the path, and so on for t2 steps. Once the

path is complete, the last generator in the path sends its generated string T to its neighbor in the

path. The neighbor bitwise-xors the received string with its own generated string, and passes the

result to its next neighbor. Once the group leader receives the string, it bitwise-xors it with its

own string, and sends a su�ciently long segment of the resulting string to each consumer that is

assigned to the group.

The purpose of this multi-round, gradual buildup of the pseudorandom string generated by the

group is to allow the simulator of phase one to always generate \credible" inputs for corrupted

generators: Since the path of generators contains a long enough simple sub-path to prevent the

adversary from checking consistency along it, the simulator can always set either the input string

or the output string to convenient values. We now provide the details.
A detailed description of phase one: First we divide the parties into several categories, where

di�erent categories of parties perform di�erent tasks. We describe the di�erent categories and their sizes.

1 Divide all n parties into two disjoint sets A;B of equal size.

2. In each set form O(t4 logn) disjoint groups G1; : : : ; Gt4 logn:

3. Where each groups consists of the following disjoint parties:

5. { O(t4) parties called generators g1; : : : ; gt4, (g1 is also called a leader)

6. { O(t4 � (k + 4 log t)) parties called suppliers where with each generator gi a disjoint set of (k + 4 log t) suppliers s1
i
: : :

Weuse a familyH ofO(t logn) perfect hash functions where every h 2 H maps f1; : : :ng to f1; : : : ; O(t2)g.

With each hash function h, we associate O(t3) distinct groups, t+ 1 groups for each value in the range of h.

1. Each s
j

i
ips a single random bit and sends it(via private channel) to the gi associated with it.

2. For each group G do:

3. each gi 2 G uses k supplier bits to generate
pseudo-random sequence Ti of length n � T (n).

gi uses the remaining 4 log t supplier bits to select

a random g 2 G, denoted next(gi).

4. x � t
2, current � g1

5. Until x > 0 do:
6. party current sends \(current,x)" to

next(current)

7. party next(current) marks current

13

as its predecessor,
party next(current) becomes current,

decrements x and repeats.

8. Party gi 2 G which hold x = 0 sends

Ti to predecessor(gi)

9. For x from 1 to t
2 do:

10. party gi which holds x upon receiving

msg T from next(gi) sends

bitwise-xor Ti � T to predecessor(gi)

11. g1 computes T1 � T , and partitions it into n equal

distinct segments r1; : : : ; rn.
12. For each party Pi (in A/B)

13 For each hash function h 2 H

14. the t+ 1 leaders of the groups associated

with the output h(Pi)

send their ri (computed in step 11) to Pi.
15. Each party bitwise-xors the pseudo-random strings

received from the O(t3 logn) di�erent groups

and uses it as its random string.

Proof of security. Let � be an n-party protocol, let �0 = C(�) be the transformed protocol, and let A0

be an adversary that interacts with �
0. We construct an adversary A that interacts with � and such that

exec�0;A0(n; ~x; z)
c
� execn;�;A(n; ~x; z) for all inputs ~x and auxiliary input z.

Adversary A consists of two phases, corresponding to the two phases of �0. Phase one of the simulator
proceeds as follows. First, A chooses a random bit for each supplier, and carries out a complete simulation

of the ensuing execution up til the end of phase one. That is, A follows A0's instructions and hands A0 all

the gathered information. Whenever A0 corrupts a party during phase one, A hands A0 the true input and

random input of that party, as well as all the messages that this party received so far. Note that throughout

phase one A has not yet started interacting with its network.
Phase two of A consists of following the instructions of A0, and handing A all the gathered information,

with the following exception. Whenever a party Pi is corrupted, A obtains the random input of Pi, and

simulates Pi's internal data from phase one, as follows.

We �rst describe how to simulatePi's role as a consumer of randomness. As noted above, the construction

guarantees that there exist at least one group assigned to Pi that is not assigned to any other corrupted
party, and such that no party in g is corrupted. We regard the output values of all other groups assigned to

Pi as already �xed to arbitrary values (otherwise, we �x them to random values). Next, we �x the output of

group g (sent by g's leader to Pi) to the bitwise-xor of with the already �xed outputs of all other groups.

Call this value �. Later, when parties in group g will be corrupted, we will have to demonstrate how the

value � was generated.

Next we describe how to simulate Pi's role as a producer. We distinguish several cases:
1. If Pi is the �rst party in its group to be corrupted, and none of the parties assigned to this group was

corrupted, then we �x the random choices of the producers in this group to some random values, and present

Pi's internal data accordingly. We call such a group �xed.

