
Universally Composable Two-Party and Multi-party Secure

Computation
�

Ran Canettiy Yehuda Lindellz Rafail Ostrovskyx Amit Sahai{

September 12, 2002

Abstract

We show how to securely realize any two-party and multi-party functionality in a universally
composable way, regardless of the number of corrupted participants. That is, we consider an
asynchronous multi-party network with open communication and an adversary that can adap-
tively corrupt as many parties as it wishes. In this setting, our protocols allow any subset of the
parties (with pairs of parties being a special case) to securely realize any desired functionality of
their local inputs, and be guaranteed that security is preserved regardless of the activity in the
rest of the network. This implies that security is preserved under concurrent composition of an
unbounded number of protocol executions, it implies non-malleability with respect to arbitrary
protocols, and more. Our constructions are in the common reference string model and rely on
standard intractability assumptions.

Keywords: Two-party and multi-party cryptographic protocols, secure composition of protocols,

proofs of security.

�An extended abstract of this work appeared in the 34th STOC, 2002.
yIBM T.J. Watson Research Center, email: canetti@watson.ibm.com.
zIBM T.J. Watson Research Center, email: lindell@us.ibm.com. Most of this work was carried out while the

author was at the Weizmann Institute of Science, Israel.
xTelcordia Technologies, email: rafail@research.telcordia.com.
{Princeton University, email: sahai@cs.princeton.edu.

Contents

1 Introduction 1

2 Overview 4

2.1 The model . 4

2.2 An outline of the results and techniques . 6

2.2.1 Two-party computation in the case of semi-honest adversaries 6

2.2.2 Obtaining two-party computation secure against malicious adversaries 7

2.2.3 Extensions to multi-party computation . 10

3 Preliminaries 11

3.1 Universally Composable Security: The general framework 11

3.1.1 The basic framework . 12

3.1.2 The composition theorem . 15

3.2 Universal Composition with Joint State . 17

3.3 Well-Formed Functionalities . 20

4 Two-party Secure Computation for Semi-Honest Adversaries 21

4.1 Universally Composable Oblivious Transfer . 22

4.1.1 Static UC Oblivious Transfer . 22

4.1.2 Adaptive UC Oblivious Transfer . 24

4.2 The General Construction . 27

5 Universally Composable Commitments 37

6 Universally Composable Zero-Knowledge 45

7 The Commit-and-Prove Functionality Fcp 47

7.1 Securely Realizing Fcp for static adversaries . 48

7.2 Securely Realizing Fcp for adaptive adversaries . 52

8 Two-Party Secure Computation for Malicious Adversaries 56

8.1 The Protocol Compiler . 56

8.2 Conclusions . 61

9 Multi-party Secure Computation 62

9.1 Multi-party Secure Computation for Semi-Honest Adversaries 62

9.2 Authenticated Broadcast . 67

9.3 One-to-Many Commitment, Zero-Knowledge and Commit-and-Prove 68

9.4 Multi-party Secure Computation for Malicious Adversaries 73

9.4.1 Conclusions . 76

1 Introduction

Traditionally, cryptographic protocol problems were considered in a model where the only involved

parties are the actual participants in the protocol, and only a single execution of the protocol takes

place. This model allowed for relatively concise problem statements, and simpli�ed the design and

analysis of protocols. Indeed, this relatively simple model is a natural choice for the initial study

of protocols.

However, this model of \stand-alone computation" does not fully capture the security require-

ments from cryptographic protocols in a modern computer network. In such networks, a protocol

execution may run concurrently with an unknown number of other protocols. These arbitrary

protocols may be executed by the same parties or other parties, they may have potentially related

inputs and the scheduling of message delivery may be adversarially coordinated. Furthermore, the

local outputs of a protocol execution may be used by other protocols in an unpredictable way.

These concerns, or \attacks" on a protocol are not captured by the stand-alone model.

One way to guarantee that protocols withstand some speci�c security threats in multi-execution

environments is to explicitly incorporate these threats into the security model and analysis. Such

an approach was taken, for instance, in the case of non-malleability of protocols [ddn00], and re-

garding the concurrent composition of zero-knowledge [dns98, rk99] and oblivious transfer [gm00].

However, this approach is inherently limited since it needs to explicitly address each new concern,

whereas in a realistic network setting, the threats may be unpredictable. Furthermore, it inevitably

results in de�nitions with ever-growing complexity.

In contrast, we take the approach where a protocol is designed and analyzed as \stand alone",

and security in a multi-execution environment is guaranteed via a secure composition theorem. In

particular, we use the recently proposed framework of universally composable security [c01]. Here

a generic de�nition is given for what it means for a protocol to \securely realize a given ideal

functionality", where an \ideal functionality" is a natural algorithmic way of capturing the desired

functionality of the protocol problem at hand. In addition, it is shown that security of protocols

is preserved under a general composition operation called universal composition. This essentially

means that any protocol that securely realizes an ideal functionality when considered as stand-

alone, continues to securely realize the same functionality even when composed with any other set

of protocols that may be running concurrently in the same system. A protocol that is secure within

the [c01] framework is called universally composable (UC).

It has been shown that any ideal functionality can be securely realized in a universally compos-

able way using known constructions, as long as a majority of the participants remain uncorrupted

[c01] (building upon [bgw88, rb89, cfgn96]). However, this result does not hold when half or

more of the parties may be corrupted. In particular, it does not hold for the important case of

two-party protocols, where each party wishes to maintain its security even if the other party is

corrupted. In fact, it was shown in [cf01, c01] that in the standard model, a number of basic

two-party functionalities (such as commitment, zero-knowledge, and common coin-tossing) cannot

be securely realized in this framework by two-party protocols. Nonetheless, protocols that securely

realize the commitment and zero-knowledge functionalities in the common reference string (CRS)

model were shown in [cf01, d+01]. (In the CRS model all parties are given a common, public ref-

erence string that is ideally chosen from a given distribution. This model was originally proposed

in the context of non-interactive zero-knowledge proofs [bfm88] and since then has proved useful

in other cases as well.)

1

Our results. Loosely speaking, we show that any functionality can be realized in a universally

composable way, in the CRS model, regardless of the number of corrupted parties. More speci�cally,

consider an asynchronous multi-party network where the communication is open and delivery of

messages is not guaranteed. (For simplicity, we assume that delivered messages are authenticated.

This can be achieved using standard methods.) The network contains an unspeci�ed number of

parties, and any number of these parties can be adaptively corrupted throughout the computation.

In this setting, we show how arbitrary subsets of parties can securely realize any functionality of

their inputs in a universally composable way. The functionality may be reactive, namely it may

receive inputs and generate outputs multiple times throughout the computation. In addition to

a common reference string, our protocols assume that the participants in each protocol execution

have access to a broadcast channel among themselves.1

In addition to our general constructions for two-party and multi-party computation, we also

present a new adaptively secure UC commitment scheme in the CRS model, assuming only the

existence of trapdoor permutations. (UC commitment schemes are protocols that securely realize

the ideal commitment functionality [cf01]. Existing constructions of UC commitments [cf01,

dn01] rely on speci�c cryptographic assumptions.) Since UC zero-knowledge can be obtained

given a UC commitment scheme without additional computational assumptions [cf01], we obtain

an adaptively secure UC zero-knowledge protocol in the CRS model, for any NP relation, based

on any trapdoor permutation. Beyond being interesting in its own right, we use this commitment

scheme in order to base our constructions on more general cryptographic assumptions.

Outline of the construction. Our construction of two-party and multi-party protocols follows

the general outline of the construction of Goldreich, Micali and Wigderson [gmw87], where the

basic primitives are replaced with universally composable counterparts. On top of guaranteeing

universal composability, this results in a modular construction and analysis that highlights the

functionality and role of each ingredient in the construction. We �rst concentrate on the case of

two-party functionalities, which contains most of the cryptographic ideas in a simpli�ed form. Here,

we begin by considering semi-honest (or, passive) adversaries. We de�ne an ideal oblivious transfer

(OT) functionality and show how to securely realize it in the face of semi-honest adversaries. Then

we show that the [gmw87] construction, given access to the ideal OT functionality, can be used

to securely realize any two-party ideal functionality in a universally composable way. (No common

reference string is used in the semi-honest case.)

Next we construct a protocol compiler, analogous to that of [gmw87], that transforms any two-

party protocol in the semi-honest model into a protocol that guarantees equivalent input-output

relations in the presence of general, malicious adversaries. This is done as follows. Our starting

point is a new ideal functionality, called commit-and-prove, that blends together the notions of

commitment and zero-knowledge. This functionality allows a party to commit to values and later

prove \in zero knowledge" some arbitrary NP-statements regarding the committed values. (This

notion is implicit in the work of [gmw87], and was also discussed by Kilian [k89]. We formalize

it as an ideal functionality in the UC framework.) We realize the commit-and-prove functionality

given access to the ideal zero-knowledge functionality (which, as we have mentioned, can in turn

be realized given access to the ideal commitment functionality). Having obtained a secure protocol

for the commit-and-prove functionality, we construct the above-mentioned protocol compiler in a

1This broadcast channel is formally modeled by a universally composable broadcast functionality. In subsequent

work to ours, it was shown that in the model where delivery of messages is not guaranteed, universally composable

broadcast can be achieved in O(1) rounds, for any number of corrupted parties, and without any setup assump-

tions [gl02]. Thus, in actuality, we only need to assume a common reference string here.

2

model where the parties have access to the ideal commit-and-prove functionality. The universal

composition theorem is used to compose all the ingredients into a general, UC protocol compiler in

the CRS model. This compiler transforms protocols that are UC secure in the semi-honest model

into protocols that are UC secure even in the presence of malicious adversaries. Here we also use

universal composition with joint state [cr02], which allows several protocol instances to use the

same instance of the reference string.

Finally, we extend our results from the two-party case to the multi-party case. The semi-

honest case is treated as in [gmw87]. For the case of malicious adversaries, we �rst extend the

commitment, zero-knowledge, and commit-and-prove functionalities to allow a prover to commit

and prove statements to a set of parties (rather than to a single party). Next, we generalize the

protocol compiler, which now has ideal access to the multi-party version of the commit-and-prove

functionality. As before, we conclude by compiling the semi-honest protocol, thereby obtaining a

protocol that maintains security even in the presence of malicious adversaries.

Adaptive security. Our protocol is the �rst general construction that guarantees security against

adaptive adversaries in the two-party case and in the case of multi-party protocols with honest

minority. (We note that no adaptively secure general construction was known in these cases even in

the traditional stand-alone model. All previous adaptively secure protocols for general multi-party

computation assumed an honest majority.) We remark that, in contrast to the case of stand-alone

protocols, in our setting adaptive security is a relevant concern even for protocols with only two

participants. Furthermore, it is important to protect even against adversaries that eventually break

into all the participants in an interaction. This is because we consider multiple interactions that

take place between di�erent sets of parties in the system. Therefore, all the participants in one

interaction may constitute a proper subset of the participants in another interaction. Our results

hold even in a model where no data can ever be erased.

Cryptographic assumptions. Our protocols are based on the following cryptographic assump-

tions. For the non-adaptive case (both semi-honest and malicious) we assume the existence of

trapdoor permutations only. For the adaptive case we additionally assume the existence of aug-

mented non-committing encryption protocols [cfgn96]. The augmentation includes oblivious key

generation and invertible samplability [dn00]. Loosely speaking, oblivious key generation states

that public keys can be generated without knowing the corresponding private keys, and invertible

samplability states that given a public/private key-pair it is possible to obtain the random coin

tosses of the key generator when outputting this key-pair (the oblivious key generator should also

be invertible). Such encryption schemes are known to exist under the RSA and DDH assumptions.

As we have mentioned, our protocols are in the CRS model. The above assumptions suÆce if

we use a common reference string that is not uniformly distributed (but is rather taken from some

di�erent distribution). If a uniformly distributed common reference string is to be used, then we

additionally assume the existence of dense cryptosystems [dp92].

Related work. In a concurrent and independent work [dn01], Damgard and Nielsen consider

a functionality that has great resemblance to our commit-and-prove functionality, and construct

universally composable protocols that realize this functionality under speci�c number-theoretic

assumptions. Our commit-and-prove protocol is based on more general assumptions, whereas their

protocol is considerably more eÆcient.

3

Organization. In Section 2 we provide an overview of the model of [c01] and an outline of

our construction of UC two-party and multi-party protocols. Section 3 contains a number of

preliminaries: First, in Section 3.1, a more detailed description of the [c01] framework and of the

composition theorem is presented. Then, in Section 3.2, the issue of universal composition with

joint state is discussed (this is important when a common reference string is used, as is the case

in our constructions). Finally, in Section 3.3, we describe the class of ideal functionalities that our

constructions securely realize.

We then begin our constructions with the two-party case. First, in Section 4, we show how

to obtain UC two-party secure computation in the presence of semi-honest adversaries. Next we

proceed to the case of malicious adversaries. Here we lead up to the general protocol compiler

in a number of steps: In Section 5 we recall the commitment functionality Fmcom and present

our new UC commitment scheme. In Section 6, the ideal zero-knowledge functionality, Fzk, is

described and known protocols for realizing it (either with ideal access to Fmcom or directly in the

common reference string model) are recalled. In Section 7 we de�ne the two-party commit-and-

prove functionality, Fcp, and show how to realize it given ideal access to Fzk. This is then used in

Section 8 to construct a two-party protocol compiler that transforms the protocol of Section 4 into

a protocol that is secure against malicious adversaries.

Finally, in Section 9, we extend our two-party constructions to the multi-party case. We present

the two-party case separately because it is simpler and most of the cryptographic ideas already arise

in this setting.

2 Overview

This section provides a high-level overview of the model and our constructions. Section 2.1 contains

an overview of the general framework of universal composability, the de�nition of security and the

composition theorem. Then, in Section 2.2 we provide a brief outline of our constructions for two-

party and multi-party computation. The aim of this outline is to provide the reader with the \big

picture", before delving into details.

2.1 The model

We begin by outlining the framework for universal composability; for more details see Section 3.1

and [c01]. The framework provides a rigorous method for de�ning the security of cryptographic

tasks, while ensuring that security is maintained under a general composition operation in which a

secure protocol for the task in question is run in a system concurrently with an unbounded number

of other arbitrary protocols. This composition operation is called universal composition, and tasks

that ful�ll the de�nitions of security in this framework are called universally composable (UC).

As in other general de�nitions (e.g., [gl90, mr91, b91, pw00, c00]), the security requirements

of a given task (i.e., the functionality expected from a protocol that carries out the task) are

captured via a set of instructions for a \trusted party" that obtains the inputs of the participants

and provides them with the desired outputs (in one or more iterations). We call the algorithm run

by the trusted party an ideal functionality. Informally, a protocol securely carries out a given task

if any adversary can gain nothing more from an attack on a real execution of the protocol, than

from an attack on an ideal process where the parties merely hand their inputs to a trusted party

with the appropriate functionality and obtain their outputs from it, without any other interaction.

In other words, we require that a real execution can be emulated in the above ideal process (where

4

the meaning of emulation is described below). We stress that in a real execution of the protocol,

no trusted party exists and the parties interact amongst themselves only.

In order to prove the universal composition theorem, the notion of emulation in this framework

is considerably stronger than in previous ones. Traditionally, the model of computation includes

the parties running the protocol, plus an adversary A that controls the communication channels

and potentially corrupts parties. Emulation means that for any adversary A attacking a real

protocol execution, there should exist an \ideal process adversary" or simulator S, that causes the

outputs of the parties in the ideal process to be essentially the same as the outputs of the parties in a

real execution. In the universally composable framework, an additional adversarial entity called the

environment Z is introduced. This environment generates the inputs to all parties, reads all outputs,

and in addition interacts with the adversary in an arbitrary way throughout the computation. (As

is hinted by its name, Z represents the external environment that consists of arbitrary protocol

executions that may be running concurrently with the given protocol.) A protocol is said to securely

realize a given ideal functionality F if for any \real-life" adversary A that interacts with the protocol

there exists an \ideal-process adversary" S, such that no environment Z can tell whether it is

interacting with A and parties running the protocol, or with S and parties that interact with F in

the ideal process. (In a sense, here Z serves as an \interactive distinguisher" between a run of the

protocol and the ideal process with access to F . See [c01] for more motivating discussion on the role

of the environment.) Note that the de�nition requires the \ideal-process adversary" (or simulator)

S to interact with Z throughout the computation. Furthermore, Z cannot be \rewound".

The following universal composition theorem is proven in [c01]: Consider a protocol � that

operates in a hybrid model of computation where parties can communicate as usual, and in addition

have ideal access to an unbounded number of copies of some ideal functionality F . (This model is

called the F-hybrid model.) Furthermore, let � be a protocol that securely realizes F as sketched

above, and let �� be the \composed protocol". That is, �� is identical to � with the exception

that each interaction with the ideal functionality F is replaced with a call to (or an activation of)

an appropriate instance of the protocol �. Similarly, �-outputs are treated as values provided by

the functionality F . The theorem states that in such a case, � and �� have essentially the same

input/output behavior. Thus, � behaves just like the ideal functionality F , even when composed

with an arbitrary protocol �. A special case of this theorem states that if � securely realizes some

ideal functionality G in the F-hybrid model, then �� securely realizes G from scratch.

We consider a network where the adversary sees all the messages sent, and delivers or blocks

these messages at will. (The fact that message delivery is not guaranteed frees us from the need to

explicitly deal with the \early stopping" problem of protocols run between two parties or amongst

many parties where only a minority may be honest. This is because even the ideal process allows

the adversary to abort the execution at any time.) We note that although the adversary may

block messages, it cannot modify messages sent by honest parties (i.e., the communication lines

are ideally authenticated). Our protocols are cast in a completely asynchronous point-to-point

network (and thus the adversary has full control over when messages are delivered, if at all). Also,

as usual, the adversary is allowed to corrupt parties. In the case of static adversaries the set of

corrupted parties is �xed at the onset of the computation. In the adaptive case the adversary

corrupts parties at will throughout the computation. We also distinguish between malicious and

semi-honest adversaries: If the adversary is malicious then corrupted parties follow the arbitrary

instructions of the adversary. In the semi-honest case, even corrupted parties follow the prescribed

protocol and the adversary essentially only gets read access to the states of corrupted parties.

5

2.2 An outline of the results and techniques

In this section we provide a high-level description of our protocols for two-party and multi-party

computation, and the techniques used in obtaining them. Our construction is conceptually very

similar to the construction of Goldreich, Micali and Wigderson [gmw87, g98]. This construction

(which we call the GMW construction) is comprised of two stages. First, they present a protocol

for securely realizing any functionality in the semi-honest adversarial model. Next, they construct

a protocol compiler that takes any semi-honest protocol and transforms it into a protocol that

has the same functionality in the malicious adversarial model. (However, as discussed above, they

consider a model where only a single protocol execution takes place in the system. In contrast, we

construct protocols for universally composable secure computation.) We begin by considering the

two-party case.

2.2.1 Two-party computation in the case of semi-honest adversaries

Recall that in the case of semi-honest adversaries, even the corrupted parties follow the protocol

speci�cation. However, the adversary may attempt to learn more information than intended by

examining the transcript of messages that it received during the protocol execution. Despite the

seemingly weak nature of the adversarial model, obtaining protocols secure against semi-honest

adversaries is a non-trivial task.

We begin by brie
y recalling the [gmw87, g98] construction for secure two-party computation

in the semi-honest adversarial model. Let f be the two-party functionality that is to be securely

computed. Then, the parties are given an arithmetic circuit over GF (2) that computes the function

f . The protocol starts with the parties sharing their inputs with each other using bitwise-xor secret

sharing, and thus following this stage, they both hold shares of the input lines of the circuit. That

is, for each input line l, party A holds a value al and party B holds a value bl, such that both al
and bl are random under the constraint that al + bl equals the value of the input into this line.

Next, the parties evaluate the circuit gate-by-gate, computing random shares of the output line of

the gate from the random shares of the input lines to the gate. There are two types of gates in the

circuit: addition gates and multiplication gates. Addition gates are evaluated by each party locally

adding its shares of the input values. Multiplication gates are evaluated using 1-out-of-4 oblivious

transfer (the oblivious transfer protocol used is basically that of [egl85]). In the above way, the

parties jointly compute the circuit and obtain shares of the output gates. The protocol concludes

with each party revealing the prescribed shares to the other party (i.e, if a certain output gate

provides a bit of A's input, then B will reveal its share of this output line to A).

Our general construction is exactly that of GMW, except that the oblivious transfer protocol

used is universally composable. That is, we �rst de�ne an ideal oblivious transfer functionality,

Fot, and show that in the Fot-hybrid model, the GMW protocol securely realizes any two-party

functionality in the presence of semi-honest, adaptive adversaries. This holds unconditionally and

even if the adversary and environment are computationally unbounded. Of course, computational

assumptions are used for securely realizing Fot itself. (Our construction is actually somewhat more

general than that of GMW in that it deals with reactive functionalities that have multiple stages

which are separately activated. This is achieved by having the parties hold shares of the state of

the ideal functionality between activations.)

Next we present protocols that securely realize Fot in the semi-honest case. In the non-adaptive

case, the protocol of [egl85, g98] suÆces. In the adaptive case, our protocol uses an augmented

version of non-committing encryption [cfgn96]. The augmentation consists of two additional

properties. First, the encryption scheme should have an alternative key generation algorithm that

6

generates only public encryption keys without the corresponding decryption key. Second, the

standard and additional key generation algorithms should be invertible in the sense that given the

output key or keys, it is possible to �nd the random coin tosses used in generating these keys.

(Following [dn00], we call these properties oblivious key generation and invertible samplability.)

All known non-committing encryption schemes have this properties. In particular, such schemes

exist under either the RSA assumption or the DDH assumption.) In all, we show:

Proposition 2.1 (semi-honest computation { informal): Assume that trapdoor permutations ex-

ist. Then, for any two-party ideal functionality F , there exists a protocol � that securely realizes

F in the presence of semi-honest, static adversaries. Furthermore, if augmented two-party non-

committing encryption protocols exist, then there exists a protocol � that securely realizes F in the

presence of semi-honest, adaptive adversaries.

Proposition 2.1 as stated above is not precise. This is due to two technicalities regarding the model

of computation as de�ned in [c01]. We therefore de�ne a class of functionalities for which these

technical problems do not arise and then construct secure protocols for any functionality in this

class. See Section 3.3 for more discussion and an exact de�nition.

Another point where our results formally di�er from Proposition 2.1 is due to the fact that,

according to the de�nitions used here, protocols which do not generate any output are technically

secure (for any functionality). Thus, Proposition 2.1 as stated, can be easily (but un-interestingly)

achieved. In contrast, we prove the existence of protocols which do generate output and securely

realize any functionality (we call such a protocol non-trivial; for more details, see the discussion

after De�nition 3.2 in Section 3.1). Proposition 2.1 is formally restated in Section 4.2.

2.2.2 Obtaining two-party computation secure against malicious adversaries

Having constructed a protocol that is universally composable when the adversary is limited to

semi-honest behavior, we construct a protocol compiler that transforms this protocol into one that

is secure even against malicious adversaries. From here on, we refer to the protocol that is secure

against semi-honest adversaries as the \basic protocol". Recall that the basic protocol is only

secure in the case that even the corrupted parties follow the protocol speci�cation exactly, using

a uniformly chosen random tape. Thus, in order to obtain a protocol secure against malicious

adversaries, we need to enforce potentially malicious corrupted parties to behave in a semi-honest

manner. First and foremost, this involves forcing the parties to follow the prescribed protocol.

However, this only makes sense relative to a given input and random tape. Furthermore, a malicious

party must be forced into using a uniformly chosen random tape. This is because the security of the

basic protocol may depend on the fact that the party has no freedom in setting its own randomness.

We begin with a description of the GMW compiler.

An informal description of the GMW compiler. The GMW compiler begins by having each

party commit to its input. Next, the parties run a coin-tossing protocol in order to �x their random

tapes. A simple coin-tossing protocol in which both parties receive the same uniformly distributed

string is not suÆcient here. This is because the parties' random tapes must remain secret. Instead,

an augmented coin-tossing protocol is used, where one party receives a uniformly distributed string

(to be used as its random tape) and the other party receives a commitment to that string. Now,

following these two steps, each party holds its own input and uniformly distributed random tape,

and a commitment to the other party's input and random tape.

7

Next, the commitments to the random tape and to the inputs are used to \enforce" semi-

honest behavior. Observe that a protocol speci�cation is a deterministic function of a party's view

consisting of its input, random tape and messages received so far, and recall that each party holds

a commitment to the input and random tape of the other party. Observe also that the messages

sent so far are public. Therefore, the assertion that a new message is computed according to the

protocol is an NP statement (and the party sending the message knows an adequate NP-witness

to it). This means that the parties can use zero-knowledge proofs to show that their steps are

indeed according to the protocol speci�cation. Therefore, in the protocol emulation phase, the

parties send messages according to the instructions of the basic protocol, while proving at each

step that the messages sent are correct. The key point is that, due to the soundness of the proofs,

even a malicious adversary cannot deviate from the protocol speci�cation without being detected.

Therefore, the adversary is limited to semi-honest behavior. Furthermore, since the proofs are

zero-knowledge, nothing \more" is revealed in the compiled protocol than in the basic protocol.

We conclude that the security of the compiled protocol (against malicious adversaries) is directly

derived from the security of the basic protocol (against semi-honest adversaries).

In summary, the GMW compiler has three components: input commitment, coin-tossing and

protocol emulation (where the parties prove that their steps are according to the protocol speci�-

cation).

Universally composable protocol compilation. A natural way of adapting the GMW com-

piler to the setting of universally composable secure computation would be to take the same

compiler, but rather use universally composable commitments, coin-tossing and zero-knowledge

as sub-protocols. However, such a strategy fails because the receiver of a universally composable

commitment receives no information about the value committed to. (Instead, the recipient receives

only a formal \receipt" assuring it that a value was committed to. See Section 5 for more details.)

Thus, there is no NP-statement that a party can prove relative to its input commitment. This is

in contrast to the GMW protocol where standard (perfectly binding) commitments are used and

thus each party holds a string that uniquely determines the other party's input and random tape.

A di�erent strategy is therefore required for constructing a universally composable compiler.

Before describing our strategy, observe that in GMW the use of the commitment scheme is not

standard. Speci�cally, although both parties commit to their inputs etc., they never decommit.

Rather, they prove NP-statements relative to their committed values. Thus, a natural primitive

to use would be a \commit-and-prove" functionality, which is comprised of two phases. In the

�rst phase, a party \commits" (or is bound) to a speci�c value. In the second phase, this party

proves NP-statements (in zero-knowledge) relative to the committed value. We formulate this

notion in a universally composable commit-and-prove functionality, denoted Fcp, and then use

this functionality to implement all three phases of the compiler. More speci�cally, our protocol

compiler uses the \commit" phase of the Fcp functionality in order to execute the input and coin-

tossing phases of the compiler. The \prove" phase of the Fcp functionality is then used to force

the adversary to send messages according to the protocol speci�cation and consistent with the

committed input and the random tape resulting from the coin-tossing. The result is a universally

composable analog to the GMW compiler. We remark that in the Fcp-hybrid model the compiler

is unconditionally secure against adaptive adversaries, even if the adversary and the environment

are computationally unbounded.

We show how to securely realize Fcp in the Fzk-hybrid model, i.e. in a hybrid model with

ideal access to an ideal zero-knowledge functionality, Fzk. (Functionality Fzk expects to receive a

statement x and a witness w from the prover. It then forwards x to the veri�er, together with an

8

assertion whether R(x;w) holds, where R is a predetermined relation.) Essentially, in the commit

phase of the commit-and-prove protocol, the committer commits to its input value w using some

commitment scheme C, and in addition it proves to the receiver, using Fzk with an appropriate

relation, that it \knows" the committed value. In the prove phase, where the committer wishes to

assert that the committed value w stands in relation R with some public value x, the committer

presents x and w to Fzk again | but this time the relation used by Fzk asserts two properties:

�rst that R(x;w) holds, and second that w is the same value that was previously committed to.

To guarantee security against static adversaries, the commitment scheme of Naor [n91] is suf-

�cient as an instantiation of the scheme C. We thus obtain a protocol for securely realizing Fcp
in the Fzk-hybrid model, based on any one-way function. To guarantee security against adaptive

adversaries we need \adaptively secure" commitment schemes, namely commitment schemes where

a simulator can generate \dummy commitments" which can be later opened in multiple ways. (In

fact, a slightly stronger property is needed here, see details within.) Such commitments exist assum-

ing the existence of trapdoor permutations, as is demonstrated by our construction of universally

composable commitments in Section 5. In all we obtain:

Theorem 2.2 (two-party computation in the malicious model { informal): Assume that trapdoor

permutations exist. Then, for any two-party ideal functionality F , there exists a protocol � that

securely realizes F in the Fzk-hybrid model in the presence of malicious, static adversaries. Fur-

thermore, if augmented two-party non-committing encryption protocols exist, then there exists a

protocol � that securely realizes F in the Fzk-hybrid model in the presence of malicious, adaptive

adversaries.

Let Fcrs denote the common random string functionality (that is, Fcrs provides all parties with

a common, public string drawn from a prede�ned distribution). Then, as we show in Section 5,

universally composable commitments can be securely realized in the Fcrs-hybrid model, assuming

the existence of trapdoor permutations. Furthermore, [cf01] showed that the Fzk functionality can

be securely realized given universally composable commitments. Combining these results together,

we have that Fzk can be securely realized in the Fcrs-hybrid model, assuming the existence of

trapdoor permutations. Using the composition theorem we obtain a similar result to Theorem

2.2, with the exception that F is realized in the Fcrs-hybrid model (rather than in the Fzk-hybrid

model). As with Proposition 2.1, Theorem 2.2 is not stated exactly. It is formally restated in

Section 8.2.

On the distribution of the reference string. In obtaining the above corollary, the common

reference string is used only in the construction of the universally composable commitment scheme

(which is used for obtaining Fzk). As we have mentioned, in the Fcrs-hybrid model, universally

composable commitments can be obtained assuming the existence of trapdoor permutations only.

However, in this case, the common reference string is not uniformly distributed. Nevertheless, a

uniformly distributed string can be used, under the additional assumption of the existence of dense

cryptosystems [dp92]. We therefore conclude that universally composable two-party computation

can be obtained with a uniformly distributed reference string, under the assumption that the fol-

lowing primitives exist: trapdoor permutations, dense cryptosystems and augmented two-party

non-committing encryption protocols.

9

2.2.3 Extensions to multi-party computation

We now describe how the two-party construction of Theorem 2.2 is extended to the setting of

multi-party computation, where any number of parties may be corrupt. Recall that in this setting,

each set of interacting parties is assumed to have access to an authenticated broadcast channel.

The outline of our construction is as follows. Similarly to the two-party case, we �rst construct

a multi-party protocol that is secure against semi-honest adversaries (as above, this protocol is

essentially that of GMW). Then, we construct a protocol compiler (again, like that of GMW), that

transforms semi-honest protocols into ones that are secure even against malicious adversaries. This

protocol compiler is constructed using a one-to-many extension of the commit-and-prove function-

ality, denoted F1:M
cp

. The extension of the protocol that realizes two-party Fcp to a protocol that

realizes one-to-many F1:M
cp

constitutes the main di�erence between the two-party and multi-party

constructions. Therefore, in this outline, we focus exclusively on how this extension is achieved.

