
On Concurrent Zero-Knowledge
with Pre-Processing�

(Extended abstract)

Giovanni Di Crescenzo
1

Rafail Ostrovsky
2

1 University of California San Diego,
and Telcordia Technologies, Inc.

E-mail: giovanni@cs.ucsd.edu, giovanni@research.telcordia.com
2 Telcordia Technologies, Inc.

445 South Street, Morristown, NJ, 07960-6438, USA.
E-mail: rafail@research.telcordia.com

�Copyright c 1999, Telcordia Technologies, Inc. All Rights Reserved.

Abstract. Concurrent Zero-Knowledge protocols remain zero-knowledge
even when many sessions of them are executed together. These proto-
cols have applications in a distributed setting, where many executions
of the same protocol must take place at the same time by many parties,
such as the Internet. In this paper, we are concerned with the number of
rounds of interaction needed for such protocols and their e�ciency. Here,
we show an e�cient constant-round concurrent zero-knowledge protocol
with preprocessing for all languages in NP, where both the preprocess-
ing phase and the proof phase each require 3 rounds of interaction. We
make no timing assumptions or assumptions on the knowledge of the
number of parties in the system. Moreover, we allow arbitrary interleav-
ings in both the preprocessing and in the proof phase. Our techniques
apply to both zero-knowledge proof systems and zero-knowledge argu-
ments and we show how to extend our technique so that polynomial
number of zero-knowledge proofs/arguments can be executed after the
preprocessing phase is done.

1 Introduction

The notion of zero-knowledge proof systems was introduced in the seminal paper
of Goldwasser, Micali and Racko� [18]. Since their introduction, zero-knowledge
proofs have proven to be very useful as a building block in the construction of
cryptographic protocols, especially after Goldreich, Micali and Wigderson [17]
have shown that all languages in NP admit zero-knowledge proofs. Due to their
importance, the e�ciency of zero-knowledge protocols has received considerable
attention. One of the aspects of e�ciency is the number of rounds of interaction
necessary for zero-knowledge proofs, and it was shown that there exist computa-
tional zero-knowledge proofs with a constant number of rounds for all languages
in NP by Goldreich and Kahan [16].

Previous work. Recently, a lot of attention has been paid to the setting where
many concurrent executions of the same protocol take place (say, on the Inter-
net). For example, in the context of identi�cation schemes, this was discussed
by Beth and Desmedt [3]. In the context of zero-knowledge, Di Crescenzo con-
structed proof systems that remain zero-knowledge in a synchronous setting
without timing or complexity assumptions [8]. The general case of concurrent

zero-knowledge in an asynchronous setting was considered by Dwork, Naor and
Sahai [11]. They showed that assuming that there are some bounds on the rel-
ative speed of the processors, one can construct four-round zero-knowledge ar-
gument for any language in NP (an argument di�ers from a proof system in
the fact that the soundness property holds only with respect to polynomial-time
provers [4]). Dwork and Sahai improved this result by reducing the use of tim-
ing assumptions to a preprocessing phase [12]. (Preprocessing was �rst used in
the context of zero-knowledge proofs by De Santis, Micali and Persiano [7].)
Recently, Richardson and Kilian [24] presented concurrent zero-knowledge pro-
tocols for all languages in NP that do not use timing assumption but require
more then constant number of rounds of interaction. More speci�cally, given a
security parameter k, Richardson and Kilian's protocol requires O(k) rounds
and allows poly(k) concurrent executions. A negative result was given by Kilian,
Petrank and Racko� [20], who showed that if there exists a 4-round protocol
that is concurrent (black-box simulation) zero-knowledge for some language L
then L is in BPP.

Our results.We consider a distributed model with a preprocessing phase and a
proof phase. In this setting, we show how, based on complexity assumptions, and
after a three-round pre-processing stage, three-round concurrent zero-knowledge
proofs (and arguments) can be constructed for all languages in NP. Our protocol
does not require any timing assumptions nor knowledge of the number of parties
in the system nor knowledge of the total number of concurrent executions. In
the case of proof systems, our protocol is based on the existence of perfectly
secure commitment schemes, it is computational zero-knowledge and applies to
all public-coin zero-knowledge proof systems. In the case of arguments, our pro-
tocol is based on the intractability of computing discrete logarithms modulo
primes and it is perfect zero-knowledge. The requirement that we make (which
is di�erent than in the work of Dwork and Sahai [12]) is that all the concur-
rent executions of the pre-processing subprotocols �nish before the concurrent
executions of the proof protocols begin, although we allow arbitrary interleaving
both in the pre-processing and in the proof phase. A di�erent interpretation of
our result is that we do not make any timing assumptions, but require a single
\synchronization barrier" between the pre-processing stage and the main proof
stage of the protocol, where all parties �nish the pre-processing stage before the
main stage begins. We believe that this setting may be of interest in several
applications, since the pre-processing stage does not need the knowledge of the
theorem(s) to be proved in the main phase of the protocol.

Tools used. An important tool used in the construction of our schemes is that of
equivocable commitment schemes, which we consider in two variants: computa-
tionally and perfectly equivocable. The computational variant was �rst discussed
by Beaver in [1], and a �rst construction was given by Di Crescenzo, Ishai and
Ostrovsky in [9] in the common random string model (using a scheme by Naor
[21]). Here we present a computationally equivocable and a perfectly equivo-
cable commitment schemes in the interactive model, based on bit commitment
schemes by Naor [21] and Pedersen [23], respectively. These schemes might be of
independent interest and may have further applications, such as for identi�ca-
tion schemes. We remark that a somewhat weaker version of our results could be
alternatively derived by considering in our model appropriate modi�cations of
techniques based on coin ipping and non-interactive zero-knowledge proofs, as
those used in [24, 12, 13], resulting with even smaller round-complexity. However,

our techniques apply to perfect zero-knowledge arguments and o�er additional
e�ciency properties since they do not use general NP reductions. Another tool
we use is that of straight-line simulation, as formally de�ned by Dwork and Sahai
[12] and also used by Feige and Shamir [14].

2 Notations and De�nitions

In this section we give basic notations, we recall the notions of interactive proof
systems, zero-knowledge proof systems in the two-party model and formally
de�ne concurrent zero-knowledge proof systems with preprocessing.

Probabilistic setting. The notation x S denotes the random process of
selecting element x uniformly from set S. Similarly, the notation y A(x),
where A is an algorithm,denotes the random process of obtaining y when running
algorithm A on input x, where the probability space is given by the random
coins (if any) of algorithm A. By fR1; : : : ;Rn : vg we denote the set of values v
that a random variable can assume, due to the distribution determined by the
sequence of random processes R1; : : : ; Rn. By Prob[R1; : : : ;Rn : E] we denote
the probability of event E, after the ordered execution of random processes
R1; : : : ; Rn.

