
Polynomial Time Approximation Schemes for Geometric

k-Clustering�

Rafail Ostrovskyy Yuval Rabaniz

July 1, 2001

Abstract

The Johnson-Lindenstrauss lemma states that n points in a high dimensional Hilbert space can

be embedded with small distortion of the distances into an O(logn) dimensional space by applying

a random linear transformation. We show that similar (though weaker) properties hold for certain

random linear transformations over the Hamming cube. We use these transformations to solve NP-

hard clustering problems in the cube as well as in geometric settings.

More speci�cally, we address the following clustering problem. Given n points in a larger set (for

example, R
d
) endowed with a distance function (for example, L2

distance), we would like to partition

the data set into k disjoint clusters, each with a \cluster center", so as to minimize the sum over all data

points of the distance between the point and the center of the cluster containing the point. The problem

is provably NP-hard in some high dimensional geometric settings, even for k = 2. We give polynomial

time approximation schemes for this problem in several settings, including the binary cube f0; 1gd with

Hamming distance, and R
d
either with L1

distance, or with L2
distance, or with the square of L2

distance. In all these settings, the best previous results were constant factor approximation guarantees.

We note that our problem is similar in avor to the k-median problem (and the related facility loca-

tion problem), which has been considered in graph-theoretic and �xed dimensional geometric settings,

where it becomes hard when k is part of the input. In contrast, we study the problem when k is �xed,

but the dimension is part of the input.
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1 Introduction

Suppose we are given a set X of n data points in Rd and we wish to �nd a \good" partition of

the points into two non-empty sets X1 and X2 (called clusters). There could be many di�erent

measures of the quality of the partition. The measure we adopt here is the following: Assign to the

set Xi a center point ci 2 Rd , for i = 1; 2. Then, sum up the (Euclidean) distances between each

data point and the center of the set that contains it. The smaller the sum, the better we deem the

partition.

Another way to interpret the problem is the following. If the centers are known, then obviously

the best partition is to assign each point to the closest center. Thus, our problem is to �nd centers

c1; c2 2 Rd so as to minimize the quantity

X
x2X

minfkx� c1k2; kx� c2k2g:

More generally, we also consider variations of this problem with k centers, for a �xed k > 2, using

other distance measures (such as the L1 norm, and the square of Euclidean distance), and in other

vector spaces (such as the binary cube). We refer to these problems as (geometric) k-clustering.

In this paper, we give polynomial time approximation schemes for k-clustering in several high

dimensional geometric settings, including the binary cube with Hamming distance, and R
d with

either Euclidean distance, or the square of Euclidean distance, or L1 distance. As discussed in

detail below, previous results provided constant approximation guarantees, or were limited to �xed

dimension.

Clustering of data has signi�cant importance in many �elds, including operations research,

data mining, statistics, computer vision and pattern recognition (see, for example, [37, 10, 38] and

references therein). The recent interest in clustering problems can be attributed to applications

such as the classi�cation of web pages retrieved by a search engine [40, 33, 30], or the study of gene

expression in computational molecular biology [31]. In many applications, the goal is to cluster data

into several clusters according to some measure, where the data has many incomparable attributes

and thus can be cast as a high dimensional clustering problem [33, 18, 7, 39]. In this paper,

we consider the case where the dimension is very large but the number of clusters that we need

to produce is relatively small. A typical case is when a large collection of documents must be

clustered according to a small number of topics that can be inspected by a person in order to assist

further classi�cation and searching. Representation of documents using methods such as latent

semantic indexing [20, 16, 19, 9] leads to high dimensional data. Systems like the \scatter/gather"
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project [14, 13] or the \Manjara" project [30, 24] (a web meta-search engine that clusters the results

of a search according to several topics) require clustering of such data into a relatively small number

of clusters.

When k is part of the input, the problem is also known as the k-median problem. In graph-

theoretic settings (where the points are placed in a �nite metric space which is part of the input), the

k-clustering problem (�xed k) trivially has a polynomial time solution: Simply enumerate over all

possible choices for the centers. For arbitrary k, in �nite metrics, the k-median problem was shown

to be APX-hard by Guha and Khuller [25]. A breakthrough result by Charikar, Guha, Shmoys, and

Tardos [11] gave a constant factor approximation algorithm, based on a rounding procedure for a

natural linear programming relaxation. The constant has been improved by Jain and Vazirani [28],

and further by Charikar and Guha [12], using the primal-dual method.

Similarly, in �xed dimension d, the k-clustering problem has a polynomial time solution. To

illustrate this for k = 2 (in Rd with Euclidean distances), notice that the clusters must be sepa-

rated by a hyperplane. In �xed dimension, the number of combinatorially distinct separations is

polynomial in n, and we can check each of them eÆciently. However, the combinatorial complex-

ity of the problem grows exponentially with the dimension. Indeed, the k-clustering problem was

shown to be NP-hard even for k = 2 in several cases. Kleinberg, Papadimitriou, and Raghavan [34]

show it for the binary cube, and Drineas, Frieze, Kannan, Vempala, and Vinay show it for Rd with

squared Euclidean distances. The NP-hardness of the Euclidean distances case is still open. We

note that in �xed dimension, for arbitrary k, Arora, Raghavan, and Rao [6] give a polynomial time

approximation scheme, using dynamic programming.

Our measure of the quality of our clustering is by no means the obvious choice. In fact, other

measures have been proposed in the literature. The most common alternatives are min-sum clus-

tering, and min-max clustering (or k-center). In min-sum clustering, the quality of the clustering is

measured by the sum of intra-cluster distances (so there are no centers associated with the clusters).