2. If Pi belongs to a group that is already �xed then its internal data are set according to the already �xed

values of the group.
3. If Pi belongs to a group who is not �xed but whose output value � was �xed by some consumer assigned

to it, then A proceeds as follows. First, it chooses a random path of length t
2 among the generators in

the group, as described in the protocol. Let us assume for simplicity that the path is simple. Otherwise,

pick a long enough simple sub-path (such a sub-path exists with high probability), and repeat the following

14

arguments on this sub-path.
A generator is called set if either its output (input) strings are known to the adversary. Whenever a

generator is set, the simulator proceeds as follows: it chooses random bits for all the generator's suppliers,

applies the PRG to these values, and �xes the appropriate input (output) value. The group leader is set

with its output �xed to �. The last generator in the path is set since it has no input string. Say that a

simple sub-path is free if none of the generators in this sub-path are set. When the output value � of this
group is �xed, the group's free path is of length O(t2= log t). (Note that a free path hides an inconsistency:

The input/output values of the set generators at the two ends of the path are unlikely to agree, if all the

generators along the path were set. The goal of the simulation is to keep this inconsistency hidden from the

adversary.) Next:

3a. If Pi is a generator on the free path then A makes the following decision: If Pi is closer to the head
of the free path (i.e., closer to the group leader's side) then set Pi and all the generators in the segment

between Pi and the head of the path, �xing their output values to be consistent with the input values of

their predecessors. If Pi is closer to the tail of the free path then set Pi and all the generators in the segment

between Pi and the tail of the path, �xing their input values to be consistent with the output values of their

successors. Note that we are now left with a path of at least half the length from before.
3b. If Pi is a generator not on the free path, or a supplier, then its internal view is chosen (by A) in an

obvious way.

Analyzing A, we �rst state the property of perfect hash functions, that guaranteed that each newly

corrupted Pi has a group associated with it that is not yet �xed:

Lemma 4: [14]Let n and t be any two integers. Then there exists a family jHj = O(t logn) of hash functions

such that every h 2 H maps f1; : : :ng to f1; : : : ; O(t2)g and for every subset of f1; : : :ng of size at most t, at

least one h 2 H is 1-1 over this subset.

The above lemma implies that no matter which t parties the adversary will corrupt in the underlying

simulation, there will be at least one hash function h for which every time the adversary corrupts a new

party a new (t+ 1) groups which supplies randomness for this party are introduced. Therefore, at least one
of the (t+ 1) groups have not been seen by A0.

Next we note that the simulation is successful as long as the simulator does not \run out" of the free

path. We have seen that the length of the free path as worst halves at each \hit" of the adversary. It remains

to note that the adversary \hits" the free path at most
(log t) times. This is guaranteed by the fact that,

since the path is chosen randomly and locally, the adversary's probability of hitting the free path at a given
corruption is the same as in a `blind' random choice. Speci�cally, we show:

Lemma 5: With probability at least 1 � e
�(log t)2=3 the length of the maximum simple sub-path is at least

t
2
= log t.

Proof: The probability that at any step we visit generator already visited is at most 1=t2. The bound

follows from the multiplicative form of the Cherno� bound [1]: if we have m independent experiments with
success. probability at most p, then the total number of successes S is bounded by Pr[S > (1 +)pm] �

e
�mp

2
=3

Now, we �x any such simple sub-path (of length t
2
=logt) and pick t random elements from G. We now

consider the following experiment. We pick t random generators. Every time we hit the simple sub-sequence,

we eliminate its shorter part and keep the longer part. We wish to measure the probability that the �nal
resulting interval is greater then t:

Lemma 6: Fix t
2
= log t generators. Now pick t generators at random from G. The probability that we pick

more then log t� log log t of chosen generators is at most e�t(logt�log log t)=3

Proof: Cherno� bound.

15

5 A LHL-secure protocol for computing any function

Theorem 7: Assume that one way-way functions exist, and let t(n) � n
�22. Then5 there exists a compiler that

is t-robust to LHL parties.

The idea of the construction is to reduce the locally honest-looking (LHL) parties to globally honest-

looking (GHL) behavior, by making sure that any deviation from the protocol that is detectable by the

entire community will be detected by each single party. Due to space limitations we give only very high-

level description here. First, we make sure that every message sent in the network is \registered" within

su�ciently many parties. Next, pick a random party, reveal its communication, and check consistency of the
party's behavior. We now give an outline how this is done.