The �rst step in realizing F1:M
cp

, is to construct one-to-many extensions of universal commitments

and zero-knowledge. In a one-to-many commitment scheme, all parties receive the commitment

(and the committer is bound to the same value for all parties). Likewise, in one-to-many zero-

knowledge, all parties verify the proof (and they either all accept or all reject the proof). Now,

any non-interactive commitment scheme can be transformed into a one-to-many equivalent by

simply having the committer broadcast its message to all parties. Thus, this functionality is

immediately obtained from our commitment scheme in Section 5 or from the scheme of [cf01] (both

of these constructions are non-interactive). However, obtaining one-to-many zero-knowledge is

more involved, since we do not know how to construct non-interactive adaptively-secure universally

composable zero-knowledge.2 Nevertheless, using the methodology of [g98], a one-to-many zero-

knowledge protocol can be constructed as follows. The construction is based on the universally-

composable zero-knowledge protocol of [cf01]. Speci�cally, they show that parallel executions of

the 3-round zero-knowledge protocol of Hamiltonicity is universally composable, when a universally

composable commitment scheme is used for the prover's commitments. Thus, the prover runs a copy

of the above zero-knowledge protocol with each receiver over the broadcast channel, using the one-

to-many commitment scheme for its commitments. Furthermore, each verifying party checks that

the proofs of all the other parties are accepting (this is possible because the proof of Hamiltonicity

is publicly veri�able and because all parties view all the communication). Thus, at the end of the

protocol, all honest parties agree (without any additional communication) on whether the proof

was successful or not. (Note also that the adversary cannot cause an honest prover's proof to be

rejected.)

It remains to describe how to realize F 1:M
cp

in the F 1:M
zk

-hybrid model. The basic idea is to

generalize the Fcp protocol. As with zero-knowledge, this is not straightforward because in the

protocol for adaptive adversaries, the Fcp commit-phase is interactive. Nevertheless, this problem

is solved by having the committer commit to its input value w by separately running the protocol for

the commit-phase of (two-party) Fcp with every party over the broadcast channel. Following this,

the committer uses one-to-many zero-knowledge to prove that it committed to the same value in all

of these commitments. (Since each party views the communication from all the commitments, every

party can verify this zero-knowledge proof.) The prove phase is similar to the two-party case, except

that the one-to-many extension of zero-knowledge is used (instead of two-party zero-knowledge).

Finally, we note that, as in the two-party case, a multi-party protocol compiler can be con-

structed in the F1:M
cp

-hybrid model, with no further assumptions. Denoting the ideal broadcast

2In the case of static adversaries, the non-interactive zero-knowledge protocol of [d+01] suÆces. Thus, here too,

the prover message can simply be broadcast and one-to-many zero-knowledge is obtained.

10

functionality used by the parties by Fbc, we have the following theorem:

Theorem 2.3 (multi-party computation in the malicious model { informal): Assume that trapdoor

permutations exist. Then, for any multi-party ideal functionality F , there exists a protocol � that

securely realizes F in the (Fbc;Fcrs)-hybrid model in the presence of malicious, static adversaries,

and for any number of corruptions. Furthermore, if augmented two-party non-committing encryp-

tion protocols exist, then there exists a protocol � that securely realizes F in the (Fbc;Fcrs)-hybrid

model in the presence of malicious, adaptive adversaries, and for any number of corruptions.

As with Proposition 2.1, Theorem 2.3 is not stated exactly. It is formally restated in Section 9.4.

3 Preliminaries

Section 3.1 reviews the framework of [c01] and the universal composition theorem. In Section 3.2 we

discuss issues that arise regarding universal composition when some amount of joint state between

protocols is desired. Finally, Section 3.3 presents the class of functionalities which we will show how

to securely realize. Before proceeding, we recall the de�nition of computational indistinguishability.

A distribution ensemble X = fX(k; a)gk2N;a2f0;1g� is an in�nite set of probability distributions,

where a distribution X(k; a) is associated with each k 2 N and a 2 f0; 1g�. The ensembles

considered in this work describe outputs where the parameter a represents input, and the parameter

k is taken to be the security parameter. A distribution ensemble is called binary if it consists only

of distributions over f0; 1g. Then,

De�nition 3.1 Two binary distribution ensembles X and Y are indistinguishable (written X
c

� Y)

if for any c 2 N there exists k0 2 N such that for all k > k0 and for all a we have

jPr(X(k; a) = 1)� Pr(Y (k; a) = 1)j < k�c:

3.1 Universally Composable Security: The general framework

We start by reviewing the syntax of message-driven protocols in asynchronous networks. We then

present the real-life model of computation, the ideal process, and the general de�nition of securely

realizing an ideal functionality. Next we present the hybrid model and the composition theorem.

The text is somewhat informal for clarity and brevity, and is mostly taken from the Overview

section of [c01]. For full details see there.

Protocol syntax. Following [gmr89, g01], a protocol is represented as a system of probabilistic

interactive Turing machines (ITMs), where each ITM represents the program to be run within a

di�erent party. Speci�cally, the input and output tapes model inputs and outputs that are received

from and given to other programs running on the same machine, and the communication tapes

model messages sent to and received from the network. Adversarial entities are also modeled as

ITMs. We concentrate on a model where the adversaries have an arbitrary additional input, or an

\advice" string. From a complexity-theoretic point of view, this essentially implies that adversaries

are non-uniform ITMs.

In order to simplify the exposition, we introduce the following convention. We assume that all

protocols are such that the parties read their input tapes only at the onset of a protocol execution.

This can easily be achieved by having the parties copy their input tape onto an internal work tape.

This convention prevents problems that may occur when parties' input tapes are modi�ed in the

middle of a protocol execution (as is allowed in the model).

11

3.1.1 The basic framework

As sketched in Section 2, protocols that securely carry out a given task (or, protocol problem) are

de�ned in three steps, as follows. First, the process of executing a protocol in the presence of an

adversary and in a given computational environment is formalized. Next, an \ideal process" for

carrying out the task at hand is formalized. In the ideal process the parties do not communicate

with each other. Instead they have access to an \ideal functionality", which is essentially an

incorruptible \trusted party" that is programmed to capture the desired functionality of the given

task. A protocol is said to securely realize an ideal functionality if the process of running the

protocol amounts to \emulating" the ideal process for that ideal functionality. We overview the

model for protocol execution (called the real-life model), the ideal process, and the notion of protocol

emulation.

We concentrate on the following model of computation, aimed at representing current realis-

tic communication networks (such as the Internet). The communication takes place in an asyn-

chronous, public network, without guaranteed delivery of messages. We assume that the commu-

nication is authenticated and thus the adversary cannot modify messages sent by honest parties.3

Furthermore, the adversary may only deliver messages that were previously sent by parties, and

may deliver each message sent only once. The fact that the network is asynchronous means that

the messages are not necessarily delivered in the order which they are sent. Parties may be bro-

ken into (i.e., become corrupted) throughout the computation, and once corrupted their behavior

is arbitrary (or, malicious). (Thus, our main consideration is that of malicious, adaptive adver-

saries. However, below we present the modi�cations necessary for modeling static and semi-honest

adversaries.) We do not trust data erasures; rather, we postulate that past states are available

to the adversary upon corruption. Finally, all the involved entities are restricted to probabilistic

polynomial time (or \feasible") computation.

Protocol execution in the real-life model. We sketch the process of executing a given protocol

� (run by parties P1; :::; Pn) with some adversary A and an environment machine Z with input

z. All parties have a security parameter k 2 N and are polynomial in k. The execution consists

of a sequence of activations, where in each activation a single participant (either Z, A, or some

Pi) is activated. The environment is activated �rst. In each activation it may read the contents of

the output tapes of all the uncorrupted parties4 and the adversary, and may write information on

the input tape of one of the parties or of the adversary. Once the activation of the environment

is complete (i,e, once the environment enters a special waiting state), the entity whose input tape

was written on is activated next.

Once the adversary is activated, it may read its own tapes and the outgoing communication

tapes of all parties. It may either deliver a message to some party by writing this message on the

party's incoming communication tape or corrupt a party. Only messages that were sent in the past

by some party can be delivered, and each message can be delivered at most once. Upon corrupting

a party, the adversary gains access to all the tapes of that party and controls all the party's future

actions. (We assume that the adversary also learns all the past internal states of the corrupted

3We remark that the basic model in [c01] postulates unauthenticated communication, i.e. the adversary may

delete, modify, and generate messages at wish. Here we concentrate on authenticated networks for sake of simplicity.

Authentication can be added in standard ways. Formally, the model here corresponds to the Fauth-hybrid model in

[c01].
4The adversary is not given read access to the corrupted parties' output tapes because once a party is corrupted,

it is no longer activated. Rather, the adversary sends messages in its name. Therefore, the output tapes of corrupted

parties are not relevant.

12

party. This means that the model does not assume e�ective cryptographic erasure of data.) In

addition, whenever a party is corrupted the environment is noti�ed (say, via a message that is added

to the output tape of the adversary). If the adversary delivered a message to some uncorrupted

party in its activation then this party is activated once the activation of the adversary is complete.

Otherwise the environment is activated next.

Once a party is activated (either due to an input given by the environment or due to a message

delivered by the adversary), it follows its code and possibly writes local outputs on its output

tape and outgoing messages on its outgoing communication tape. Once the activation of the

party is complete the environment is activated. The protocol execution ends when the environment

completes an activation without writing on the input tape of any entity. The output of the protocol

execution is the output of the environment. We assume that this output consists of only a single

bit.

Let real�;A;Z(k; z; r) denote the output of environment Z when interacting with adversary A

and parties running protocol � on security parameter k, input z and random tapes r = rZ ; rA; r1; : : : ; rn
as described above (z and rZ for Z, rA for A; ri for party Pi). Let real�;A;Z(k; z) denote the

random variable describing real�;A;Z(k; z; r) when r is uniformly chosen. Let real�;A;Z denote

the ensemble freal�;A;Z(k; z)gk2N;z2f0;1g� .

The ideal process. Security of protocols is de�ned via comparing the protocol execution in the

real-life model to an ideal process for carrying out (a single instance of) the task at hand. A key

ingredient in the ideal process is the ideal functionality that captures the desired functionality, or

the speci�cation, of that task. The ideal functionality is modeled as another ITM that interacts

with the environment and the adversary via a process described below. More speci�cally, the ideal

process involves an ideal functionality F , an ideal process adversary S, an environment Z with input

z, and a set of dummy parties ~P1; :::; ~Pn.

As in the process of protocol execution in the real-life model, the environment is activated �rst.

As there, in each activation it may read the contents of the output tapes of all (dummy) parties and

the adversary, and may write information on the input tape of either one of the (dummy) parties

or of the adversary. Once the activation of the environment is complete the entity whose input

tape was written on is activated next.

The dummy parties are �xed and simple ITMs: Whenever a dummy party is activated with

input x, it forwards x to the ideal functionality F , say by writing x on the incoming communication

tape of F . In this case F is activated next, and a note that the party sent a message to F is written

on the incoming communication tape of S. Whenever a dummy party is activated due to delivery

of some message (from F), it copies this message to its output. In this case Z is activated next.

Once F is activated, it reads the contents of its incoming communication tape, and potentially

sends messages to the parties and to the adversary by writing these messages on its outgoing

communication tape. Once the activation of F is complete, the entity that was last activated

before F is activated again. In the case this entity was one of the dummy parties, it immediately

relinquishes control to Z.

Once the adversary S is activated, it may read its own input tape and in addition it can read

the destinations of the messages on the outgoing communication tape of F . That is, S can see the

identity of the recipient of each message sent by F , but it cannot see the contents of this message

(unless the recipient of the message is S or a corrupted party5). S may either deliver a message from

5Note that the ideal process allows S to obtain the output values sent by F to the corrupted parties as soon as

they are generated. Furthermore, if at the time that S corrupts some party Pi there are messages sent from F to Pi,

then S immediately obtains the contents of these messages.

13

F to some party by having this message copied to the party's incoming communication tape, write

a message from itself on F 's incoming communication tape6, or corrupt a party. Upon corrupting

a party, both Z and F learn the identity of the corrupted party (say, a special message is written

on their respective incoming communication tapes).7 In addition, the adversary learns all the past

inputs and outputs of the party. Finally, the adversary controls the party's actions from the time

that the corruption takes place.

If the adversary delivered a message to some uncorrupted (dummy) party in an activation then

this party is activated once the activation of the adversary is complete. Otherwise the environment

is activated next.

As in the real-life model, the protocol execution ends when the environment completes an

activation without writing on the input tape of any entity. The output of the protocol execution is

the (one bit) output of Z.

Let idealF ;S;Z(k; z; r) denote the output of environment Z after interacting in the ideal process

with adversary S and ideal functionality F , on security parameter k, input z, and random input

r = rZ ; rS ; rF as described above (z and rZ for Z, rS for S; rF for F). Let idealF ;S;Z(k; z) denote

the random variable describing idealF ;S;Z(k; z; r) when r is uniformly chosen. Let idealF ;S;Z

denote the ensemble fidealF ;S;Z(k; z)gk2N;z2f0;1g� .

Securely realizing an ideal functionality. We say that a protocol � securely realizes an ideal

functionality F if for any real-life adversary A there exists an ideal-process adversary S such that no

environment Z, on any input, can tell with non-negligible probability whether it is interacting with

A and parties running � in the real-life process, or with S and F in the ideal process. This means

that, from the point of view of the environment, running protocol � is `just as good' as interacting

with an ideal process for F . (In a way, Z serves as an \interactive distinguisher" between the two

processes. Here it is important that Z can provide the process in question with adaptively chosen

inputs throughout the computation.) We have:

De�nition 3.2 Let n 2 N. Let F be an ideal functionality and let � be an n-party protocol. We

say that � securely realizes F if for any adversary A there exists an ideal-process adversary S such

that for any environment Z,

idealF ;S;Z
c

� real�;A;Z : (1)

Non-trivial protocols and the requirement to generate output. Recall that the ideal

process does not require the ideal-process adversary to deliver messages that are sent by the ideal

functionality to the dummy parties. Consequently, the de�nition provides no guarantee that a

protocol will ever generate output or \return" to the calling protocol. Indeed, in our setting where

message delivery is not guaranteed, it is impossible to ensure that a protocol \terminates" or

generates output. Rather, the de�nition concentrates on the security requirements in the case that

the protocol generates output.

6Many natural ideal functionalities indeed send messages to the adversary S (see the zero-knowledge and com-

mitments functionalities of Sections 6 and 5 for examples). On the other hand, having the adversary send messages

to F is less common. Nevertheless, this option can be useful in order to relax the requirements on protocols that

realize the functionality. For example, it may be easier to obtain coin-tossing if the adversary is allowed to bias some

of the bits of the result. If this is acceptable for the application in mind, we can allow the adversary this capability

by having it send its desired bias to F .
7Allowing F to know which parties are corrupted gives it considerable power. This power provides greater freedom

in formulating ideal functionalities for capturing the requirements of given tasks. On the other hand, it also inherently

limits the scope of general realizability theorems. See more discussion in Section 3.3.

14

A corollary of the above fact is that a protocol that \hangs", never sends any messages and never

generates output, securely realizes any ideal functionality. Thus, in order to obtain a meaningful

feasibility result, we introduce the notion of a non-trivial protocol. Such a protocol has the property

that if the real-life adversary delivers all messages and does not corrupt any parties, then the ideal-

process adversary also delivers all messages (and does not corrupt any parties). Note that in a

non-trivial protocol, a party may not necessarily receive output. However, this only happens if

either the functionality does not specify output for this party, or if the real-life adversary actively

interferes in the execution (by either corrupting parties or refusing to deliver some messages).

Our main result is to show the existence of non-trivial protocols for securely realizing any ideal

functionality. All our protocols are in fact clearly non-trivial; therefore, we ignore this issue from

here on.

Relaxations of De�nition 3.2. We recall two standard relaxations of the de�nition:

� Static (non-adaptive) adversaries. De�nition 3.2 allows the adversary to corrupt parties through-

out the computation. A simpler (and somewhat weaker) variant forces the real-life adversary to

corrupt parties only at the onset of the computation, before any uncorrupted party is activated.

We call such adversaries static.

� Passive (semi-honest) adversaries. De�nition 3.2 gives the adversary complete control over

corrupted parties (such an adversary is called malicious). Speci�cally, the model states that

from the time of corruption the corrupted party is no longer activated, and instead the adversary

sends messages in the name of that party. In contrast, when a semi-honest adversary corrupts

a party, the party continues to follow the prescribed protocol. Nevertheless, the adversary is

given read access to the internal state of the party at all times, and is also able to modify the

values that the environment writes on the corrupted parties' input tapes.8 Formally, if in a

given activation, the environment wishes to write information on the input tape of a corrupted

party, then the environment �rst passes the adversary the value x that it wishes to write (along

with the identity of the party whose input tape it wishes to write to). The adversary then passes

a (possibly di�erent) value x0 back to the environment. Finally, the environment writes x0 on

the input tape of the corrupted party, following which the corrupted party is activated. We

stress that when the environment writes on the input tape of an honest party, the adversary

learns nothing of the value and cannot modify it. Everything else remains the same as in the

above-described malicious model. We say that protocol � securely realizes functionality F for

semi-honest adversaries, if for any semi-honest real-life adversary A there exists an ideal-process

semi-honest adversary S such that Eq. (1) holds for any environment Z.

3.1.2 The composition theorem

The hybrid model. In order to state the composition theorem, and in particular in order to

formalize the notion of a real-life protocol with access to multiple copies of an ideal functionality,

the hybrid model of computation with access to an ideal functionality F (or, in short, the F -hybrid

model) is formulated. This model is identical to the real-life model, with the following additions.

On top of sending messages to each other, the parties may send messages to and receive messages

from an unbounded number of copies of F . Each copy of F is identi�ed via a unique session

8Allowing a semi-honest adversary to modify a corrupted party's input is somewhat non-standard. However, this

simpli�es the presentation of this work (and in particular the protocol compiler). All the protocols presented for the

semi-honest model in this paper are secure both when the adversary can modify a corrupted party's input tape and

when it cannot.

15

identi�er (SID); all messages addressed to this copy and all message sent by this copy carry the

corresponding SID. (Sometimes a copy of F will interact only with a subset of the parties. The

identities of these parties is determined by the protocol in the F-hybrid model.)

The communication between the parties and each one of the copies of F mimics the ideal

process. That is, once a party sends a message m to a copy of F with a particular SID, that copy

is immediately activated to receive this message. (If no such copy of F exists then a new copy of

F is created and immediately activated to receive m.) Furthermore, although the adversary in the

hybrid model is responsible for delivering the messages from the copies of F to the parties, it does

not have access to the contents of these messages.

The hybrid model does not specify how the SIDs are generated, nor does it specify how parties

\agree" on the SID of a certain protocol copy that is to be run by them. These tasks are left

to the protocol in the hybrid model. This convention simpli�es formulating ideal functionalities,

and designing protocols that securely realize them, by freeing the functionality from the need to

choose the SIDs and guarantee their uniqueness. In addition, it seems to re
ect common practice

of protocol design in existing networks. See more discussion following Theorem 3.3 below.

Let execF�;A;Z(k; z) denote the random variable describing the output of environment machine

Z on input z, after interacting in the F-hybrid model with protocol �, adversary A, analogously to

the de�nition of real�;A;Z(k; z). (We stress that here � is a hybrid of a real-life protocol with ideal

evaluation calls to F .) Let execF�;A;Z denote the distribution ensemble fexecF�;A;Zgk2N;z2f0;1g� .

Replacing a call to F with a protocol invocation. Let � be a protocol in the F-hybrid

model, and let � be a protocol that securely realizes F (with respect to some class of adversaries).

The composed protocol �� is constructed by modifying the code of each ITM in � so that the

�rst message sent to each copy of F is replaced with an invocation of a new copy of � with fresh

random input, with the same SID, and with the contents of that message as input. Each subsequent

message to that copy of F is replaced with an activation of the corresponding copy of �, with the

contents of that message given to � as new input. Each output value generated by a copy of � is

treated as a message received from the corresponding copy of F . (See [c01] for more details on the

operation of \composed protocols", where a party, i.e. an ITM, runs multiple protocol-instances

concurrently.)

If protocol � is a protocol in the real-life model then so is ��. If � is a protocol in some G-hybrid

model (i.e., � uses ideal evaluation calls to some functionality G) then so is ��.

Theorem statement. In its general form, the composition theorem basically says that if � se-

curely realizes F in the G-hybrid model for some functionality G, then an execution of the composed

protocol ��, running in the G-hybrid model, \emulates" an execution of protocol � in the F-hybrid

model. That is, for any adversary A in the G-hybrid model there exists an adversary S in the F-

hybrid model such that no environment machine Z can tell with non-negligible probability whether

it is interacting with A and �� in the G-hybrid model or it is interacting with S and � in the

F-hybrid model.

A corollary of the general theorem states that if � securely realizes some functionality I in the

F-hybrid model, and � securely realizes F in the G-hybrid model, then �� securely realizes I in

the G-hybrid model. (Here one has to de�ne what it means to securely realize functionality I in

the F-hybrid model. This is done in the natural way.) That is:

Theorem 3.3 ([c01]) Let F ;G;I be ideal functionalities. Let � be an n-party protocol in the F-

hybrid model, and let � be an n-party protocol that securely realizes F in the G-hybrid model. Then

16

for any adversary A in the G-hybrid model there exists an adversary S in the F-hybrid model such

that for any environment machine Z we have:

exec
G
��;A;Z

c

� exec
F
�;S;Z : (2)

In particular, if � securely realizes functionality I in the F-hybrid model then �� securely realizes

I in the G-hybrid model.

On the uniqueness of the session IDs. The session IDs play a central role in the hybrid model

and the composition operation, in that they enable the parties to distinguish di�erent instances

of a protocol. Indeed, di�erentiating protocol instances via session IDs is a natural and common

mechanism in protocol design.

Yet, the current formulation of the hybrid model provides a somewhat over-idealized treatment

of session IDs. Speci�cally, it is assumed that the session IDs are globally unique and common to

all parties. That is, it is assumed that no two copies of an ideal functionality with the same session

ID exist, even if the two copies have di�erent (and even disjoint) sets of participants. Furthermore,

all parties are assumed to hold the same SID (and they must somehow have agreed upon it). This

treatment greatly simpli�es the exposition of the model and the de�nition of ideal functionalities

and protocols that realize them. Nonetheless, it is somewhat restrictive in that it requires the

protocol in the hybrid model to guarantee global uniqueness of common session IDs. This may

be hard (or even impossible) to achieve in the case that the protocol in the hybrid model is truly

distributed and does not involve global coordination. See [llr02] for more discussion on this point.

More elaborate ways of de�ning session IDs so as not to require global uniqueness exist. We leave

this issue for future work.

3.2 Universal Composition with Joint State

Traditionally, composition operations among protocols assume that the composed protocol in-

stances have disjoint states, and in particular independent local randomness. The universal com-

position operation is no exception: if protocol � securely realizes some ideal functionality F , and

protocol � in the F-hybrid model uses m copies of F , then the composed protocol �� uses m

independent copies of �, and no two copies of � share any amount of state.

This property of universal composition (and of protocol composition in general) is bothersome

in our context, where we wish to construct and analyze protocols in the common reference string

(CRS) model. Let us elaborate. Assume that we follow the natural formalization of the CRS model

as the Fcrs-hybrid model, where Fcrs is the functionality that chooses a string from the speci�ed

distribution and hands it to all parties. Now, assume that we construct a protocol � that realizes

some ideal functionality F in the Fcrs-hybrid model (say, let F be the commitment functionality,

Fcom). Assume further that some higher level protocol � (in the F-hybrid model) uses multiple

copies of F , and that we use the universal composition operation to replace each copy of F with

an instance of �. We now obtain a protocol �� that runs in the Fcrs-hybrid model and emulates

�. However, this protocol is highly wasteful of the reference string. Speci�cally, each instance of

� in �� has its own separate copy of Fcrs, or in other words each instance of � requires its own

independent copy of the reference string. This stands in sharp contrast with our common view of

the CRS model, where an unbounded number of protocol instances should be able to use the same

copy of the reference string.

One way to get around this limitation of universal composition (and composition theorems in

general) is to treat the entire, multi-session interaction as a single instance of a more complex

17

protocol, and then to explicitly require that all sessions use the same copy of the reference string.

More speci�cally, proceed as follows. First, given a functionality F as described above, de�ne a

functionality, F̂ , called the \multi-session extension of F". Functionality F̂ will run multiple copies

of F , where each copy will be identi�ed by a special \sub-session identi�er", ssid. Upon receiving

a message for the copy associated with ssid, F̂ activates the appropriate copy of F (running within

F̂), and forwards the incoming message to that copy. If no such copy of F exists then a new copy is

invoked and is given that ssid. Outputs generated by the copies of F are copied to F̂ 's output. The

next step after having de�ned F̂ is to construct protocols that directly realize F̂ in the Fcrs-hybrid

model, while making sure that the constructed protocols use only a single copy of Fcrs.

This approach works, in the sense that it allows constructing and analyzing universally com-

posable protocols that are eÆcient in their use of the reference string. However, it results in

a cumbersome and non-modular formalization of ideal functionalities and protocols in the CRS

model. Speci�cally, if we want to make sure that multiple sessions of some protocol (or set of

protocols) use the same copy of the reference string, then we must treat all these sessions (that

may take place among di�erent sets of parties) as a single instance of some more complex proto-

col. For example, assume that we want to construct commitments in the CRS model, then use

these commitments to construct UC zero-knowledge protocols, and then use these protocols in yet

higher-level protocols. Then, in any level of protocol design, we must design functionalities and

protocols that explicitly deal with multiple sessions. Furthermore, we must prove the security of

these protocols within this multi-session setting. This complexity obviates much of the advantages

of universal composition (and protocol composition in general).

In contrast, we would like to be able to formulate a functionality that captures only a single

instance of some interaction, realize this functionality by some protocol � in the CRS model, and

then securely compose multiple copies of � in spite of the fact that all copies use the same copy of

the reference string. This approach is, in general, dangerous, since it can lead to insecure protocols.

However, there are conditions under which such \composition with joint state" maintains security.

This section describes a general tool that enables the composition of protocols even when they

have some amount of joint state, under some conditions. Using this tool (suggested in [cr02]

and called universal composition with joint state (JUC)), we are able to state and realize most of the

functionalities in this work as functionalities for a single session, while still ending up with protocols

where an unbounded number of instances use the same copy of the common reference string. This

greatly simpli�es the presentation while not detracting from the composability and eÆciency of the

presented protocols.

In a nutshell, universal composition with joint state is a new composition operation that can

be sketched as follows. Let F be an ideal functionality, and let � be a protocol in the F-hybrid

model. Let F̂ denote the \multi-session extension of F" sketched above, and let � be a protocol

that securely realizes F̂ . Then construct the composed protocol �[�] by replacing all copies of F in

� by a single copy of �. (We stress that � assumes that it has access to multiple independent copies

of F . Still, we replace all copies of F with a single copy of some protocol.) The JUC theorem

states that protocol �[�], running in the real-life model, \emulates" � in the usual sense. A more

detailed presentation follows.

The multi-session extension of an ideal functionality. We formalize the notion of a multi-

session extension of an ideal functionality, sketched above. Let F be an ideal functionality. Recall

that F expects each incoming message to contain a special �eld consisting of its session ID (SID).

All messages received by F are expected to have the same SID. (Messages that have di�erent SIDs

than that of the �rst message are ignored.) Similarly, all outgoing messages generated by F carry

18

the same SID.

The multi-session extension of F , denoted F̂ , is de�ned as follows. F̂ expects each incoming

message to contain two special �elds. The �rst is the usual SID �eld as in any ideal functionality.

The second �eld is called the sub-session ID (SSID) �eld. Upon receiving a message (sid; ssid; v)

(where sid is the SID, ssid is the SSID, and v is an arbitrary value or list of values), F̂ �rst veri�es

that sid is the same as that of the �rst message, otherwise the message is ignored. Next, F̂ checks

if there is a running copy of F whose session ID is ssid. If so, then F̂ activates that copy of F with

incoming message (ssid; v), and follows the instructions of this copy. Otherwise, a new copy of F

is invoked (within F̂) and immediately activated with input (ssid; v). From now on, this copy is

associated with sub-session ID ssid. Whenever a copy of F sends a message (ssid; v0) to some party

Pi, F̂ sends (sid; ssid; v0) to Pi, and sends ssid to the adversary. (Sending ssid to the adversary

implies that F̂ does not hide which copy of F is being activated within F̂ .)

The composition operation. Let F be an ideal functionality. The composition operation,

called universal composition with joint state (JUC), takes two protocols as arguments: a protocol �

in the F-hybrid model and a protocol � that securely realizes F̂ . The result is a composed protocol

denoted �[�] and described as follows.

Recall that the F-hybrid model is identical to the real-life model of computation, with the

exception that the parties have access to multiple copies of F . The di�erent copies of F are

identi�ed via their SIDs as described above. Let F(sid) denote the copy of functionality F with SID

sid. Protocol �[�] behaves like � with the following exceptions:9

1. When activated for the �rst time within party Pi, �
[�] invokes a copy of protocol � with SID

sid0. That is, a copy of the ith Interactive Turing Machine in � is invoked as a subroutine

within Pi, and is (locally) given identity sid0. No activation of � occurs yet. (sid0 is some

�xed, prede�ned value. For instance, set sid0 = 0.)

2. Whenever � instructs party Pi to send a message (sid; v) to F(sid), protocol �
� instructs Pi

to activate � with input value (sid0; sid; v).

3. Whenever protocol � wishes to send a message m to some party Pi0 , Pi writes the message

(�; sid; Pi0 ;m) on the outgoing communication tape.

4. Whenever activated due to delivery of a message (�; sid;m) from Pi0 , Pi activates � with

incoming message (sid; Pi0 ;m).

5. Whenever (the single copy of) � generates an output value (sid; v), proceed just as � proceeds

with incoming message v from F(sid).

Theorem statement. The JUC theorem asserts that if �̂ securely realizes F̂ , then protocol �[�̂]

behaves essentially like � with ideal access to multiple independent copies of F . More precisely,

Theorem 3.4 (Universal composition with joint state [cr02]): Let F ;G be ideal functionalities.

Let � be a protocol in the F-hybrid model, and let �̂ be a protocol that securely realizes F̂ , the multi-

session extension of F , in the G-hybrid model. Then the composed protocol �[�̂] in the G-hybrid

9For simplicity, we assume that � securely realizes F̂ in the real-life model of computation. The composition

operation and theorem can be extended in a natural way to account for protocols � that securely realize F̂ in the

G-hybrid model for some ideal functionality G.

19

model emulates protocol � in the F-hybrid model. That is, for any adversary A there exists an

adversary S such that for any environment Z we have

exec
F
�;S;Z

c

� exec
G

�[�];A;Z
:

In particular, if � securely realizes some functionality I in the F-hybrid model then �[�] securely

realizes I in the G-hybrid model.

Discussion. Jumping ahead, we sketch our use of the JUC theorem. Recall the commitment

functionality, Fcom, formalized in [cf01]. This functionality captures the process of commitment

and decommitment to a single value, performed by two parties. In addition, [cf01] show how to

realize F̂com in the CRS model, using a single copy of the CRS for all commitments. (In [cf01]

functionality F̂com is called Fmcom.) An alternative protocol that realizes F̂com is also presented

here.