In min-max clustering, the quality is measured by the maximum distance of a data point to the

center of the cluster containing it. None of these measures seem to produce the intuitively \best"

clustering on all instances.

For example, Figure 1 at the end of the paper shows two instances of points in the Euclidean

plane (requiring a partition into two clusters). Figures 2 and 3 show the results of min-sum and

2-clustering, respectively, on these two instances. Clearly, min-sum is intuitively better on the

bottom instance, whereas 2-clustering is intuitively better on the top instance. (Notice that in the

case of squared L
2 distances, if C is a cluster, then the cost of C under the min-sum measure is
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P
x;y2C kx�yk22 and the cost of C under the 2-clustering measure is minc

P
x2C kx�ck22. The latter

expression is minimized at c = 1

n

P
x2C x, and is proportional to the former expression. However,

the factor of proportionality is jCj, so the two measures do not necessarily produce the same optimal

clustering.)

Clustering problems, and in particular min-sum clustering, have been considered recently by

several authors. A prevalent technique is sampling: One takes a small (random) sample of the data

points, enumerates over all possible partitions of the sample, extends each partition to a partition

of the entire data set, and outputs the best solution. Schulman [39] gives a polynomial (linear) time

approximation scheme for min-sum clustering in geometric settings (including squared Euclidean

distances), provided that the dimension d = o(logn= log logn). His algorithm works in higher

dimension too, but the running time degrades to n
O(log log n). Indyk [26] gives a polynomial time

approximation scheme for min-sum clustering in �nite metric spaces (when two clusters are needed),

based on the polynomial time approximation scheme of de la Vega and Kenyon [17] for metric MAX

CUT. Alon and Sudakov [4] give a polynomial time approximation scheme for the maximization

version of our problem in the binary cube (i.e., when the objective is to �nd a partition and centers

that maximize the sum over all data points of the overlap between the point and the center of the

cluster containing it). Notice that an optimal solution to their problem is also an optimal solution

to our problem. However, this is not the case with near-optimal solutions (so their approximately

optimal solution could be far from optimal by our measure). All these results use one form or

another of sampling.

Sampling is not a common tool in the design of polynomial time approximation schemes. It

has been used successfully in the context of dense graphs [5, 23]. In geometric settings (and in

general), the ubiquitous method is dynamic programming (see [10]). One example in our context is

the k-center algorithms of Agarwal and Procopiuc [1]. They give an nO(k1�1=d)-time exact algorithm

and a polynomial time approximation scheme with running time O(n logk) + (k=�)O(k1�1=d) for the

k-center problem in Rd with L
p distances, for all p, using dynamic programming. (See also the

survey of Agarwal and Sharir [2] for previous and related work.)

A di�erent idea is advocated by Drineas, Frieze, Kannan, Vempala, and Vinay [18]. They

give a 2-approximation for k-clustering (�xed k) for the case of squared Euclidean distances, using

methods from linear algebra (speci�cally, singular value decomposition, see also [20, 16, 19, 9, 24]

for its uses in information retrieval and clustering). Prior to our work, this was the best result for

arbitrary dimension. Notice that there is a trivial 2-approximation algorithm for the case of metric

distances (such as Euclidean distances), because if we restrict the centers to be data points, we

3



lose at most a factor of 2 in the quality of the solution (thanks to the triangle inequality). This

immediately implies a 4-approximation in the case of squared Euclidean distances. The advantage

of the Drineas et al. method is that the clustering can be computed very quickly using methods for

approximating the singular value decomposition (which in turn use sampling).

Our results use neither sampling of the data points, nor dynamic programming, nor the singular

value decomposition. For the Hamming cube, we use random linear transformations to reduce the

dimension. More speci�cally, Kushilevitz, Ostrovsky, and Rabani [35] show that a certain random

linear transformation into a low dimensional cube can be used to test for a speci�c Hamming dis-

tance. We strengthen their analysis to show that this transformation guarantees low distortion

for a range of distances, while for distances outside the range it doesn't shrink large distances too

much and it doesn't expand small distances too much. We believe that this observation might be

of independent interest. We note that in Hilbert space (e.g., (Rd
; L

2)) the Johnson-Lindenstrauss

Lemma [29] uses a random linear transformation (a projection onto a random subspace) for nearly

isometric dimension reduction of �nite subsets. This lemma has found recent applications in com-

binatorics [22], graph algorithms [36], nearest neighbor search [27], and learning mixtures of Gaus-

sians [15]. It does not seem to be useful in our case.

In the low dimensional cube, we can enumerate over the possible center locations and compute a

candidate clustering for each possibility. The value of a candidate clustering in the low dimensional

cube is not necessarily proportional to its value in the original space. However, we can check the

value of each candidate clustering in the original space and output the best solution. This procedure

is relatively simple for k = 2. For larger k, computing the clustering from the choice of cluster centers

in low dimension is more complicated. The location of cluster centers induces for every data point

a tournament among the clusters. We assign a data point to an apex of its tournament, an idea

previously used by Kleinberg [32] in the context of nearest neighbor search. Our other results are

derived essentially by reducing the problem to clustering in the Hamming cube. This is not a

\black-box" reduction, as we have to modify the cube algorithm to test the candidate clusterings

in the original space. Thus, our results imply that in all the settings we consider, in order to get a

close to optimal clustering we only need to consider a polynomial number of possible cluster centers.