Interactive protocols. Following [18], an interactive Turing machine is a Tur-
ing machine with a public input tape, a public communication tape, a private
random tape and a private work tape. An interactive protocol is a pair of interac-
tive Turing machines sharing their public input tape and communication tape.
The transcript of an execution of an interactive protocol (A,B) is a sequence con-
taining the random tape of B and all messages appearing on the communication
tape of A and B. The notation (y1; y2) (A(x1);B(x2))(x) denotes the random
process of running interactive protocol (A,B), where A has private input x1, B
has private input x2, x is A and B's common input, y1 is A's output and y2 is
B's output, where any of x1; x2; y1; y2; x can be an empty string; the notation
y (A(x1);B(x2))(x) is an abbreviation for (y; y) (A(x1);B(x2))(x). We as-
sume wlog that the output of both parties A and B at the end of an execution of
protocol (A,B) contains a transcript of the communication exchanged between
A and B during such execution. An interactive protocol with preprocessing is a
pair of interactive protocols ((A1,B1),(A2,B2)). The mechanics of an interactive
protocol with preprocessing is divided in two phases, as follows. In a �rst phase,
called the preprocessing phase, the �rst pair (A1,B1) is executed; at the end of
this phase a string � is output by A1 and given as private input to A2, and
a string � is output by B1 and given as private input to B2. Now, an input
string x is given as common input to A2 and B2, and the second pair (A2,B2)
is executed. In this paper we will be concerned with two types of interactive
protocols: proof systems and arguments, which we now describe.

Interactive proof systems and arguments. An interactive proof system
for a language L is an interactive protocol in which, on input a string x, a
computationallyunbounded prover convinces a polynomial-time bounded veri�er
that x belongs to L. The requirements are two: completeness and soundness.
Informally, completeness states that for any input x 2 L, the prover convinces
the veri�er with very high probability. Soundness states that for any x 62 L
and any prover, the veri�er is convinced with very small probability. A formal
de�nition can be found in [18, 15]. An argument is de�ned similarly to a proof

system, the only di�erence being that the prover is assumed to be polynomially
bounded (see [4]).

Zero-knowledge proof systems in the two-partymodel.A zero-knowledge
proof system for a language L is an interactive proof system for L in which, for
any x 2 L, and any possibly malicious probabilistic polynomial-time veri�er V0,
no information is revealed to V0 that he could not compute alone before running
the protocol. This is formalized by requiring, for each V0, the existence of an
e�cient simulator SV 0 which outputs a transcript `indistinguishable' from the
view of V0 in the protocol. There exist three notions of zero-knowledge, accord-
ing to the level of indistinguishability: computational, statistical and perfect.
We refer the reader to [18, 15] for the de�nitions of computational, statistical
and perfect indistinguishability between distributions and for the de�nitions of
computational, statistical and perfect zero-knowledge proof systems.

The concurrent model for zero-knowledge proof systems. Informally
speaking, the concurrent model describes a distributed model in which several
parties can run concurrent executions of some protocols. In real-life distributed
system, the communication is not necessarily synchronized; more generally, the
model makes the worst-case assumption that the communication in the system
happens in an asynchronous manner; this means that there is no �xed bound
on the amount of time that a message takes to arrive to its destination. This
implies that, for instances, the order in which messages are received during
the execution of many concurrent protocols can be arbitrarily di�erent from
the order in which they were sent. Such variation in the communication model
poses a crucial complication into designing a zero-knowledge protocol, since the
possibly arbitrary interleaving of messages can help some adversary to break the
zero-knowledge property. In fact, as a worst case assumption, one may assume
that the ordering in which messages are received can be decided by the adversary.
Now we proceed more formally.

We consider a distributed model, with two distinguished sets of parties: a set
P = fP1; : : : ; Pqg of provers and a set V = fV1; : : : ; Vqg of veri�ers, where Pi is
connected to Vi, for i = 1; : : : ; q. Let (A,B) be a zero-knowledge proof system. At
any time a veri�er Vi may decide to run protocol (A,B); therefore, for any �xed
time, there may be several pairs of prover and veri�er running (A,B). The adver-
sary A is allowed to corrupt all the veri�ers. Then A can be formally described as
a probabilistic polynomial time algorithm that, given the history so far, returns
an index i and a message mi, with the meaning that the (corrupted) veri�er Vi,
for i 2 f1; : : : ; qg, is sending message mi to prover Pi. We assume wlog that Pi is
required to send his next message after receiving mi and before receiving a new
message fromA. We now de�ne the view of the adversary A. First we de�ne a q-
concurrent execution of (A,B) as the possibly concurrent execution of q instances
of protocol (A,B), where all veri�ers are controlled by A. Also, we de�ne the
q-concurrent transcript of a q-concurrent execution of (A,B) as a sequence con-
taining the random tapes of veri�ers V1; : : : ; Vq and all messages appearing on
the communication tapes of P1; : : : ; Pq and V1; : : : ; Vq, where the ordering of such
messages is determined by the adversary corrupting all the veri�ers. The nota-
tion (T ; y11; y12; : : : ; y1q; y2q) ((P1(p1); V1(v1))(x1); : : : ; (Pq(pq); Vq(vq))(xq))
denotes the random process of running a q-concurrent execution of interactive
protocol (A,B), where each Pi has private input xi, each Vi has private input
vi, xi is Pi and Vi's common input, y1i is Pi's output, y2i is Vi's output, and

T is the q-concurrent transcript of such execution (we assume wlog that the
output of both parties Pi and Vi at the end of an execution of the interactive
protocol (A,B) contains a transcript of the communication exchanged between
Pi and Vi during such execution). Then the view of A, denoted as V iewA(x),
is the transcript T output by the random process (T ; y11; y12; : : : ; y1q; y2q)
((P1(p1);A(v1))(x1); : : : ; (Pq(pq);A(vq))(xq)), where x = (x1; : : : ; xq). Finally,
a proof system (A,B) for language L is concurrent zero-knowledge if for any
probabilistic polynomial time algorithm A, there exists an e�cient algorithm
SA such that for any polynomial q(�), and any x1; : : : ; xq, where q = q(n), and
jx1j = � � � = jxqj = n, the two distributions SA(x) and V iewA(x) are indistin-
guishable.

Concurrent zero-knowledge proof systems with preprocessing.We now
consider a variant of the above distributed model, in which we would like to
consider concurrent zero-knowledge proof systems with preprocessing. In this
variant a concurrent execution of an interactive protocol with preprocessing
((A1,B1),(A2,B2)) is divided into two phases: a preprocessing phase and a proof
phase. In the preprocessing phase there is a concurrent execution (in the sense
de�ned before) of the preprocessing pair (A1,B1) and in the proof phase there
is a concurrent execution of the proof pair (A2,B2). The requirements are, as
before, completeness, soundness and concurrent zero-knowledge. Now we give a
formal de�nition of concurrent zero-knowledge proof systems with preprocessing.