In this work we construct protocols that use these commitment protocols. However, to preserve

modularity of exposition, we present our protocols in the Fcom-hybrid model, while allowing the

protocols to use multiple copies of Fcom and thus enjoy full modularity. We then use universal

composition with joint state to compose any protocol � in the Fcom-hybrid model with any protocol

� that securely realized F̂com using a single copy of the reference string, to obtain a protocol �[�]

that emulates � and uses only a single copy of the reference string for all the commitments. (We

remark that the same technique is applied also to protocols that use the ideal zero-knowledge

functionality, Fzk. See more details in Section 6.)

3.3 Well-Formed Functionalities

We would like to be able to state a theorem saying that any ideal functionality can be securely

realized. However, for technical reasons, such a claim cannot be made in our model. The �rst

problem that arises is as follows. Since the ideal functionality is informed of the identities of the

corrupted parties, it can do things that cannot be realized by any protocol. For example, consider

the ideal functionality that lets all parties know which parties are corrupted. Then this functionality

cannot be realized in the face of an adversary that corrupts a single random party but instructs

that party to continue following the prescribed protocol.

In order to bypass this problem, we de�ne a special class of functionalities that do not utilize

their direct knowledge of the identities of the corrupted parties. For the lack of a better name,

we call these functionalities well-formed. A well-formed functionality consists of a main proce-

dure (called the shell) and a subroutine (called the core.) The core is an arbitrary probabilistic

polynomial-time algorithm, while the shell is a simple procedure described as follows. The shell

forwards any incoming message to the core, with the exception that noti�cations of corruptions

of parties are not forwarded. Outgoing messages generated by the core are copied by the shell to

the outgoing communication tape. The above de�nition guarantees that the code of a well-formed

ideal functionality \does not depend" on its direct knowledge regarding who is corrupted.

In subsequent sections, we show how to realize any well-formed functionality in the face of static

adversaries. However, another technicality arises when considering adaptive adversaries. Consider

for instance a two-party ideal functionality F that works as follows: Upon activation, it chooses two

large random primes p and q and sends n = pq to both parties. The value n is the only message

output by the functionality; in particular, it never reveals the values p and q. The important

property of this functionality that we wish to focus on is the fact that it has private randomness

that is never revealed. Such a functionality can be securely realized in the static corruption model.

20

However, consider what happens in a real execution if an adaptive adversary corrupts both parties

after they output n. In this case, all prior randomness is revealed (recall that we assume no

erasures). Therefore, if this randomness explicitly de�nes the primes p and q (as is the case in all

known protocols for such a problem), these values will necessarily be revealed to the adversary. On

the other hand, in the ideal process, even if both parties are corrupted, p and q are never revealed.10

(We stress that this is not a weakness of the model because in the case that all participating parties

are corrupted, there are no security requirements on a protocol. In particular, there are no honest

parties to \protect"). In light of the above discussion, we de�ne adaptively well-formed functionalities

that do not keep private randomness when all parties are corrupted. Formally, such functionalities

have a shell and a core, as described above. However, in addition to forwarding messages to and

from the core, the shell keeps track of the parties with whom the functionality interacts. If at

some activation all these parties are corrupted, then the shell sends the random tape of the core

to the adversary. Thus, when all the parties participating in some activation are corrupted, all

the randomness is revealed (even in the ideal process). We show how any adaptively well-formed

functionality can be securely realized in the face of adaptive adversaries.

In order to make sure that the multi-session extension of an adaptively well-formed functionality

remains adaptively well-formed, we slightly modify the de�nition of the multi-session extension of

an ideal functionality (see Section 3.2) as follows. If the given ideal functionality F is adaptively

well-formed, then F̂ , the multi-session extension of F , is an adaptively well-formed functionality

de�ned as follows. The core of F̂ consists of the multi-session extension (in the usual sense) of

the core of F . The shell of F̂ is as de�ned above except that it separately keeps track of the

participating parties of each session. Then, if all the participating parties of some session are

corrupted in some activation, the shell sends the random tape of the core for that session to the

adversary. (Recall that each session of the multi-session functionality uses an independent random

tape.) We note that the JUC theorem (Theorem 3.4) holds even with respect to the modi�ed

de�nition of multi-session extensions.

4 Two-party Secure Computation for Semi-Honest Adversaries

This section presents general constructions for securely realizing any two-party ideal functionality

in the presence of semi-honest adversaries. In the case of static adversaries, the construction is

basically that of Goldreich, Micali and Wigderson [gmw87]. In the case of adaptive adversaries

the construction of oblivious transfer is somewhat di�erent (however, the rest of the construction

remains unchanged). The main di�erence between our presentation and that of [g98], is that we

consider the reactive case where parties may receive new inputs during the run of the protocol.

Each new input may depend on the current adversarial view of the system. In particular, it may

depend on previous outputs of this execution and on the activity in other executions. We note that

although the basic construction of our protocol is very similar to [gmw87], our proof is signi�cantly

di�erent. This is due to the fact that we show universal composability, and in addition consider

also the adaptive corruption case (and not only the static case like in [gmw87]).

We begin by presenting the oblivious-transfer ideal functionality Fot, and demonstrate how

to realize this functionality in the presence of semi-honest adversaries (both static and adaptive).

Following this we present our protocol for securely realizing any two-party functionality, in the

Fot-hybrid model.

10We do not claim that it is impossible to realize this speci�c functionality. Indeed, it may be possible to sample

the domain fn j n = pqg (or a domain that is computationally indistinguishable from it) without knowing p or q.

Nevertheless, the example clearly demonstrates the problem that arises.

21

4.1 Universally Composable Oblivious Transfer

Oblivious transfer [r81, egl85] is a two-party functionality, involving a sender with input x1; :::; x`,

and a receiver with input i 2 f1; : : : ; `g. The receiver should learn xi (and nothing else) and the

sender should learn nothing. An exact de�nition of the ideal oblivious transfer functionality, denoted

F
`
ot
, appears in Figure 1. (Using standard terminology, F `

ot
captures 1-out-of-` OT.)

Functionality F`

ot

F`

ot
proceeds as follows, parameterized with an integer ` and running with an oblivious transfer

sender T , a receiver R and an adversary S.

1. Upon receiving a message (sender; sid; x1; :::; x`) from T , where each xj 2 f0; 1gm, record the
tuple (x1; :::; x`). (The length of the strings m is �xed and known to all parties.)

2. Upon receiving a message (receiver; sid; i) from R, where i 2 f1; : : : ; `g, send (sid; xi) to R

and (sid) to S, and halt. (If no (sender; : : :) message was previously sent, then send nothing
to R.)

Figure 1: The oblivious transfer functionality, F `
ot

Section 4.1.1 presents a protocol that securely realizes Fot for static adversaries. Section 4.1.2

presents our protocol for securely realizing Fot for adaptive adversaries.

4.1.1 Static UC Oblivious Transfer

The oblivious transfer protocol of [gmw87, g98], denoted SOT (for Static Oblivious Transfer) is

presented in Figure 2. For simplicity we present the protocol for the case where each of the ` input

values is a single bit. (In the semi-honest case, oblivious transfer for strings can be constructed

from this one via the composition theorem.)

Protocol SOT

Proceed as follows, on security parameter k.

1. Given input (sender; sid; x1; :::; x`), party T chooses a trapdoor permutation f over f0; 1gk,
together with its inverse f�1, and sends (sid; f) to the receiver R. (The permutation f is
chosen uniformly from a given family of trapdoor permutations.)

2. Given input (receiver; sid; i), and having received (sid; f) from T , receiver R chooses
y1; :::yi�1; r; yi+1; :::; y` 2R f0; 1gk, computes yi = f(r), and sends (sid; y1; : : : ; y`) to T .

3. Having received (sid; y1; : : : ; y`) from R, the sender T sends (sid; x1 � B(f�1(y1)); : : : ; x` �
B(f�1(y`))) to R, where B(�) is a hard-core predicate for f .

4. Output: Having received (sid; b1; : : : ; b`) from T , the receiver R outputs (sid; bi �B(r)).

Figure 2: The static, semi-honest oblivious transfer protocol

22

Claim 4.1 Assuming that f is a trapdoor permutation, Protocol SOT securely realizes F `
ot

in the

presence of semi-honest, static adversaries.

Proof: Let A be a semi-honest, static adversary that interacts with parties running the above

protocol. We construct an adversary S for the ideal process for F `
ot

such that no environment Z

can tell with non-negligible probability whether it is interacting with A and the above protocol or

with S in the ideal process for F `
ot
. Recall that S interacts with the ideal functionality F `

ot
and

with the environment Z. Simulator S starts by invoking a copy of A and running a simulated

interaction of A with Z and parties running the protocol. (We refer to the interaction of S in the

ideal process as external interaction. The interaction of A with the simulated A is called internal

interaction.) S proceeds as follows:

Simulating the communication with Z: Every input value that S receives from Z is written

on A's input tape (as if coming from A's environment). Likewise, every output value written

by A on its output tape is copied to S's own output tape (to be read by S's environment Z).

Simulating the case where the sender T only is corrupted: S simulates a real execution in

which T is corrupted. S begins by activating A and receiving the message (sid; f) that A

(controlling T) would send R in a real execution. Then, S chooses y1; : : : ; y` 2R f0; 1g
k and

simulates R sending T the message (sid; y1; : : : ; y`) in the internal interaction. Finally, when

A sends the message (sid; b1; : : : ; b`) from T to R in the internal interaction, S externally sends

T 's input x1; : : : ; x` to F
`
ot

and delivers the output from F `
ot

to R. (Recall that in the semi-

honest model as de�ned here, A is able to modify the input tape of T . Therefore, the value

x1; : : : ; x` sent by S to F `
ot

is the (possibly) modi�ed value. Formally this causes no problem

because actually it is the environment who writes the modi�ed value, after \consultation"

with A. Since all communication is forwarded unmodi�ed between A and Z, the value that

Z writes on T 's input tape is the already-modi�ed value. We ignore this formality in the

subsequent proofs in this section.)

Simulating the case where the receiver R only is corrupted: S begins by activating A and

internally sending it the message that A (controlling R) receives from T in a real execution.

That is, S chooses a random trapdoor permutation f and its inverse f�1, and sends it to

A. Next, it internally receives a message of the form (sid; y1; : : : ; y`) from A. Simulator S

then externally sends R's input i to F `
ot

and receives back the output xi. S concludes the

simulation by choosing b1; : : : ; bi�1; bi+1; : : : ; b` uniformly, setting bi = xi � B(f�1(yi)), and

internally sending A the message (sid; b1; : : : ; b`). (Recall that xi is the output as obtained

by S from the ideal functionality F `
ot
.)

Simulating the case that neither party is corrupted: In this case, S receives a message (sid)

signalling it that T and R concluded an ideal execution with Fot. S then generates a sim-

ulated transcript of messages between the real model parties. That is, S generates T 's �rst

message (sid; f) as the real T would, sets R's reply to be (sid; y1; : : : ; y`) where yj 2R f0; 1g
k

for each j, and �nally sets T 's second message to (sid; b1; : : : ; b`) where bj 2R f0; 1g for every

j.

Simulating the case that both parties are corrupted: In this case, S knows both parties'

inputs and can therefore simulate a protocol execution by generating the actual messages

that the parties would send in a real execution.

23

We demonstrate that idealFot;S;Z
c

� realsot;A;Z . This is done by showing that the joint view of

Z and A in the execution of SOT is indistinguishable from the joint view of Z and the simulated A

within S in the ideal process. First, notice that the simulation for the case where T is corrupted is

perfect. This is because in both the ideal simulation and a real execution, the message received by T

consists of ` uniformly distributed k-bit strings, and the output of R is the same in both executions.

(Notice that since f is a permutation, choosing r uniformly and computing yi = f(r), as occurs in a

real execution, results in a uniformly distributed yi. Furthermore, the output of R is bi�B(f
�1(yi))

where bi is the ith value sent by T .) Second, we claim that the simulation for the case where R is

corrupted is indistinguishable from in a real execution. The only di�erence between the two is in the

message b1; : : : ; b` received by R. The bit bi is identically distributed in both cases (in particular,

in both the simulation and a real execution it equals xi �B(f�1(yi))). However, all the bits bj for

j 6= i are uniformly chosen and are not distributed according to xj � B(f�1(yj)). Nevertheless,

due to the hard-core properties of B, the bit B(f�1(yj)) for a random yj is indistinguishable from

a random-bit bj 2R f0; 1g. The same is also true for xj � B(f�1(yj)) when xj is �xed before yj
is chosen. (More precisely, given an environment that distinguishes with non-negligible probability

between the real-life and the ideal interactions, we can construct an adversary that contradicts

the hard-core property of B.) Thus the views are indistinguishable. By the same argument, we

also have that the simulation for the case that neither party is corrupted results in a view that is

indistinguishable from a real execution. This completes the proof.

Our proof of security of the above protocol fails in the case of adaptive adversaries. Intuitively the

reason is that when a party gets corrupted, S cannot present the simulated A with a valid internal

state of the corrupted party. (This internal state should be consistent with the past messages sent by

the party and with the local input and output of that party.) In particular, the messages (sid; f),

(sid; y1; : : : ; y`) and (sid; b1; : : : ; b`) fully de�ne the input bits x1; : : : ; x`. However, in the case

that T is not initially corrupted, S does not know x1; : : : ; x` and therefore with high probability,

the messages de�ne a di�erent set of input bits. Thus, if A corrupts T after the execution has

concluded, S cannot provide A with an internal state of T that is consistent both with x1; : : : ; x`
and the simulated transcript that it had previously generated.

4.1.2 Adaptive UC Oblivious Transfer

Due to the above-described problem, we use a di�erent protocol for securely realizing F `
ot

for the

case of adaptive, semi-honest adversaries. A main ingredient in this protocol are non-committing

encryptions as de�ned in [cfgn96] and constructed in [cfgn96, b97, dn00]. In addition to standard

semantic security, such encryption schemes have the property that ciphertexts that can be opened

to both 0 and 1 can be generated. That is, a non-committing (bit) encryption scheme consists of a

tuple (G;E;D; S), where G is a key generation algorithm, E and D are encryption and decryption

algorithms, and S is a simulation algorithm (for generating non-committing ciphertexts). The triple

(G;E;D) satis�es the usual properties of semantically secure encryption. That is, G(1k) = (e; d)

where e and d are the respective encryption and decryption keys, and Dd(Ee(m)) = m except

with negligible probability. Furthermore, fEe(1)g is indistinguishable from fEe(0)g. In addition,

the simulator algorithm S is able to generate \dummy ciphertexts" that can be later \opened" as

encryptions of either 0 or 1. More speci�cally, it is required that S(1k) = (e; c; r0; r1; d0; d1) with

the following properties:

� The tuple (e; c; r0; d0) looks like a normal encryption and decryption process for the bit 0. That

is, (e; c; r0; d0) is indistinguishable from a tuple (e0; c0; r0; d0) where (e0; d0) is a randomly chosen

pair of encryption and decryption keys, r0 is randomly chosen, and c0 = Ee(0; r
0). (In particular,

24

it should hold that Dd0(c) = 0.)

� The tuple (e; c; r1; d1) looks like a normal encryption and decryption process for the bit 1. That

is, (e; c; r1; d1) is indistinguishable from a tuple (e0; c0; r0; d0) where (e0; d0) is a randomly chosen

pair of encryption and decryption keys, r0 is randomly chosen, and c0 = Ee(1; r
0). (In particular,

it should hold that Dd1(c) = 1.)

Thus, given a pair (e; c), it is possible to explain c both as an encryption of 0 (by providing d0
and r0) and as an encryption of 1 (by providing d1 and r1). Here, we actually use augmented

non-committing encryption protocols that have the following two additional properties:

1. Oblivious key generation: It should be possible to choose a public encryption key e \without

knowing" the decryption key d. That is, there should exist a di�erent key generation algorithm

Ĝ such that Ĝ(1k) = ê where ê is indistinguishable from the encryption key e chosen by G,

and in addition fEê(0)g remains indistinguishable from fEê(1)g even when the entire random

input of Ĝ is known.

2. Invertible samplability: this property states that the key generation and oblivious key genera-

tion algorithms G and Ĝ should be invertible. That is, we require the existence of an inverting

algorithm who receives any e output by the simulator algorithm S and outputs r such that

Ĝ(r) = e. (This algorithm may receive the coins used by S in computing e in order to �nd

r.) We also require an algorithm that receives any pair (e; di) for i 2 f0; 1g from the output

of S, and outputs r such that G(r) = (e; di). (As before, this algorithm may receive the coins

used by S.) The idea here is that in order to \explain" the simulator-generated keys as being

generated in a legal way, it must be possible to �nd legal random coin tosses for them.11

Augmented two-party non-committing encryption protocols exist under either one of the RSA or

the DDH assumptions. The requirements are also ful�lled in the case that public keys are uniformly

distributed over some public domain and secret keys are de�ned by the random coins input to G.

See more details in [cfgn96, dn00].

The protocol for securely realizing F `
ot
, denoted AOT (for Adaptive Oblivious Transfer) is

presented in Figure 3. As in the static case, the protocol is de�ned for the case where each of the

` input values is a single bit.

Claim 4.2 Assume that (G; Ĝ;E;D; S) is an augmented non-committing encryption scheme. Then,

Protocol AOT securely realizes F `
ot

in the presence of semi-honest, adaptive adversaries.

Proof: The main di�erence between this proof and the proof of Claim 4.1 is due to the fact that

the real-model adversary A can corrupt parties during (or after) the simulation. When S receives

such a \corrupt" command, it corrupts the ideal-model party and receives its input (and possibly

its output). Given this information, S must produce random coins for this party such that the

simulated transcript generated so far is consistent with the revealed input (and output).

Let A be a semi-honest, adaptive adversary that interacts with parties running the above

protocol. We construct an adversary S in the ideal process for F `
ot

such that no environment Z

can tell with non-negligible probability whether it is interacting with A and the above protocol or

with S in the ideal process for F `
ot
. In describing the simulation here, it is helpful to explicitly

consider the ITMs representing the real model parties in the internal interaction. We denote these

parties by ~T and ~R. S works as follows:

11In its most general form, one can de�ne an invertible sampling algorithm for G that receives any pair (e; d) in

the range of G and outputs r such that G(r) = (e; d). However, we actually only need the inverting algorithm to

work for keys output by the simulator S.

25

Protocol AOT

Proceed as follows, on security parameter k and using an augmented non-committing encryption
scheme (G; Ĝ; E;D; S).

1. Given input (receiver; sid; i), receiver R runs G(1k) to obtain (e; d), and runs Ĝ(1k) `�1 times
to obtain ê1; :::; êi�1; êi+1; :::; ê`. Then, R sends (sid; ê1; :::; êi�1; e; êi+1; :::; ê`) to T .

2. Given input (sender; sid; x1; :::; x`), and having received (sid; e1; :::; e`) from R, sender T com-
putes cj = Eej

(xj) for every 1 � j � `, and sends (sid; c1; :::; c`) to R.

3. Having received (sid; c1; : : : ; c`) from T , receiverR computes xi = Dd(ci) and outputs (sid; xi).

Figure 3: The adaptive, semi-honest oblivious transfer protocol

Simulating the communication with Z: Every input value that S receives from Z is written

on A's input tape (as if coming from A's environment). Likewise, every output value written

by A on its output tape is copied to S's own output tape (to be read by S's environment Z).

Simulating the receiver: We separately describe the simulation for a corrupted and uncorrupted

receiver.

1. Simulation when the receiver is not corrupted: In this case, S needs to simulate the

receiver message. This is done as follows: S runs the encryption simulation algorithm

S(1k) independently ` times. For each j, S obtains a tuple (ej ; cj ; r
j
0
; r

j
1
; d

j
0
; d

j
1
); see the

explanation above for the meaning of each element in this tuple. Then, S generates ~R's

message to be (sid; e1; : : : ; e`) and simulates ~R sending it to ~T .

2. Simulation when the receiver is corrupted: In this case, S holds the input (receiver; sid; i)

of the ideal receiver R and constructs a virtual real-model receiver ~R as follows. The

contents of the input tape of ~R is set to (receiver; sid; i). In order to set the contents of
~R's random tape, S �rst runs the encryption simulation algorithm S(1k) independently

` times, obtaining tuples (ej ; cj ; r
j
0
; r

j
1
; d

j
0
; d

j
1
). Next, for every j, S uses the invertible

sampling algorithm in order to �nd rj so that Ĝ(rj) = ej, where Ĝ is the oblivious key

generator. Then, S sets the contents of ~R's random tape to equal r1; : : : ; r`.

S passes the internal state of ~R (including the contents of its input and random tapes)

to A and waits for A to activate ~R in the simulation. When this occurs, S internally

obtains the message (sid; e1; : : : ; e`) that ~R writes on its outgoing message tape, and

externally sends (receiver; sid; i) to F `
ot
. (We note that for every j 6= i, it holds that

ej = Ĝ(rj) is the same ej as generated by S(1k). On the other hand, ei = G(ri), where

G is the standard encryption key generator.)

Simulating the sender: Once again, we separately consider the case that the sender is corrupted

or not corrupted.

1. Simulation when the sender is not corrupted: S simulates ~T sending (sid; c1; : : : ; c`)

where the ci's were generated from S(1k) when simulating the receiver message above.

This is the same whether or not R was corrupted.

2. Simulation when the sender is corrupted: S holds the ideal T 's input (sender; sid; x1; : : : ; x`)

and constructs a virtual real-model sender ~T by writing (sender; sid; x1; : : : ; x`) on its

26

input tape and a uniformly distributed string on its random tape. Then, as above, S

passesA the internal state of ~T (consisting of the contents of its input and random tapes).

When A activates ~T , simulator S externally sends the message (sender; sid; x1; : : : ; x`)

to F `
ot
.

Dealing with \corrupt" commands: We assume that any corruption of a party occurs after the

party has sent its protocol message in the simulation. (Otherwise, the corruption essentially

occurs before the protocol begins and the instructions above suÆce.) Now, if S receives a

command from A to corrupt the real-model ~R, then it corrupts the ideal model R and obtains

its input i and its output xi. Given i and xi, simulator S passes A the decryption-key dixi
(and thus the ciphertext ci given to R in the simulated sender-message is \decrypted" to xi).

Furthermore, for every j 6= i, S runs the invertible sampling algorithm on ej in order to �nd

rj such that Ĝ(rj) = ej . Finally, S runs the invertible sampling algorithm on ei in order to

�nd ri such that G(ri) = (ei; d
i
xi
). Notice that these two invertible sampling algorithms are

di�erent. S supplies A with the random tape r1; : : : ; r` for ~R.

If S receives a command from A to corrupt real-model ~T , then it �rst corrupts the ideal-

model T and obtains x1; : : : ; x`. Next, it prepares appropriate randomness to make it appear

that for every j, it holds that cj = Eej (xj) (where the (cj ; ej) pairs are taken from the

simulated receiver and sender messages). Since the encryption keys are non-committing and

were generated by running S(1k), we have that for every 1 � j � ` simulator S has a string

rxj such that cj = Eej (xj; rxj). Therefore, S writes rx1 ; : : : ; rx` as
~T 's random tape.

Output and output delivery: S delivers the output from F `
ot

to (an uncorrupted) R when A

delivers the message from ~T to ~R in the simulation.

As argued in the proof of Claim 4.1, it suÆces to show that A's view in the simulation is indis-

tinguishable from its view in a real execution. (Note that in the adaptive case there is a positive

correctness error. That is, there is non-zero probability that the outputs of the uncorrupted parties

in the real-life interaction will di�er from their outputs in the ideal process. This error probability is

due to the fact that encryption schemes can \fail" with negligible probability. Since the probability

of such an event is negligible, we ignore it here.) The indistinguishability of the views is demon-

strated using the properties of the augmented non-committing encryption scheme. In particular, the

non-committing encryption keys, ciphertexts and decommitment strings are all indistinguishable

from those appearing in a real execution. Furthermore, by the oblivious key-generation algorithm,

S supplies only a single decryption key (for the ith encryption key) and this is what a real receiver

would also have. (More precisely, given an environment that distinguishes between the real-life and

ideal interactions we construct an adversary that breaks either the security of the non-committing

encryption or the oblivious key generation property. We omit further details.)

4.2 The General Construction

We are now ready to show how to securely realize any (adaptively) well-formed two-party func-

tionality in the Fot-hybrid model, in the semi-honest case. (Adaptively well-formed functionalities

are de�ned in Section 3.3. Two-party functionalities are functionalities that interact with the ad-

versary, plus at most two parties.) The construction is essentially that of [gmw87, g98], although

as we have mentioned, our protocol is actually more general in that it also deals with reactive

functionalities. We begin by formally restating Proposition 2.1:

27

Proposition 4.3 (Proposition 2.1 { formally restated): Assume that trapdoor permutations exist.

Then, for any two-party well-formed ideal functionality F , there exists a non-trivial protocol that

securely realizes F in the presence of semi-honest, static adversaries. Furthermore, if two-party

augmented non-committing encryption protocols exist, then for any two-party adaptively well-formed

ideal functionality F , there exists a non-trivial protocol that securely realizes F in the presence of

semi-honest, adaptive adversaries.

Recall that a protocol is non-trivial if the ideal-process adversary delivers all messages from the

functionality to the parties whenever the real-life adversary delivers all messages and doesn't corrupt

any parties. This restriction is included to rule out meaningless protocols such as the protocol that

never generates output. (See Section 3.1 for more discussion.)

The construction. Let F be an ideal two-party functionality and let P1 and P2 be the partic-

ipating parties. The �rst step in constructing a protocol that securely realizes F is to represent

(the shell of) F via a family CF of boolean circuits. That is, the mth circuit in the family describes

an activation of F when the security parameter is set to m. Following [gmw87, g98], we use

arithmetic circuits over GF(2) where the operations are addition and multiplication modulo 2.

For simplicity we assume that the input and output of each party in each activation has at most

m bits, the number of random bits used by F in all activations is at most m, and at the end of

each activation the local state of F can be described in at most m bits. Consequently the circuit

has 3m input lines and 3m output lines, with the following interpretation. In each activation, only

one party has input. Therefore, m of the input lines are allocated for this input. The other 2m

input lines describe F 's m random coins and the length-m internal state of F at the onset of an

activation. The 3m output lines are allocated as follows: m output lines for the output of each of

the two parties and m output lines to describe the state of F following an activation. The circuit

is constructed so that each input from the adversary is set to 0, and outputs to the adversary are

ignored.12 We note that if the input or output of a party in some activation is less than m bits

then this is encoded in a standard way. Also, each party initially sets its shares of the state of F

to 0 (this denotes the empty state).

Protocol �F (for securely realizing F): We state the protocol for an activation in which

P1 sends a message to F ; the case where P2 sends the message is easily derived (essentially by

exchanging the roles of P1 and P2 throughout the protocol). It is assumed that both parties hold

the same session identi�er sid as auxiliary input. When activated with input (sid; v) within P1,

the protocol �rst sends a message to the partner P2, asking it to participate in a joint evaluation of

the mth circuit in CF . Next, P1 and P2 engage in a gate-by-gate evaluation of CF , on inputs that

represent the incoming message v from P1, the current internal state of F , and a random string.

This is done as follows.

1. Input Preparation Stage:

� Input value: Recall that v is P1's input for this activation. P1 �rst pads v to be of length

exactlym (using some standard encoding). Next P1 \shares" its input. That is, P1 chooses

a random string v1 2R f0; 1g
m and de�nes v2 = v1� v. Then, P1 sends (sid; v2) to P2 and

stores v1.

12Thus, we e�ectively prevent the ideal-model adversary from utilizing its capability of sending and receiving

messages. This simpli�es the construction, and only strengthens the result.

28

� Internal state: At the onset of each activation, the parties hold shares of the current

internal state of F . That is, let c denote the current internal state of F , where jcj = m.

Then, P1 and P2 hold c1; c2 2 f0; 1g
m, respectively, such that c1 and c2 are random under

the restriction that c = c1 � c2. (In the �rst activation of F , the internal state is empty

and so the parties' shares both equal 0.)

� Random coins: Upon the �rst activation of F only, parties P1 and P2 choose random

strings r1 2R f0; 1g
m and r2 2R f0; 1g

m, respectively. These constitute shares of the

random coins r = r1 � r2 to be used by CF . We stress that r1 and r2 are chosen upon

the �rst activation only. The same r1 and r2 are then used for each subsequent activation

of F (r1 are r2 are kept the same because the random tape of F does not change from

activation to activation).

At this point, P1 and P2 hold (random) shares of the input message to F , the internal state

of F and the random tape of F . That is, they hold shares of every input line into CF . Note

that the only message sent in the above stage is the input share v2 sent from P1 to P2.

2. Circuit Evaluation: P1 and P2 proceed to evaluate the circuit CF in a gate-by-gate manner.

Let � and � denote the values of the two input lines to a given gate. Then P1 holds bits �1; �1
and P2 holds bits �2; �2 such that � = �1 + �2 and � = �1 + �2. The gates are computed as

follows:

� Addition gates: If the gate is an addition gate, then P1 locally sets its share of the output

line of the gate to be
1 = �1 + �1. Similarly, P2 locally sets its share of the output line

of the gate to be
2 = �2 + �2. (Thus
1 +
2 = �+ �.)

� Multiplication gates: If the gate is a multiplication gate, then the parties use F4

ot
in order

to compute their shares of the output line of the gate. That is, the parties wish to compute

random shares
1 and
2 such that
1+
2 = � � � = (�1+�2)(�1+�2). For this purpose,

P1 chooses a random bit
1 2R f0; 1g, sets its share of the output line of the gate to
1,

and de�nes the following table:

Value of (�2; �2) Receiver input i Receiver output
2
(0,0) 1 o1 =
1 + �1 � �1
(0,1) 2 o2 =
1 + �1 � (�1 + 1)

(1,0) 3 o3 =
1 + (�1 + 1) � �1
(1,1) 4 o4 =
1 + (�1 + 1) � (�1 + 1)

Having prepared this table, P1 sends the oblivious transfer functionality F
4

ot
the message

(sender; sid Æ j; o1; o2; o3; o4), where this is the j
th multiplication gate in the circuit and Æ

denotes concatenation (the index j is included in order to ensure that the inputs of the

parties match to the same gate). P2 sets its input value i for F
4

ot
according to the above

table (e.g., for �2 = 1 and �2 = 0, P2 sets i = 3). Then, P2 sends (receiver; sid Æ j; i) to

F
4

ot
and waits to receive (sid Æ j;
2) from F

4

ot
. Upon receiving this output, P2 sets
2 to

be its share of the output line of the gate. Thus, we have that
1+
2 = (�1+�1)(�2+�2)

and the parties hold random shares of the output line of the gate.

3. Output Stage: Following the above stage, the parties P1 and P2 hold shares of all the output

lines of the circuit CF . Each output line of CF is either an output addressed to one of the

parties P1 and P2, or belongs to the internal state of CF after the activation. The activation

concludes as follows:

29

� P1's output: P2 sends P1 all of its shares in P1's output lines. P1 reconstructs every bit of

its output value by adding the appropriate shares. (If the actual output generated by F

has less than the full m bits then this will be encoded in the output in a standard way.)