The set of centers to consider can be generated eÆciently from a distribution that depends (in a

complicated fashion) on the input data points. In other words, we are able to generate a small �-net

for the space of partitions into clusters (where proximity is measured by the cost of the partition),

thereby reducing signi�cantly the combinatorial complexity of the approximation versions of the

(NP-hard) problems we consider.
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2 Low Dimensional Embeddings

Recall that a metric space is a pair (P; d) where P is a set (whose elements are called points), and

d is a function d : P � P ! R (called a metric or a distance), such that for every p1; p2; p3 2 P the

following hold: (i) d(p1; p2) � 0; (ii) d(p1; p2) = 0 $ p1 = p2; (iii) d(p1; p2) = d(p2; p1); and (iv)

d(p1; p2) + d(p2; p3) � d(p1; p3). The last property is called the triangle inequality. If P is a vector

space and k � k is a norm; then, de�ning d(p; q) = kp� qk we get a metric space, which we denote

by (P; k � k).

De�nition. LetM = (P; d) andM0 = (P 0
; d

0) be two metric spaces. Let X; Y � P . A mapping

' : P ! P
0 is (Æ; �; `)-distorted on (X; Y ) 1 i� there exists `0 such that for every x 2 X and y 2 Y ,

the following holds:

1. If d(x; y) < �` then d
0('(x); '(y)) < (1 + Æ)�`0.

2. If d(x; y) > `=
p
� then d

0('(x); '(y)) > (1� Æ)`0=
p
�.

3. If �` � d(x; y) � `=
p
� then

(1� Æ)`0=` � d
0('(x); '(y))=d(x; y) � (1 + Æ)`0=`.

Intuitively, a (Æ; �; `)-distorted mapping approximately preserves distances close to `, and further-

more it doesn't shrink too much large distances and doesn't expand too much small distances.

The following lemma is central to the analysis of our algorithms:

Lemma 1. Let Æ; �; ` > 0, with �=(1 � �) � (1 � Æ)=(1 + Æ). Let M = (P; d) and M0 = (P 0
; d

0)

be two metric spaces. Let x; y; z 2 P , with ` � d(y; z) � 2`. Let ' be (Æ; �; `)-distorted on

(fxg; fy; zg). If d0('(x); '(y)) � d
0('(x); '(z)); then, d(x; y) � (1+ �)d(x; z), where � = maxf(2��

1)=(1� �); 2
p
�; 2Æ=(1� Æ)g.

Proof. We consider four cases:

Case 1: If d(x; y) < �`, then by the triangle inequality, d(x; z) > (1 � �)`. Therefore, the claim

holds in this case.

Case 2: If d(x; z) < �`, then d(x; y) > (1 � �)`. However, because ' is (Æ; �; `)-distorted on

(fxg; fy; zg), then for some `0 > 0,

d
0('(x); '(z)) < (1 + Æ)�`0

1
If X = Y we simply say that ' is (Æ; �; `)-distorted on X .
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� (1� Æ)(1� �)`0

< d
0('(x); '(y));

in contradiction to the assumption of the lemma.

Case 3: If d(x; y) > `=
p
�, then by the triangle inequality d(x; z) � d(x; y)+ 2` < (1 + 2

p
�)d(x; y),

so the claim holds in this case too.

Case 4: Otherwise, �` � d(x; y) � `=
p
�, �` � d(x; z), and we may assume that d(x; z) � `=

p
�

(otherwise the lemma is clearly true). Thus we have

d(x; y) � ` � d0('(x); '(y))
(1� Æ)`0

� ` � d0('(x); '(z))
(1� Æ)`0

� 1 + Æ

1� Æ
d(x; z)

Notation. The �eld with two elements is denoted Z2. A d-dimensional vector space over Z2 is

Denoted Zd
2
. The d-dimensional Hamming distance (i.e., the L1 norm in Zd

2
) is denoted Hd. The

Hamming cube Qd is the metric space (Zd
2
; Hd).

The Hamming cube. Consider a probability distributionAd;d0(p) on d
0�d matrices over Z2 (i.e.,

linear transformations from Z
d
2
into Zd0

2
), where the entries are independent, identically distributed

random 0=1 variables with Pr[1] = p. The following lemma is an extension of a lemma in [35].

Lemma 2. For every  > 0 there exists � > 0 such that for every � > 0, and for every positive

integers n, d, and `, with ` 2 [1; d], the following holds: LetX � Zd
2
, with jXj = n. Let d0 = � lnn=�,

and let A be a random matrix drawn from Ad;d0(�=`). Then the linear mapping x 7! Ax is (
p
�; �; `)-

distorted on X (with respect to the Hamming distance in both spaces) with probability at least

1� n
�.

Proof. Let x; y 2 X. Consider a probability distribution D over vectors r 2 Zd
2
, where the entries

of r are independent, identically distributed, random 0=1 variables with Pr[1] = �=`. We estimate

the probability of the event r � (x� y) 6= 0, denoted in what follows as E.

We �rst notice that the probability of E is monotonically increasing in Hd(x; y) (assuming

�=` � 1

2
). To see this, pick r by selecting coordinates independently with probability 2�=` each, and

then setting each selected coordinate independently as 1 with probability 1

2
(with all the remaining

coordinates being set to 0). The probability of E is precisely half the probability that in the
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�rst step we select at least one coordinate where x and y di�er. The latter probability is clearly

monotonically increasing in Hd(x; y).