De�nition1. Let (A,B)=((A1,B1),(A2,B2)) be an interactive protocol with
preprocessing. We say that (A,B) is a concurrent (computational) (statistical)
(perfect) zero-knowledge proof system with preprocessing for language L if the
following holds:

1. Completeness: For any x 2 L, it holds that Prob[(�; �) (A1; B1)(1jxj);

(t; (t; out)) (A2(�); B2(�))(x) : out = ACCEPT] � 1� 2�jxj:

2. Soundness: For any x 62 L, and any (A10,A20), it holds that Prob[(�; �)

(A10; B1)(1jxj); (t; (t; out)) (A20(�); B2(�))(x) : out = ACCEPT] < 2�jxj:

3. Concurrent Zero-Knowledge: For each probabilistic polynomial time algorithm
A = (A1;A2), there exists an expected polynomial time simulator algorithm
SA such that for any polynomial q(�), for each x1; : : : ; xq 2 L, where jx1j =
� � � = jxqj = n and q = q(n), the two distributions SA(x) and V iewA(x) are
(computationally) (statistically) (perfectly) indistinguishable, where

V iewA(x) = f(T1; �1; �1; : : : ; �q; �q) ((P1;A1); : : : ; (Pq;A1))(1
n);

(T2; �; �; : : : ; �; �) ((P1(�1);A2(�1))(x1); : : : ; (Pq(�q);A2(�q))(xq)) :

(T1; T2; �1; � � � ; �q)g

denotes the view of A on input x = (x1; : : : ; xq), and where P1; : : : ;Pq run
algorithms A1 in the preprocessing phase and A2 in the proof phase.

3 Cryptographic tools and a class of languages

We briey review some cryptographic tools as commitment schemes and coin
ipping protocols. Then we discuss a class of languages having a certain type of
zero-knowledge protocols, which will be used in this paper.

Commitment schemes. Informally speaking, a commitment scheme (Alice,Bob)
is a two-phase interactive protocol between two probabilistic polynomial time
parties Alice and Bob, called the sender and the receiver, respectively, such that
the following is true. Alice commits to his bit b in the �rst phase (called the
commitment phase); in the second phase (called the decommitment phase) Al-
ice convinces Bob of the value of the bit b Alice had committed to in the �rst
phase (if Bob is not convinced, he outputs a special string ?). A commitment
scheme has three requirements. First, if Alice and Bob behave honestly, then at
the end of the decommitment phase Bob is convinced that Alice had commit-
ted to bit b with high probability (this is the correctness requirement). Then, no
matter which polynomial-time computable strategy Bob uses in the commitment
phase, Bob is not able to guess such bit with probability signi�cantly better than
its a priori probability at the end of such phase (this is the security property).
Finally, for any strategy played by Alice, the probability that he can later de-
commit both as 0 and as 1 is negligible (this is the binding property). There are
two main variants of commitment schemes in the literature, with respect to the
type of security guaranteed: computationally secure (i.e., the security property
holds against a polynomial time bounded receiver, while the binding property
holds against an unrestricted sender) and perfectly secure (i.e., security holds
against an unrestricted receiver, while binding holds against polynomial time
bounded sender). In this paper we will consider both variants.

Coin ipping protocols. A coin ipping protocol [5] is a protocol among two
parties, Alice and Bob, who exchange messages. At the end of the protocol, both
parties have a bit that is uniformly distributed, no matter how each of them tries
to inuence its distribution. Standard constructions for coin ipping protocols
are obtained by using bit commitment schemes, as follows. Alice commits to a
random bit a, Bob sends a random bit b to Alice, then Alice reveals her bit a;
the result of the coin ipping protocol is c = a� b.

Three-round public-coin honest-veri�er zero-knowledge protocols.We
will consider a class of languages having a special type of zero-knowledge pro-
tocol; namely, a protocol having the following properties: 1) the protocol has
three rounds; namely, the prover sends a message (called �rst message) to the
veri�er, the veri�er sends a message (called challenge) to the prover, the prover
sends a �nal message (called answer) to the veri�er who decides whether to ac-
cept or not; 2) it is public-coin; namely, the challenge consists of some random
bits sent by the veri�er; 3) it is honest-veri�er zero-knowledge; namely, the zero-
knowledge requirement holds only with respect to a veri�er which follows its
program. In the literature there are several examples of protocols satisfying the
above properties, and the class of languages having such protocols is quite large.
For instance, all languages in NP have a computational zero-knowledge proof
system (e.g., [17, 5]) with these properties, and all random self-reducible lan-
guages and formula compositions over them have perfect zero-knowledge proof
systems with these properties ([18, 17, 25, 6]).

4 Equivocable commitment schemes

We recall the notion of equivocable commitment schemes, by presenting two vari-
ants of them: computationally and perfectly equivocable commitment schemes.
Then we present an example of a computationally equivocable commitment

scheme under the assumption of the existence of any one-way permutation and
an example of a perfectly equivocable commitment scheme under the assumption
of intractability of computing discrete logarithms.

De�nition of equivocable commitment schemes. Informally speaking, a bit
commitment scheme is equivocable if it satis�es the following additional require-
ment. There exists an e�cient algorithm, called the simulator, which outputs a
transcript leading to a `fake' commitment such that: (a) the `fake' commitment
can be decommitted both as 0 and as 1, and (b) the simulated transcript is indis-
tinguishable from a real execution of the protocol. The extension to equivocable
string commitment schemes is straightforward. The two types of equivocability,
computational and perfect, di�er according to the type of indistinguishability in
(b). A formal de�nition follows.

De�nition2. Let (A,B) be a commitment scheme. We say that (A,B) is com-
putationally equivocable (resp., perfectly equivocable) if for any probabilistic poly-
nomial time algorithm B0, there exists a probabilistic polynomial time algorithm
M such that:

1. Equivocability. For all constants c, all su�ciently large n, any string s 2
f0; 1gk, where k = k(n) for some polynomial k(�), it holds that jp0 � p1j � n�c,
where p0; p1 are, respectively,

Prob[(�;�) MB0(1n; 1k); (t; (t; v)) MB0(�)(�;s; 1
n) : v = s];

Prob[(�;�) (A(s);B0)(1n; 1k); (t; (t; v)) (A(�;s);B0(�))(1n; 1k) : v = s]:

(resp., it holds that p0 = p1.)