� P2's output: Likewise, P1 sends P2 all of its shares in P2's output lines; P2 reconstructs

the value and writes it on its output tape.

� S's output: Recall that the outputs of F to S are ignored by CF . Indeed, the protocol

does not provide the real-life adversary with any information on these values. (This only

strengthens the security provided by the protocol.)

� Internal state: Finally, P1 and P2 both store the shares that they hold for the internal

state lines of CF . (These shares are to be used in the next activation.)

Recall that there is no guarantee on the order of message delivery, so messages may be delivered

\out of order". However, to maintain correctness, the protocol must not start some evaluation

of CF before the previous evaluation of CF has completed. Furthermore, evaluating some gate

can take place only after the shares of the input lines of this gate are known. Thus, in order to

guarantee that messages are processed in the correct order, a tagging method is used. Essentially,

the aim of the method is to assign a unique tag to every message sent during all activations of F .

Thus, the adversary can gain nothing by sending messages in di�erent orders. This is achieved in

the following way. Recall that both parties hold the same session-identi�er sid. Then, in activation

i, the parties use the session-identi�er sid Æ i. They also attach a tag identifying the stage which

the message sent belongs to. Thus, for example, the message v2 sent by P1 in the input stage of

the `th activation is tagged with hsid Æ ` Æ inputi. Likewise, the jth call to Fot in the ith activation

is referenced with the session identi�er sid Æ ` Æ j (and not just sid Æ j as described above). Now,

given the above tagging method, the ordering guarantees can be dealt with in standard ways by

keeping messages that arrive too early in appropriate bu�ers until they become relevant (where the

time that a message becomes relevant is self-evident from the labelling). By the above, it makes

no di�erence whether or not the adversary delivers the messages according to the prescribed order.

From here on we therefore assume that all messages are delivered in order. We also drop explicit

reference to the additional tagging described here. This completes the description of �F .

We now prove that the above construction securely realizes any adaptively well-formed functionality.

(We stress that for the case of static adversaries, �F securely realizes any well-formed functionality,

and not just those that are adaptively well-formed. Nevertheless, here we prove the claim only for

adaptively well-formed functionalities and adaptive adversaries. The static case with security for

any well-formed functionality is easily derived.)

Notice that each activation of �F is due to an input sent by one of the participating parties.

This implicitly assumes that the only messages that the functionality receives are from the parties

themselves. This is indeed the case for well-formed functionalities (or, more accurately, the shells

of such functionalities). However, recall that in general, functionalities receive noti�cation of the

parties that are corrupted. The protocol does not (and cannot) deal with such messages and

therefore does not securely realize functionalities that are not well-formed.

Claim 4.4 Let F be a two-party adaptively well-formed functionality. Then, protocol �F securely

realizes F in the Fot-hybrid model, in the presence of semi-honest, adaptive adversaries.

Note that the claim holds unconditionally. In fact, it holds even if the environment and the

adversary are computationally unbounded. (Of course, computational assumptions are required

30

for securely realizing the oblivious transfer functionality.) The proof below deals with the security

of reactive functionalities, in the presence of adaptive adversaries. This proof is signi�cantly more

involved than an analogous claim regarding non-reactive functionalities and static adversaries. For

a warm-up, we refer the reader unfamiliar with this more simple case to [g98, Sec. 2.2.4].

Proof: First note that protocol �F \correctly" computes F . That is, in each activation, if the

inputs of both parties in the real-life model are identical to their inputs in the ideal process, then the

outputs of the uncorrupted parties are distributed identically as their outputs in the ideal process.

This fact is easily veri�ed and follows inductively from the property that the parties always hold

correct shares of the lines above the gates computed so far. (The base case of the induction relates

to the fact that the parties hold correct shares of the input and internal state lines. In addition,

the lines corresponding to F 's random tape contain uniformly distributed values.)

We now proceed to show that �F securely realizes F . Intuitively, the security of protocol �F is

based on the fact that all the intermediate values seen by the parties are uniformly distributed. In

particular, the shares that each party receives of the other party's input are random. Furthermore,

every output that a party receives from an oblivious transfer is masked by a random bit chosen by

the sender. Throughout the proof, we denote by x and y the outputs of P1 and P2, respectively.

Let A be a semi-honest, adaptive adversary that interacts with parties running Protocol �F

in the Fot-hybrid model. We construct an adversary S for the ideal process for F such that no

environment Z can tell whether it interacts with A and �F in the Fot-hybrid model, or with S in

the ideal process for F . S internally runs a simulated copy of A, and proceeds as follows:

Simulating the communication with Z: Every input value that S receives from Z is written

on A's input tape (as if coming from A's environment). Likewise, every output value written

by A on its output tape is copied to S's own output tape (to be read by S's environment Z).

Simulation of the input stage: We �rst describe the simulation in the case that P1 is corrupted

(before the protocol begins). In this case, S holds the contents of P1's input tape (sid; v) and

therefore externally sends the value to the ideal functionality F . Now, the input stage of �F

consists only of P1 sending a random string v2 to P2. In the case that P1 is corrupted, this

string is already determined and thus no further simulation is required. In the case that P1

is not corrupted, S chooses a uniformly distributed string v2 and simulates P1 sending this

string to P2.

Simulation of the circuit evaluation stage: The computation of addition gates consists only

of local computation and therefore requires no simulation. In contrast, each multiplication

gate is computed using an ideal call to Fot, where P1 plays the sender and P2 plays the

receiver. We describe the simulation of these calls to Fot separately for each corruption case:

1. Simulation when both P1 and P2 are not corrupted: In this case, the only message seen

by A in the evaluation of the jth gate is the (sid Æ j) message from the corresponding

copy of Fot. Thus, S simulates this stage by merely simulating for A an (sidÆj) message

sent from Fot to the recipient P2.

2. Simulation when P1 is corrupted and P2 is not corrupted: The simulation in this case

is the same as in the previous (P1 obtains no output from Fot and therefore A receives

(sid Æ j) only).

3. Simulation when P1 is not corrupted and P2 is corrupted: The receiver P2 obtains a

uniformly distributed bit
2 as output from each call to Fot. Therefore, S merely

chooses
2 2R f0; 1g and simulates P2 receiving
2 from Fot.

31

4. Simulation when both P1 and P2 are corrupted: Since all input and random tapes are

already de�ned when both parties are corrupted, simulation is straightforward.

Simulation of the output stage: S simulates P1 and P2 sending each other their shares of the

output lines. As above, we separately describe the simulation for each corruption case:

1. Simulation when both P1 and P2 are not corrupted: In this case, all A sees is P1 and P2

sending each other random m-bit strings. Therefore, S chooses y1; x2 2R f0; 1g
m and

simulates P1 sending y1 to P2 and P2 sending x2 to P1 (y1 is P1's share in P2's output

y and vice versa for x2).

2. Simulation when P1 is corrupted and P2 is not corrupted: First, notice that the output

shares of a corrupted party are already de�ned (because A holds the view of any cor-

rupted party and this view de�nes the shares in all output lines). Thus, in this case,

the string sent by P1 in the output stage is predetermined. In contrast, P2's string is

determined as follows: P1 is corrupted and therefore S has P1's output x. Furthermore,

P1's shares x1 in its own output lines are �xed (because P1 is corrupted). S therefore

simulates P2 sends x2 = x�x1 to P1 (and so P1 reconstructs its output to x, as required).

3. Simulation when P1 is not corrupted and P2 is corrupted: The simulation here is the

same as in the previous case (while reversing the roles of P1 and P2).

4. Simulation when both P1 and P2 are corrupted: The shares of all output lines of both

parties are already determined and so simulation is straightforward.

Simulation of the �rst corruption: We now show how S simulates the �rst corruption of a

party. Notice that this can occur at any stage after the simulation described above begins.

(If the party is corrupted before the execution begins, then the simulation is according to

above.) We describe the corruption as if it occurs at the end of the simulation; if it occurs

earlier, then the simulator follows the instructions only until the appropriate point. We

di�erentiate between the corruptions of P1 and P2:

1. P1 is the �rst party corrupted: Upon corrupting P1, simulator S receives P1's input value

v. S proceeds by generating the view of P1 in the input preparation stage. Let v2 be

the message that P1 sent P2 in the simulation of the input stage by S. Then, S sets P1's

shares of its input to v1, where v1 � v2 = v. Furthermore, S sets P1's m-bit input r1 to

the lines corresponding to CF 's random tape to be a uniformly distributed string, and

P1's shares of the internal state of F to be a random string c1 2R f0; 1g
m. (Actually,

if this is the �rst activation of CF , then c1 is set to 0 to denote the empty state.) In

addition, S sets P1's random tape to be a uniformly distributed string of the appropriate

length for running �F . (Notice that this random tape de�nes the bits
1 that P1 chooses

when de�ning the oblivious transfer tables for the multiplication gates; recall that these

bits then constitute P1's shares of the output lines from these gates.) In the case that

P1 is corrupted before the output stage, this actually completes the simulation of P1's

view of the evaluation until the corruption took place. This is due to the fact that P1

receives no messages during the protocol execution until the output stage (P1 is always

the oblivious transfer sender).

We now consider the case that P1 is corrupted after the output stage is completed. In

this case the output messages x2 and y1 of both parties have already been sent. Thus,

we must show that S can eÆciently compute a random tape for P1 that is consistent

with these messages. For simplicity of exposition, we assume that only multiplication

32

gates, and no addition gates, lead to output lines; any circuit can be easily modi�ed to

ful�ll this requirement. Now, notice that the random coin
1 chosen by P1 in any given

multiplication gate is independent of all other coins. Therefore, the simulated output

messages x2; y1 that S already sent only in
uence the coins of multiplication gates that

lead to output lines; the coins of all other multiplication gates can be chosen uniformly

and independently of x2; y1. The coins for multiplication gates leading to output lines

are chosen as follows: For the ith output line belonging to P2's output, S sets P1's coin

1 to equal the i
th bit of y1. (Recall that P1's random coin
1 equals its output from the

gate; therefore, P1's output from the gate equals its appropriate share in P2's output,

as required.) Furthermore, for the ith output line belonging to P1's output, S sets P1's

random coin
1 to equal the ith bit of x � x2. (Therefore, P1's reconstructed output

equals x, as required; furthermore, this reconstructed value is independent from the

intermediary information learned by the adversary.)

2. P2 is the �rst party corrupted: Upon the corruption of P2, simulator S receives P2's

output y (P2 has no input). Then, S must generate P2's view of the execution. S begins

by choosing r2 2R f0; 1g
m and setting P2's input to the lines corresponding to CF 's

random tape to r2. In addition, it chooses the shares of the internal state of F to be

a random string c2. (As above, in the �rst activation of CF , the string c2 is set to 0.)

Next, notice that from this point on, P2 is deterministic (and thus it needs no random

tape). Also, notice that the value that P2 receives in each oblivious transfer is uniformly

distributed. Therefore, S simulates P2 receiving a random bit for every oblivious transfer

(S works in this way irrespective of when P2 was corrupted). If this corruption occurs

before the output stage has been simulated, then the above description is complete (and

accurate). However, if the corruption occurs after the simulation of the output stage,

then the following changes must be made. First, as above, the random bits chosen for

P2's outputs from the oblivious transfers de�ne P2's shares in all the output lines. Now,

if the output stage has already been simulated then the string x2 sent by P2 to P1 and

the string y1 sent by P1 to P2 have already been �xed. Thus, as in the previous case, S

chooses the output bits of the oblivious transfers so that they are consistent with these

strings. In particular, let y be P2's output (this is known to S since P2 is corrupted)

and de�ne y2 = y � y1. Then, S de�nes P2's output-bit of the oblivious transfer that is

associated with the ith bit of its shares of its own output to be the ith bit of y2. Likewise,

the output from the oblivious transfer associated with the ith bit of P2's share of P1's

output is set to equal the ith bit of x2.

We note that in the above description, S generates the corrupted party's view of the current

activation. In addition, it must also generate the party's view for all the activations in

the past. Observe that the only dependence between activations is that the shares of the

state string input into a given activation equal the shares of the state string output from the

preceding activation. Thus, the simulation of prior activations is exactly the case of simulation

where the corruption occurs after the output stage has been completed. The only di�erence

is that S de�nes the shares of the state string so that they are consistent between consecutive

activations.

Simulation of the second corruption: As before, we di�erentiate between the corruptions of

P1 and P2:

1. P2 is the second party corrupted: Upon corrupting P2, simulator S obtains P2's output

33

in this activation and all its inputs and outputs from previous activations. Furthermore,

since the functionality is adaptively well-formed, S obtains the random tape used by the

ideal functionality F in its computation. Next, S computes the internal state of F in

this activation, based on all the past inputs, outputs and the internal random tape of F

(this can be computed eÆciently). Let c be this state string and let r equal F 's m-bit

random tape. Then, P2 sets c2 such that c = c1 � c2, where c1 was randomly chosen

upon P1's corruption. (S also makes sure that the output state information from the

previous execution equals the input state information from this execution. This is easily

accomplished because output gates are always immediately preceded by multiplication

gates, and so independent random coins are used.) Similarly, S sets r2 = r1 � r, where

r equals F 's random tape and r1 equals the random string chosen upon P1's corruption

(for simulating P1's share of the random tape of CF).

We now proceed to the rest of the simulation. In the case we are considering here,

P1 has already been corrupted. Therefore, all the tables for the oblivious transfers have

already been de�ned. It thus remains to show which values P2 receives from each of these

gate evaluations. However, this is immediately de�ned by P2's input and the oblivious

transfer tables. Thus, all the values received by P2 from this point on, including the

output values, are fully de�ned, and S can directly compute them.

2. P1 is the second party corrupted: The simulation by S here begins in the same way as

when P2 is the second party corrupted. That is, S corrupts P1 and obtains the random

tape of F . Then, S de�nes the appropriate state share string c1, and random tape

share string r1 (in the same way as above). In addition, S obtains P1's input value v

and de�nes the appropriate share v1 (choosing it so that v1 � v2 = v). This de�nes

all the inputs into the circuit CF . Given this information, S constructs the tables for

all the oblivious transfers. Recall that P2 is already corrupted. Therefore, the bits

that it receives from each oblivious transfer are already de�ned. Now, for each gate

(working from the inputs to the outputs), S works as follows. Let
2 be the output that

P2 received from some oblivious transfer. Furthermore, assume that S holds the input

shares of both parties for the gate in question (this can be assumed because S works

bottom-up, from the input lines to the output lines). Then, S checks what the real

(unmasked) output bit of the gate should be, let this value be
. Given that P2 received

2 and the output value should be
, simulator S sets P1's random-bit in de�ning this

table to be
1 =
2 �
. S continues in this way for all the gates evaluated in the

simulation before P1 was corrupted. We note that if the corruption occurred after the

output stage, then the output strings sent are de�ned by the outputs of the gates, as

computed above.

Output and output delivery: S delivers the output from F to (an uncorrupted) party after A

delivers the corresponding output message to the party in the simulation. This takes care of

the outputs of corrupted parties. For a corrupted party Pi (i 2 f1; 2g), simulator S copies

the contents of the simulated Pi's output tape (as written by A) onto the output tape of the

ideal process party Pi.

Analysis of S. We show that no environment Z can distinguish the case where it interacts with

S and F in the ideal process from the case where it interacts with A and �F in the Fot-hybrid

model. In fact, we demonstrate that Z's view is distributed identically in the two interactions.

The proof proceeds by induction on the number of activations in a run of Z. Recall that in each

34

activation, Z reads the output tapes of P1, P2, and the adversary, and then activates either P1, P2

or the adversary with some input value. (One should not confuse activations of a party, as is the

intention here, with activations of the functionality and protocol.) We actually prove a somewhat

stronger claim: Let �ri denote the random variable describing the state of Z at the onset of the

ith activation in an interaction with adversary A and parties running �F in the Fot-hybrid model,

and let �ri denote the random variable describing the state of A at this point in the interaction.

Let � ii denote the random variable describing the state of Z at the onset of its ith activation in an

interaction with adversary S in the ideal process for functionality F , and let �ii denote the random

variable describing the state of the simulated A within S at this point in the interaction. We show

that for all i, the pairs (�ri ; �
r

i) and (� ii; �
i

i) are identically distributed. More precisely, Let i > 0.

Then, for any values a1; a2; b1; b2 we show:

Pr
h
(�ri+1

; �ri+1
) = (b1; b2)

��� (�ri ; �ri) = (a1; a2)
i
= Pr

h
(� ii+1

; �ii+1
) = (b1; b2)

��� (� ii ; �ii) = (a1; a2)
i
(3)

That is, assume that the states of Z and A at the onset of some activation of Z have some arbitrary

(�xed) values a1 and a2, respectively. Then the joint distribution of the states of Z and A at the

onset of the next activation of Z is the same regardless of whether we are in the \real interaction"

with �F , or in the ideal process. (In the interaction with �F the probability is taken over the

random choices of the uncorrupted parties. In the ideal process the probability is taken over the

random choices of S and F .)

Asserting Eq. (3), recall that in the ith activation Z �rst reads the output tapes of P1, P2,

and the adversary. (We envision that these values are written on a special part of the incoming

communication tape of Z, and are thus part of its state �ri = � ii.) Next, Z either activates some

uncorrupted party with some input x, or activates the adversary with input x. We treat these cases

separately:

Z activates an uncorrupted party with some input value x. In this case, in the interaction

with �F , the activated party sends out a request to the other party to evaluate an activation

of CF , plus a random share of x. This message becomes part of the state of A (who sees

all messages sent). In the ideal process, S (who sees that the party sent a message to F)

generates a simulated message for A with the same distribution. (Recall that this message is

just a uniformly distributed string.)

Z activates the adversary with some input value x. Recall that in the interaction with �F

adversary A is now activated, reads x, and in addition has access to the messages sent by

the parties and by the various copies of Fot since its last activation. (We envision that this

information is written on A's incoming communication tape.) Next, A can either deliver

a message to some party, modify the input/output tapes of some already corrupted party

or corrupt a currently honest party. Finally, A writes some value on its output tape and

completes its activation. In the ideal process, S forwards x to A and activates A. Next,

S provides A with additional information representing the messages sent by the parties and

also, in case of party corruption, the internal state of the corrupted party.

We proceed in four steps. First, we show that the contents of A's incoming communication

tape has the same distribution in both interactions. Second, we show that the e�ect of message

delivery on the states of A and Z is the same in both interactions. Third, we demonstrate

that the information learned by A upon corrupting a party has the same distribution in

both interactions. Finally, we demonstrate that A's view regarding the states of the already

corrupted parties has the same distribution in both interactions.

35

New messages seen by A. Each message seen by A is of one of the following possible

types:

� An input-sharing message as described above: As mentioned above, in this case in both

interactions A sees an m-bit long random string, representing a share of the sender's

new input value.

� A message from a party to some copy of Fot: In this case, in both interactions, A only

gets noti�ed that some message was sent from the party to the copy of Fot.

� A message from some copy of Fot to P2: In both interactions, if P2 is uncorrupted then

A does not see the contents of this message. If P2 is corrupted then this message consists

of a single random bit that is independent from the states of A and Z so far. (This bit

is P2's share of the corresponding line of the circuit.)

� An output message from one party to another: Here one party sends its share of some

output line to the other party (who is designated to get the value of this line.) In both

interactions, if the recipient party is uncorrupted then this message consists of a single

random bit � that is independent from the states of A and Z so far. If the recipient

is corrupted then A already has �, the recipient's share of that line. In the interaction

with �F , the value
 = ��� is the value of this output line in CF . In the ideal process,

 = � � � is the corresponding value generated by F . The distribution of c (given the

states of A and Z so far) is identical in both cases; this is the case because CF correctly

represents an activation of F .

Messages delivered by A. If A delivers an output message to some party in an execution

of �F , then this party outputs the (correct) value derived from the corresponding output lines

of CF . This output value,

r, becomes part of the state of Z (to be read by Z at the onset of

its next activation.) If A delivers an output message to some party in the ideal process, then

S (who runs A) delivers the corresponding message from F to this party. Consequently, this

party outputs the value,
i, sent by F . Since CF correctly represents the computation of F ,

we have that
r and
i are identically distributed.

If A delivers to some party Pi a message that is not an output message then Pi outputs

nothing. (Pi may send other messages, but these messages will only become part of the state

of A in its next activation. This next activation of A occurs after the next activation of Z.)

Corruption of the �rst party. In the interaction with �F , upon corrupting the �rst

party A sees all the past inputs and outputs of this party. In addition, it sees all the shares

of this party from the input lines, the random input lines, the internal state input lines,

and all the internal lines of the circuit CF ; these shares are all random values distributed

independently from the states of A and Z so far. In the ideal process, S provides A with

identically distributed information.

Corruption of the second party. In the interaction with �F , upon corrupting the second

party A sees the same information as in the �rst corruption, namely all the past inputs and

outputs of this party, as well as the shares of this party from the input lines, the random input

lines, the internal state input lines, and all the internal lines of the circuit CF . Here, however,

this information determines the actual values of all types of input lines to the circuit, plus

the values of all the internal lines of the circuit. (The values of the random input lines to

the circuit are uniformly distributed. All other lines are uniquely determined by the states

of Z and A at this point.) In the ideal process, S provides A with identically distributed

information. (This can be seen from the code of S.)

36

This completes the analysis of S and the proof of the claim.

Using the composition theorem, Proposition 4.3 follows from Claims 4.1, 4.2, and 4.4.

5 Universally Composable Commitments

We describe our new universally-composable non-interactive commitment scheme. Our construction

is in the common reference string model, and assumes only the existence of trapdoor permutations.

(If the common reference string must come from the uniform distribution, then we actually require

trapdoor permutations with dense public descriptions [dp92].) UC commitment schemes are pro-

tocols that securely realize the multi-session ideal commitment functionality Fmcom presented in

Figure 4. Note that Fmcom is in fact a re-formulation of F̂com, the multi-session extension of the

single-session ideal commitment functionality, Fcom, presented in [cf01].

Functionality Fmcom

Fmcom proceeds as follows, running with parties P1; : : : ; Pn and an adversary S:

� Commit Phase: Upon receiving a message (commit; sid; ssid; Pi; Pj ; b) from Pi, where b 2 f0; 1g,
record the tuple (ssid; Pi; Pj ; b) and send the message (receipt; sid; ssid; Pi; Pj) to Pj and S. Ignore
any future commit messages with the same ssid from Pi to Pj .

� Reveal Phase: Upon receiving a message (reveal; sid; ssid) from Pi: If a tuple (ssid; Pi; Pj ; b)
was previously recorded, then send the message (reveal; sid; ssid; Pi; Pj ; b) to Pj and S. Otherwise,
ignore.

Figure 4: The ideal commitment functionality

Informally speaking, in order to achieve universal composability against adaptive adversaries, a

commitment scheme must have the following two properties:

� Polynomial equivocability: the simulator (i.e., the adversary in the ideal process) should be able

to produce many commitments for which it can decommit to both 0 and 1, using the same

reference string. (An additional property is actually needed for adaptive security; see below.)

Of course, the real committer must be able to decommit to only a single value (as required by

the binding property of commitment schemes).

� Simulation extractability: the simulator should be able to extract the contents of any valid com-

mitment generated by the adversary, even after having supplied an adversary with an arbitrary

number of equivocable commitments.

We remark that in the equivocable commitment protocols of [dio98, dkos01] each copy of the

reference string can be used for only a single commitment. Furthermore, they are not extractable.

In contrast, [cf01] show how to use a single copy of the reference string for multiple commitments

(although they rely on speci�c cryptographic assumptions).

We describe our construction in phases. First we describe a new non-interactive variant of the

Feige-Shamir trapdoor commitment scheme [fs89], which is at the heart of our construction. Then

we show how to transform this scheme into one that is universally composable.

Underlying standard commitment. In our construction we use a non-interactive, perfectly

binding commitment scheme with pseudorandom commitments; denote this scheme by Com. An

example of such a scheme is the standard non-interactive commitment scheme based on a one-way

37

permutation f and a hard-core predicate b of f . In order to commit to a bit � in this scheme,

one computes Com(�) = hf(Uk); b(Uk) � �i, where Uk is the uniform distribution over f0; 1gk .

The Com scheme is computationally secret and produces pseudorandom commitments: that is, the

distribution ensembles fCom(0)g, fCom(1)g, and fUk+1g are all computationally indistinguishable.

Non-interactive Feige-Shamir trapdoor commitments. We brie
y describe a non-interactive

version of the Feige-Shamir trapdoor commitment scheme [fs89], which is based on the zero-

knowledge proof for Hamiltonicity of Blum [b86]. (We are able to obtain a non-interactive version

of this scheme by utilizing the common reference string.) First, we obtain a graph G (with q nodes),

so that it is hard to �nd a Hamiltonian cycle in G within polynomial-time. This is achieved as

follows: choose x 2R f0; 1g
k and compute y = f(x), where f is a one-way function. Then, use the

reduction of the language fy j 9x s:t: y = f(x)g to that of Hamiltonicity, to obtain a graph G so

that �nding a Hamiltonian cycle in G is equivalent to �nding the preimage x of y. The one-wayness

of f implies the diÆculty of �nding a Hamiltonian cycle in G. This graph G, or equivalently the

string y, is placed in the common reference string accessible by both parties. Now, in order to

commit to 0, the committer commits to a random permutation of G using the underlying commit-

ment scheme Com (and decommits by revealing the entire graph and the permutation). In order

to commit to 1, the committer commits to a graph containing a randomly labeled q-cycle only

(and decommits by opening this cycle only). Note that this commitment scheme is binding because

the ability to decommit to both 0 and 1 implies that the committer knows a Hamiltonian cycle in

G. The important property of the [fs89] scheme that we use here is equivocability (or what they

call the trapdoor property). That is, given a Hamiltonian cycle in G, it is possible to generate

commitments that are indistinguishable from legal ones, and yet have the property that one can

decommit to both a 0 and a 1. In particular, after committing to a random permutation of G, it is

possible to decommit to 0 in the same way as above. However, it is also possible to decommit to 1

by only revealing the (known) Hamiltonian cycle in G.

Adaptively secure commitments. We proceed to describe our �rst step for obtaining adaptive

security. In general, the following additional property is required of the simulator: Let c be a

commitment produced by the simulator who knows a Hamiltonian cycle in G. Then, for any

b 2 f0; 1g, the simulator should be able to produce a random string rb, so that the honest committer,

given input b and random tape rb, outputs the commitment c. Thus, the simulator can provide an

\explanation" of its actions, as if it were an honest committer. We note that the [fs89] scheme

does not have this property.

The adaptively secure scheme, denoted aHC (for adaptive Hamiltonian Commitment), di�ers

from [fs89] in the way commitments are generated. That is:

� To commit to a 0, the sender picks a random permutation � of the nodes of G, and commits to

the entries of the adjacency matrix of the permuted graph one by one, using Com. To decommit,

the sender sends � and decommits to every entry of the adjacency matrix. The receiver veri�es

that the graph it received is �(G). (This is the same as in the [fs89] scheme.)

� To commit to a 1, the sender chooses a randomly labeled q-cycle, and for all the entries in the

adjacency matrix corresponding to edges on the q-cycle, it uses Com to commit to 1 values.

For all the other entries, it simply produces random values from Uk+1 (for which it does not

know the decommitment). To decommit, the sender opens only the entries corresponding to the

randomly chosen q-cycle in the adjacency matrix. (This is the point where our scheme di�ers to

that of [fs89]. That is, in [fs89] the edges that are not on the q-cycle are sent as commitments

38

to 0. Here, random strings are sent instead.)

By the above description, the length of the random string used in order to commit to 0 is di�erent

from the length of the random string used in order to commit to 1. Nevertheless, we pad the

lengths so that they are equal (the reason why this is needed will be explained below). We denote by

aHC(b; r) a commitment of the bit b using randomness r, and by aHC(b) the distribution aHC(b;Ujrj).

This commitment scheme has the property of being computationally secret; i.e., the distribution

ensembles faHC(0)g and faHC(1)g are computationally indistinguishable for any graph G. Also,

given the opening of any commitment to both a 0 and 1, one can extract a Hamiltonian cycle in

G. Therefore, the committer cannot decommit to both 0 and 1, and the binding property holds.

Finally, as with the scheme of [fs89], given a Hamiltonian cycle in G, a simulator can generate

a commitment to 0 and later open it to both 0 and 1. (This is because the simulator knows a

simple q-cycle in G itself.) Furthermore, in contrast to [fs89], here the simulator can also produce

a random tape for the sender, explaining the commitment as a commitment to either 0 or 1.

Speci�cally, the simulator generates each commitment string c as a commitment to 0. If, upon

corruption of the sender, the simulator has to demonstrate that c is a commitment to 0 then all

randomness is revealed. To demonstrate that c was generated as a commitment to 1, the simulator

opens the commitments to the edges in the q-cycle and claims that all the unopened commitments

are merely uniformly chosen strings (rather than commitments to the rest of G). This can be

done since commitments produced by the underlying commitment scheme Com are pseudorandom.

This therefore gives us polynomial equivocability, where the same reference string can be reused

polynomially-many times.

Achieving simulation extractability. As discussed above, the commitment scheme aHC has

the equivocability property, as required. However, a UC commitment scheme must also have the

simulation extractability property. We must therefore modify our scheme in such a way that we add

extractability without sacri�cing equivocability. Simulation-extractability alone could be achieved

by including a public-key for an encryption scheme secure against adaptive chosen-ciphertext at-

tacks (CCA2) [ddn00] into the common reference string, and having the committer send an en-

cryption of the decommitment information along with the commitment itself. A simulator knowing

the associated decryption key can decrypt and obtain the decommitment information, thereby ex-

tracting the committed value from any adversarially prepared commitment. (The reason that we

use a CCA2-secure encryption scheme will become evident in the proof. Intuitively, the reason is

that in the simulated interaction extracting the committed value involves ciphertext decryptions.

Thus by interacting with the simulator the adversary essentially has access to a decryption oracle

for the encryption scheme.) However, just encrypting the decommitment information destroys the

equivocability of the overall scheme, since such an encryption is binding even to a simulator. In

order to regain equivocability, we use encryption schemes with pseudorandom ciphertexts. This is

used in the following way. Given any equivocable commitment, there are two possible decommit-

ment strings (by the binding property, only one can be eÆciently found but they both exist). The

commitment is sent along with two ciphertexts: one ciphertext is an encryption of the decommit-

ment information known to the committer and the other ciphertext is just a uniformly distributed

string. In this way, equivocability is preserved because a simulator knowing both decommitment

strings can encrypt them both and later claim that it only knows the decryption to one and that the

other was uniformly chosen. A problem with this solutions is that there is no known CCA2-secure

scheme with pseudorandom ciphertexts (and assuming only trapdoor permutations). We therefore

use double encryption. That is, �rst the value is encrypted using a CCA2-secure scheme, which

may result in a ciphertext which is not pseudorandom, and then this ciphertext is re-encrypted

39

using an encryption scheme with pseudorandom ciphertexts. (The second scheme need only be

secure against chosen plaintext attacks.)

For the CCA2-secure scheme, denoted Ecca, we can use any known scheme based on trapdoor

permutations with the (natural) property that any ciphertext has at most one valid decryption.