Let S be the set of coordinates where x and y di�er (so jSj = Hd(x; y)), and let (the random

variable) X = jfi 2 S; ri = 1gj. Then,

Pr[E] = Pr[X � 1 mod 2] � Pr[X = 1] � (1)

� jSj � �
`
�
�jSj

2

�
�
�
�

`

�2
�
�
1� �jSj

2`

�
� �jSj

`
;

where the second inequality follows from the Bonferroni Inequalities. On the other hand,

Pr[E] � Pr[X � 1] = 1�
�
1� �

`

�jSj
: (2)

If Hd(x; y) is in the interval [�`; `=
p
�], then (1) is at least (1�p�=2)�Hd(x; y)=`, and (2) is at most

�Hd(x; y)=`. By the monotonicity of Pr[E], if Hd(x; y) > `=
p
�, then Pr[E] > (1�p�=2)p�, and if

Hd(x; y) < �`, then Pr[E] < �
2.

Now, picking a random matrix A from Ad;d0(�=`) amounts to picking the rows of A as d0 in-

dependent samples from D. The value of Hd0(Ax;Ay) is precisely the number of times the event

E happens for the d0 samples. The expectation is d0 Pr[E]. By standard Cherno� bounds (see [3,

Appendix A]), The probability that we deviate from the expectation by more than
p
�d

0 Pr[E]=2 (ei-

ther way) is at most 2e��d
0=9

< n
�2� , assuming � is suÆciently large. Summing up this probability

over all
�
n

2

�
pairs x; y 2 X completes the proof.

Other metric spaces. For instances in (Rd
; L

1) and (Rd ; L2), we use embeddings into the Ham-

ming cube. Let Bp(x; `) denote the L
p ball of radius ` around x 2 Rd . The following lemma was

proven in [35]:

Lemma 3 (Kushilevitz, Ostrovsky, and Rabani). Let p 2 f1; 2g, and consider the metric

space (Rd
; L

p). For every �; �; ` > 0, and for every positive integer d, there exist Æ = Æ(�) > 0 and a

positive integer d0 = poly(d; Æ�1; log��1), such that Æ ! 0 as �! 0, and such that for every x 2 Rd

there is a distribution � = �(x; `; Æ; �) over mappings ' : Rd ! Z
d0

2
with the following properties:

1. Every mapping � in the distribution � is de�ned by poly(d0) rationals; given these rationals,

for every y 2 Rd , �(y) can be computed using poly(d0) arithmetic operations; and, it is possible

to generate the rationals de�ning a random sample � of � in poly(d0) time.

2. If � is drawn from �, then with probability at least 1��, � is (Æ; �; `)-distorted on (Bp(x; `);R
d)

(with respect to the Lp distance in Rd , and the Hamming distance in Zd0

2
).
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For our approximation schemes we need the following stronger claim:

Lemma 4. Let X = fx1; x2; : : : ; xng � R
d . For every �; �; `; d, there exist Æ = Æ(�) > 0 and a

positive integer d0 = poly(n; d; Æ�1; log��1), such that there is a distribution � = �(X; `; Æ; �) over

mappings ' with the following properties:

1. Every mapping � in the distribution � is de�ned by poly(d0) rationals; given these vectors, for

every x 2 Rd , �(x) can be computed using poly(d0) arithmetic operations; and, it is possible

to generate the rationals de�ning a random sample � of � in poly(d0) time.

2. If � is drawn from �, then with probability at least 1 � �, � is (Æ; �; `)-distorted on

([ni=1
Bp(x

i
; `=
p
�);Rd).

The proof of this lemma follows closely the construction from the proof of Lemma 3 in [35]. We do

not include it here.

3 Clustering in the Hypercube

Observe that for any given cluster C (a subset of the data set), the best cluster center c can be

computed easily. Indeed, for i = 1; 2; : : : ; d, ci = majorityfxi; x 2 Cg.

Two clusters. Our basic algorithm is a polynomial time approximation scheme for instances in

Q
d and for k = 2. The approximation scheme for k > 2 uses similar ideas in a more complicated

way. The algorithms for other metrics use variations of these schemes as subroutines.

Let X � Z
d
2
denote the input set of points. Our algorithm for k = 2 proceeds as follows. We

guess the distance ` between the two centers (by enumerating over all d possible values). We then

project the data points into a dimension d0 = O(logn) cube. In the smaller cube, we enumerate over

all 22d
0

possible locations for the projections of the optimal solution cluster centers. Each choice

induces a partition of the data set into two subsets. Each subset is associated with a cluster center

projection, and contains all the points whose projections are closer to this center's projection than

to the other center's projection, ties broken arbitrarily. We check each possible partition in the

original space, by computing the best cluster center for each subset, and summing up the distances

from the points to their assigned centers. Finally, we output the best partition, over all guesses of

` and over all guesses of the cluster centers projections. More formally, the algorithm is given by

the following pseudo-code:
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Hamming2Clustering�(X)

d
0  � ln(n+ 2)=�;

for ` = 1; 2; : : : ; d do

Draw a random A
` from Ad;d0(�=`);

for all choices of ~c1; ~c2 2 Zd0

2
do

C1  fx 2 X; Hd0(A
`
x; ~c1) � Hd0(A

`
x; ~c2)g;

C2  X n C1;

cost HammingCost(C1) +HammingCost(C2);

Output the partition (C1; C2) with the smallest cost.

HammingCost(C)

c (majorityfxi; x 2 Cg)di=1
;

Return
P

x2C Hd(x; c).

For simplicity, we left out the initialization and updating of the auxiliary variables needed to �nd

the minimum cost and to store the solution in the main procedure. Clearly, for �xed �, the running

time of the algorithm is polynomial in n and in d. The following theorem states the performance

guarantee for this algorithm.

Theorem 5. For every  > 0, there exists � > 0 such that for every 1

4
� � > 0, the above algorithm

�nds a solution whose value is within a factor of 1 + 4
p
� of the optimum, with probability at least

1� n
�.