2. Indistinguishability. For any string s 2 f0; 1gk, where k = k(n) for some
polynomial k(�), the distributions T (M) and T (A) are computationally (resp.,
perfectly) indistinguishable, where

T (M) = f(�;�) MB0(1n; 1k); (t; (t; s)) MB0(�)(�;s; 1
n) : (�; (t; s))g;

T (A) = f(�;�) (A(s);B0)(1n; 1k); (t; (t; s)) (A(�;s);B0(�))(1n; 1k) : (�; (t; s))g:

Equivocable bit-commitment schemes have properties similar to chameleon or
trapdoor commitment schemes (see, e.g., [4]); a main di�erence is that in equivo-
cable commitment schemes one among the two requirements of binding and secu-
rity holds with respect to a computationally unlimited adversary (as opposed to
only polynomial-time bounded). Computationally equivocable bit-commitment
schemes have been �rst discussed in [1], who observed the somewhat paradoxical
requirement that such schemes need to satisfy. In [9] it was shown that the imple-
mentation in the common random string model of the bit commitment scheme
from [21] is computationally equivocable. Here we show in the interactive model
that a variation of the scheme in [21] is a computationally equivocable commit-
ment scheme and a variation of the scheme in [23] is a perfectly equivocable
commitment scheme.

A computationally equivocable commitment scheme. We will present a
scheme (A,B) by combining the scheme in [21] with a coin ipping protocol; we
describe the scheme for a single bit, since the extension to a many-bit string
is straightforward. The bit commitment scheme in [21] consists in a 2-round

commitment phase and a 1-round decommitment phase. In the commitment
phase, the receiver sends a 3n-bit random string R to the committer and the
committer replies with some pseudo-random message com, where n is a security
parameter. In the decommitment phase, the committer sends a decommitment
message dec which allows, together with R and com, the receiver to be convinced
that the committed bit was b. The variation we consider here consists in the
following. First of all committer and receiver run a coin ipping protocol, whose
output we denote by r. Then they continue the protocol as in [21], but using the
output r of the coin ipping protocol as string R is used in the original protocol.
A more formal description follows. We will denote by n a security parameter,
and assume that the parties share a perfectly secure commitment scheme (C,D)
and a pseudo-random generator G.

The Commitment Protocol (A,B)

Input to A: a bit b.

Commitment Phase:

1. B uniformly chooses string u 2 f0; 1g3n;
B commits to it using scheme (C,D) (possibly interacting with A);

2. A uniformly chooses string v 2 f0; 1g3n and sends it to B;
3. B decommits u to A using scheme (C,D) (possibly interacting with A);
4. If u is not properly decommitted, A halts.

A uniformly chooses s 2 f0; 1gn and computes z = G(s);
A sets com= z if b = 0 or com = z � u� v if b = 1, and sends com to B.

Decommitment Phase:

1. A sends s to B;
2. B outputs: 0 if G(s) = com, 1 if G(s) = com� u� v, ? otherwise.

We obtain the following

Theorem3. Assuming the existence of pseudo-random generators and perfectly-
secure commitment schemes, the protocol (A,B) is a computationally equivocable
and computationally secure commitment scheme.

Proof. The correctness and the security property of (A,B) directly follow from
those of the scheme in [21]. Now we consider the binding property. Note that
since B commits to u using a perfectly-secure commitment scheme, no in�nitely
powerful A0 can guess u better than guessing at random. Therefore, for any A0,
the distribution of u � v is uniform over f0; 1g3n, and we can directly apply
the analysis of [21] to conclude that (A,B) satis�es the binding property. Now
we show that (A,B) is computationally equivocable. Informally, we present an
e�cient simulator M, which can run the commitment phase in such a way that
it can later decommit both as a 0 and as a 1.

The algorithm M. On input 1n, M uniformly chooses u 2 f0; 1g3n and two seeds
s0; s1 2 f0; 1g

n, and computes z0 = G(s0) and z1 = G(s1). Then it runs the
commitment phase as follows: it receives a commitment to v from B0, it sends u
to B0 and it receives the decommitment of v from B0; at this point, M either halts
(if decommitments were not appropriate) or rewinds B0 to the state right after
B0 committed to v, sets u0 = z0�z1�v and sends u0 to B0; now M again receives
the decommitment of v from B0; at this point, M either halts (if decommitments
were not appropriate) or continues the simulation, and the result of the coin

ipping protocol will be u0 � v; �nally, in order to commit, M sends com = z0
to B; in order to decommit as b, M sends sb to B, for b = 0; 1.

M's output is computationally indistinguishable from a real execution of (A,B).
Note that in M's output the result of the coin ipping protocol is equal to
G(s0)�G(s1) while in an execution of (A,B) such output is random. In particular,
the same holds for the string sent to the receiver during the coin ipping protocol.
This can be used to show, exactly as already done in [9], that if there exists an
e�cient algorithm distinguishing M's output from a real execution of (A,B), then
there exists an e�cient algorithm that distinguishes uniformly distributed strings
from outputs of G. This contradicts the assumption that G is a pseudorandom
generator.

M can decommit both as 0 and as 1. During the execution of M there are two
executions of the coin ipping protocol, one before and one after the rewinding
of B0; we will call them the �rst and the second execution of the coin ipping
protocol, respectly; we note that M can halt both during the �rst and during
the second execution of the coin ipping protocol because of an inappropriate
decommitment by B0. Instead, if the result of the second execution of the coin
ipping protocol between M and B0 is u0 � v = z0 � z1, then s0 and s1 are valid
decommitment keys as 0 and 1, respectively, for the commitment com = z0.
Therefore, the probability p0, as de�ned in item 1 of De�nition 2 is equal to the
probability that the output of the second execution of the coin ipping protocol
is equal to z0 � z1. Let us de�ne probability q1 as the probability that M does
not halt in the �rst execution of the coin ipping protocol, and probability q0 as
the probability that M halts neither in the �rst nor in the second execution of
the coin ipping protocol because of some inappropriate decommitment of B0.
We now observe three facts.
The �rst fact is that p1 = q1. This follows by observing the probabilistic exper-
iments in the de�nition of p1 and q1 are the same; speci�cally, notice that the
string u is uniformly chosen and B0 decommits properly in both experiments.
The second fact we observe is that p0 = q0. This follows by observing the prob-
abilistic experiments in the de�nition of p0 and q0 are the same; speci�cally,
observe that M is successful in creating a fake commitment if and only if M does
not halt neither in the �rst execution nor in the second execution of the coin
ipping protocol.
The third fact is that q1 � q0 is negligible. Assume not. Then B0 could be used
to e�ciently distinguish between the random string u sent by M during the �rst
execution of the coin ipping protocol and the string u0 sent by M during the
second execution (since B0 correctly decommits in the �rst case and incorrectly
in the second). This implies that B0 can be, in turn, used to contradict the fact
that G is a pseudo-random generator (exactly as in the proof that M's output is
computationally indistinguishable from a real execution of (A,B)), thus giving a
contradiction.
By combining the above three facts, we have that jp1 � p0j � jq1 � q0j, and is
therefore negligible. ut
We remark that the perfectly-secure commitment scheme (C,D) used in the
above construction can be implemented assuming the existence of any one-way
permutation using the scheme in [22]. Therefore, the weakest assumption under
which the described scheme (A,B) is computationally equivocable is the existence
of one-way permutations.