This property holds for all known such encryption schemes, and in particular for the scheme of

[ddn00]. For the second encryption scheme, denoted E, we use the standard encryption scheme

based on trapdoor-permutations and hard-core predicates [gl89], where the public key is a trapdoor

permutation f , and the private key is f�1. Here encryption of a bit b is f(x) where x is a randomly

chosen element such that the hard-core predicate of x is b. Note that encryptions of both 0 and 1 are

pseudorandom. The commitment scheme, called UC Adaptive Hamiltonicity Commitment UAHC, is

presented in Figure 5.

Protocol UAHC

� Common Reference String: The string consists of a random image y of a one-way function f

(this y determines the graph G), and public-keys for the encryption schemes E and Ecca. (The
security parameter k is implicit.)

� Commit Phase:

1. On input (commit; sid; ssid; Pi; Pj ; b) where b 2 f0; 1g, party Pi computes z = aHC(b; r)
for a uniformly distributed string of the appropriate length. Next, Pi computes Cb =
E(Ecca(Pi; Pj ; sid; ssid; r)) using random coins s, and sets C1�b to a random string of length
jCbj.

13 Finally, Pi records (sid; ssid; Pj ; r; s; b), and sends c = (sid; ssid; Pi; z; C0; C1) to Pj .

2. Pj receives and records c, and outputs (receipt; sid; ssid; Pi; Pj). Pj ignores any later commit
messages from Pi with the same (sid; ssid).

� Reveal Phase:

1. On input (reveal; sid; ssid), party Pi retrieves (sid; ssid; Pj ; r; s; b) and sends (sid; ssid; r; s; b)
to Pj .

2. Upon receiving (sid; ssid; r; s; b) from Pi, Pj checks that it has a tuple (sid; ssid; Pi; z; C0; C1).
If yes, then it checks that z = aHC(b; r) and that Cb = E(Ecca(Pi; Pj ; sid; ssid; r)), where the
ciphertext was obtained using random coins s. If both these checks succeed, then Pj outputs
(reveal; sid; ssid; Pi; Pj ; b). Otherwise, it ignores the message.

Figure 5: The commitment protocol UAHC

Let Fcrs denote the common reference string functionality (that is, Fcrs provides all parties

with a common, public string drawn from the distribution described in Figure 5). Then, we have:

Proposition 5.1 Assuming the existence of trapdoor permutations, Protocol UAHC of Figure 5

securely realizes Fmcom in the Fcrs-hybrid model.

Proof: Let A be a malicious, adaptive adversary that interacts with parties running the above

protocol in the Fcrs-hybrid model. We construct an ideal process adversary S with access to

Fmcom, which simulates a real execution of Protocol UAHC with A such that no environment Z

can distinguish the ideal process with S and Fmcom from a real execution of UAHC with A.

13As we have mentioned, the length of the random string r is the same for the case of b = 0 and b = 1. This is

necessary because otherwise it would be possible to distinguish commitments merely by looking at the lengths of C0

and C1.

40

Recall that S interacts with the ideal functionality Fmcom and with the environment Z. The

ideal adversary S starts by invoking a copy of A and running a simulated interaction of A with

the environment Z and parties running the protocol. (We refer to the interaction of S in the ideal

process as external interaction. The interaction of S with the simulated A is called internal inter-

action.) We �x the following notation. First, the session and sub-session identi�ers are respectively

denoted by sid and ssid. Next, the committing party is denoted Pi and the receiving party Pj .

Finally, C denotes a ciphertext generated from E(�), and c denotes a ciphertext generated from

Ecca(�). Simulator S proceeds as follows:

Initialization step: The common reference string (CRS) is chosen by S in the following way

(recall that S chooses the CRS for the simulated A by itself):

1. S chooses a string x 2R f0; 1g
k and computes y = f(x), where f is the speci�ed one-way

function.

2. S runs the key-generation algorithm for the CCA2-secure encryption scheme, obtaining

a public-key Ecca and a secret-key Dcca.

3. S runs the key-generation algorithm for the CPA-secure encryption scheme with pseu-

dorandom ciphertexts, obtaining a public-key E and a secret-key D.

Then, S sets the common reference string to equal (y;Ecca; E) and locally stores the triple

(x;Dcca;D). (Recall that y de�nes a Hamiltonian graph G and knowing x is equivalent to

knowing a Hamiltonian cycle in G.)

Simulating the communication with Z: Every input value that S receives from Z is written

on A's input-tape (as if coming from A's environment). Likewise, every output value written

by A on its own output tape is copied to S's own output tape (to be read by S's environment

Z).

Simulating \commit" activations where the committer is uncorrupted: Upon receiving a

(receipt; sid; ssid; Pi; Pj) message from Fmcom when Pi is not corrupted, S simulates a real

commit message from Pi as follows. S computes z aHC(0) along with two strings r0 and

r1 such that rb constitutes a decommitment of z to b. (As we have described, since S knows a

Hamiltonian cycle inG, it is able to do this.) Next, S computes C0 E(Ecca(Pi; Pj ; sid; ssid; r0))

using random coins s0, and C1 E(Ecca(Pi; Pj ; sid; ssid; r1)) using random coins s1. Then,

in the internal interaction, S simulates Pi sending c = (sid; ssid; Pi; z; C0; C1) to Pj and stores

(c; r0; s0; r1; s1).

Simulating \reveal" activations where the committer is uncorrupted: Upon receiving a

(reveal; sid; ssid; Pi; Pj ; b) message from Fmcom when Pi is not corrupted, S generates a sim-

ulated decommitment message from the real-model Pi: this message is (sid; ssid; rb; sb; b),

where rb and sb are as generated in the previous item. S then simulates for A the event

where Pi sends this message to Pj in the internal interaction.

Simulating corruption of parties: When A issues a \corrupt Pi" command in the internal (sim-

ulated) interaction, S �rst corrupts the ideal model party Pi and obtains the values of all

its unopened commitments. Then, S prepares the internal state of Pi to be consistent with

these commitment values in the same way as shown above. That is, in a real execution party

Pi stores the tuple (sid; ssid; Pj ; r; s; b) for every commitment c. In the simulation, S de�nes

the stored tuple to be (sid; ssid; Pj ; rb; sb; b) where rb and sb are as generated above.

41

Simulating \commit" activations where the committer is corrupted: When A, control-

ling corrupted party Pi, sends a commitment message (sid; ssid; Pi; z; C0; C1) to an uncor-

rupted party Pj in the internal (simulated) interaction, S works as follows. If a commitment

from Pi to Pj using identi�ers (sid; ssid) was sent in the past, then S ignores the message.

Otherwise, informally speaking, S must extract the commitment bit committed to by A.

Simulator S begins by decrypting both C0 and C1 obtaining ciphertexts c0 and c1 and then

decrypting each of c0 and c1. There are three cases here:

1. Case 1: For some b 2 f0; 1g, cb decrypts to (Pi; Pj ; sid; ssid; r) where r is the correct

decommitment information for z as a commitment to b, and c1�b does not decrypt to a

decommitment to 1� b. Then, S sends (commit; sid; ssid; Pi; Pj ; b) to Fmcom and stores

the commitment string.

2. Case 2: Neither c0 or c1 decrypt to (Pi; Pj ; sid; ssid; r) where r is the appropriate de-

commitment information for z (and sid and ssid are the correct identi�ers from the

commitment message). In this case, S sends (commit; sid; ssid; Pi; Pj ; 0) to Fmcom. (The

commitment string is not stored, since it will never be opened correctly.)

3. Case 3: c0 decrypts to (Pi; Pj ; sid; ssid; r0) and c1 decrypts to (Pi; Pj ; sid; ssid; r1), where

r0 is the correct decommitment information for z as a commitment to 0 and r1 is the

correct decommitment information for z as a commitment to 1. Furthermore, the iden-

ti�ers in the decryption information are the same as in the commitment message. In

this case, S outputs a special failure symbol and halts.

Simulating \reveal" activations where the committer is corrupted: When A, controlling

corrupted party Pi, sends a reveal message (sid; ssid; r; s; b) to an uncorrupted party Pj
in the internal (simulated) interaction, S works as follows. S �rst checks that a tuple

(sid; ssid; Pi; z; C0; C1) is stored and that r and s constitute a proper decommitment to b. If

the above holds, then S sends (reveal; sid; ssid; Pi; Pj) to Fmcom. Otherwise, S ignores the

message.

Delivery of messages: S delivers a message from Fmcom in the external interaction whenA deliv-

ers the corresponding message in the simulated interaction. For example, S delivers a receipt

message in the external interaction when A delivers the appropriate (sid; ssid; Pi; z; C0; C1)

message in the simulated internal interaction.

We now prove that Z cannot distinguish an interaction of Protocol UAHC with A from an inter-

action in the ideal process with Fmcom and S. In order to show this, we examine several hybrid

experiments:

(I) Real interaction: This is the interaction of Z with A and Protocol UAHC.

(II) Real interaction with partially fake commitments: This is the interaction of Z with A and

Protocol UAHC, except that: (i) The Hamiltonian Cycle to G is provided to all honest parties,

but this information is not revealed upon corruption. (ii) In honest party commitments, a

commitment to b is generated by computing z aHC(0) and strings r0; r1 such that r0 and r1
are correct decommitments to 0 and 1, respectively. (This is just like the simulator.) Then, Cb

is computed as an encryption to E(Ecca(Pi; Pj ; sid; ssid; rb)). However, unlike the simulator,

C1�b is still chosen as a uniformly distributed string. Again, this modi�cation is not revealed

upon corruption (i.e., the honest party decommits to b as in a real interaction).

42

(III) Real interaction with completely fake commitments: This is the same as (II), except that in

commitments generated by honest parties, the ciphertext C1�b equalsE(Ecca(Pi; Pj ; sid; ssid; r1�b))

as generated by S, rather than being chosen uniformly. Commitments are opened in the same

way as the simulator.

(IV) Simulated interaction: This is the interaction of Z with S, as described above.

Our aim is to show that interactions (I) and (IV) are indistinguishable to Z, or in other words

that Z's output at the end of interaction (I) is deviates only negligibly from Z's output at the end

of interaction (IV). We prove this by showing that each consecutive pair of interactions are indis-

tinguishable to Z. (Abusing notation, we use the term \distribution i" to denote both \interaction

i", and \Z's output from interaction i".)

The fact that distributions (I) and (II) are computationally indistinguishable is derived from

the pseudorandomness of the underlying commitment scheme aHC. This can be seen as follows.

The only di�erence between the two distributions is that even commitments to 1 are computed by

z aHC(0). However, the distribution ensembles faHC(0)g and faHC(1)g are indistinguishable.

Furthermore, these ensembles remain indistinguishable when the decommitment information to 1

is supplied. That is, faHC(0); r1g and faHC(1); rg are also indistinguishable, where r1 is the

(simulator) decommitment of aHC(0) to 1, and r is the (prescribed) decommitment of aHC(1) to 1.

(A standard hybrid argument is employed to take into account the fact that many commitments

and decommitments occur in any given execution.)

Next, distributions (II) and (III) are indistinguishable due to the pseudorandomness of encryp-

tions under E. In particular, the only di�erence between the distributions is that in (II) the cipher-

text C1�b is uniformly chosen, whereas in (III) ciphertext C1�b equalsE(Ecca(Pi; Pj ; sid; ssid; r1�b)).

Intuitively, CPA security suÆces because in order to emulate experiments (II) and (III), no decryp-

tion oracle is needed. In order to formally prove this claim, we use the \left-right" oracle formulation

of security for encryption schemes [bbm00]. In this formulation of security, there is a \left-right"

oracle (LR-oracle) which has a randomly chosen and hidden value b 2 f0; 1g built into it. When

queried with a pair of plaintexts (a0; a1), the oracle returns E(ab). Equivalently, the oracle can

be queried with a single message a such that it returns E(a) if b = 0 and a uniformly distributed

string if b = 1. This re
ects the fact that here the security lies in the pseudorandomness of the

ciphertext, rather than due to the indistinguishability of encryptions. (We stress that the LR-oracle

always uses the same bit b.) A polynomial-time attacker is successful in this model if it succeeds

in guessing the bit b with a non-negligible advantage. For chosen-plaintext security, this attacker

is given access to the LR-oracle for the encryption scheme E. We now construct an adversary

who carries out a chosen-plaintext attack on E and distinguishes encryptions to strings of the form

Ecca(Pi; Pj ; sid; ssid; r1�b) from uniformly chosen strings. This adversary emulates experiments

(II) and (III) by running Z and all the parties. However, when an honest party is supposed to

generate C1�b, the attacker hands the LR-oracle the query Ecca(Pi; Pj ; sid; ssid; r1�b) and receives

back C 0 which either equals E(Ecca(Pi; Pj ; sid; ssid; r1�b)) or is uniformly distributed. The attacker

then sets C1�b = C 0. This emulation can be carried out given the encryption-key E only (i.e., no

decryption key is required). Now, if b = 1 for the LR-oracle, then the attacker perfectly emulates

experiment (II). Furthermore, if b = 0 then the attacker perfectly emulates experiment (III). Fi-

nally, as we have mentioned, the above emulation is carried out using a chosen-plaintext attack on

E only. Therefore, if Z can distinguish experiments (II) and (III), then the attacker can guess the

bit b of the LR-oracle with non-negligible advantage. This is in contradiction to the CPA-security

of E.

Finally, we consider the hybrid experiments (III) and (IV). The only di�erence between these

43

experiments is that in experiment (III) the checks causing S to output failure are not carried out. We

therefore conclude that it suÆces to show that S outputs failure with at most negligible probability.

In order to prove this, we again consider a sequence of hybrid experiments:

(V) Simulation with partially real encryptions: This is the same as (IV), except that S is given (say,

by F) the true values of the inputs for all uncorrupted parties. Then, when generating simu-

lated commitments for uncorrupted parties, S replaces C1�b withE(Ecca(Pi; Pj ; sid; ssid; 0
jr1�bj)),

where b is the true input value.

(VI) Simulation with nearly real commitments: This is the same as (V), except that in the simulated

commitments generated for uncorrupted parties, S computes z aHC(b) where b is the true

value of the commitment (instead of always computing z aHC(0)).

We now claim that the probability that S outputs failure in experiment (IV) is negligibly close to the

probability that it outputs failure in experiment (V). The only di�erence between these experiments

relates to the encryption value of C1�b. The proof relies on the chosen-ciphertext security of the

scheme Ecca. (Chosen ciphertext security is required because the emulation of experiments (IV)

and (V) requires access to a decryption oracle: Recall that S must decrypt ciphertexts in the

simulation of commit-activations where the committer is corrupted.) Formally, we prove this claim

using the \left-right" oracle formulation of security for encryption schemes. Recall that according

to this de�nition, an attacker is given access to an LR-oracle that has a randomly chosen bit b

internally hardwired. The attacker can then query the oracle with pairs (a0; a1) and receives back

Ecca(ab). When considering CCA2-security, the attacker is given access to the LR-oracle as well as a

decryption oracle for Ecca which works on all ciphertexts except for those output by the LR-oracle.

We argue that if S outputs failure with probabilities that are non-negligibly far apart in exper-

iments (IV) and (V), then Z together with A can be used to construct a successful CCA2 attacker

against Ecca in the LR-model. We now describe the attacker. The attacker receives the public

key for Ecca. It then simulates experiment (IV) by playing Z, A and S as above, except for the

following di�erences:

1. The public key for Ecca is given to S externally and S does not have the decryption key.

2. When generating a simulated commitment for an honest party Pi, the attacker computes

z aHC(0) and decommitment strings r0 and r1 to 0 and 1, respectively. Furthermore,

the attacker computes Cb E(Ecca(Pi; Pj ; sid; ssid; rb)) as S does. However, for C1�b, the

attacker queries the LR-oracle with the pair ((Pi; Pj ; sid; ssid; r1�b); (Pi; Pj ; sid; ssid; 0
jr1�bj)).

When the LR-oracle responds with a ciphertext c0, the attacker sets C1�b E(c0).

3. When S obtains a commitment (sid; ssid; Pj ; z; C0; C1) from A controlling a corrupted party

Pi, then the attacker decrypts C0 and C1 using the decryption key for E and obtains c0 and

c1. There are two cases:

� Case 1: A ciphertext cb came from a commitment previously generated for an honest

party by S. Now, if this generated commitment was not from Pi to Pj , then cb can-

not constitute a valid decommitment because the encryption does not contain the pair

(Pi; Pj) in this order. On the other hand, if the previous commitment was from Pi to Pj ,

then the sub-session identi�ers must be di�erent and therefore it still cannot be a valid

decommitment. (Recall that Pj will ignore a second commitment from Pi with the same

identi�ers.) In this case, the attacker acts just as S would for ciphertexts that do not

44

decrypt to valid decommitment information. (Notice that the attacker does not need to

use the decryption oracle in this case.)

� Case 2: A ciphertext cb was not previously generated by S. Then, except with negligible

probability, this ciphertext could not have been output by the LR-oracle. Therefore, the

attacker can query its decryption oracle and obtain the corresponding plaintext. Given

this plaintext, the attacker proceeds as S does.

Analyzing the success probability of the attacker, we make the following observations. If the

LR-oracle uses Left encryptions (i.e., it always outputs a ciphertext c0 that is an encryption of

(Pi; Pj ; sid; ssid; r1�b)), then the resulting simulation is negligibly close to experiment (IV). (The

only di�erence is in the case that a ciphertext cb generated by A coincides with a ciphertext

output by the LR-oracle. However, this occurs with only negligible probability, otherwise Ecca

does not provide correctness.) On the other hand, if the LR-oracle uses Right encryptions (i.e, it

always outputs a ciphertext c0 that is an encryption of (Pi; Pj ; sid; ssid; 0
jr1�bj)), then the resulting

simulation is negligibly close to experiment (V). Therefore, by the CCA2-security of Ecca, the

probability that Z outputs 1 from experiment (IV) must be negligibly close to the probability that

it outputs 1 in experiment (V). By having Z output 1 if and only if S outputs a failure symbol, we

have that the probability that S outputs failure in the two experiments is negligibly close.

We now proceed to show that the probability that S outputs failure in experiments (V) and

(VI) is negligibly close. This follows from the indistinguishability of commitments faHC(0)g and

faHC(1)g. (A standard hybrid argument is used to take into account the fact that many commit-

ments are generated by S during the simulation.) Here we use the fact that in both experiments

(V) and (VI) the ciphertext C1�b is independent from the rest of the commitment.

Finally, to complete the proof, we show that in experiment (VI) the probability that S outputs

failure is negligible. The main observation here is that in experiment (VI), S does not use knowledge

of a Hamiltonian cycle in G. Now, if S outputs failure when simulating commit activations for a

corrupted party, then this means that it obtains a decommitment to 0 and to 1 for some commitment

string z. However, by the construction of the commitment scheme, this means that S obtains a

Hamiltonian cycle (and equivalently a pre-image of y = f(x)). Since S can do this with only

negligible probability we have that this event can also only occur with negligible probability. We

conclude that S outputs failure in experiment (VI), and therefore in experiment (IV), with only

negligible probability. (Formally speaking, given S we construct an inverter for f that proceeds

as described above.) This completes the hybrid argument, demonstrating that Z can distinguish

experiments (I) and (IV) with only negligible probability.

6 Universally Composable Zero-Knowledge

We present and discuss the ideal zero-knowledge functionality Fzk. This functionality plays a central

role in our general construction of protocols for realizing any two-party functionality. Speci�cally,

our protocol for realizing the commit-and-prove functionality is constructed and analyzed in a

hybrid model with access to Fzk (i.e., in the Fzk-hybrid model). Using the universal composition

theorem, the construction can be composed with known protocols that securely realize Fzk, either

in the Fmcom-hybrid model or directly in the common reference string (CRS) model, to obtain

protocols for realizing any two-party functionality in the CRS model. (Actually, here we use

universal composition with joint state. See more details below.)

In the zero-knowledge functionality, parameterized by a relation R, the prover sends the func-

tionality a statement x to be proven along with a witness w. In response, the functionality forwards

45

the statement x to the veri�er if and only if R(x;w) = 1 (i.e., if and only if it is a correct statement).

Thus, in actuality, this is a proof of knowledge in that the veri�er is assured that the prover actually

knows w (and has explicitly sent w to the functionality), rather than just being assured that such

a w exists. The zero-knowledge functionality, Fzk, is presented in Figure 6.

Functionality Fzk

Fzk proceeds as follows, running with a prover P , a veri�er V and an adversary S, and parameterized
with a relation R:

� Upon receiving (ZK-prover; sid; x; w) from P , do: if R(x;w) = 1, then send (ZK-proof; sid; x) to V

and S and halt. Otherwise, halt.

Figure 6: The single-session Fzk functionality

Let us highlight several technical issues that motivate the present formalization. First, notice

that the functionality is parameterized by a single relation (and thus a di�erent copy of Fzk is

used for every di�erent relation required). Nonetheless, the relation R may actually index any

polynomial number of predetermined relations for which the prover may wish to prove statements.

This can be implemented by separating the statement x into two parts: x1 that indexes the relation

to be used and x2 that is the actual statement. Then, de�ne R((x1; x2); w)
def
= Rx1(x2; w). (Note

that in this case the set of relations to be indexed is �xed and publicly known.)14

Second, the functionality is de�ned so that only correct statements (i.e., values x such that

R(x;w) = 1) are received by P2 in the prove phase. Incorrect statements are ignored by the

functionality, and the receiver P2 receives no noti�cation that an attempt at cheating in a proof

took place. This convention simpli�es the description and analysis of our protocols. We note,

however, that this is not essential. Error messages can be added to the functionality (and realized)

in a straightforward way. Third, we would like to maintain the (intuitively natural) property that

a prover can always cause the veri�er to reject, even if for every w it holds that R(x;w) = 1 (e.g.,

take R = f0; 1g� � f0; 1g�). This technicality is solved by de�ning a special witness input symbol

\?" such that for every relation R and every x, R(x;?) = 0.

Note that each copy of the functionality handles only a single proof (with a given prover and a

given veri�er). This is indeed convenient for protocols in the Fzk-hybrid model, since a new copy

of Fzk can be invoked for each new proof (or, each \session"). However, directly realizing Fzk in

the Fcrs-hybrid model and using the universal composition theorem would result in an extremely

ineÆcient composed protocol, where a new instance of the reference string is needed for each proof.

Instead, we make use of universal composition with joint state, as follows. We start by de�ning

functionality F̂zk, the multi-session extension of Fzk, and recall known protocols that securely

realize F̂zk using a single short instance of the common string. We then use the JUC theorem to

compose protocols in the Fzk-hybrid model with protocols that securely realize F̂zk.

The de�nition of F̂zk, the multi-session extension of Fzk, follows from the de�nition of Fzk and

the general de�nition of multi-session extensions (see Section 3.2). Nonetheless, for sake of clarity

we explicitly present functionality F̂zk in Figure 7. An input to F̂zk is expected to contain two types

of indices: the �rst one, sid, is the SID that di�erentiates messages to F̂zk from messages sent to

14Another possibility is to parameterize Fzk by a polynomial q(�). Then, Pi sends the functionality a triple

(x;w;CR), where CR is a two-input binary circuit of size at most q(jxj). (This circuit de�nes the relation being used.)

The ideal functionality then sends Pj the circuit CR and the bit CR(x;w). This approach has the advantage that the

relations to be used need not be predetermined and �xed.

46

other functionalities. The second index, ssid, is the sub-session ID and is unique per \sub-session"

(i.e., per input message).

Functionality F̂zk

F̂zk proceeds as follows, running with parties P1; : : : ; Pn and an adversary S, and parameterized with
a relation R:

� Upon receiving (ZK-prover; sid; ssid; Pi; Pj ; x; w) from Pi: If R(x;w) = 1, then send the message
(ZK-proof; sid; ssid; Pi; Pj ; x) to Pj and S. Otherwise, ignore.

Figure 7: The multi-session zero-knowledge functionality

In the case of static adversaries, De Santis et al. present a protocol that securely realizes F̂zk,

for any NP relation, in the common reference string (CRS) model [d+01]. This is done assum-

ing existence of trapdoor one-way permutations. Furthermore, the protocol is \non-interactive",

in the sense that it consists of a single message from the prover to the veri�er. In the case of

adaptive adversaries, Canetti and Fischlin show a three-round protocol that securely realizes F̂zk
in the Fmcom-hybrid model, where Fmcom is the multi-session universally composable commitment

functionality (see Section 5 below). The protocol uses a single copy of Fmcom.
15

7 The Commit-and-Prove Functionality Fcp

In this section we de�ne the \commit-and-prove" functionality, Fcp, and present protocols for

securely realizing it. As discussed in Section 2, this functionality, which is a generalization of the

commitment functionality, is central for constructing the protocol compiler. As in the case of Fzk,

the Fcp functionality is parameterized by a relation R. The �rst stage is a commit phase in which

the receiver obtains a commitment to some value w. The second phase is more general than plain

decommitment. Rather than revealing the committed value, the functionality receives some value

x from the committer, sends x to the receiver, and asserts whether R(x;w) = 1. To see that this

is indeed a generalization of a commitment scheme, take R to be the identity relation and x = w.

Then, following the prove phase, the receiver obtains w and is assured that this is the value that

was indeed committed to in the commit phase.

In fact, Fcp is even more general, in the following ways. First it allows the committer to commit

to multiple secret values wi, and then have the relation R depend on all these values in a single

proof. (This extension is later needed for dealing with reactive protocols, where inputs may be

received over time.) Second, the committer may ask to prove multiple statements with respect to

the same set of secret values. These generalizations are dealt with as follows. When receiving a

new (commit; sid; w) request from the committer, Fcp adds the current w to the already existing

list w of committed values. When receiving a (CP-prover; sid; x) request, Fcp evaluates R on x and

the current list w. Functionality Fcp is presented in Figure 8.

As in the case of Fzk, the Fcp functionality is de�ned so that only correct statements (i.e.,

values x such that R(x;w) = 1) are received by V in the prove phase. Incorrect statements are

ignored by the functionality, and the receiver V receives no noti�cation that an attempt at cheating

in a proof took place.

15Actually, the zero-knowledge functionality in [cf01] is only \single session" (and has some other technical di�er-

ences from F̂zk). Nonetheless, it is easy to see that by using Fmcom and having the prover �rst check that it's input

x and w is such that (x;w) 2 R, their protocol securely realizes F̂zk.

47

Functionality Fcp

Fcp proceeds as follows, running with a committer C, a receiver V and an adversary S, and is param-
eterized by a value k and a relation R:

Commit Phase: Upon receiving a message (commit; sid; w) from C where w 2 f0; 1gk, append the
value w to the list w, and send the message (receipt; sid) to V and S. (Initially, the list w is
empty.)

Prove Phase: Upon receiving a message (CP-prover; sid; x) from C, where x 2 f0; 1gpoly(k), compute
R(x;w): If R(x;w) = 1, then send V and S the message (CP-proof; sid; x). Otherwise, ignore
the message.

Figure 8: The commit-and-prove functionality

7.1 Securely Realizing Fcp for static adversaries

We present protocols for securely realizing the Fcp functionality in the Fzk-hybrid model, for both

static and adaptive adversaries. We �rst concentrate on the case of static adversaries, since it is

signi�cantly simpler than the adaptive case, and therefore serves as a good warm-up.

The commit phase and the prove phase of the protocol each involve a single invocation of Fzk.

(The relation used in each phase is di�erent.) In the commit phase the committer commits to

a value using a standard commitment scheme, and proves knowledge of the decommitment value

through Fzk. Thus we obtain a \commit-with-knowledge" protocol, in which the simulator can

extract the committed value.

Speci�cally, let C be a perfectly binding commitment scheme, and denote by C(w; r) a commit-

ment to a string w using a random string r. For simplicity, we use a non-interactive commitment

scheme. Such schemes exist assuming the existence of 1{1 one-way functions, see [g01]. (Alterna-

tively, we could use the Naor scheme [n91] that can be based on any one-way function, rather than

requiring 1{1 one-way functions. In this scheme, the receiver sends an initial message and then the

committer commits. This changes the protocol and analysis only slightly. We note that in fact, the

use of perfect binding is not essential and computational binding actually suÆces, as will be the

case in Section 7.2.) Loosely speaking, the protocol begins by C sending c = C(w; r) to V , and then

proving knowledge of the pair (w; r). In our terminology, this consists of the committer C sending

(ZK-prover; sidC ; c = C(w; r); (w; r)) to Fzk, which is parameterized by the following relation RC :

RC = f(c; (w; r)) j c = C(w; r)g (4)

That is, RC is the relation of pairs of commitments with their decommitment information. In

addition, the committer C keeps the list w of all the values w committed to. It also keeps the lists

r and c of the corresponding random values and commitment values.

When the receiver V receives (ZK-proof; sidC ; c) from Fzk, it accepts c as the commitment string

and adds c to its list c of accepted commitments. (Note that in the Fzk-hybrid model, V is guar-

anteed that C \knows" the decommitment, in the sense that C explicitly sent the decommitment

value to Fzk.)

The prove phase of the protocol also involves invoking Fzk where the relation RP parameterizing

the Fzk functionality is de�ned as follows. Let R be the relation parameterizing Fcp. Then, RP is

de�ned by:

RP
def
= f((x; c); (w; r)) j 8i; ci = C(wi; ri) & R(x;w) = 1g (5)

48

That is, RP con�rms that c is the vector of commitments to w, and that R(x;w) = 1. Thus, the

prove phase consists of the committer proving some NP-statement regarding the values committed

to previously. (The value x is the NP-statement and the values committed to, plus the randomness

used, comprise the \witness" for x). Upon receiving the message (ZK-proof; sidP ; (x; c)) from Fzk,

the receiver accepts if c equals the list of commitments that it had previously received. (The receiver

must check c because this is what ensures that the witness being used is indeed the list of values

previously committed to, and nothing else.) Finally, note that if R 2 NP, then so too is RP .

We denote by Fc

zk
and Fp

zk
the copies of Fzk from the commit phase and prove phase respectively

(i.e., Fc

zk
is parameterized by RC and Fp

zk
is parameterized by RP). Formally, the two copies

of Fzk are di�erentiated by using session identi�ers sidC and sidP , respectively. (E.g., one can

de�ne sidC = sidÆ`C' and sidP = sidÆ`P', where sid is the session identi�er of the protocol

for realizing Fcp and \Æ" denotes concatenation.) The protocol, using a perfectly binding non-

interactive commitment scheme C, is presented in Figure 9.

Protocol SCP

� Auxiliary Input: A security parameter k.

� Commit phase:

1. On input (commit; sid; w), where w 2 f0; 1gk, C chooses a random string r of length
suÆcient for committing to w in scheme C, and sends (ZK-prover; sidC ; C(w; r); (w; r)) to
Fc

zk
, where Fc

zk
is parameterized by the relation RC de�ned in Eq. (4). In addition, C

stores in a vector w the list of all the values w that it has sent to Fzk, and in vectors r and
c the corresponding lists of random strings and commitment values.

2. When receiving (ZK-proof; sidC ; c) from Fc

zk
, V outputs (receipt; sid), and adds c to its list

of commitments c. (Initially, c is empty.)

� Prove phase:

1. On input (CP-prover; sid; x), C sends (ZK-prover; sidP ; (x; c); (w; r)) to Fp

zk
, where w; r; c

are the above-de�ne vectors and Fp

zk
is parameterized by the relation RP de�ned in Eq. (5).