Proof. Put � = �() to be the constant stipulated in Lemma 2. It is suÆcient to show that one

of the guesses that the algorithm uses produces a solution with value within a factor of 1 + 4
p
�

of the optimum, with probability at least 1 � n
�. To see this, consider the solutions produced

by the algorithm for ` such that ` = Hd(c
1
; c

2). By Lemma 2, with probability at least 1 � n
� ,

the mapping x 7! A
`
x is (

p
�; �; `)-distorted on X [ fc1; c2g. So, from now on we assume that this

event happens. Of course, we don't know where the images of c1 and c
2 are, but one of the guesses

that the algorithm enumerates over is correct. So, consider the solution given by the algorithm for

A
` and the correct guess of the images ~c1 = A

`
c
1 and ~c2 = A

`
c
2. Denote by bC1, bC2, the clusters
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computed by the algorithm, and let ĉ1, ĉ2 be their centers, respectively. (A point x 2 X is placed

in bC1 i� Hd0(A
`
x; ~c1) � Hd0(A

`
x; ~c2), and otherwise it is placed in bC2.) Using Lemma 1,X

x2 bC1

Hd(x; ĉ
1) +

X
x2 bC2

Hd(x; ĉ
2)

�
X
x2 bC1

Hd(x; c
1) +

X
x2 bC2

Hd(x; c
2)

� (1 + 4
p
�)
X
x2X

minfHd(x; c
1); Hd(x; c

2)g

:

More than two clusters. We now consider partitioning the data set into k clusters, for an

arbitrary (�xed) k > 2. The algorithm is similar to the case of k = 2. We enumerate over the

possible distances between centers (
�
k

2

�
values this time). However, for a given guess, the assignment

of data points to clusters is more complicated. Recall that a tournament is a directed graph where

every pair of distinct nodes is connected by an arc (in one of the two directions). An apex of a

tournament is a node of maximum out degree. Every apex has the property that there is a path of

length at most two from it to any other node in the tournament. The algorithm for k > 2 proceeds

as follows. After guessing the distances `st between every pair s; t of cluster centers in the optimal

solution, we project the data points into
�
k

2

�
cubes, each of dimension O(logn). Each projection is

set to check a particular pair of cluster centers. In each O(logn)-dimensional cube, we enumerate

over all the possible locations for the projections of the cluster centers. Given a such a choice, for

every data point and for every pair of cluster centers, we decide whether the data point is closer to

one center or the other according to the situation with the projected points. This induces, for every

data point, a tournament among the cluster centers. We assign each data point to an apex of its

tournament. The assignment of all data points induces a partition of the data set into k subsets.

We check this partition in the original space, as we did for k = 2. Finally, we output the best

partition among all the choices for inter-cluster center distances, and cluster centers projections.

The following pseudo-code gives a more formal description of the algorithm:

HammingClustering�(X)

d
0  � ln(n+ k)=�;

8` 2 f1; 2; : : : ; dg, draw a random A
` from Ad;d0(�=`);

for all (`st)1�s<t�k 2 f1; 2; : : : ; dg(
k
2
) do

for all (~cij)ki6=j=1
2 (Zd0

2
)k(k�1) do

10



(C1; C2; : : : ; Ck) (;; ;; : : : ; ;);
for x 2 X do

Compute a tournament T over node set f1; 2; : : : ; kg:
for 1 � i < j � k, ij is an edge of T

i� Hd0(A
`ijx; ~cij) � Hd0(A

`ijx; ~cji),

and otherwise ji is an edge of T ;

Find an apex i of T ;

Ci  Ci [ fxg;
cost Pk

i=1
HammingCost(Ci);

Output the partition (C1; C2; : : : ; Ck) with the smallest cost.

Clearly, for �xed � and k this algorithm runs in time polynomial in n and d. Its performance

guarantee is given by the following theorem.

Theorem 6. For every  > 0, there exists � > 0 such that for every 1

4
� � > 0, the above algorithm

�nds a solution whose value is within a factor of (1 + 4
p
�)2 of the optimum, with probability at

least 1� n
�.

Proof. Let c1; c2; : : : ; ck 2 Zd
2
denote the centers of the clusters in the optimum solution. Take �

large enough, so that with probability at least 1� n
�, for every integer ` 2 f1; : : : ; dg, the matrix

A
` is (

p
�; �; `)-distorted on X [ fc1; c2; : : : ; ckg.2

Consider the iteration of HammingClustering� where `ij = Hd(c
i
; c

j), for all 1 � i < j � k,

and ~cij = A
`ijc

i for all 1 � i 6= j � k. Let x 2 X, and let ci be the center of the cluster containing

x in the optimum solution. Suppose x is clustered in Ct by the algorithm. Then, there is a path of

length at most 2 from c
t to c

i in the tournament for x. Let cj be the middle point in this path (if

the path has length 0, then i = j = t, and if the path has length 1, then i = j). Applying Lemma 1

at most twice (for A`tj and for A`ji), we get:

Hd(x; c
t) � (1 + 4

p
�)Hd(x; c

j)

� (1 + 4
p
�)2Hd(x; c

i):

The rest of the proof follows that of Theorem 5.

2
The case d� n has to be handled with care.
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4 Other Metrics

Consider a metric space M = (P; d) and an input set of n points X � P . Let B(x; `) denote

the ball of radius ` around x inM. We present here polynomial time approximation schemes for

k-clustering for several choices ofM. To illustrate the algorithms, we �rst present the case k = 2.

The generalization to arbitrary �xed k is straightforward, and we explain it afterwards.