A perfectly equivocable commitment scheme. Our perfectly equivocable

scheme is based on a perfectly-secure commitment scheme in [23]; this scheme
uses some elementary number theoretic de�nition concerning discrete logarithms,
which we briey review.

Discrete logarithms. Let p; q be primes such that p = 2q + 1 and let Gq denote
the only subgroup of Z�

p
of order q. We note that it can be e�ciently decided

whether an integer a is in Zq, by checking that aq � 1modp. Moreover, any
element of Gq di�erent from 1 generates such subgroup. For any a; b 2 Gq, if
b 6= 1 the discrete logarithm of a in base b is the integer x such that bx = amodp.

The commitment scheme in [23]. Given primes p; q such that p = 2q + 1 and
g; h 2 Gq, the commitment scheme goes as follows. In order to commit to an
integer s 2 Zq , the committer uniformly chooses r 2 Zq , computes com =
gshr modp, and sends com to the receiver. In order to decommit com as m,
the committer sends s; r to the receiver, who checks that com = gshr modp.
The perfect security property of this scheme follows from the fact that com is
uniformly distributed in Gq; the computational binding property follows from
the fact that if a committer is able to successfully decommit a string com both
as s and s0, then he can compute the discrete logarithm of h in base g.

Our variation. We consider a protocol (A,B) that is a variation of the above
scheme, consisting in running �rst a coin ipping protocol to choose g; h 2 Gq.
A more formal description follows. We will assume that the parties share a
computationally secure commitment schemes (C,D).

The Commitment Protocol (A,B)

Input to A: an integer s 2 Zq .

Commitment Phase:

1. A uniformly chooses k-bit primes p; q such that p = 2q + 1 and sends them to B;
2. B checks that p = 2q+1 and that p; q are primes and uniformly chooses u1; u2 2 Gq ;

B commits to u1; u2 using scheme (C,D) (possibly interacting with A);
3. A uniformly chooses v1; v2 2 Gq and sends them to B;
4. B decommits u1; u2 to A using scheme (C,D) (possibly interacting with A);
5. If u1; u2 are not properly decommitted, A halts;
6. A and B set g = u1v1mod p and h = u2v2mod p;
7. A uniformly chooses r 2 Zq, computes com= gshr mod p and sends com to B.

Decommitment Phase:

1. A sends s; r to B;
2. B outputs: s if com= gshr mod p, ? otherwise.

We obtain the following

Theorem4. Assuming the existence of computationally-secure commitment
schemes and the intractability of computing discrete logarithms modulo inte-
gers of the form p = 2q+ 1, for p; q primes, (A,B) is a perfectly equivocable and
perfectly secure commitment scheme.

Proof. The correctness and perfect security properties directly follow from the
analogue properties of the scheme in [23]. Now we consider the binding property.
Note that since B commits to u1; u2 using a computationally secure commit-
ment scheme, for any polynomial time A0, the distribution of u1v1modp and
u2v2modp has only negligible distance from the uniform distribution. Therefore
we can apply the analysis of [23] to conclude that (A,B) is computationally bind-
ing assuming that computing discrete logarithms modulo integers of the form

p = 2q + 1, for q prime, is intractable. The proof that (A,B) is perfectly equiv-
ocable can be obtained similarly as for the previous scheme. Similarly, we can
construct a simulator M who will run the protocol as A does, learn the string
u committed by B, rewind B and force the output of the coin ipping protocol
to be a predetermined string z. Such string will be predetermined by M as the
string generating g; h 2 Gq such that gx = hmodp, for some x 2 Gq chosen
by M. Later, a commitment com computed as com = gmhr modp by M, can be
decommitted as s 2 Gq in the following way: M randomly chooses r0 2 Gq and
sets s = m+ x(r� r0)modp. It can be seen that (s; r0) is a valid decommitment
of com as s. The proof continues along the same lines as the proof of Theorem 3.
We can de�ne the same probabilities q0; q1 and similarly show that p0 = q0,
q1 = q2 and p1 = q1, from which we obtain that p1 = p0. ut
We remark that the assumption of intractability of computing discrete loga-
rithms implies the existence of computationally secure commitment schemes,
therefore Theorem 4 holds under the only assumption of the intractability of
computing discrete logarithms.

5 Concurrent zero-knowledge proofs with preprocessing

In this section we consider the problem of constructing concurrent zero-knowledge
proofs with preprocessing. We present a transformation which applies to all lan-
guages having a public-coin honest-veri�er zero-knowledge proof systems, includ-
ing, in particular, all languages in NP. The transformation returns a concurrent
zero-knowledge proof system with preprocessing, requiring therefore no timing
assumptions nor requiring the parties to know the number of users in the system.
Important properties of the resulting proof system include the fact that it has
round, communication and computation complexity comparable to those of the
starting proof system; speci�cally, our transformation does not require general
NP reductions, and requires a 3-round preprocessing phase and a proof phase
with a number of rounds equal to the number of rounds of the original proof
system. For simplicity of description, we now present our result for all languages
having a 3-round public-coin honest-veri�er zero-knowledge proof system. For-
mally, we achieve the following

Theorem5. Let L be a language having a 3-round public-coin honest-veri�er
zero-knowledge proof system. Assuming the existence of pseudo-random gener-
ators and perfectly secure commitment schemes, there exists (constructively) a
concurrent computational zero-knowledge proof system with preprocessing for L
where both preprocessing and proof phases require 3 rounds of communication.

The result underlying our transformation is actually stronger than what stated
in the above theorem, providing, for example, additional e�ciency properties;
various remarks and extensions are discussed in Section 5.2. In the following, we
start with an informal description of our transformation, then present a formal
description of our concurrent zero-knowledge proof system and then prove its
properties.
An informal description. We start by informally describing the main ideas
behind our technique. First of all, we should observe that proving a protocol
to be concurrent zero-knowledge becomes a problem in the presence of poten-
tially bad interleavings among the polynomially many concurrent executions. In