2. When receiving (ZK-proof; sidP ; (x; c)) from Fp

zk
, V proceeds as follows. If its list of com-

mitments equals c, then it outputs (CP-proof; sid; x). Otherwise, it ignores the message.

Figure 9: A protocol for realizing Fcp for static adversaries

Proposition 7.1 Assuming that C is a secure (perfectly binding) commitment scheme, Protocol

SCP of Figure 9 securely realizes Fcp in the Fzk-hybrid model, for static adversaries.

Proof: Let A be a static adversary who operates against Protocol SCP in the Fzk-hybrid model.

We construct an ideal-process adversary (or simulator) S such that no environment Z can tell with

non-negligible probability whether it is interacting with A and parties running Protocol SCP in

the Fzk-hybrid model or with S in the ideal process for Fcp. As usual, S will run a simulated copy

of A and will use A in order to interact with Z and Fcp. For this purpose, S will \simulate for

A" an interaction with parties running Protocol SCP, where the interaction will match the inputs

and outputs seen by Z in its interaction with S in the ideal process for Fcp. We use the term

external communication to refer to S's communication with Z and Fcp. We use the term internal

communication to refer to S's communication with the simulated A.

49

Recall that A is a static adversary and therefore the choice of which parties are under its control

(i.e., corrupted) is predetermined. When describing S, it suÆces to describe its reaction to any

one of the possible external activations (inputs from Z and messages from Fcp) and any one of

the possible outputs or outgoing messages generated internally by A. This is done below. For

clarity, we group these activities according to whether or not the committing party C is corrupted.

Simulator S proceeds as follows:

Simulating the communication with the environment: Every input value coming from Z

(in the external communication) is forwarded to the simulated A (in the internal communi-

cation) as if coming from A's environment. Similarly, every output value written by A on its

output tape is copied to S's own output tape (to be read by the external Z).

Simulating the case where the committer is uncorrupted: In this case, A expects to see

the messages sent by Fc

zk
and Fp

zk
to V . (Notice that the only messages sent in the protocol

are to and from Fc

zk
and Fp

zk
; therefore, the only messages seen by A are those sent by these

functionalities. This holds regardless of whether the receiver V is corrupted or not.) In the

ideal process, S receives the (receipt; : : :) and (CP-proof; : : :) messages that V receives from

Fcp. It constructs the appropriate Fc

zk
messages given the receipt messages from Fcp, and

the appropriate Fp

zk
messages given the CP-proof messages from Fcp. This is done as follows:

� Whenever S receives a message (receipt; sid) from Fcp where C is uncorrupted, S computes

c = C(0k; r) for a random r and (internally) passes A the message (ZK-proof; sidC ; c), as

A would receive from Fc

zk
in a real protocol execution. Furthermore, S adds the value c

to its list of simulated-commitment values c. (It is stressed that the commitment here is

to an unrelated value, however by the hiding property of commitments and the fact that

all commitments are of length k, this is indistinguishable from a real execution.)

� Whenever S receives a message (CP-proof; sid; x) from Fcp where C is uncorrupted, S

internally passes A the message (ZK-proof; sidP ; (x; c)), as A would receive from Fp

zk
in

a protocol execution, where c is the current list of commitment values generated in the

simulation of the commit phase.

Simulating the case where the committer is corrupted: Here, A controls C and generates

the messages that C sends during an execution of Protocol SCP.16 Intuitively, in this case S

must be able to extract the decommitment value w from A during the commit phase of the

protocol simulation. This is because, in the ideal process, S must explicitly send the value w

to Fcp (and must therefore know the value being committed to). Fortunately, this extraction

is easy for S to do because A works in the Fzk-hybrid model, and any message sent by A to

Fzk is seen by S during the simulation. In particular, S obtains the ZK-proof message sent

by A to Fc

zk
, and this message is valid only if it explicitly contains the decommitment. The

simulation is carried out as follows:

� Whenever the simulatedA internally delivers a message of the form (ZK-prover; sidC ; c; (w; r))

from a corrupted C to Fc

zk
, simulator S checks that c = C(w; r). If yes, then S externally

sends (commit; sid; w) to Fcp and internally passes (ZK-proof; sidC ; c) to A (as if coming

from Fc

zk
). Furthermore, S adds c to its list of received commitments c. Otherwise, S

ignores the message.

16We assume without loss of generality that the receiver V is uncorrupted, since carrying out an interaction where

both participants are corrupted bears no e�ect on the view of Z.

50

� Whenever A internally generates a message of the form (ZK-prover; sidP ; (x; c); (w; r))

going from C to Fp

zk
, simulator S acts as follows. First, S checks that c equals its

list of commitments and that ((x; c); (w; r)) 2 RP . If yes, then S internally passes

(ZK-proof; sidP ; (x; c)) to A (as if received from Fp

zk
) and externally sends the prover

message (CP-prover; sid; x) to Fcp. If no, then S does nothing.

Output delivery: It remains to describe when (if at all) S delivers the receipt and CP-proof

messages sent to V from Fcp in the ideal process. This is decided by simply having S deliver

a receipt message to V when A delivers the corresponding ZK-proof message of the commit

phase in the simulation. Likewise, S delivers a CP-proof message to V when A delivers the

corresponding ZK-proof message of the prove phase in the simulation.

We show that for every environment Z it holds that:

idealFcp;S;Z
c

� exec
Fzk

scp;A;Z (6)

We �rst assert the following claim regarding the case where the committer is corrupted: the

receiver V accepts a proof in the protocol execution if and only if in the ideal model simulation, V

receives (CP-proof; sid; x) from Fcp. This can be seen as follows. First, note that if A (controlling

C) sends a ZK-prover message containing a di�erent vector of commitments to that sent in previous

commit activations, then S does not send any CP-prover message to Fcp. Likewise, in such a case,

V ignores the ZK-proof message. Simulator S also checks that ((x; c); (w; r)) 2 RP before sending

any CP-prover message to Fcp. Thus, if this does not hold, no CP-proof message is received by

V . Likewise, in a protocol execution, if ((x; c); (w; r)) 62 RP , then V receives no CP-proof message.

Finally, we note that by the (perfect) binding property of the commitment scheme, if A tries to use

a di�erent vector of witnesses than that committed to in the commit phase, then this is detected by

V and S, and the message is ignored. (By the perfect binding of the commitment scheme, the vector

c de�nes a unique witness vector w that can be used.) We conclude that when S sends a CP-prover

message to Fcp the following holds: R(x;w) = 1 if and only if RP ((x; c); (w; r)) = 1, where c is the

vector of commitments sent by the corrupted committer. Thus, V outputs (CP-proof; sid; x) in a

protocol execution if and only if Fcp sends (CP-proof; sid; x) to V in the ideal model simulation.

We proceed to demonstrate Eq. (6). Since S obtains the messages sent by A to both the Fc

zk

and Fp

zk
functionalities, most of the simulation is perfect and the messages seen by A are exactly

the same as it would see in a hybrid execution of Protocol SCP. There is, however, one case where

the simulation is di�erent from a real execution. When the committer is uncorrupted, S receives

a (receipt; sid) message from Fcp and must generate the message that A would see from Fc

zk
in the

protocol. Speci�cally, S sends (ZK-proof; sid; c) to A, where c = C(0k; r). That is, S passes A a

commitment to a value that is unrelated to C's input. In contrast, in a real execution of Protocol

SCP, the value c seen by A is c = C(w; r), where w is C's actual input. Intuitively, by the hiding

property of the commitment scheme C, these two cases are indistinguishable. Formally, assume

that there exists an adversary A, an environment Z and an input z to Z, such that the ideal and

exec distributions can be distinguished. Then, we construct a distinguisherD for the commitment

scheme C. That is, the distinguisher D chooses some challenge w, receives a commitment c that is

either to 0k or to w, and can tell with non-negligible probability which is the case.

Distinguisher D invokes the environment Z, the party C and the simulator S (which runs A

internally) on the following simulated interaction. First, a number i is chosen at random in [t],

where t is a bound on the running time of Z. Then, for the �rst i � 1 commitments c generated

by S, distinguisher D sets c = C(0k; r). When S is about to generate the ith commitment, D

51

declares the corresponding value w to be the challenge value, and obtains a test value c�. (This w

is the value that the simulated Z hands the uncorrupted committer C.) Then, S uses c� as the

commitment value for the ith commitment. The rest of the commitments in the simulation are

generated as normal commitments to the corresponding input values provided by Z. When Z halts

with an output value, D outputs whatever Z outputs and halts.

Analysis of the success probability of D is done via a standard hybrid argument and is omit-

ted. We obtain that D succeeds in breaking the commitment with advantage p=t, where p is the

advantage in which Z distinguishes between an interaction in the hybrid model and an interaction

in the ideal process (and t is the bound on Z's running time).

On suÆcient assumptions for realizing Fcp: For simplicity, Protocol SCP uses a non-interactive

commitment scheme, which can be based on 1{1 one-way functions. However, as we have men-

tioned, the commit-phase of Protocol SCP can be modi�ed to use Naor's commitment scheme [n91]

(which in turn can use any one-way function). In this case, V begins by sending the receiver mes-

sage of the [n91] scheme, and then C sends the commit message, using Fc

zk
as in Protocol SCP.

Thus, we have that Fcp can be securely realized in the Fzk-hybrid model, assuming the existence

of any one-way function.

7.2 Securely Realizing Fcp for adaptive adversaries

We now present a protocol for securely realizing functionality Fcp in the Fzk-hybrid model, in the

presence of adaptive adversaries. The di�erence between this protocol and Protocol SCP for static

adversaries is in the properties of the underlying commitment scheme C in use. Essentially, here we

use a commitment scheme that is \adaptively secure". That is, a simulator (having access to some

trapdoor information) can generate \dummy commitments" that can later be opened in several

ways.17 In order to achieve this, the commit phase of the protocol will now involve two invocations

of Fzk. As in the case of Protocol SCP, the relations used by the invocations of Fzk in the commit

phase are di�erent from the relation used in the prove phase. Thus, for sake of clarity we use three

di�erent copies of Fzk, two for the commit messages and one for the prove messages.

The speci�c commitment scheme C used in the commit phase here is the aHC commitment that

lies at the core of the universally composable commitment scheme of Section 5. Recall that this

scheme uses a common reference string containing an image y of a one-way function f . However,

here we work in the Fzk-hybrid model and do not have access to a common reference string. Thus,

the common reference string is \replaced" by interaction via the Fzk functionality. That is, the

basic commitment scheme is as follows. The receiver V chooses a random value t and sends the

committer C the value s = f(t). Next, C uses s to commit to its input value, as de�ned in

the aHC commitment scheme. That is, C �rst obtains a Hamiltonian graph G such that �nding a

Hamiltonian cycle inG is equivalent to computing the preimage t of s. (This is obtained by reducing

the NP-language fs j 9t s.t. s = f(t)g to Hamiltonicity.) Then, in order to commit to 0, C chooses

a random permutation � of the nodes of G and commits to the edges of the permuted graph one-by-

one, using a non-interactive commitment scheme Com with pseudorandom commitments. (Such a

scheme can be obtained using one-way permutations, see Section 5.) On the other hand, in order

to commit to 1, C chooses a randomly labeled cycle over the same number of nodes as in G. Then,

C uses Com to commit to these entries and produces random values for the rest of the adjacency

17The property actually required is that the simulator can generate a \commitment" c such that given any w at

a later stage, it can �nd randomness r such that c = C(w; r). This is needed for the adaptive corruption of the

committing party. See Section 5 for more discussion.

52

matrix. As was shown in Section 5, this commitment scheme is both hiding and binding, and also

has the property that given a preimage t of s, it is possible to generate a \dummy commitment"

that can be later explained as a commitment to both 0 and 1. (Thus, t is essentially a trapdoor.)

We denote a commitment of this type by aHCs(w; r), where s is the image of the one-way function

being used, w is the value being committed to, and r is the randomness used in generating the

commitment.

The commitment scheme aHC as described above requires that the underlying one-way function

be a permutation. However, by using interaction, we can implement Com using the commitment

scheme of Naor [n91] (this scheme also has pseudorandom commitments). We thus obtain that aHC

can be implemented using any one-way function. For simplicity, the protocol is written for Com

that is non-interactive (and therefore assumes one-way permutations). However, it is not diÆcult

to modify it so that the [n91] scheme can be used instead.

As in the case of Protocol SCP, the �rst stage of the adaptive protocol (denoted ACP for adap-

tive commit-and-prove) involves carrying out the commit phase of the above-described commitment

scheme via invocations of Fzk. This use of Fzk enables the simulator to extract the committed

value from the committing party. In addition, here Fzk is also used to enable the simulator to ob-

tain the trapdoor information needed for carrying out the adaptive simulation. Thus the protocol

begins by the receiver �rst choosing a random string t and computing s = f(t). Next, it sends

s to the committer and, in addition, proves that it knows the preimage t. Loosely speaking, in

the Fzk-hybrid model, this involves sending a (ZK-prover; sid; s; t) message to Fzk and having the

functionality send C the message (ZK-proof; sid; s) if s = f(t). We note that this step is carried

out only once, even if many values are later committed to. Thus, the same s is used for many

commitments.

Let Ft

zk
denote the copy of Fzk used for proving knowledge of the trapdoor/preimage. Then,

F
t

zk
is parameterized by the relation RT de�ned as follows:

RT
def
= f(s; t) j s = f(t)g (7)

Fzk is used twice more; once more in the commit phase and once in the prove phase. These copies

of Fzk are denoted Fc

zk
and Fp

zk
, respectively. The uses of Fzk here are very similar to the static

case (Protocol SCP). We therefore proceed directly to de�ning the relations RC and RP that

parameterize Fc

zk
and Fp

zk
, respectively:

RC
def
= f((s; c); (w; r)) j c = aHCs(w; r)g (8)

RP
def
= f((x; s; c); (w; r)) j 8i; ci = aHCs(wi; ri) & R(x;w) = 1g (9)

The only di�erence between the de�nition of RC and RP here and in the static case is that here

the value s is included as well. This is because a pair (s; c) binds the sender to a single value w,

whereas c by itself does not. The protocol for the adaptive case is presented in Figure 10. (As

in the static case, we formally di�erentiate the copies of Fzk by session identi�ers sidT , sidC and

sidP .)

Proposition 7.2 Assuming the existence of one-way functions, Protocol ACP of Figure 10 securely

realizes Fcp in the Fzk-hybrid model, in the presence of adaptive adversaries.

Proof (sketch): The proof of the above proposition follows similar lines to the proof of Proposi-

tion 7.1. However, here the adversary A can adaptively corrupt parties. Therefore, the simulator

S must deal with instructions from A to corrupt parties during the simulation. When given such

53

Protocol ACP

� Auxiliary Input: A security parameter k, and a session identi�er sid.

� Initialization phase:

The �rst time that the committer C wishes to commit to a value using the identi�er sid, parties
C and V execute the following before proceeding to the commit phase:

1. C sends sid to V to indicate that it wishes to initiate a commit activation.

2. Upon receiving sid from C, the receiver V chooses t 2R f0; 1gk, computes s = f(t) (where f
is a one-way function), and sends (ZK-prover; sidT ; s; t) to F

t

zk
, where Ft

zk
is parameterized by

the relation RT de�ned in Eq. (7). V records the value s.

3. Upon receiving (ZK-proof; sidT ; s) from Ft

zk
, C records the value s.

� Commit phase:

1. On input (commit; sid; w) (where w 2 f0; 1gk), C computes c = aHCs(w; r) for a random r and
using the s it received in the initialization phase. C then sends (ZK-prover; sidC ; (s; c); (w; r))
to Fc

zk
, where Fc

zk
is parameterized by the relation RC de�ned in Eq. (8). In addition, C

stores in a vector w the list of all the values w that were sent, and in vectors r and c the
corresponding lists of random strings and commitment values.

2. Upon receiving (ZK-proof; sidC ; (s
0; c)) from Fc

zk
, V veri�es that s0 equals the string s that it

sent in the initialization phase, outputs (receipt; sid) and adds the value c to its list c. (Initially,
c is empty.) If s0 6= s, then V ignores the message.

� Prove phase:

1. On input (CP-prover; sid; x), C sends (ZK-prover; sidP ; (x; s; c); (w; r)) to F
p

zk
, where c, w and

r are the vectors described above, and Fp

zk
is parameterized by the relation RP de�ned in

Eq. (9).

2. Upon receiving (ZK-proof; sid; (x; s0; c)) from Fp

zk
, V veri�es that s0 is the string that it sent

in the initialization phase, and that its list of commitments equals c. If so, then it outputs
(CP-proof; sid; x). Otherwise, it ignores the message.

Figure 10: A protocol for realizing Fcp for adaptive adversaries

a \corrupt" command, S corrupts the ideal model party and receives its input (and possibly its

output). Then, given these values, S must provide A with random coins such that the simulated

transcript generated so far is consistent with this revealed input and output. (An additional \com-

plication" here is that the binding property of C is only computational. Thus, the validity of the

simulation will be demonstrated by a reduction to the binding property of C.)

More precisely, Let A be an adaptive adversary who operates against Protocol ACP in the Fzk-

hybrid model. We construct a simulator S such that no environment Z can tell with non-negligible

probability whether it is interacting with A and parties running Protocol ACP in the Fzk-hybrid

model or with S in the ideal process for Fcp. Simulator S will operate by running a simulated copy

of A and will use A in order to interact with Z and Fcp. S works in a similar way to the simulator

in the static case (see the proof of Proposition 7.1), with the following changes:

1. S records the pair (s; t) from the initialization phase of an execution. In the case where

the receiver is uncorrupted, this pair is chosen by S itself. In the case where the receiver

is corrupted this pair is chosen by the simulated A, and S obtains both s and t from the

message that the corrupted receiver sends to Ft

zk
.

54

2. Whenever an uncorrupted party C commits to an unknown value w, simulator S hands A a

commitment to 0k as the commitment value. More precisely, whenever S receives from Fcp
a message (receipt; sid) where C is uncorrupted, S computes c = aHCs(0

k; r) for a random

r, and hands A the message (ZK-proof; sidC ; (s; c)), as if coming from Fc

zk
. (Recall that by

the aHC scheme, a commitment to 0 can be opened as either 0 or 1, given the trapdoor

information t; see Section 5.)

3. When the simulated A internally corrupts C, simulator S �rst externally corrupts C in the

ideal process for Fcp and obtains the vector of values w that C committed to so far. Next,

S prepares for A a simulated internal state of C in Protocol ACP as follows. Apart from

the vector of committed values w, the only hidden internal state that C keeps in Protocol

ACP is a vector of random strings r that were used to commit to each wi in w. That is, for

each input value wi in w, adversary A expects to see a value ri such that ci = aHCs(wi; ri),

where ci is the corresponding commitment value that S generated and handed to A in the

simulation of commitments by an uncorrupted C (see step 2 above). Thus, for every i, S

generates the appropriate value ri using the trapdoor t, and then hands the list r to A. (See

Section 5 for a description of exactly how this randomness is generated.)

4. When the simulated A internally corrupts V , S provides A with a simulated internal state

of V . This state consists of the preimage t, plus the messages that V receives from Fzk. All

this information is available to S.

The analysis of the above simulator is very similar to the static case (Proposition 7.1). The main

di�erence is that here the commitment is only computationally binding. Thus the following bad

event is potentially possible: When the committer C is corrupted, the simulated A commits to

a series of values w with corresponding commitment values c. Later, in the prove phase, A then

generates a message (ZK-prover; sidP ; (x; c); (w
0; r0)) to send to Fp

zk
, where w0

6= w and yet for every

i, it holds that ci = aHCs(w
0
i; r

0
i). Furthermore, R(x;w0) = 1 and R(x;w) = 0. In other words, the

bad event corresponds to a case where in the ideal process Fcp does not send a (CP-proof; sid; x)

message (because R(x;w) = 0), whereas V does output such a message in a real execution of

Protocol ACP (because RP ((x; s; c)(w
0; r0)) = 1 and the vector of commitments c is as observed by

V). (We note that given that this event does not occur, the correctness of the simulation carried

out by S follows the same argument as in the proof of Proposition 7.1.)

We conclude the proof by showing that this bad event occurs with negligible probability, or else

Z andA can be used to construct an algorithm that breaks the binding property of the aHC commit-

ment scheme. It suÆces to show that A cannot generate a message (ZK-prover; sidP ; (x; c); (w
0; r0))

where w0
6= w and yet for every i, it holds that ci = aHCs(w

0
i; r

0
i). Intuitively, this follows from the

binding property of aHC (see Section 5). In particular, let Z and A be such that the bad event

occurs with non-negligible probability during the above ideal-process simulation by S. Then, we

construct a machine M who receives s and with non-negligible probability outputs a commitment

c along with (w1; r1) and (w2; r2), where c = aHCs(w1; r1) = aHCs(w2; r2) and w1 6= w2.

M invokes S on Z and A, and emulates the ideal process, while playing the roles of the ideal

functionality and the uncorrupted parties C and V . Simulator S is the same as described above,

with the following two important di�erences:

� Instead of S choosing the pair (s; t) itself in step 1 of its instructions above, it uses the value s

that M receives as input. (Recall that M receives s and is attempting to contradict the binding

property of the commitment relative to this s.)

55

� If C commits to any values before it is corrupted, the simulation is modi�ed as follows. Instead

of S providing A with a commitment c = aHCs(0
k; r), machine M provides S with the input

w being committed to and then S provides A with c = aHCs(w; r). Upon corruption of C,

simulator S then provides A directly with the list of random values r used in generating the

commitments. M can give S these values because it plays the uncorrupted C in the emulation

and therefore knows the w values.18

If during the emulation by M , the above-described bad event occurs, then M outputs c and the

two pairs (w1; r1) and (w2; r2). In order to analyze the success probability of M , �rst notice that

the views of Z and A in this simulation by M are indistinguishable from their views in an ideal

process execution. The only di�erence between the executions is that A does not receive \dummy

commitments" to 0k, but real commitments to w. By the hiding property of the commitments,

these are indistinguishable. Therefore, the probability that A generates the messages constituting

a bad event in M 's emulation is negligibly close to the probability that the bad event occurs in the

ideal process simulation by S. The key point here is that S does not need to know the trapdoor t

in order to carry out the emulation. In particular, M carries out its emulation with s only, and

without knowing t. Therefore the binding property of the commitment scheme aHCs must hold with

respect to M . However, by the contradicting hypothesis, the bad event occurs in M 's emulation

with non-negligible probability. This contradicts the binding property of the commitment scheme.

8 Two-Party Secure Computation for Malicious Adversaries

In this section, we show how to obtain universally composable general secure computation in the

presence of malicious adversaries. Loosely speaking, we present a protocol compiler that transforms

any protocol that is designed for the semi-honest adversarial model into a protocol that guarantees

essentially the same behavior in the presence of malicious adversaries. The compiler is described in

Section 8.1. Then, Section 8.2 ties together all the components of the construction, from Sections

4, 6, 7 and 8.1.

8.1 The Protocol Compiler

As discussed in Section 2.2, the Fcp functionality is used to construct a protocol compiler that

transforms any non-trivial protocol that securely realizes some two-party functionality F in the

presence of semi-honest adversaries (e.g., the protocol of Section 4), into a non-trivial protocol

that securely realizes F in the presence of malicious adversaries. In this section we present the

compiler (the same compiler is valid for both static and adaptive adversaries). Now, let � be a

two-party, reactive protocol. Without loss of generality, we assume that � works by a series of

activations, where in each activation, only one of the parties has an input. This is consistent with

our description of general two-party functionalities, see Section 3.3. For the sake of simplicity, we

also assume that the lengths of the random tapes speci�ed by � for all activations is k.

The compiled protocol Comp(�) is described in Figure 11 below. It uses two copies of Fcp:

one for when P1 is the committer and one for when P2 is the committer. These copies of Fcp are

denoted F1

cp
and F2

cp
, respectively, and are formally identi�ed by session identi�ers sid1 and sid2

18A more \natural" de�nition of M would be to have it run S in the same way as in the simulation, even before C

is corrupted. In such a case, M would need to know the trapdoor in order to proceed when C is corrupted. However,

it is crucial here that M not know the trapdoor (because the binding property only holds when the trapdoor is not

known).

56

(where sidi can be taken as sid Æ i). The description of the compiler is from the point of view of

party P1; P2's instructions are analogous.

Loosely speaking, the e�ect of the compiler on the adversary's capabilities, is that the (mali-

cious) adversary must exhibit semi-honest behavior, or else its cheating will be detected. Recall

that a semi-honest adversary follows the protocol instructions exactly, according to a �xed input

and a uniformly distributed random input. The following proposition asserts that for every mali-

cious adversary A participating in an execution of the compiled protocol (in the Fcp-hybrid model),

there exists a semi-honest adversary A0 that interacts with the original protocol in the plain real-

life model such that for every environment Z, the output distributions in these two interactions

are identical. Thus, essentially, a malicious adversary is reduced to semi-honest behavior. We

note that the compiler does not use any additional cryptographic construct other than access to

Fcp. Consequently, the following proposition holds unconditionally, and even if the adversary and

environment are computationally unbounded.

Proposition 8.1 Let � be a two-party protocol and let Comp(�) be the protocol obtained by ap-

plying the compiler of Figure 11 to �. Then, for every malicious adversary A that interacts with

Comp(�) in the Fcp-hybrid model there exists a semi-honest adversary A0 that interacts with � in

the plain real-life model, such that for every environment Z,

real�;A0;Z � exec
Fcp

Comp(�);A;Z

An immediate corollary of this proposition is that any protocol that securely realizes some two-party

functionality F in the semi-honest model can be compiled into a protocol that securely realizes F

in the malicious model. This holds both for static and adaptive adversaries.

Corollary 8.2 Let F be a two-party functionality and let � be a non-trivial protocol that securely

realizes F in the real-life model and in the presence of semi-honest adversaries. Then Comp(�)

is a non-trivial protocol that securely realizes F in the Fcp-hybrid model and in the presence of

malicious adversaries.

We note that the proposition and corollary hold both for the case of adaptive adversaries and for

the case of static adversaries. Here we prove the stronger claim, relating to adaptive adversaries.

We now prove the proposition.

Proof of Proposition 8.1: Intuitively, a malicious adversary cannot cheat because the validity

of each message that it sends is veri�ed using the Fcp functionality. Therefore, it has no choice but

to play in a semi-honest manner (or be detected cheating).

More precisely, let A be a malicious adversary interacting with Comp(�) in the Fcp-hybrid

model. We construct a semi-honest adversary A0 that interacts with � in the plain real-life model,

such that no environment Z can tell whether it is interacting with Comp(�) and A in the Fcp-

hybrid model, or with � and A0 in the plain real-life model. As usual, A0 works by running a

simulated copy of A and using the messages sent by A as a guide for its interaction with � and Z.

We use the term external communication to refer to the communication of A0 with Z and �. The

term internal communication is used to refer to the communication of A0 with the simulated A.

Before describing A0, we note the di�erence between this proof and all previous ones in this paper.

Until now, we constructed an ideal process adversary S from a hybrid or real model adversary

A. In contrast, here we construct a real model adversary A0 from a hybrid model adversary A.

57

Comp(�)

Party P1 proceeds as follows (the code for party P2 is analogous):

1. Random tape generation: When activating Comp(�) for the �rst time with session identi�er
sid, party P1 proceeds as follows:

(a) Choosing a random tape for P1:

i. P1 chooses r11 2R f0; 1gk and sends (commit; sid1; r
1
1) to F1

cp
. (P2 receives a

(receipt; sid1) message, chooses r21 2R f0; 1gk and sends (sid; r21) to P1.)

ii. When P1 receives a message (sid; r21) from P2, it sets r1
def
= r11 � r21 (r1 will serve as

P1's random tape for the execution of �).

(b) Choosing a random tape for P2:

i. P1 waits to receive a message (receipt; sid2) from F2
cp

(this occurs after P2 sends a
commit message (commit; sid2; r

2
2) to F

2
cp
). It then chooses r12 2R f0; 1gk and sends

(sid; r12) to P2. (P2 sets r2 = r12 � r22 to be its random tape for the execution of �.)

2. Activation due to new input: When activated with input (sid; x), party P1 proceeds as follows.

(a) Input commitment: P1 sends (commit; sid1; x) to F
1
cp

and adds x to the list of inputs x
(this list is initially empty and contains P1's inputs from all the previous activations of
�). Note that at this point P2 receives the message (receipt; sid1) from F1

cp
.

(b) Protocol computation: Let m1 be the series of �-messages that P1 received from P2 in
all the activations of � until now (m1 is initially empty). P1 runs the code of � on its
input list x, messages m1, and random tape r1 (as generated above).

(c) Outgoing message transmission: For any outgoing message m that � instructs P1 to
send to P2, P1 sends (CP-prover; sid1; (m; r21 ;m1)) to F

1
cp

where the relation R� for F1
cp

is de�ned as follows:

R� =
�
((m; r21 ;m1); (x; r

1
1)) j m = �(x; r11 � r21 ;m1)

	
In other words, P1 proves that m is the correct next message generated by � when
the input sequence is x, the random tape is r1 = r11 � r21 and the series of incoming
�-messages equals m1. (Recall that r

1
1 and all the elements of x were committed to by

P1 in the past using commit invocations of F1
cp
, and that r21 is the random string sent

by P2 to P1 in Step 1(a)ii above.)

3. Activation due to incoming message: When activated with incoming message
(CP-proof; sid2; (m; r12 ;m2)) from F2

cp
, P1 �rst veri�es that the following conditions hold. (We

note that F2
cp

is parameterized by the same relation R� as F1
cp
.)

(a) r12 is the string that P1 sent to P2 in Step 1(b)i above.

(b) m2 equals the series of �-messages received by P2 from P1 (i.e., P1's outgoing messages)
in all the activations until now.

If any of these conditions fail, then P1 ignores the message. Otherwise, P1 appends m to its
list of incoming �-messages m1 and proceeds as in Steps 2b and 2c.

4. Output: Whenever � generates an output value, Comp(�) generates the same output value.

Implicit in the above protocol speci�cation is the fact that P1 and P2 only consider messages that
are associated with the speci�ed identi�er sid.

Figure 11: The compiled protocol Comp(�)

58

Furthermore, previously both S and A were malicious adversaries, whereas here A is malicious and

A
0 is semi-honest. We now describe A0:

First, A0 runs a simulated copy of A and simulates for A the Comp(�) messages relating to

the generation of the random string of both parties. Next, A0 translates each message externally

sent in � to the corresponding message (or sequence of messages) in Comp(�). Each message sent

by the simulated A (supposedly by a corrupted party running Comp(�)) is translated back to a

�-message and sent externally. The rationale of this behavior is that if the simulated A (controlling

the corrupted party) deviates from the protocol, then this would have been detected by the partner

in Comp(�), and thus A0 can ignore that message. If A does not deviate from the protocol, then A0

can forward the messages sent by A to the other party as this is allowed behavior for a semi-honest

party. More precisely, A0 proceeds as follows.

Simulating the communication with the environment: Every input value coming from Z

(in the external communication) is forwarded to the simulated A (in the internal communi-

cation) as if coming from A's environment. Similarly, every output value written by A on its

output tape is copied to A0's own output tape (to be read by the external Z).