Two Main tools: We start with a discussion of the implication of the de�nition, which is the most

delicate issue of this section: suppose sender S must send a bit b to 4t + 1 intermediaries, who then must

re-transmit this bit b to some receiver R. Next, we execute deterministic Byzantine agreement among the

intermediaries and R to determine what this bit b is. Note that (1) if sender wishes to be locally honest-

looking he must send the same bit to all the intermediaries and (2) if intermediaries wish to be locally
honest-looking they must send the same bit to the receiver. To see (1) notice that after the Byzantine

agreement, if the sender does not send the same bit to all the intermediaries, and assuming that all the

intermediaries are totally honest, there will be some intermediary who's value will disagree with the outcome

of the Byzantine agreement. That intermediary will decide that if all intermediaries are honest then the

sender is not honest-looking, hence the sender can not do this by the speci�cation of the honest-looking
behavior. (Notice that this is a valid test, as in De�nition 3.) To see (2), notice that after intermediaries

and S run Byzantine Agreement, if there is some intermediary who did not send the required value, then

the receiver will decide that this intermediary is not honest-looking, again assuming that all but this player

is honest. Hence, intermediaries can not a�ord to change the values either. We will use this basic construct,

together with deterministic BA as a basic building block in our solution.
Second, notice that the community can generate a common unbiased coin. This is done as follows: t+ 1

parties ip random coins and send it to distinct 4t parties each. Then, for each coin a deterministic BA

protocol is executed. The XOR of this t+1 bits de�nes the coin. Notice that even with adaptive adversary,

this coin can not be biased, since all the intermediaries are distinct.

The Reduction. We �rst augment phase two of the GHL protocol to start with Veri�able Secret Sharing
of the private inputs of the players. (In cases that phase two already starts with a VSS of the players' inputs,

such as [5], this step is not necessary.) As the rest of phase two, the VSS invocations use the randomness

provided by phase one of the GHL protocol.

We then further modify the entire GHL protocol from the previous section as follows. Here we let

n � k
19. We partition the parties as follows. O(t17) parties play the same roles as in the GHL protocol. To

each one of these parties assign 4t new parties, called intermediaries. Each message that was sent directly to
party Pi in the GHL protocol is now sent to each one of the 4t intermediaries associated with it. Next, each

one of these intermediaries forwards the message to Pi. (This provision applies both to messages of phase

one and to messages of phase two of the modi�ed GHL protocol.)

Once the GHL protocol is done, the parties jointly choose at random a single party, Pi, to be audited as

follows: the parties use the intermediaries (of Pi and of all the parties that Pi communicated with) to jointly
verify that Pi followed its protocol properly given its inputs and outputs, without revealing Pi's private input.

(Notice that the random input of Pi was received from other parties of phase one of the GHL protocol, that

Pi already executed a veri�able secret sharing of its private input in phase two of the GHL, and that Pi

is in fact \almost" deterministic, except for a single random bit it contributed to the GHL computation of

phase one.) The veri�cation is done by invoking another modi�ed GHL computation for securely evaluating
the validity of the statement \Pi has correctly executed the Veri�able Secret Sharing algorithm, based on its

input, the pseudorandom values it received and the messages it sent during the sharing stage". This secure

5Again 22 here is not optimized and can be somewhat reduced.

16

GHL computation is di�erent from the previous one, since players for this computation do not have private
inputs.

Finally, the parties verify that the last GHL computation from the previous audit step of player Pi was

performed correctly. For this end, an additional party Pj is chosen randomly and audited, as follows. This

time, Pj has no private inputs; thus its entire communication is uncovered and agreed upon, where the

intermediaries of Pj run deterministic Byzantine Agreement to agree on the messages received and sent by
Pj.

Acknowledgments

We thank Le Gamin bistro where most of this work (with plenty of snacks and espresso) was done.

References

[1] N. Alon and J. Spencer. The Probabilistic Method. Wiley, 1992.

[2] D. Beaver, \Foundations of Secure Interactive Computing", CRYPTO, 1991.

[3] D. Beaver, \Secure Multi-party Protocols and Zero-Knowledge Proof Systems Tolerating a Faulty Minority", J. Cryp-

tology (1991) 4: 75-122.

[4] D. Beaver and S. Goldwasser, \Multi-party computation with faulty majority", 30th FOCS, 1989, pp. 468-473.

[5] M. Ben-Or, S. Goldwasser and A. Wigderson, \Completeness Theorems for Non-Cryptographic Fault-Tolerant Dis-

tributed Computation", 20th STOC, 1988, pp. 1-10.

[6] R. Canetti, \Security and composition of multi-party protocols", Available at the Theory of Cryptography Library,

http://philby.ucsd.edu, 1998.