particular, such interleavings may ask the simulator for too many (eventually,
more than polynomial) rewindings in order to be able to succeed in simulat-
ing the protocol. Therefore, we use a technique that allows to simulate part
of our protocol without performing any rewinding Part of our protocol uses a
special zero-knowledge property, similar to a technique used in [12] in a trusted-
center setting and in [14] in the case of arguments. This type of zero-knowledge
property, formally de�ned as straight-line zero-knowledge, does not require the
simulator to rewind the adversary. Straight line zero-knowledge arguments have
been implemented in [12], using either a trusted center or a preprocessing phase
with timing assumptions. In this paper we separate the preprocessing phases of
all protocols from the proof phases of all protocols and obtain, without using
timing assumptions or trusted centers, that the proof phase of our protocol is
straight-line zero-knowledge. This is achieved by using the tool of equivocable
commitment. Namely, the prover uses a computationally equivocable commit-
ment scheme to commit to some random string d, receives the challenge c from
the veri�er, decommits his string d and uses the string c � d as a challenge ac-
cording to the original protocol (A,B). In this way, during the simulation, he
can compute such commitment keys in a way such that he can later open them
both as a 0 and as a 1. In particular, he will be able to set string d after he
has seen the challenge c from the adversary. Namely, he will be able to set d in
such a way that the string d � c matches a challenge consistent with the �rst
message he has already sent and with the output of an execution of the simulator
S that he had previously computed. The scheme will use the computationally
equivocable commitment presented in Section 4; in particular, the coin ipping
subprotocol used in that scheme will be run in the preprocessing phase of this
protocol. Notice that the coin ipping protocol is not straight line simulatable,
but its concurrent composition can be simulated in time at most quadratic of
the number of executions, no matter which interleavings among them are chosen
by the adversary.
Formal description. Let L be a language having a 3-round public-coin honest-
veri�er zero-knowledge proof system (A,B) and let x be the common input,
where jxj = n. We denote by S the honest-veri�er simulator associated to (A,B),
and by (mes; c; ans) a transcript of an execution of (A,B), where mes is the �rst
message, c is the challenge, ans is the answer, and jcj = m. Also, let (C,D) be a
perfectly secure commitment scheme and let G be a pseudo-random generator.
Now we give a formal description of the preprocessing phase subprotocol (P1,V1)
and the proof phase subprotocol (P2,V2) of our concurrent zero-knowledge proof
system with preprocessing (P,V).

The Proof System ((P1,V1),(P2,V2))

Input to P1 and V1: 1n, where n is a positive integer.

Instructions for P1 and V1 (preprocessing phase):

1. V1 uniformly chooses u1; : : : ; um 2 f0; 1g
3n and commits to them using scheme

(C,D) (possibly interacting with P1);

2. P1 uniformly chooses v1; : : : ; vm 2 f0; 1g
3n and sends them to V1;

3. V1 decommits u1; : : : ; um using scheme (C,D) (possibly interacting with P1);

4. If u1; : : : ; um are not properly decommitted, P1 halts;

5. P1 sets � equal to the transcript so far and outputs: �;

6. V1 sets � equal to the transcript so far and outputs: �.

Input to P2: x;�, where jxj = n. Input to V2: x; �, where jxj = n.

Instructions for P2 and V2 (proof phase):

1. P2 sets mes = A(x) and uniformly chooses d1; : : : ; dm 2 f0; 1g;

2. For i = 1; : : : ;m,

P2 uniformly chooses si 2 f0; 1g
n and computes zi = G(si);

P2 sets comi = zi if di = 0 or comi = zi � ui � vi if di = 1;

P2 sends mes; com1; : : : ; comm to B.

3. V2 uniformly chooses b 2 f0; 1gm and sends b to P2;

4. P2 decommits d1; : : : ; dm by sending s1; : : : ; sm to V2;

5. P2 sets d = d1 � � � � � dm, c = a� d, ans = A(x;mes; c) and sends ans to V2;

6. V2 checks that comi = G(si) if di = 0 and comi = G(si)� ui � vi if di = 1;

if any of these checks fails then V2 halts;

7. If B(x;mes; c; ans) = ACCEPT then V2 outputs: ACCEPT

else V2 outputs: REJECT.

We remark that the protocol does not require any information about the input
to be known at preprocessing phase, other than its length.

5.1 Properties of our protocol

We now prove the properties of the described protocol. Clearly the veri�er's
algorithms V1 and V2 can be performed in probabilistic polynomial time. The
completeness requirement directly follows from the correctness of the equivocable
commitment scheme and the completeness of the protocol (A,B). The soundness
requirement directly follows from the perfect security of the commitment scheme
(C,D) and the analysis in [21]. Now we see that the requirement of concurrent
zero-knowledge is satis�ed.

Concurrent Zero-Knowledge. In the following we describe an e�cient simu-
lator Sim which interacts with a probabilistic polynomial-time adversary A who
corrupts all veri�ers V1; : : : ; Vq. We will show that for all x1; : : : ; xq 2 L, the dis-
tributions SimA(x) and ViewA(x) are computationally indistinguishable, where
x = (x1; : : : ; xq).

The simulator Sim. We start with an informal description of Sim. The �rst step
of the simulator Sim is to run the preprocessing phase of protocol (P,V), where
Sim runs algorithm P1 and A runs V1. This step is done to check whether
A decommits all the commitments in a proper way. If this is the case, then
Sim continues the simulation; otherwise, namely, if there exists at least one
commitment that is not open properly from A, Sim outputs the transcript seen
until then and halts. In this step Sim also keeps track of which veri�er sent its
commitment message �rst, call it V1, and which were its decommitments.

The second step of the simulator Sim consists in performing the simulation
of the concurrent executions in the preprocessing phase. The algorithm Sim
repeats for each veri�er Vi, i 2 f1; : : : ; qg, the following four substeps, given a
`current' veri�er Vi, and the value of its decommitted strings. First, it rewinds
the adversary A until right after Vi had sent its commitments. Then, using its

knowledge of the decommitted strings from Vi, he sends some pseudo-random
strings which will allow later to send commitments that can be later opened
both as 0 and as 1. Now, Sim will continue the simulation of the preprocessing
phase by running the (polynomial-time) algorithm P1 and waiting for the next
veri�er sending its commitmentmessage. Once, he has found such veri�er, he will
continue the simulation of the preprocessing phase by running P1 and waiting
for the decommitments by such veri�er, who becomes then the current veri�er
in the next execution of these four substeps. If at any time, a veri�er sends an
inappropriate decommitment, Sim just halts.

The third step of the simulator Sim consists in performing the simulation of
the concurrent executions in the proof phase. Note that after the second step is
over, if Sim has not halted, in all proofs Sim can compute commitments that he
can open both as 0 and as 1. Therefore, the proof can now be simulated with-
out rewindings of any veri�er, since, after seeing the message from the veri�er,
Sim can set the challenge any value it likes by just properly decommitting the
equivocable commitments.
A formal description is in Figure 5.1. We have the following

Lemma6. For all probabilistic polynomial time algorithms A, the algorithm
SimA runs in expected polynomial time.