Simulating the \random tape generation" phase: When the �rst activation of � takes place,

A
0 internally simulates the \random tape generation" phase of Comp(�). Here we separately

deal with each corruption case:

1. Both parties are not corrupted: A0 simulates both parties' messages from this stage.

That is, in order to simulate the generation of P1's random tape, A0 internally passes A

the message (receipt; sid1), as if coming from F1

cp
. Furthermore, A0 chooses a random

r2
1
, records the value, and simulates P2 sending P1 the message (sid; r2

1
) of Step 1(a)ii in

Figure 11. The simulation of P2's random tape is analogous.

2. P1 is not corrupted and P2 is corrupted: We begin with the generation of P1's random

tape. As above, A0 begins by internally passingA the message (receipt; sid1), as if coming

from F1

cp
. Then, A0 obtains and records the message (sid; r2

1
) from the corrupted P2

(controlled by A in Comp(�)).

We now proceed to the generation of P2's random tape. A0 obtains from A the message

(commit; sid2; r
2

2
), as sent by P2 to F2

cp
in an execution of Comp(�). Now, let r2 equal

the random tape of the corrupted P2 in the external execution of � (A0 knows this

value because it can read all of the corrupted P2's tapes). Then, A0 sets r1
2
= r2 � r2

2

and internally passes A the message (sid; r1
2
), as if sent by P1 to P2. (Recall that A

0 is

semi-honest and thus it cannot modify P2's random tape r2 for �. A
0 therefore \forces"

A to use this exact same random tape in the simulated execution of Comp(�).)

3. P1 is corrupted and P2 is not corrupted: The simulation of this case is analogous to the

previous one. In particular, for the generation of the corrupted P1's random tape, A0

�rst receives a message (commit; sid1; r
1

1
) from A and simulates P2 sending (sid; r2

1
) to

P1, where r
2

1
= r1 � r1

1
and r1 equals the random tape of the real party P1 executing �.

4. Both parties are corrupted: When both parties are corrupted, the entire simulation is

straightforward. (A0 simply runs both malicious parties and at the end, copies the

contents of their output tapes to the output tapes of the semi-honest parties running

�.) We therefore ignore this case from now on.

Simulating an activation due to new input: We deal with the case that P1 is not corrupted

separately from the case that P1 is corrupted. Recall that the input commitment phase

59

consists only of P1 sending a commit message to F1

cp
. First, if party P1 is not corrupted, then

A
0 learns that the external P1 received new input from the fact that it sends its �rst message

of the execution of �. In response, A0 simulates the input commitment step by internally

passing (receipt; sid1) to A (as A expects to receive from F1

cp
in a real execution of Comp(�)).

If P1 is corrupted, then A0 receives a message (commit; sid1; x) from A (who controls P1

in Comp(�)). Then, A0 adds x to the list x of inputs committed to by P1 and passes A

the string (receipt; sid1), as if coming from F1

cp
. Furthermore, A0 sets P1's input tape to

equal x. (Recall that a semi-honest adversary is allowed to modify the input values that the

environment writes on the input tape of a corrupted party. Formally, when the environment

Z noti�es the semi-honest A0 of the value that it wishes to write on P1's input tape, A0

simulates for A the malicious model where Z writes directly to P1's input tape. Then, when

A sends the message (commit; sid1; x) in the simulation, A
0 externally instructs Z to write the

value x (as committed to by A) on P1's input tape. See Section 3.1.1 for an exact description

of how values are written to the parties' input tapes in the semi-honest model.)

Dealing with protocol messages sent externally by uncorrupted parties: If an uncorrupted

party P1 externally sends P2 a message m in the execution of �, then A0 internally passes A

the message (CP-proof; sid1; (m; r2
1
;m1)), where r

2

1
is the value recorded by A0 in the simu-

lated generation of P1's random tape above, and m1 is the series of all �-messages received

by P1 so far. Similarly, if an uncorrupted party P2 sends P1 a message m in the execution

of �, then A0 internally passes A the message (CP-proof; sid2; (m; r1
2
;m2)), where r

1

2
and m2

are the analogous values to the previous case.

Next, A0 externally delivers messages sent from P1 to P2 (resp., from P2 to P1) in the execution

of � when A delivers the corresponding (CP-proof; : : :) message from F1

cp
to P2 (resp., from

F
2

cp
to P1) in the simulated execution of Comp(�).

Dealing with protocol messages sent internally by corrupted parties: Assume that P1 is

corrupted. If A, controlling P1, sends a message (CP-prover; sid1; (m; r0
2

1
;m0

1
)), then A0 works

as follows. First, A0 has seen all the messages m1 received by P1 and can check that m0
1
=m1.

Likewise, A0 checks that r0
2

1
= r2

1
(recall that r2

1
is the value recorded by A0 in the simulated

generation of P1's random tape above). Finally, A0 checks that m = �(x; r1
1
�r2

1
;m1). (Notice

that since P1 is corrupted, A
0 has all the necessary information to carry out these checks.) If

all of the above is true, then A0 internally passes A the message (CP-proof; sid1; (m; r0
2

1
;m0

1
)),

as A expects to receive from F1

cp
. Then, whenA delivers this (CP-proof; : : :) message from F1

cp

to P2 in the simulation, A externally delivers the message that P1, running �, has written on

its outgoing communication tape for P2.
19 If any of these checks fail, then A0 does nothing.

(That is, no message is externally delivered from P1 to P2 at this point.) The case of A

sending a CP-proof message in the name of a corrupt P2 is analogous.

Dealing with corruption of parties:20 When the simulated A internally corrupts a party P1,

A
0 �rst externally corrupts P1 and obtains all of P1's past inputs and outputs, and its random

tape. Next, A0 prepares for A a simulated internal state of P1 in protocol Comp(�). This is

done as follows. The only additional internal state that P1 keeps in Comp(�) is the random

string r1
1
(this is the string that P1 commits to in the random tape generation phase of

19This point requires some elaboration. Notice that if all checks were successful, then the message that P1 would

send in an execution of � equals m. This is because external P1 in � and internal P1 in Comp(�) both have the

same inputs, random tapes and series of incoming messages. Therefore, their outgoing messages are also the same.
20In the case of static adversaries the simulation remains the same with the exception that this case is ignored.

60

Comp(�)). Then, A0 sets r1
1
= r1 � r2

1
, where r1 is P1's random string for � and r2

1
is the

string that P2 sent to P1 in the internal simulated interaction with A of Comp(�). Thus, in

the above way, A0 prepares a simulated internal state of P1 in Comp(�) and internally passes

it to A. A0 works in an analogous way upon the corruption of P2.

We argue that Z's view of the interaction with A0 and parties running � in the real-life semi-

honest model is identical to its view of the interaction with A and parties running Comp(�) in the

Fcp-hybrid model. (In particular, the view of the simulated A within A0 is identical to its view

in a real interaction with the same Z and Comp(�) in the Fcp-hybrid model.) This can be seen

by observing the computational steps in an interaction of Z with A0 and �. The cases where an

uncorrupted party sends a message are immediate. To see that this holds also in the case where A0

delivers messages sent by corrupted parties, recall that A0 forces the random input of a corrupted

P1 in the internal execution of Comp(�) with A to be the random tape of the semi-honest party

P1 externally executing �. Furthermore, A0 modi�es the input tape of the external party P1 so

that it is the same input as committed to by A. We therefore have that the input and random

tapes that malicious A committed to for the internal P1 are exactly the same as the input and

random tapes used by the external P1. Now, A
0 obtains all the inputs committed to by a corrupted

P1 in the simulated interaction with A. Consequently, A0 is able to verify at every step if the

message m sent by A, in the name of a corrupted P1 in the simulated interaction, is according to

the protocol speci�cation. If yes, then we are guaranteed that P1 generates the exact same message

m in the external execution of �. Thus, P2 receives the same �-message in the execution of �

(where the adversary A0 is semi-honest) and in the execution of Comp(�) (where the adversary

A is malicious). Furthermore, we are guaranteed that whenever A0 delivers a message m in the

external execution of �, the simulated A generated and delivered a valid corresponding message

to Fcp. Finally, the internal state that A receives from A0 upon corrupting a party is exactly the

same as it receives in a real execution of Comp(�). In particular, observe that in the simulation

of the random tape generation phase when P1 is not corrupted, A receives no information about

r1
1
(it only sees a (receipt; sid1) message). Therefore, A0 can choose r1

1
as any value that it wishes

upon the corruption of P1, and in particular it can set it to equal r1�r
2

1
(recall that P1 indeed uses

the random tape r1; therefore this is consistent with its true internal state). We conclude that the

ensembles real and exec are identical.

8.2 Conclusions

Combining Proposition 4.3 and Corollary 8.2, we have that for any two-party ideal functionality

F , there exists a protocol that securely realizes F in the Fcp-hybrid model (in the presence of

malicious adversaries). Combining this with Proposition 7.1, and using the universal composition

theorem (Theorem 3.3), we obtain universally composable general two-party computation in the

Fzk-hybrid model. That is,

Theorem 8.3 (Theorem 2.2 { formally restated): Assume that trapdoor permutations exist. Then,

for any well-formed two-party ideal functionality F , there exists a non-trivial protocol that securely

realizes F in the Fzk-hybrid model in the presence of malicious, static adversaries. Furthermore,

if two-party augmented non-committing encryption protocols exist, then for any adaptively well-

formed two-party ideal functionality F , there exists a non-trivial protocol that securely realizes F

in the Fzk-hybrid model in the presence of malicious, adaptive adversaries.

Recall that, under the assumption that trapdoor permutations exist, functionality F̂zk (the multi-

session extension of Fzk) can be securely realized in the Fcrs-hybrid model by protocols that uses

61

a single copy of the reference string. We can thus use the universal composition with joint state

theorem (Theorem 3.4) to obtain the following corollary:

Corollary 8.4 Assume that trapdoor permutations exist. Then, for any well-formed two-party

ideal functionality F , there exists a non-trivial protocol that securely realizes F in the Fcrs-hybrid

model in the presence of malicious, static adversaries. Furthermore, if two-party augmented non-

committing encryption protocols exist, then for any adaptively well-formed two-party functionality

F , there exists a non-trivial protocol that securely realizes F in the Fcrs-hybrid model in the presence

of malicious, adaptive adversaries. In both cases, the protocol uses a single copy of Fcrs.

9 Multi-party Secure Computation

This section extends the two-party constructions of Sections 5{8 to the multi-party setting, thereby

proving Theorem 2.3. The results here relate to a multi-party network where subsets of the parties

wish to realize arbitrary (possibly reactive) functionalities of their local inputs. Furthermore, there

is an adaptive adversary that can corrupt any number of the parties (in particular, no honest

majority is assumed). Throughout, we continue to assume a completely asynchronous network

without guaranteed message delivery.

This section is organized as follows. We start by showing how to obtain UC multi-party com-

putation in the presence of semi-honest adversaries. Next we de�ne a basic broadcast primitive

which will be essential for our protocols in the case of malicious adversaries. We then generalize

the UC commitment, zero-knowledge and Fcp functionalities to the multi-party case. Finally, we

construct a multi-party protocol compiler using the generalized Fcp, and obtain UC multi-party

computation in the malicious adversarial model. In our presentation below, we assume familiarity

with the two-party constructions.

9.1 Multi-party Secure Computation for Semi-Honest Adversaries

In this section, we sketch the construction of non-trivial protocols that securely realize any adap-

tively well-formed functionality F for semi-honest adversaries. (Recall the de�nition of adaptively

well-formed functionalities in Section 3.3.) The construction is a natural extension of the construc-

tion for the two-party case. We assume that the set P of participating parties in any execution is

�xed and known; let this set be P1; : : : ; P`. Then, the input lines to the circuit (comprising of the

input value, random coins and internal state of the functionality) are shared amongst all ` parties.

That is, for every input bit a to the circuit, the parties hold random bits �1; : : : ; �`, respectively,

under the constraint that � = �`
i=1

�i. Next, the parties compute the circuit inductively from the

inputs to outputs so that at every step, they hold shares of the lines already computed. Once the

circuit is fully computed, the parties reconstruct the outputs, as required. We now proceed to prove

the following proposition:

Proposition 9.1 Assume that trapdoor permutations exist. Then, for any well-formed (multi-

party) ideal functionality F , there exists a non-trivial protocol that securely realizes F in the presence

of semi-honest, static adversaries. Furthermore, if two-party augmented non-committing encryp-

tion protocols exist, then for any adaptively well-formed (multi-party) functionality F , there exists

a non-trivial protocol that securely realizes F in the presence of semi-honest, adaptive adversaries.

62

As in the two-party case, for adaptive adversaries we assume the existence of two-party augmented

non-committing encryption protocols. Indeed, as in the two-party case this assumption is needed

only to securely realize the two-party functionality F4

ot
, which plays a central role even in the

multi-party case.

We begin our proof of Proposition 9.1 by presenting a non-trivial multi-party protocol �F that

securely realizes any adaptively well-formed functionality F in the Fot-hybrid model. (We prove

the proposition for the adaptive case only, the static case is easily derived.) We start by de�ning

a boolean circuit CF that represents an activation of F . The circuit CF has 3m input lines: m

lines represent the input value sent to F in this activation (i.e., this is the input held by one of the

parties). The additional 2m input lines are used for F 's random coins and for holding F 's state

at the onset of the activation. The circuit also has m output lines for each party and m output

lines for �nal state of F after the activation (a total of m`+m lines). For more details on how F

and CF are de�ned, see the description for the two-party case in Section 4.2 (the extensions to the

multi-party case are straightforward).

Protocol �F (for securely realizing F): Let the set of participating parties equal P =

fP1; : : : ; P`g. We state the protocol for an activation in which P1 sends a message to F . When

activated with input (sid; v) for P1 where jvj � m, the protocol �rst pads v to length m (according

to some standard encoding), and sends a message to all the parties in P, asking them to participate

in a joint evaluation of CF . Next, the parties do the following:

1. Input Preparation Stage:

� Input value: P1 starts by sharing its input v with all parties. That is, P1 chooses ` random

strings v1; : : : ; v` 2R f0; 1g
m with the constraint that �`

i=1
vi = v. Then, P1 sends (sid; vi)

to Pi for every 2 � i � `, and stores v1.

� Internal state: At the onset of each activation, the parties hold shares of the current

internal state of F . That is, let c denote the current internal state of F , where jcj = m

and m is an upper bound on the size of the state string stored by F . Then, party Pi holds

ci 2 f0; 1g
m and all the ci's are random under the restriction that �`

i=1
ci = c. (In the

�rst activation of F , the internal state is empty and so the parties hold �xed shares 0 that

denote the empty state.)

� Random coins: Upon the �rst activation of F only, each party Pi locally chooses a random

string ri 2R f0; 1g
m. The strings r1; : : : ; r` then constitute shares of the random coins

r = �`
i=1

ri to be used by CF in all activations.

At this point, the parties hold (random) shares of every input line of CF .

2. Circuit Evaluation: The parties proceed to evaluate the circuit CF in a gate-by-gate man-

ner. Let � and � denote the bit-values of the input lines to a given gate. Then every Pi holds

bits �i; �i such that � =
P`

i=1
�i and � =

P`
i=1

�i. The gates are computed as follows:

� Addition gates: If the gate is an addition gate, then each Pi locally sets its share of the

output line of the gate to be
i = �i + �i. (Thus
P`

i=1

i =

P`
i=1

(�i + �i) = �+ � =
.)

� Multiplication gates: If the gate is a multiplication gate, then the parties need to compute

their shares of
 =
�P`

i=1
�i

��P`
i=1

�i

�
. The key to carrying out this computation is the

63

following equality: X̀
i=1

�i

! X̀
i=1

�i

!
= ` �

X̀
i=1

�i�i +
X

1�i<j�`

(�i + �j) � (�i + �j)

(See [g98, Section 3.2.2] for a justi�cation of this equality.) Notice that each party can

compute a share of the �rst sum locally (by simply computing �i � �i and multiplying

the product by `). Shares of the second sum can be computed using activations of the

two-party oblivious transfer functionality F4

ot
. (That is, for each pair i and j, parties Pi

and Pj compute shares of (�i+�j) � (�i+�j). This is exactly the same computation as in

the two-party case and can be carried out using F4

ot
.) After computing all of the shares,

each party Pi locally sums its shares into a value
i, and we have that
P`

i=1

i =
, as

required.

3. Output stage: Following the above stage, the parties hold shares of all the output lines of

the circuit CF . Each output line of CF is either an output addressed to one of the parties

P1; : : : ; P`, or belongs to the internal state of CF after the activation. The activation concludes

as follows:

� Pi's output (for every i): For every j 6= i, party Pj sends Pi all of its shares in Pi's output

lines. Pi then reconstructs every bit of its output value by adding the appropriate shares,

and writes the result on its output tape.

� Internal state: P1; : : : ; P` all locally store the shares that they hold for the internal state

lines of CF . (These shares are to be used in the next activation.)

Recall that since we are working in an asynchronous network, there is no guarantee on the order of

message delivery and messages may be delivered \out of order". In contrast, to maintain correctness

the protocol must be executed according to its prescribed order (e.g., new activations must begin

only after previous ones have completed and gates may be evaluated only after the shares of the

input lines are known). As in the two-party case, this is dealt with by assigning unique identi�ers to

every message sent during all activations. A full description of how this can be achieved appears in

Section 4.2. By having the parties store messages that arrive before they are relevant in appropriate

bu�ers (where the time that a message becomes relevant is self-evident from the unique tags), we

have that all honest parties process the messages in correct order. Thus, it makes no di�erence

whether or not the adversary delivers the messages according to the prescribed order and we can

assume that all messages are delivered in order.

This completes the description of �F . We now sketch the proof that �F securely realizes any

adaptively well-formed multi-party functionality F :

Claim 9.2 Let F be an adaptively well-formed multi-party functionality. Then, protocol �F se-

curely realizes F in the Fot-hybrid model, in the presence of semi-honest, adaptive adversaries.

Proof (sketch): The proof of this claim is very similar to the two-party case (i.e., Claim 4.4).

First, it is clear that �F correctly computes F (i.e., all parties receive outputs that are distributed

according to F). Next, we show the existence of a simulator for �F . The basis for the simulator's

actions is the fact that, as long as there is at least one uncorrupted party, all the intermediary

values seen by the parties are uniformly distributed.

Let A be a semi-honest, adaptive adversary; we construct a simulator S for the ideal process

F . Simulator S internally invokes A and works as follows:

64

Simulating the communication with Z: The input values received by S from Z are written

on A's input tape, and the output values of A are copied to S's own output tape.

Simulation of the input stage: Recall that in this stage, the only messages sent are random

strings v2; : : : ; v` that P1 sends to P2; : : : ; P`. Thus, the simulation of this stage involves

simulating P1 sending `� 1 random strings v2; : : : ; v` to P2; : : : ; P`. (If P1 is corrupted, then

v2; : : : ; v` are chosen according to P1's random tape. Otherwise, S chooses each vi uniformly.)

Simulation of the circuit evaluation stage: The addition gates require no simulation since

they constitute local computation only. The multiplication gates involve simulation of pair-

wise oblivious transfer calls to Fot. We describe the simulation of these oblivious transfers

separately for each corruption case.

1. Oblivious transfers run with an uncorrupted receiver: In the case that the receiver is not

corrupted, the only message seen by A in a call to Fot is the session-identi�er used.

This is therefore easily simulated by S. (If the sender is corrupted, then its input table

to Fot is seen by A. However, this is already de�ned because it is a function of the

sender's view which is known to A.)

2. Oblivious transfers run with an uncorrupted sender and a corrupted receiver: In this

case, the receiver obtains a uniformly distributed bit
2 as output from the oblivious

transfer. Therefore, S merely chooses
2 uniformly.

3. Oblivious transfers run with a corrupted sender and receiver: Simulation is straightfor-

ward when both participating parties are corrupted (all input values and random tapes

are already de�ned).

Simulation of the output stage: S simulates the parties sending strings in the output stage in

order to reconstruct their outputs. First, we note that the shares of the input lines, for any

party Pj that is already corrupted, are already de�ned. (This is because A holds the view of

Pj and this view de�nes the shares that Pj holds of all the output lines.) This means that

the strings that Pj sends in the output stage are also de�ned. Now, S de�nes the strings

received by a party Pi in the output stage as follows. If Pi is not corrupted, then S simulates

all the other uncorrupted parties sending Pi uniformly distributed strings. If Pi is corrupted,

then S has Pi's output yi. S uses this to choose random strings for the honest parties so that

the exclusive-or of these strings along with the de�ned output strings sent by the corrupted

parties equals yi. (Thus, Pi's output is reconstructed to yi, as required.) Simulator S carries

out this simulation for all parties P1; : : : ; P`.

Simulation of corruptions before the last honest party is corrupted: When some party Pi
is corrupted, S should provide A with the internal state of Pi for all the activations of F (i.e.,

for all the evaluations of CF) so far. All the evaluations are dealt with independently from

each other (except that Pi's output shares of F 's internal state from one evaluation equals

its input shares of F 's internal state in the following evaluation). Also all evaluations, ex-

cept perhaps for the current one, are complete. Here we describe how S deals with a single,

complete activation. (If the current activation is not complete then S follows its instructions

until the point where Pi is corrupted.)

Upon the corruption of party Pi, simulator S receives Pi's input xi and output yi, and should

generate Pi's view of the simulated protocol execution. This view should be consistent with

the messages sent in the simulation so far. We begin with the simulation of Pi's view of the

65

input stage. If i = 1 (i.e., P1 is the party that is corrupted), then S obtains the input value

v. Let v2; : : : ; v` be the random strings that P1 sent P2; : : : ; P` in the simulated interaction.

Then, S de�nes P1's share of the input to equal v1 so that �
`
i=1

vi = v. S continues for any Pi
(i.e., not just for i = 1) as follows. S chooses random strings ri 2R f0; 1g

m and ci 2R f0; 1g
s

and sets Pi's inputs to CF 's random-coins and internal state to be ri and ci, respectively.

Having completed the simulation of Pi's view of the input stage, S proceeds to simulate Pi's

view in the oblivious transfers of the protocol execution. Below we describe the simulation

for all the multiplication gates except for those immediately preceding output lines (these will

be dealt with separately below). We distinguish four cases:

1. Oblivious transfers run with Pi as sender and an uncorrupted Pj as receiver: Recall that

in every oblivious transfer, the sender inputs a random-bit
1 to mask the outcome. In

this case, S simply chooses
1 uniformly. (This is the random bit that Pi supposedly

chose upon computing this gate.)

2. Oblivious transfers run with an uncorrupted Pj as sender and Pi as receiver: In this

case, in the execution of �F , party Pi receives a uniformly distributed bit
2 as output

from the oblivious transfer. Therefore, S chooses
2 uniformly.

3. Oblivious transfers run with Pi as sender and an already corrupted Pj as receiver: Pj is

already corrupted and therefore the value
2 that it received from this oblivious transfer

has already been �xed in the simulation. Furthermore, both Pi and Pj 's circuit inputs

vi; vj , ri; rj and ci; cj have been �xed, as too have their views for all the multiplication

gates leading to this one. (S computes the view inductively from the inputs to the out-

puts.) Thus, the input lines to this oblivious transfer are �xed, as too is Pj 's output from

the oblivious transfer. This fully de�nes the oblivious transfer table that P1 constructs

in the protocol execution (as well as its \random" bit
1). Therefore, S constructs the

table according to the protocol instructions.

4. Oblivious transfers run with an already corrupted Pj as sender and Pi as receiver: As in

the previous case, the input lines and the random-bit
1 that Pj inputs into the oblivious

transfer are �xed. Since Pi's input into this oblivious transfer is also already �xed, this

fully de�nes the bit
2 that Pi receives as output.

As we have mentioned, there is a di�erence regarding the simulation of multiplication gates

that precede output lines. (As in the two-party case, we assume for simplicity that every

output line is preceded by a multiplication gate.) We describe the simulation of these gates

together with the output stage. During the simulation of the output stage, Pi received

uniformly distributed strings y
j
i from every party Pj (the strategy for choosing these values is

described in the item on \simulation of the output stage"). Note that all the y
j
i 's (for j 6= i)

are de�ned and �xed.21 Upon the corruption of Pi, simulator S receives Pi's output string yi.

The aim of S is to have Pi's output lines de�ne shares y
i
i such that �

`
j=1

y
j
i = yi (and thus Pi's

output reconstruction will be as required). This is done as follows. Recall that the evaluation

of each multiplication gate is comprised of a series of oblivious transfers between all pairs

of parties. Since Pi is not the last honest party to be corrupted, there exists at least one

honest party Pl with which Pi runs a pairwise oblivious transfer in the computation of this

gate. All the oblivious transfers of this gate apart from this one are simulated as described

21Actually, corruption can happen in the middle of the output stage and in such a case only some of the output

strings may be �xed. In such a case, �rst (internally) �x all the output strings and then continue as here.

66

above. These simulations all provide bit-shares to Pi: let b denote the sum of these shares. It

remains to simulate this last oblivious transfer between Pi and Pl. Let
i be the bit of y
i
i that

Pi is supposed to receive as its share of the output line that follows from this multiplication

gate. Now, the speci�c oblivious transfer between Pi and Pl de�nes one share of the output

bit
i, and all the other shares have already been �xed and sum to b. Thus, the aim of S is to

have Pi's output from the oblivious transfer with Pl equal
i+ b (and thus Pi's overall output

from the gate will be
i as required). However, Pl is not corrupted. Therefore, whether Pi
is the sender or Pl is the sender, Pi's output can be chosen arbitrarily by S. (See the �rst 2

of the 4 simulation cases above; in those cases, S merely chooses the output bit randomly.)

Thus, S sets the output bit to be
i + b and Pi receives the correct bit. This completes the

simulation for the corruption of Pi.

Simulation of the corruption of the last honest party: Let Pi be the party that is corrupted

last. If i = 1, then S obtains the input-value v into this activation. (As above, in this case,

S de�nes P1's share of the input v1 to be so that �`
j=1

vj = v.) In all cases, S obtains the

output-value yi that Pi receives. Furthermore, since F is adaptively well-formed, S obtains

the random tape of F . Given this information, S computes the internal state of F in the

beginning of this activation. Let c be this state string and let r equal F 's length-m random

tape. Now, all other parties are corrupted and thus the shares of the random tape rj are

�xed for every j 6= i. S takes Pi's share of the random tape to be ri so that �`
j=1

rj = r.

Likewise, except for ci, all the shares of the state input cj are �xed. S thus de�nes ci so that

�
`
j=1

cj = c. This completes the simulation of the input stage.

Next S simulates the circuit evaluation stage, working from the input gates to the output

gates, in the same way as described above (i.e., for the case that Pi is not the last honest party

corrupted). Notice above that when Pi runs an oblivious transfer with an already corrupted

party, then all the inputs and outputs are essentially �xed. Thus, S merely computes the bit

that Pi should see in each oblivious transfer as in the above cases. We therefore have that

the simulation of this stage is a deterministic process. This simulation also de�nes the output

shares that Pi receives, thus concluding the simulation.

Output delivery: S delivers the output from F to an uncorrupted party Pi when A delivers all

the output shares y
j
i that parties Pj send Pi in the simulation.

It remains to show that no environment Z can distinguish the case that it interacts with S and F

in the ideal process or with A and �F in the Fot-hybrid model. The analysis is similar to the one

for the two-party case and is omitted.

9.2 Authenticated Broadcast

In order to obtain our result, we assume that each set of parties that engage in a protocol execution

have access to an authenticated broadcast channel. The broadcast channel is modeled by the ideal

broadcast functionality, Fbc, as de�ned in Figure 12. In our protocols for malicious adversaries, all

communication among the parties is carried out via Fbc.

Note that the Fbc-hybrid model does not guarantee delivery of messages, nor does it provide

any synchrony guarantees for the messages that are delivered. It only guarantees that no two

uncorrupted parties in P will receive two di�erent message with the same sid. In subsequent

work to ours, Goldwasser and Lindell [gl02] show that in our model where message delivery is

not guaranteed, functionality Fbc can be securely realized by a non-trivial protocol, for malicious

67

Functionality Fbc

Fbc proceeds as follows, running with parties P1; : : : ; Pn and an adversary S:

� Upon receiving a message (broadcast; sid;P ; x) from Pi, where P is a set of parties, send
(broadcast; sid; Pi;P ; x) to all parties in P and to S, and halt.

Figure 12: The ideal broadcast functionality

adversaries, for any number of corrupted parties and without any setup assumptions. (In fact, the

broadcast functionality de�ned in [gl02] is di�erent to the one here in that it requires that all the

parties P1; : : : ; Pn receive every broadcasted message. In the functionality here, however, only a

subset of the parties P receive the message. Furthermore, all the parties receiving the message know

the identities of the parties in the set P. This gap can be easily bridged by having the broadcasting

party include the set P along with the broadcasted message x. Then, all parties receive (P; x) and

the parties not in P simply discard the message.)

9.3 One-to-Many Commitment, Zero-Knowledge and Commit-and-Prove

One-to-Many UC commitment. We begin by de�ning a one-to-many extension of the UC

commitment functionality, denoted F1:M
mcom

. In this functionality, one party commits to a value to

many receivers. The formal de�nition appears in Figure 13. Similarly to the two-party case, the

commitment functionality is presented as a multi-session functionality. From here on, the JUC

theorem of [cr02] is applied and we consider only single-session functionalities (see Section 3.2 for

more explanation). We denote the single session analog to F 1:M
mcom

by F 1:M
com

.

Functionality F1:M
mcom

F1:M
mcom

proceeds as follows, running with parties P1; : : : ; Pn and an adversary S:

� Commit Phase: Upon receiving a message (commit; sid; ssid;P ; b) from Pi where P is a set of
parties and b 2 f0; 1g, record the tuple (ssid; Pi;P ; b) and send the message (receipt; sid; ssid; Pi;P)
to all the parties in P and to S. Ignore any future commit messages with the same ssid.

� Prove Phase: Upon receiving a message (reveal; sid; ssid) from Pi: If a tuple (ssid; Pi;P ; b) was
previously recorded, then send the message (reveal; sid; ssid; b) to all parties in P and to S. Other-
wise, ignore.

Figure 13: One-to-Many multi-session commitment

The key observation in realizing the F1:M
mcom

functionality is that Protocol UAHC (of Section 5)

that securely realizes the two-party commitment functionality Fmcom is non-interactive. Therefore,

the one-to-many extension is obtained by simply having the committer broadcast the commitment

string of Protocol UAHC to all the participating parties on the broadcast channel. The proof

that this protocol realizes F1:M
mcom

is almost identical to the proof that Protocol UAHC realizes

Fmcom, and is omitted. We do, however, mention one important point. The commitment string

is broadcast using the Fbc functionality which ensures that only one message is broadcast using

a given session identi�er. This is important because otherwise the adversary could broadcast two

di�erent commitment strings c1 and c2, where it delivers c1 to some of the honest parties and

c2 to the others. This is, of course, not allowed by the F1:M
mcom

functionality that ensures that all

68

parties receive the same commitment for the same identi�er pair (sid; ssid). We therefore have the

following:

Proposition 9.3 Assuming the existence of trapdoor permutations, there exists a (non-interactive)

protocol that securely realizes F1:M
mcom

in the (Fcrs;Fbc)-hybrid model22, in the presence of malicious,

adaptive adversaries. Furthermore, this protocol uses only a single copy of Fcrs.