[7] R. Canetti, U. Feige, O. Goldreich and M. Naor, \Adaptively Secure Computation", 28th STOC, 1996. Fuller version

in MIT-LCS-TR #682, 1996.

[8] R. Canetti, E. Kushilevitz, R. Ostrovsky and A. Rosen, \Randomness vs. Fault-Tolerance", Available at the Theory

of Cryptography Library,

http://philby.ucsd.edu, 1998.

Preliminary version at 16th PODC, 35-45, 1997.

[9] R. Canetti, T. Malkin, Y. Yishay, in preparation.

[10] D. Chaum, C. Crepeau, and I. Damgard. Multi-party Unconditionally Secure Protocols. In Proc. 20th Annual Symp.

on the Theory of Computing, pages 11{19. ACM, 1988.

[11] G. Di Crescenzo, R. Ostrovsky and S. Rajagopalan, \Conditional Oblivious Transfer and Sender-Anonymous Timed-
Release Encryption" In Proceedings of EUROCRYPT 99, to appear.

[12] I.B. Damg�ard, \Collision free hash functions and public key signature schemes", EUROCRYPT 87 (LNCS 304), pp.
203{216, 1988.

[13] A. Fiat and M. Naor, \Broadcast Encryption", Advances in Cryptology - Crypto '92, Springer-Verlag LNCS 839, pp.

257-270, 1994.

[14] M. Fredman, J. Komlos, and E. Szemeredi \Storing A Sparse Table with O(1) Access Time" Journal of the ACM 31,

1984, pp. 538-544.

[15] J. Garay and Y. Moses. Fully Polynomial Byzantine Agreement in t+1 Rounds. SIAM Journal on Computing, 27(1),

1998.

[16] O. Goldreich. \Secure Multi-Party Computation" 1998. First draft available at http://theory.lcs.mit.edu/~oded

[17] O. Goldreich, S. Micali and A. Wigderson, \How to Play any Mental Game", 19th STOC, 1987, pp. 218-229.

[18] O. Goldreich and Y. Oren, \On the cunning power of cheating veri�ers: Some observations about Zero-Knowledge

proofs", in preparation. Preliminary version by Y. Oren in 28th FOCS, 1987.

[19] S. Goldwasser, and L. Levin, \Fair Computation of General Functions in Presence of Immoral Majority", CRYPTO,
1990.

17

[20] S. Goldwasser and S. Micali, Probabilistic encryption, JCSS, Vol. 28, No 2, April 1984, pp. 270-299.

[21] J. Hastad, R. Impagliazzo, L. Levin, and M. Luby, \Construction of a Pseudo-Random Generator from One-Way
Function", to appear in SIAM J. on Computing. previous versions: FOCS 89 and STOC 90.

[22] E. Kushilevitz, and A. Ros�en, \A Randomness-Rounds Tradeo� in Private Computation", CRYPTO-94, LNCS 839,
pp. 397-410, 1994.

[23] E. Kushilevitz, S. Micali, and R. Ostrovsky, \Reducibility and Completeness in Multi-Party Private Computations",

Proc. of 35th FOCS, 1994, pp. 478-489. (full version joint, with J. Kilian to appear in SICOMP).

[24] E. Kushilevitz, R. Ostrovsky, and A. Ros�en, \Characterizing Linear Size Circuits in Terms of Privacy", Invited paper
to the Journal of Computer and System Sciences special issue for STOC 96. Appeared in Vol 58, December 1998.
Preliminary version in the Proc. of 28th STOC, pp. 541{550, 1996.

[25] E. Kushilevitz, R. Ostrovsky, and A. Ros�en, \Amortizing Randomness in Private Multiparty Computations" Proc. of

17th PODC, pp. 81{90, 1998.

[26] S. Micali and P. Rogaway, \Secure Computation", unpublishedmanuscript, 1992. Preliminary version in CRYPTO 91.

[27] T. Rabin and M. Ben-Or, \Veri�able Secret Sharing and Multi-party Protocols with Honest Majority", 21st STOC,
1989, pp. 73-85.

[28] A. Yao, \theory and applications of trapdoor functions", In Proc. 23rd Annual Symp. on Foundations of Computer

Science, pages 80{91. IEEE, 1982.

[29] A. Yao, \Protocols for Secure Computation", In Proc. 23rd Annual Symp. on Foundations of Computer Science, pages

160{164. IEEE, 1982.

[30] A. Yao, \How to generate and exchange secrets", In Proc. 27th Annual Symp. on Foundations of Computer Science,

pages 162{167. IEEE, 1986.

18