Two clusters. The main idea of our approximation schemes is the following generic approach:

Guess the distance ` between the cluster centers. Let Æ = Æ(�) be such that Æ ! 0 as � ! 0.

Map the input data set into Zm
2
(where m = poly(n; d; ��1)) using a mapping ' which is (Æ; �; `)-

distorted on ([x2XB(x; `=
p
�); P ) (with respect to Hamming distance in the target space). Now

run the procedure Hamming2Clustering� on '(X) with the following change: Use, instead of

HammingCost, a procedure OurSpaceCost that computes the cost of a cluster in M rather

than in Q
m.

For this approach to work, three conditions are required. Firstly, the set of possible guesses for

the distance between the two cluster centers has to have polynomial size. Secondly, the mapping '

must exist and must be computable in polynomial time. Thirdly, it must be possible to compute

the cost of a cluster inM in polynomial time. We establish these conditions for a few interesting

cases. Before we discuss these conditions, we analyze the performance guarantee of the above

approximation scheme. Let C1 and C2 be the partition of X into clusters in the optimum solution,

and let c1 and c
2 be the centers of these clusters, respectively.

Theorem 7. Let � be suÆciently small so that Æ; � � 1

16
. There exists � = �(�) > 0 such that

� ! 0 as �! 0, and such that the following holds. For every  > 0 there exists � > 0 such that if

` � d(c1; c2) � 2`; then, the above algorithm produces a clustering whose cost is within a factor of

1 + � of the optimum, with probability at least 1� n
� .

Proof. Put � = �() to be the constant stipulated in Lemma 2. Let `
0 be the scale for

which ' is (Æ; �; `)-distorted on ([x2XB(x; `=
p
�); P ). Consider the execution of the modi�ed

Hamming2Clustering on '(X) � Zm
2
. Let bC1 and bC2 be the partition of X into clusters which is

computed by the algorithm in the iteration using `0 and the centers ~c1 = A
`0
'(c1) and ~c2 = A

`0
'(c2).

Let ĉ1; ĉ2 2 P be the centers of bC1;
bC2, respectively. For i = 1; 2, let Ai = fx 2 bCi; d(x; c

i) > `=
p
�g,

and let Bi = bCi n Ai. Now,X
x2 bC1

d(x; ĉ1) +
X
x2 bC2

d(x; ĉ2)

12



�
X
x2 bC1

d(x; c1) +
X
x2 bC2

d(x; c2)

=
X
x2A1

d(x; c1) +
X
x2A2

d(x; c2) +
X
x2B1

d(x; c1) +
X
x2B2

d(x; c2)

�
X

x2A1[A2

�
1 +

2
p
�

1� 2
p
�

�
minfd(x; c1); d(x; c2)g+

X
x2B1

d(x; c1) +
X
x2B2

d(x; c2)

�
X

x2A1[A2

�
1 +

2
p
�

1� 2
p
�

�
minfd(x; c1); d(x; c2)g+

+
X

x2B1[B2

�
1 + max

�
2
p
�

1� Æ
; 2(Æ +

p
�+ Æ

p
�)(1� Æ �p�� Æ

p
�)

��
minfd(x; c1); d(x; c2)g;

where the last inequality follows from Lemma 1, using the fact that A`0 Æ' is (Æ0; �0; `)-distorted on

X [ fc1; c2g, for Æ0 = Æ +
p
�+ Æ

p
� and �

0 = maxf(1 + Æ)�; �=(1� Æ)2g.

We now turn our attention to the three conditions required for the success of our approach. The

�rst condition is easy to guarantee in every metric space. Indeed, to apply Theorem 7, all we need

is to guess d(c1; c2) within a factor of 2. Thus, the number of values we have to check depends only

on the range of possible values. To restrict that range, we use

Lemma 8. Let dmax be the maximum distance between any pair of points inX. If d(c1; c2) � �dmax
n

,

then any partition has a cost within a factor of 1 + 2�n
n�2�

of the optimum solution.

Proof. Let x; y 2 X be two points at distance d(x; y) = dmax. By the triangle inequality,

d(x; c1) + d(y; c1) � dmax. Thus, without loss of generality d(x; c1) � dmax=2. However, by the

triangle inequality, d(x; c2) � (1
2
� �

n
)dmax, so the cost of the optimum solution is at least (1

2
� �

n
)dmax.

Consider any partition of X into two clusters A1 and A2 with cluster centers a1 and a2, respectively.

Using again the triangle inequality,

X
x2A1

d(x; a1) +
X
x2A2

d(x; a2)

�
X
x2A1

d(x; c1) +
X
x2A2

d(x; c2)

�
X
x2C1

(d(x; c1) + �dmax=n) +
X
x2C2

(d(x; c2) + �dmax=n)

�
X
x2C1

d(x; c1) +
X
x2C2

d(x; c2) + �dmax

�
�
1 +

2�n

n� 2�

� X
x2C1

d(x; c1) +
X
x2C2

d(x; c2)

!
:
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As for the second condition, Lemma 4 guarantees that we can compute ' for instances in (Rd
; L

1)

and in (Rd
; L

2). In both cases, the third condition holds as well. For the L1 norm, implementing

OurSpaceCost is easy: On input set C, compute the best center c by ci = medianfxi; x 2 Cg,
then output

P
x2C kx � ck1. For the L

2 norm, the problem is signi�cantly harder. Finding the

best center c amounts to minimizing a convex function, and it can be approximated with arbitrary

precision in polynomial time. Thus we get the following corollary of Theorem 7:

Corollary 9. There are polynomial time approximation schemes for 2-clustering in (Rd
; L

1) and

in (Rd
; L

2).