Proof. Let us �rst consider the simulation of the preprocessing phase. From
its formal description, we �rst observe that Sim runs once the preprocessing
phase by running algorithm P1; this step can be run in polynomial time since
algorithm P1 also runs in polynomial time. Then we observe that Sim rewinds
the algorithm A at most q(n) times, that is, a number of times polynomial in
n, since q is a polynomial. During each rewinding Sim clearly runs at most a
polynomial number of steps, since G is computable in polynomial time. Finally,
it is easy to see that the simulation of the proof phase also takes at most a
polynomial number of steps. ut

Lemma7. For all probabilistic polynomial time algorithms A, all polynomials
q, and all x1; : : : ; xq 2 L, the distribution SimA(x) is computationally indistin-
guishable from ViewA(x), where x = (x1; : : : ; xq).

Sketch of Proof. We consider three cases according to whether the adversary
decommits its commitments in a proper way in various steps of algorithm Sim.
The �rst case we consider is the one in which the adversary A always decommits
its commitments in a proper way. All messages sent by A are clearly equally
distributed in the simulation and in the proof since they are computed in the
same way. Now, let us consider the messages from the provers. We observe that
the triple (mesi; ci; ansi) is output by the simulator S for (A,B) and therefore
its distribution is computationally indistinguishable from the distribution of the
same triple in the proof. The only remaining messages to consider are the strings
vi;j in the preprocessing phase, the commitments zi;j;� and the associated decom-
mitments si;j;� in the proof phase. From the description of Sim and P1, we can
see that the distributions of such strings are clearly di�erent; for instance, the
strings vi;j are random in a real proof and pseudo-random in the simulated
execution. However, notice that each triple (vi;j; zi;j;�; si;j;�) is part of the tran-
script of an execution of the computationally equivocable commitment scheme

The Algorithm Sim

Input to Sim: x1; : : : ; xq, where jxij = n.

Instructions for Sim (preprocessing phase):

1. Run the preprocessing subprotocol (P1,V1), playing as P1 and interacting with

A who plays as V1; (if A ever decommits inappropriately, output the transcript

obtained until then and halt;)

call V1 the �rst veri�er sending its commitments (according to scheme (C,D));

set i = 1 and let u1;1; : : : ; u1;m 2 f0; 1g
3n be the strings decommitted from V1;

2. repeat while i � q:

rewind A until right after Vi has sent its commitments;

uniformly choose si;j;0; si;j;1 2 f0; 1g
n, set zi;j;0 = G(si;j;0), zi;j;1 = G(si;j;1),

and pri;j = zi;j;0 � zi;j;1, for j = 1; : : : ;m;

set vi;j = pri;j � ui;j and send vi;j to Vi, for j = 1; : : : ;m;

get a message advmes from A;

if advmes is a decommitment message from Vi then

if the decommitment is not appropriate then halt;

if i = q then exit from the repeat loop else get a message advmes from A;

if advmes is a commitment message from a veri�er 6= Vi then

call such veri�er Vi+1 and set i = i+ 1;

repeat

get a message advmes from A;

if advmes is a commitment message from a veri�er 6= Vi then

uniformly choose vi;1; : : : ; vi;m 2 f0; 1g
3n and send them to A;

if advmes is a decommitment message from a veri�er 6= Vi then

if the decommitment is not appropriate then halt;

until advmes is the decommitment message from Vi;

if the decommitment by Vi is not appropriate then halt;

let ui;1; : : : ; ui;m 2 f0; 1g
3n be the strings decommitted from V1;

3. for i = 1; : : : ;m, let �i be a transcript of the communication between Sim and Vi,

let �i = (ri � �i), where ri is the random tape used by Vi and let T1 be the entire

transcript between all Pi's and all Vi's so far.

Instructions for Sim (proof phase):

1. Repeat

get a message advmes from A;

if advmes =`start i-th proof' then

uniformly choose randi and let (mesi; ci; ansi) = S(randi ; xi);

send zi;1;0 ; : : : ; zi;m;0 to A;

if advmes = bi 2 f0; 1g
m then

send ansi and let dij be the j-th bit of ci � bi;

decommit each zi;j;0 as dij by sending to A si;j;0 if dij is 0 or si;j;1 if dij is 1;

2. let T2 be the entire transcript between all Pi's and all Vi's in this phase;

3. output: (T1; T2; �1; : : : ; �m).

Figure 1: The simulator algorithm Sim

presented in Section 4. Therefore, we can directly apply Theorem 3 to conclude
that the distribution of such triple in the real proof and the distribution of such
triple in the simulation are computationally indistinguishable.
The second case we consider is the one in which the adversary A decommits its
commitments in step 1 in a proper way but decommits in a non proper way in
one of the remaining steps of Sim. Notice that in this case Sim halts without
output and therefore the two distributions di�er. However we now see that this
happens with negligible probability. Assume not; then A is able to distinguish
between the �rst simulated execution (in which all the ui;j's are random) and
the second simulated execution (in which the ui;j's are pseudo-random). In the
proof of Theorem 3 we showed that in the case of a single execution of a single
bit protocol, this fact implies the existence of an e�cient distinguisher between
a random string and the output of G, thus contradicting the assumption that
G is a pseudo-random generator. A modi�cation of that proof can be used here
too, in the concurrent setting, where the modi�cation consists in using a hybrid
argument to take care of the fact that there are several strings ui;j that are
random in one execution and pseudo-random in the second execution.
The last case we need to consider is the one in which the adversary A does not
decommit in a proper way its commitments in step 1 of algorithm Sim. Note
that if this happens the simulator Sim halts by outputting the transcript so far;
this is the same view as that of A during the real proof (since the prover also
halts in this case); therefore, the simulation is perfect in this case. ut

5.2 Remarks and Extensions

We present some remarks and extensions of our main result, as given in Theo-
rem 5, concerning minimal complexity assumptions, e�ciency, allowing any poly-
nomial number of proofs, and extending to any public-coin protocol.

E�ciency. In terms of communication and computation complexity, when ap-
plied to several 3-round public-coin honest-veri�er zero-knowledge protocols in
the literature (e.g., [17, 5, 18, 25, 6]) our proof system has e�ciency compara-
ble to that of the original protocol. In particular, contrarily to previously given
concurrent zero-knowledge proof system, the construction of our protocol does
not require any NP reduction, which could potentially blow up the parameters.
Considering that our protocol is also a proof of knowledge, this may have ap-
plications to identi�cation schemes. Moreover, in many examples for which the
original computational zero-knowledge proof system already requires a commit-
ment scheme (e.g., [17, 5]), an optimization can be performed: such protocols
can be made concurrent zero-knowledge in our model by only implementing the
commitment scheme using our equivocable commitment scheme in Section 4.

Minimal complexity assumptions. Our protocol is based on the existence
of perfectly secure commitment schemes and pseudo-random generators. Both
can be constructed under the assumption of the existence of collision-intractable
functions, and number-theoretic assumptions as the intractability of deciding
quadratic residuosity modulo composite integers.

Any polynomial number of proofs. Our proposed protocol allows a number
of proofs bounded by the size of the preprocessing. By combining our techniques
with those in [13] for non-interactive zero-knowledge proofs, we can allow any
polynomial (in the size of the preprocessing) number of proofs. This variation,

however, involves a general NP reduction, thus making the protocol much less
e�cient in terms of communication and computation complexity.

Extending to any public-coinhonest-veri�er zero-knowledge proof sys-
tem. This extension is obtained by just observing that the transformation done
for the challenge message in the 3-round protocol in the proof of Theorem 5 can
be performed to all public-coin messages from the veri�er. In particular, our
results apply to all languages having an interactive proof system since they have
a public-coin honest-veri�er zero-knowledge proof system [2, 19].

6 Concurrent Zero-Knowledge Arguments with
preprocessing

We now consider the problem of constructing concurrent perfect zero-knowledge
arguments with preprocessing. Speci�cally, we show that the protocol in Sec-
tion 5, when implemented using the perfectly equivocable commitment scheme
in Section 4, allows to obtain concurrent perfect zero-knowledge arguments. For-
mally, we achieve the following

Theorem8. Let L be a language in NP. Assuming the existence of perfectly
secure commitment schemes, there exists (constructively) a concurrent perfect
zero-knowledge argument with preprocessing for L where the preprocessing and
proof phase require 3 rounds of communication, and the soundness property
holds under the intractability of computing discrete logarithms modulo a prime.

The proof of the above theorem goes along the same lines as the proof of Theo-
rem 5 and therefore we only sketch it, by pointing out the few di�erences. First
of all, we reduce L to an NP-complete language, say, Hamiltonian Graphs. Then
we can use the 3-round public-coin honest-veri�er zero-knowledge proof system
given in [5], call it (A,B). Starting from this protocol, we construct a protocol
(P,V) as follows. Whenever, during the protocol (A,B), A is required to use a
computationally equivocable commitment scheme, we will require A to run the
perfectly equivocable commitment scheme in Section 4. The intuition here, also
used in [14], is that the ability of decommitting each commitment to mesi as any
desired string allows to perform a perfect simulation of protocol (A,B) without
need of a witness for the original input graph. We then have that the soundness
holds under the same properties than the binding property of such commitment
scheme, that is, the intractability of computing discrete logarithms modulo a
prime. The concurrent zero-knowledge property is proved as for Theorem 5. We
note that this technique also applies to languages having 3-round public-coin
honest-veri�er perfect zero-knowledge proof systems as those in [18, 17, 25, 6],
in which case it returns a perfect zero-knowledge argument with preprocessing
and with e�ciency (in terms of communication and computational complexity)
comparable to the starting protocol. Speci�cally, we do not need any NP reduc-
tion during the construction of the protocol, even if we want to run a number of
proofs polynomial in the length of the preprocessing.

Acknowledgement. We thank Ran Canetti for useful discussions regarding
equivocable commitments.

References

1. D. Beaver, Adaptive Zero-Knowledge and Computational Equivocation, Proc. of
FOCS 96.

2. M. Ben-Or, J. Hastad, J. Kilian, O. Goldreich, S. Goldwasser, S. Micali, and P.
Rogaway, Everything Provable is Provable in Zero-Knowledge, Proc. of CRYPTO
88.

3. T. Beth and Y. Desmedt, Identi�cationTokens - or: Solving the Chess Grandmaster
Problem, Proc. of CRYPTO 90.

4. G. Brassard, D. Chaum, and C. Crepeau, Minimum Disclosure Proofs of Knowl-
edge, Journal of Computer and System Sciences, vol. 37, n. 2, 1988, pp. 156{189.

5. M. Blum, How to Prove a Theorem So No One Else Can Claim It, Proc. of the
International Congress of Mathematicians, California, 1986, pp. 1444{1451.

6. A. De Santis, G. Di Crescenzo, G. Persiano, and M. Yung, On Monotone Formula
Closure of SZK, Proc. of FOCS 94.

7. A. De Santis, S. Micali, and G. Persiano, Non-Interactive Zero-Knowledge Proof
Systems with Preprocessing, Proc. of CRYPTO 88.

8. G. Di Crescenzo, A Note on Distributed Zero-Knowledge Proofs, unpublished
manuscript (submitted to PODC, January 1997).

9. G. Di Crescenzo, Y. Ishai, and R. Ostrovsky, Non-Interactive and Non-Malleable
Commitment, Proc. of STOC 98.

10. D. Dolev, C. Dwork, and M. Naor, Non-Malleable Cryptography, Proc. of STOC
91.

11. C. Dwork, M. Naor, and A. Sahai, Concurrent Zero-Knowledge, Proc. of STOC
98.

12. C. Dwork and A. Sahai, Concurrent Zero-Knowledge: Reducing the Need for Tim-
ing Constraints, Proc. of CRYPTO 98.

13. U. Feige, D. Lapidot, and A. Shamir, Multiple Non-Interactive Zero-Knowledge
Proofs based on a Single Random String, Proc. of FOCS 90.

14. U. Feige and A. Shamir, Zero-Knowledge Proofs of Knowledge in Two Rounds,
Proc. of CRYPTO 89.

15. O. Goldreich, Foundations of Cryptography: Fragments of a Book, in Electronic
Colloquium on Computational Complexity.

16. O. Goldreich and A. Kahan, How to construct constant-round zero-knowledge proof
systems for NP, in Journal of Cryptology, vol. 9, n. 3, pp. 167{190.

17. O. Goldreich, S. Micali, and A. Wigderson, Proofs that Yield Nothing but their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems Journal of
the ACM, vol. 38, n. 1, 1991, pp. 691{729.

18. S. Goldwasser, S. Micali, and C. Racko�, The Knowledge Complexity of Interactive
Proof-Systems, SIAM Journal on Computing, vol. 18, n. 1, February 1989.

19. R. Impagliazzo and M. Yung, Direct Minimum-Knowledge Computation, Proc. of
CRYPTO 87.

20. J. Kilian, E. Petrank, and C. Racko�, Lower Bounds for Zero-Knowledge on the

Internet, Proc. of FOCS 98.
21. M. Naor, Bit Commitment from Pseudo-Randomness, Proc. of CRYPTO 91.
22. M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung, Perfect Zero-Knowledge

Arguments under General Complexity Assumptions, Proc. of CRYPTO 92.
23. T. Pedersen, Non-Interactive and Information-Theoretic Secure Veri�able Secret

Sharing, Proc. of CRYPTO 91.
24. R. Richardson and J. Kilian, On the Concurrent Composition of Zero-Knowledge

Proofs, Proc. of EUROCRYPT 99.
25. M. Tompa and H. Woll, Random Self-Reducibility and Zero-Knowledge Interactive

Proofs of Possession of Information, Proc. of FOCS 87.

This article was processed using the LATEX macro package with LLNCS style