Finally, we deal with the case of clustering points in Rd with distances measured by the square

of the L2 norm. The problem with this case is that the distance function does not induce a metric,

so our analysis so far does not hold. We solve this problem by using the algorithm for L2 distances,

but using a di�erent OurSpaceCost procedure that computes cluster costs under L
2 squared

distances. Such a procedure is easy to implement. On input set C, the best center c is given by

ci = averagefxi; x 2 Cg. The procedure then returns the value
P

x2C kx� ck2
2
. We get

Theorem 10. The above algorithm is a polynomial time approximation scheme for 2-clustering

in Rd , with distances measured by the square of L2 distance.

Proof. The proof follows closely the proof of Theorem 7. We use the same notation as in that proof.

Our algorithm enumerates over a polynomial number of guesses ` for kc1 � c
2k2. By the discussion

above, one of these guesses satis�es ` � kc1 � c
2k2 < 2`. Now, for this `, the algorithm uses a

mapping ' : Rd ! Z
m
2
. Let `0 be the scale for which ' is (Æ; �; `)-distorted on ([x2XB(x; `=

p
�); P ).

Consider the execution of the modi�ed Hamming2Clustering on '(X) � Zm
2
. Let bC1 and bC2 be

the partition of X into clusters which is computed by the algorithm in the iteration using `
0 and

the centers ~c1 = A
`0
'(c1) and ~c2 = A

`0
'(c2). Let ĉ1; ĉ2 2 P be the centers of bC1;

bC2, respectively.

For i = 1; 2, let Ai = fx 2 bCi; kx� c
ik2 > `=

p
�g, and let Bi = bCi n Ai. Now,X

x2 bC1

kx� ĉ
1k2

2
+
X
x2 bC2

kx� ĉ
2k2

2

�
X
x2 bC1

kx� c
1k2

2
+
X
x2 bC2

kx� c
2k2

2

=
X
x2A1

kx� c
1k2

2
+
X
x2A2

kx� c
2k2

2
+
X
x2B1

kx� c
1k2

2
+
X
x2B2

kx� c
2k2

2

�
X

x2A1[A2

�
1 +

2
p
�

1� 2
p
�

�2

minfkx� c
1k2

2
; kx� c

2k2
2
)g+

X
x2B1

kx� c
1k2

2
+
X
x2B2

kx� c
2k2

2
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�
X

x2A1[A2

�
1 +

2
p
�

1� 2
p
�

�2

minfkx� c
1k2

2
; kx� c

2k2
2
)g+

+
X

x2B1[B2

�
1 + max

�
2
p
�

1� Æ
; 2(Æ +

p
� + Æ

p
�)(1� Æ �p�� Æ

p
�)

��2

minfkx� c
1k2

2
; kx� c

2k2
2
g:

More than two clusters. A similar approach works for more than two clusters: Guess the
�
k

2

�
dis-

tances between centers. For a matrix of guesses `, use mappings �st of the data set into Z
m
2
, which are

(Æ; �; `st)-distorted on ([x2XB(x; `st=
p
�); P ), for all 1 � s < t � k. As in HammingClustering�,

for each data point x 2 X compute a tournament over the centers by guessing, for every pair of

centers cs; ct, the images of cs; ct under �st, and then checking to which image �st(x) is closer. Assign

x to an apex of its tournament. Finally, compute the cost of every solution using OurSpaceCost,

and output the best solution.

Clearly, the discussion regarding k = 2 shows that the required mappings �st exist and are

computable in polynomial time in all the settings considered there. Moreover, OurSpaceCost

can be implemented eÆciently in all those settings. Thus, the only issue that requires further

discussion is the number of guesses for inter-center distances that are needed. As in the k = 2 case,

we only need to guess the distances within a factor of 2, so the question is the bounds on the range

of possible values. The following lemma resolves this issue.

Lemma 11. If distances between cluster centers are restricted to the range[
x;y2X

�
�d(x; y)

k2n
;
k
2
d(x; y)

�

�
;

then the best solution with this restriction is worse than the optimum solution with no restriction

by a factor of at most 1 + 4�k2

k2�2�
+ o(�).

Proof. Consider any two clusters C1; C2 with centers c1; c2 of the optimum solution. Let dmax be

the maximum distance between two points in C1 [ C2. If d(c1; c2) > k
2
dmax=�, then assigning all

points in C1 [C2 to a single center increases the cost by at most a factor of 1 + 4�
k2�2�

. To see that,

assume without loss of generality that c1 is closer to the set C1 [ C2 than c
2. Thus, for any point

x 2 C1 [C2, d(x; c
1) � 1

2
d(c1; c2) + dmax and d(x; c2) � 1

2
d(c1; c2)� dmax. Thus, assigning a point x

to c1 instead of c2 could increase its distance to its cluster center by at most 2dmax � 4�
k2�2�

d(x; c2).

On the other hand, if d(c1; c2) < �dmax=k
2
n, then the cost of both clusters is at least

�
1

2
� �

k2n

�
dmax.

Assigning all the points in C1 [ C2 (there are at most n such points) to c1 increases the cost by at

most n�dmax=k
2
n = �dmax=k

2, so the total cost increases by a factor of at most 1+ 2�n
k2n�2�

� 1+ 4�
k2�2�

.
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By repeating the reassignment of points to centers for at most
�
k

2

�
distances, we increase the

total cost by at most a factor of
�
1 + 4�

k2�2�

�k2 � 1 + 4�k2

k2�2�
+ o(�).

References

[1] P.K. Agarwal and C.M. Procopiuc. Exact and approximation algorithms for clustering. In

Proc. SODA '98.

[2] P.K. Agarwal and M. Sharir. EÆcient algorithms for geometric optimization. ACM Com-

puting Surveys, 30(4):412{458, 1998.

[3] N. Alon and J. Spencer. The Probabilistic Method. Wiley, 1992.

[4] N. Alon and B. Sudakov. On two segmentation problems. Journal of Algorithms, 33:173{184,

1999.

[5] S. Arora, D. Karger, and M. Karpinski. Polynomial-time approximation schemes for dense

instances of NP-hard problems. In Proc. 27th STOC, pp. 284-293, 1995.

[6] S. Arora, P. Raghavan, and S. Rao. Approximation schemes for Euclidean k-medians and

related problems. In Proc. STOC '98.

[7] A. Borodin, R. Ostrovsky, and Y. Rabani. Subquadratic approximation algorithms for clus-

tering problems in high dimensional spaces. In Proc. STOC '99.

[8] A. Broder, S. Glassman, M. Manasse, and G. Zweig. Syntactic clustering of the Web. In

Proceedings of the Sixth International World Wide Web Conference, pp. 391-404, 1997.

[9] M.W. Berry, S.T. Dumais, and G.W. O'Brien. Using linear algebra for intelligent information

retrieval. SIAM review, 37(4):573{595, 1995.

[10] M. Bern and D. Eppstein. Approximation algorithms for geometric problems. Chapter 8 in

D. Hochbaum, Ed. Approximation Algorithms for Hard Problems. PWS Publishing, 1996.

[11] M. Charikar, S. Guha, D.B. Shmoys, and �E. Tardos. A constant factor approximation algo-

rithm for the k-median problem. In Proc. STOC '99.

[12] M. Charikar and S. Guha. Improved combinatorial algorithms for the facility location and

k-median problems. In Proc. FOCS '99.

16



[13] D.R. Cutting, D.R. Karger, and J.O. Pedersen. Constant interaction-time scatter-gather

browsing of very large document collections. In Proc. SIGIR '93.

[14] D.R. Cutting, D.R. Karger, J.O. Pedersen, and J.W. Tukey. Scatter/gather: A cluster-based

approach to browsing large document collections. In Proc. SIGIR '92, pp. 318{329.

[15] S. Dasgupta. Learning mixtures of Gaussians. In Proc. FOCS '99.

[16] S. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas, and R.A. Harshman. Indexing

by latent semantic analysis. Journal of the Society for Information Science, 41(6):391{407,

1990.

[17] W.F. de la Vega and C. Kenyon. A randomized approximation scheme for metric MAX CUT.

In Proc. FOCS '98.

[18] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering in large graphs and

matrices. In Proc. SODA '99.

[19] S.T. Dumais. Improving the retrieval of information from external sources. Behavior Research

Methods, Instruments and Computers, 23(2):229{236, 1991.

[20] S.T. Dumais, G.W. Furnas, T.K. Landauer and S. Deerwester. Using latent semantic analysis

to improve information retrieval. In Proc. of CHI '88, pp. 281{285.

[21] D. Eppstein. Fast hierarchical clustering and other applications of dynamic closest pair. In

Proc. of 9th SODA, 1998.

[22] P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemma and the sphericity of some

graphs. J. of Combinatorial Theory B, 44:355{362, 1988.

[23] A. Frieze and R. Kannan. The regularity lemma and approximation schemes for dense

problems. In Proc. 37th FOCS, pp. 12{20, 1996.

[24] A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for �nding low-rank

approximations. In Proc. of FOCS '98, pp. 370{378.

[25] S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms. In Proc.

SODA '98.

[26] P. Indyk. A sublinear time approximation scheme for clustering in metric spaces. In Proc.

FOCS '99.

17



[27] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of

dimensionality. In Proc. of 30th STOC, pp. 604{613, 1998.

[28] K. Jain and V.V. Vazirani. Primal-dual approximation algorithms for metric facility location

and k-median problems. In Proc. FOCS '99.

[29] W.B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into Hilbert space.

Contemporary Mathematics, 26:189{206, 1984.

[30] R. Kannan and V. Vinay. The Manjara Meta-Search Engine.

http://cluster.cs.yale.edu/about.html

[31] R.M. Karp. The genomics revolution and its challenges for algorithmic research. Bulletin of

the EATCS, 71:151{159, June 2000.

[32] J. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. In Proc. of

29th STOC, pp. 599{608, 1997.

[33] J. Kleinberg. Authoritative sources in a hyperlinked environment. In Proc. of 9th SODA,

1998.

[34] J. Kleinberg, C. Papadimitriou, and P. Raghavan. Segmentation problems. In Proc. STOC

'98.

[35] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. EÆcient search for approximate nearest neigh-

bor in high dimensional spaces. SIAM J. Comput., to appear. Preliminary version appeared

in Proc. STOC '98.

[36] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic

applications. Combinatorica, 15(2):215{245, 1995.

[37] E. Rasmussen. Clustering algorithms. In W.B. Frakes and R. Baeza-Yates, eds. Information

Retrieval . Prentice Hall, 1992.

[38] J. O'Rourke and G. Toussaint. Pattern recognition. In J. Goodman and J. O'Rourke, eds.

Handbook of Discrete and Computational Geometry . CRS press, 1997.

[39] L.J. Schulman. Clustering for edge-cost minimization. To appear in Proc. STOC 2000.

[40] O. Zamir, O. Etzioni, O. Madani, and R.M. Karp. Fast and intuitive clustering of web

documents. In Proc. KDD '97.

18