One-to-Many UC zero-knowledge. Similarly to the one-to-many extension of commitments,

we de�ne a one-to-many functionality where one party proves a statement to some set of par-

ties. The de�nition of the (single-session) one-to-many zero-knowledge functionality, denoted F1:M
zk

,

appears in Figure 14. (For simplicity, in the multi-party case we concentrate on single-session

zero-knowledge, constructed using a single-session version of F 1:M
mcom

. These protocols will later be

composed, using universal composition with joint state, to obtain protocols that use only a single

copy of the reference string when realizing all the copies of of F 1:M
zk

.)

Functionality F1:M
zk

F1:M
zk

proceeds as follows, running with parties P1; : : : ; Pn and an adversary S, and parameterized with
a relation R:

� Upon receiving a message (ZK-prover; sid;P ; x; w) from a party Pi where P is a set of parties: If
R(x;w) = 1, then send (ZK-proof; sid; Pi;P ; x) to all parties in P and to S and halt. Otherwise,
halt.

Figure 14: Single-session, One-to-Many zero-knowledge

As with the case of commitments, a non-interactive protocol that realizes the two-party zero-

knowledge functionality Fzk could be directly used to realize F
1:M
zk

. For the case of static adversaries,

the protocol of [d+01] can be used. However, for the case of adaptive adversaries, no non-interactive

protocol is known. Rather, we base the one-to-many extension on the interactive UC zero-knowledge

protocol of [cf01]. Their protocol is basically that of parallel Hamiltonicity (cf. [b86]), except

that the commitments used are universally composable. Our extension of this protocol to the

one-to-many case follows the methodology of [g98] and is presented in the proof of the following

proposition:

Proposition 9.4 There exists a protocol that realizes F1:M
zk

in the (F 1:M
com

;Fbc)-hybrid model, in the

presence of malicious, adaptive adversaries.

Proof (sketch): The protocol for realizing F 1:M
zk

works by having the prover separately prove the

statement in question to all parties. The protocol used in each of these pairwise proofs is exactly

the two-party protocol of [cf01], with the exception that the messages of each proof are broadcast

to all parties. (This also means that all commitments and decommitments are run using F1:M
com

,

rather than the two-party Fcom. (F
1:M
com

is the single-session parallel to F1:M
mcom

.) Also, the protocol

must make sure that each invocation of broadcast will have a unique session ID. This can be done in

standard ways, given the unique session ID of the zero-knowledge protocol.) Then, a party accepts

the proof, outputting (ZK-proof; sid; Pi;P; x), if and only if all the pairwise proofs are accepting.

22In the (Fcrs;Fbc)-hybrid model, all parties have ideal access to both the common reference string functionality

Fcrs and the ideal broadcast functionality Fbc.

69

Note that, other than the use of F1:M
com

, no cryptographic primitives are used. Indeed, security of

this protocol in the F1:M
com

-hybrid model is unconditional.

Next, note that it is indeed possible for the parties to know whether all the pairwise proofs are

accepting. This is because all the commitments and messages are seen by all the parties and the

zero-knowledge proof of Hamiltonicity used by [cf01] is publicly veri�able (i.e., it is enough to see

the transcript of prover/veri�er messages to know whether or not the proof was accepted by the

veri�er).

Now, recall that in order to prove the universal composability of F 1:M
zk

, we must present an

ideal-process adversary (i.e., a simulator) that simulates proofs for the case that the prover is not

corrupted and veri�ers are corrupted, and is also able to extract the witness from an adversarially

generated proof (for the case that the prover is corrupted). When simulating a proof for a corrupted

veri�er, the simulator for F1:M
zk

works simply by running the simulator of the two-party protocol

of [cf01] for every pairwise proof. On the other hand, in order to extract the witness from a

corrupted prover, �rst note that it is possible to run the two-party extractor for any pairwise proof

in which the veri�er is not corrupted. Now, the scenario in which we need to run the extractor here

is where the prover is corrupted and at least one veri�er is not (otherwise, all parties are corrupted

and simulation is straightforward). Therefore, there exists one pairwise proof in which the veri�er

is not corrupted. The simulator for F1:M
zk

thus runs the simulator for the protocol of [cf01] for this

proof. Finally, we note that the simulator delivers the output of F1:M
zk

to the veri�ers if and only if

all veri�ers accept in the simulation. (Thus, the parties' outputs in the ideal process are the same

as in a real execution.) This concludes the proof sketch.

One-to-Many UC commit-and-prove. The one-to-many extension of the commit-and-prove

functionality, denoted F1:M
cp

, is presented in Figure 15. The functionality handles a single session

only, and requires that all commitments and proofs are to the same set P. (This set is �xed the

�rst time a commit is sent with a given sid.)

Functionality F1:M
cp

F1:M
cp

proceeds as follows, running with parties P1; : : : ; Pn and an adversary S, and parameterized by a
value k and a relation R:

� Commit Phase: Upon receiving a message (commit; sid;P ; w) from Pi where P is a set of parties
and w 2 f0; 1gk, append the value w to the list w, record P , and send the message (receipt; sid; Pi;P)
to the parties in P and S. (Initially, the list w is empty. Also, if a commit message has already
been received, then check that the recorded set of parties is P . If it is a di�erent set, then ignore
this message.)

� Prove Phase: Upon receiving a message (CP-prover; sid; x) from Pi, where x 2 f0; 1gpoly(k),
compute R(x;w): If R(x;w) = 1, then send the message (CP-proof; sid; x) to the parties in P and
to S. Otherwise, ignore.

Figure 15: One-to-Many commit-and-prove

Our protocol for securely realizing the one-to-many commit-and-prove functionality F1:M
cp

is

constructed in the F1:M
zk

-hybrid model. The protocol, denoted ACP1:M, is very similar to Protocol

ACP for the two-party case. Recall that Protocol ACP begins with the receiver choosing a pair

(s; t), where s = f(t) and f is a one-way function. The value s is then used by the committer who

commits to w by sending c = aHCs(w; r). This is generalized in the natural way by having every

70

receiving party Pj choose a pair (sj; tj), and the committer then sending cj = aHCsj (w; rj) for all

values of sj. In addition, the committer proves that all these commitments are to the same w (this

is done to prevent the committer from committing to di�erent w's for di�erent sj's). We de�ne a

compound commitment scheme as follows. Let ~s = (s1; : : : ; s`) and ~r = (r1; : : : ; r`). Then, de�ne

aHC~s(w;~r) = (aHCs1(w; r1); : : : ; aHCs`(w; r`)). Restating the above, the commit phase consists of

the committer committing to w using the compound scheme aHC~s and proving that the commitment

was generated correctly.

The multi-party protocol ACP1:M uses three di�erent copies of F 1:M
zk

, where each copy is param-

eterized by a di�erent relation. The copies are denoted F 1:M
zk;t (for the initialization phase), F1:M

zk;c

(for the commit stage) and F1:M
zk;p (for the prove stage). These functionalities are di�erentiated by

session identi�ers sidT , sidC and sidP , respectively. These identi�ers should be unique, as long as

the session ID of the current instance of ACP1:M is unique. One way to guarantee this is setting

sidT = sid Æ T , sidC = sid Æ C and sidP = sid Æ P , where sid is the session ID of the current

instance of ACP1:M. The protocol is presented in Figure 16.

Proposition 9.5 Assuming the existence of one-way functions, Protocol ACP1:M of Figure 16 se-

curely realizes F1:M
cp

in the F1:M
zk

-hybrid model, in the presence of adaptive adversaries.

Proof (sketch): The proof of this proposition is very similar to the proof of Proposition 7.2

for the two-party case. Let A be an adaptive adversary who operates against Protocol ACP1:M

in the F1:M
zk

-hybrid model. We construct a simulator S such that no environment Z can tell with

non-negligible probability whether it is interacting with A and parties running Protocol ACP1:M in

the F1:M
zk

-hybrid model or with S in the ideal process for F 1:M
cp

. Simulator S operates by running a

simulated copy of A and using A in order to interact with Z and F1:M
cp

. S works as follows.

Simulating the initialization phase: S records the pairs (s1; t1); : : : ; (s`; t`) from the initializa-

tion phase of an execution, and de�nes ~s = (s1; : : : ; s`). For every uncorrupted receiving

party Pj , simulator S chooses the pair (sj; tj) by itself. For corrupted receiving parties, the

pairs are chosen by the simulated A and S obtains the tj's from A's messages to F 1:M
zk;t.

Simulating the case where the committer is corrupted: We �rst describe how to simulate

the commit phase. Whenever A (controlling Pi) wishes to commit to a value, S obtains

the message (ZK-prover; sidC ;P; (~s; c); (w;~r)) that A sends to F 1:M
zk;c. S checks that ~s is as

generated in the initialization phase and that c = aHC~s(w;~r). If yes, then S internally passes

A the message (ZK-proof; sidC ;P; (~s; c)) and externally sends (commit; sid;P; w) to F1:M
cp

.

Furthermore, S adds the commitment c to its list of commitments c.

We now describe the simulation of the prove phase. Whenever A wishes to prove a statement,

S receives the message (ZK-prover; sidP ; (x;~s; c); (w; r)) that A sends to F1:M
zk;p. S then checks

that the list c is as stored above and that R(x;w) = 1. If yes, then S internally passes

(ZK-proof; sidP ; (x;~s; c)) to A and externally sends (CP-prover; sid; x) to F 1:M
cp

. Otherwise, it

ignores the message.

Simulating the case where the committer is not corrupted: Whenever an uncorrupted party

Pi commits to an unknown value w, simulator S hands A a commitment to 0k as the com-

mitment value. More precisely, whenever S receives from F1:M
cp

a message (receipt; sid; Pi;P)

where Pi is uncorrupted, simulator S computes c = aHC~s(0
k;~r) and hands A the message

(ZK-proof; sidC ; Pi;P; (~s; c)), as if coming from Fc

zk
. (Recall that by the aHC scheme, given

the trapdoor information ~t = (t1; : : : ; t`), a commitment to 0 with ~s can be opened as either

0 or 1; see Section 5.)

71

Protocol ACP1:M

� Auxiliary Input: A security parameter k, and a session identi�er sid.

� Initialization phase:

The �rst time that the committer Pi wishes to commit to a value to the set of parties P using
the identi�er sid, the parties in P execute the following initialization phase. (To simplify notation,
assume that P = fP1; : : : ; P`g for some `, and that the sender belongs to P . Also, the parties ignore
incoming messages that are addressed to a set P 0 that is di�erent than the set P speci�ed in the
�rst message.)

1. Pi sends a (broadcast; sid;P ; begin-commit) message to Fbc to indicate that it wishes to initiate
a commit activation.

2. Upon receiving (broadcast; sid; Pi;P ; begin-commit), each party Pj 2 P records the triple
(sid; Pi;P). From here on, the parties only relate to messages with identi�er sid if they are
associated with the committer/prover Pi and set of parties P .

Then, every Pj chooses tj 2R f0; 1gk, computes sj = f(tj) (where f is a one-way function),
and sends (ZK-prover; sidT ;P ; sj ; tj) to F

1:M
zk;t

, where F1:M
zk;t

is parameterized by the relation RT

de�ned by:
RT

def
= f(s; t) j s = f(t)g

3. Upon receiving (ZK-proof; sidT ; Pj ;P ; sj) from F1:M
zk;t

, all the parties in P (including the com-
mitter Pi) record the value sj . This phase concludes when all parties in P have sent the
appropriate ZK-proof message, and thus when all the parties hold the vector ~s = (s1; : : : ; s`).

The parties now proceed to the commit phase.

� Commit phase: (Pi's input is (commit; sid;P ; w), where w 2 f0; 1gk.)

1. Pi computes the compound commitment c = aHC~s(w;~r) where the vector ~s is the one obtained
in the initialization phase, and the rj 's in ~r are uniformly chosen.

Pi then sends (ZK-prover; sidC ;P ; (~s; c); (w;~r)) to F
1:M
zk;c

, where F1:M
zk;c

is parameterized by the
relation RC de�ned by:

RC

def
= f(~s; c); (w;~r) j c = aHC~s(w;~r)g

(That is, RC veri�es that c is a valid compound commitment to the value w, using ~s.)

In addition, Pi stores in a list w all the values w that were sent, and in lists c and r the
corresponding commitment values c and random strings ~r = (r1; : : : ; r`).

2. Upon receiving (ZK-proof; sidC ; Pi;P ; (~s
0; c)) from F1:M

zk;c
, every party Pj 2 P veri�es that

~s0 = ~s (where ~s equals the list of strings that it recorded in the initialization phase). If yes,
then Pj outputs (receipt; sid) and adds the commitment c to its list c. (Initially, c is empty.)
Otherwise, the parties in P ignore the message.

� Prove phase: (Pi's input is (CP-prover; sid; x).)

1. Pi sends (ZK-prover; sidP ; Pi;P ; (x;~s; c); (w; r)) to F1:M
zk;p

, where c, w and r are the lists de-
scribed above. Let w = (w1; : : : ; wm), c = (c1; : : : ; cm) and r = (~r1; : : : ; ~rm). Then, F1:M

zk;p
is

parameterized by the relation RP de�ned by:

RP

def
= f((x;~s; c); (w; r)) j R(x;w) = 1 & 8j cj = aHC~s(wj ;~rj)g

That is, RP veri�es that R(x;w) = 1 and that c contains commitments to the previously
committed values w.

2. Upon receiving (ZK-proof; sidP ; Pi;P ; (x;~s
0; c)) from F1:M

zk;p
, every party in P veri�es that ~s0 = ~s

and that its list of stored commitments equals c. If yes, then it outputs (CP-proof; sid; x).
Otherwise, it ignores the message.

Figure 16: A protocol for realizing F 1:M
cp

for adaptive adversaries

72

The simulation of the prove phase is carried out as follows. Whenever S receives a message

(CP-proof; sid; x) from F1:M
cp

, it internally passes A the message (ZK-proof; sidP ; (x;~s; c)),

where c is the list of simulated commitments generated above.

Dealing with the corruption of parties: The only private information held by a receiving party

Pj is the trapdoor information tj that it chooses in the initialization phase. As we have seen in

the simulation of the initialization phase above, S knows all of the trapdoors in the simulated

execution. Therefore, when A corrupts a receiving party Pj , simulator S internally passes tj
to A.

The committing party Pi's private state in an execution of Protocol ACP1:M consists of the

list of committed values w and the list of vectors of random strings r (that contain the

decommitment information of the list c). Therefore, when A corrupts the committer Pi,

simulator S �rst externally corrupts Pi in the ideal process and obtains the list w. Next, S

generates the list r so that the simulated list of commitments c is \explained" as a list of

commitments to w. S can do this because it has all of the trapdoor information t1; : : : ; t`
(this case is identical to in the proof of Proposition 7.2).

The analysis of the correctness of the simulation is analogous to in the two-party case and is omitted.

9.4 Multi-party Secure Computation for Malicious Adversaries

As in the two-party case, multi-party secure computation in the presence of malicious adversaries is

obtained by constructing a protocol compiler that transforms protocols for the semi-honest model

into protocols for the malicious model. This compiler is then applied to Protocol �F of Section 9.1.

The compiler is constructed in the F1:M
cp

-hybrid model and in a very similar way to the two-party

compiler. The compiler itself is described in Figure 17. We note that each party has to commit and

prove statements to all other parties during the protocol execution. In order to do this, each party

Pi uses a separate invocation of F1:M
cp

, with session ID sidi. (Also here, the protocol should make

sure that these session ID's are unique as long as the session ID of the current copy of Comp(�) is

unique. This can be done by setting sidi = sid Æ i where sid is the session ID of the current copy of

Comp(�). The relations parameterizing these functionalities are natural extensions of the relations

parameterizing the relations F1

cp
and F2

cp
in the two-party compiler of Figure 11. The multi-party

compiler here also uses \standard" commitments (rather than UC commitments) for coin-tossing.

In order to remain in the F1:M
cp

-hybrid model, these commitments are implemented by F 1:M
cp

where

the relation used is the identity relation (and so a proof is just a decommitment). Once again, the

di�erent invocations of F1:M
cp

are distinguished by unique identi�ers (in the coin-tossing used for

generating Pj 's random tape, Pi uses F
1:M
cp

with session ID sidi;j = sid Æ i Æ j). Notice that protocol

Comp(�) essentially broadcasts (via F1:M
cp

) each message that was sent in �, even if this message

was originally sent only to a single party. This is done to provide all parties with consistent views

of the execution; it clearly has no negative e�ect on the security of the protocol (since the adversary

anyway sees all messages).

Implicit in the above protocol speci�cation is the fact that all parties only consider messages

that are associated with the speci�ed session identi�ers and referring to the same set of parties P.

All other messages are ignored. As in the two-party case, we assume that � is such that the parties

copy their input tape onto an internal work tape when �rst activated.

We now prove that the compiler achieves the desired result:

73

Comp(�)

Party Pi proceeds as follows (the code for all other parties is analogous):

1. Random tape generation: When activating Comp(�) for the �rst time with session identi�er sid and

set P or parties, party Pi proceeds as follows. For every party Pj , the parties run the following

procedure in order to choose a random tape for Pj :

(a) Pi chooses r
j
i 2R f0; 1gk and sends (commit; sidi;j ;P; r

j
i) to F

1:M
cp .

(b) Pi receives (receipt; sidk;j ; Pk;P) for every Pk 2 P. Pi also receives (receipt; sidj ; Pj ;P), where

Pj is the party for whom the random tape is being chosen. Pi then uses F1:M
cp to decommit

to its value r
j
i . That is, Pi sends (CP-prover; sidi;j ; r

j
i) to F1:M

cp
, where the relation parame-

terizing the F
1:M
cp functionality with identi�er sidi;j is the identity relation (i.e., F1:M

cp sends

(CP-proof; sidi;j ; r
j
i) if r

j
i was the value previously committed to; it thus serves as a regular

commitment functionality).

(c) Pi receives (CP-proof; sidk;j ; r
j

k) messages for every k 6= j and de�nes the string sj =
L

k 6=j
r
j

k.

(The random tape for Pj is de�ned by rj = r
j
j � sj .)

When choosing a random tape for Pi, the only di�erence for Pi is that it sends its random string

rii to F
1:M
cp indexed by session-identi�er sidi and it does not decommit (as is understood from Pj 's

behavior above).

2. Activation due to new input: When activated with input (sid; x), party Pi proceeds as follows.

(a) Input commitment: Pi sends (commit; sidi;P; x) to F
1:M
cp and adds x to the list of inputs xi (this

list is initially empty and contains Pi's inputs from all the previous activations of �). (At this

point all other parties Pj receive the message (receipt; sidi; Pi;P) from F
1:M
cp . Pi then proceeds

to the next step.)

(b) Protocol computation: Let m be the series of �-messages that were broadcast in all the activa-

tions of � until now (m is initially empty). Pi runs the code of � on its input list xi, messages

m, and random tape ri (as generated above). If � instructs Pi to broadcast a message, Pi

proceeds to the next step (Step 2c).

(c) Outgoing message transmission: For each outgoing message m that Pi sends in �, Pi sends

(CP-prover; sidi; (m; si;m)) to F1:M
cp

with a relation R� de�ned as follows:

R� =
�
((m; si;m); (xi; r

i
i)) j m = �(xi; r

i
i � si;m)

	
In other words, Pi proves that m is the correct next message generated by � when the input

sequence is xi, the random tape is ri = rii � si and the series of broadcast �-messages equals

m. (Recall that rii and all the elements of xi were committed to by Pi in the past using commit

activations of F1:M
cp with identi�er sidi, and that si is the random-string derived in the random

tape generation for Pi above.)

3. Activation due to incoming message: Upon receiving a message (CP-proof; sidj ; (m; sj ;m)) that is

sent by Pj , party Pi �rst veri�es that the following conditions hold (note that F1:M
cp with sidj is

parameterized by the same relation R� as F1:M
cp

with sidi above):

� sj is the random string that is derived in the random tape generation for Pj above.

� m equals the series of �-messages that were broadcast in all the activations until now. (Pi knows

these messages because all parties see all messages sent.)

If any of these conditions fail, then Pi ignores the messages. Otherwise, Pi appends m to m and

proceeds as in Steps 2b and send-step-multi above.

4. Output: Whenever � generates an output value, Comp(�) generates the same output value.

Figure 17: The compiled protocol Comp(�)

74

Proposition 9.6 (multi-party protocol compiler): Let � be a multi-party protocol and let Comp(�)

be the protocol obtained by applying the compiler of Figure 17 to �. Then, for every malicious

adversary A that interacts with Comp(�) in the F1:M
cp

-hybrid model there exists a semi-honest

adversary A0 that interacts with � in the plain real-life model, such that for every environment Z,

real�;A0;Z � exec
F1:M
cp

Comp(�);A;Z

Proof (sketch): The proof sketch is very similar to the proof of Proposition 8.1 for the two-party

case. We construct a semi-honest adversary A0 from the malicious adversary A. Adversary A0 runs

the protocol � while internally simulating an execution of Comp(�) for A. The key point in the

simulation is that A0 is able to complete the simulation in spite of the fact that, being semi-honest,

it cannot diverge from the protocol speci�cation. This is so since A is forced to send all messages

via F1:M
cp

that veri�es their correctness. Thus, essentially, A must behave in a semi-honest way and

can be simulated by a truly semi-honest party A0. (Of course, A is not semi-honest and can send

arbitrary messages. However, since all invalid messages are ignored by F 1:M
cp

in Comp(�), they do

not cause any problem.) A0 runs a simulated copy of A, and proceeds as follows:

Simulating the communication with Z: The input values received by A0 from Z are written

on A's input tape, and the output values of A are copied to A0's own output tape.

Simulating the \random tape generation" phase: When the �rst activation of � takes place,

A
0 simulates the random tape generation phase of Comp(�) for A. We describe A0's simula-

tion of the random tape generation for a party Pj (this simulation is repeated for every j).

We di�erentiate between the case that Pj is honest and Pj is corrupted:

1. Party Pj is not corrupted: A
0 hands A the message (receipt; sidj ; Pj ;P) from F

1:M
cp

(this

refers to Pj's commitment). In addition, A0 simulates all the (receipt; sidk;j; Pk;P) mes-

sages that A0 expects to receive from F1:M
cp

. A0 completes the simulation by passing A

the \decommit" messages (CP-proof; sidk;j ; r
j
k) for every uncorrupted party Pk. A

0 also

obtains (commit; sidk;j; r
j
k) messages from A for the corrupted parties Pk as well as the

respective decommit messages (CP-prover; sidk;j ; r
j
k). A

0 computes sj as in the protocol

and records this value.

2. Party Pj is corrupted: Let rj be the random tape of the semi-honest party Pj in pro-

tocol �. Now, as above, for every uncorrupted party Pk, adversary A
0 passes A the

(receipt; sidk;j ; Pk;P) messages that A expects to receive from F1:M
cp

. A0 also obtains

(commit; sidk;j ; r
j
k) messages from A (for every corrupt Pk) and corrupted Pj 's commit-

ment (commit; sidj ; r
j
j). Notice that at this point, A is bound to all the r

j
k values of

the corrupted parties, whereas A0 is still free to choose the analogous values for the

uncorrupted parties. Therefore, in the \decommitment" part of the phase, A0 chooses

the uncorrupted parties' values so that
L`

k=1
r
j
k = rj where rj is the random tape of the

external Pj in �. (Thus, A0 forces A into using rj for the malicious Pj in Comp(�) as

well.)

Simulating an activation due to a new input: When the �rst message of an activation of �

is sent, A0 internally simulates for A the appropriate stage in Comp(�). This is done as

follows. Let Pi be the activated party with a new input. If Pi is not corrupted, then A
0

internally passes A the message (receipt; sidi; Pi;P) that A expects to receive from F 1:M
cp

. If

75

Pi is corrupted, then A
0 receives a message (commit; sidi;P; x) from A (who controls Pi). A

0

adds x to its list xi of inputs received from Pi and passes A the string (receipt; sidii; Pi;P).

Furthermore, A0 sets Pi's input tape to equal x. (Recall that in the semi-honest model, A0

can modify the input that the environment writes on a corrupted party's input tape.)

Dealing with messages sent by honest parties: If an uncorrupted party Pi sends a message

m in � to a corrupted party (controlled by A0), then A0 prepares a simulated message of

Comp(�) to give to A. Speci�cally, A0 passes A the message (CP-proof; sidi; (m; si;m)) as

expected from F1:M
cp

.

Dealing with messages sent by corrupted parties: When A sends a Comp(�)-message from

a corrupted party, A0 translates this to the appropriate message in �. That is, A0 obtains

a message (CP-prover; sidi; (m; s0i;m)) from A controlling a corrupted party Pi. A
0 checks

that the series of broadcasted �-messages is indeed m. A0 also checks that s0i = si, where

si is the value de�ned in the random tape generation phase. Finally, A0 checks that m =

�(xi; si�r
i
i;m). If yes, then it delivers the message written on semi-honest party Pi's outgoing

communication tape in �. Otherwise, A0 does nothing.

Dealing with corruption of parties: When the simulated A internally corrupts a party Pi, ad-

versary A0 externally corrupts Pi and obtains all of its past inputs, outputs and random tapes

in �. Then, A0 prepares a simulated internal state of Pi in Comp(�). The only additional

state that Pi has in Comp(�) is the random string rii for the random tape generation phase.

Since the string si is public and �xed, A0 sets rii so that ri = si � rii, where ri is Pi's random

tape in �.

We now claim that Z's view of an interaction with A0 and � is distributed identically to its view of

an interaction with A and Comp(�). This follows from the same observations as in the two-party

case. The key points are as follows. For every corrupted Pi, the semi-honest adversary A0 can force

A into using the exact random tape of Pi in �. Furthermore, any modi�cation of the inputs made

by A can also be carried out by A0. We therefore have that if A follows the protocol speci�cation

with respect to these inputs and random tapes, then the semi-honest parties in � will send exactly

the same messages as the malicious parties in Comp(�). The proof is concluded by observing that

A must follow the protocol speci�cation because the F1:M
cp

functionality enforces this. Thus, A0's

checks of correctness in the simulation perfectly simulate the behavior of F1:M
cp

in a hybrid execution.

Finally, the internal state revealed to A in the case of a corruption is exactly as it expects to see.

This completes the proof.

9.4.1 Conclusions

By combining Propositions 9.4 and 9.5, and using the universal composition theorem (Theorem

3.3), we obtain that F1:M
cp

can be securely realized in the (Fbc;F
1:M
mcom

)-hybrid model, assuming

the existence of trapdoor permutations. Then, combining this with Proposition 9.6 we obtain

a protocol compiler in the same hybrid model and under the same assumptions. Applying this

compiler to Proposition 9.1, we derive universally composable multi-party computation in the

presence of malicious adversaries. That is:

Theorem 9.7 Assume that trapdoor permutations exist. Then, for any well-formed multi-party

ideal functionality F , there exists a non-trivial protocol that securely realizes F in the (Fbc;F
1:M
mcom

)-

hybrid model in the presence of malicious, static adversaries. Furthermore, if two-party augmented

76

non-committing encryption protocols exist, then for any adaptively well-formed multi-party ideal

functionality F , there exists a non-trivial protocol that securely realizes F in the (Fbc;F
1:M
mcom

)-

hybrid model in the presence of malicious, adaptive adversaries.

By combining Theorem 9.7 and Proposition 9.3, and using the universal composition with joint

state theorem (Theorem 3.4), we obtain:

Theorem 9.8 (Theorem 2.3 { restated): Assume that trapdoor permutations exist. Then, for any

well-formed multi-party ideal functionality F , there exists a non-trivial protocol that securely realizes

F in the (Fbc;Fcrs)-hybrid model in the presence of malicious, static adversaries. Furthermore,

if two-party augmented non-committing encryption protocols exist, then for any adaptively well-

formed multi-party ideal functionality F , there exists a non-trivial protocol that securely realizes F

in the (Fbc;Fcrs)-hybrid model in the presence of malicious, adaptive adversaries. In both cases,

the protocol uses only a single copy of Fcrs.

Acknowledgements

The authors would like to thank Oded Goldreich for helpful discussions (and in particular, for sug-

gesting the generalization of the commit-and-prove functionality to allow for many commitments).

References

[b91] D. Beaver. Secure Multi-party Protocols and Zero-Knowledge Proof Systems Tolerating

a Faulty Minority. Journal of Cryptology, Springer-Verlag, 4:75{122, 1991.

[b97] D. Beaver. Plug and play encryption. In CRYPTO'97, Springer-Verlag (LNCS 1294),

pages 75{89, 1997.

[bbm00] M. Bellare, A. Boldyreva, and S. Micali. Public-Key Encryption in a Multi-user Setting:

Security Proofs and Improvements. Eurocrypt'00, Springer-Verlag (LNCS 1807), pages

259{274, 2000.

[bgw88] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-

Cryptographic Fault-Tolerant Distributed Computation. 20th STOC, pages 1{10, 1988.

[b86] M. Blum How to Prove a Theorem So No One Else Can Claim It. Proceedings of the

International Congress of Mathematicians, Berkeley, California, USA, 1986, pp. 1444-

1451.

[bfm88] M. Blum, P. Feldman and S. Micali. Non-interactive zero-knowledge and its applications.

In 20th STOC, pages 103{112, 1988.

[c00] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of

Cryptology, 13(1):143{202, 2000.

[c01] R. Canetti. Universally Composable Security: A New Paradigm for Crypto-

graphic Protocols. In 42nd FOCS, pages 136{145. 2001. Full version available at

http://eprint.iacr.org/2000/067.

77

[cfgn96] R. Canetti, U. Feige, O. Goldreich and M. Naor. Adaptively Secure Multi-Party Com-

putation. In 28th STOC, pages 639{648, 1996.

[cf01] R. Canetti and M. Fischlin. Universally Composable Commitments. In CRYPTO'01,

Springer-Verlag (LNCS 2139), pages 19{40, 2001.

[cr02] R. Canetti and T. Rabin. Universal Composition with Joint State. Cryptology ePrint

Archive, Report 2002/047, http://eprint.iacr.org/, 2002.

[dn00] I. Damgard and J.B. Nielsen. Improved non-committing encryption schemes based on

general complexity assumptions. In CRYPTO'00, Springer-Verlag (LNCS 1880), pages

432{450.

[dn01] I. Damgard and J. Nielsen. Perfect Hiding or Perfect Binding Universally Composable

Commitment Schemes with Constant Expansion Factor. To appear in CRYPTO'02,

2002.

[d+01] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, A. Sahai. Robust Non-

interactive Zero-Knowledge. In CRYPTO'01, Springer-Verlag (LNCS 2139), pages 566{

598, 2001.

[dp92] A. De Santis and G. Persiano. Zero-Knowledge Proofs of Knowledge Without Interaction.

In 33rd FOCS, pages 427{436, 1992.

[dio98] G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. Non-Interactive and Non-Malleable Com-

mitment. In 30th STOC, pages 141{150, 1998.

[dkos01] G. Di Crescenzo, J. Katz, R. Ostrovsky and A. Smith. EÆcient and Non-interactive Non-

malleable Commitment. In Eurocrypt'01, Springer-Verlag (LNCS 2045), pages 40{59,

2001.

[ddn00] D. Dolev, C. Dwork and M. Naor. Non-malleable cryptography. SIAM Journal of

Computing, 30(2):391{437, 2000.

[dns98] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th STOC, pages

409{418, 1998.

[egl85] S. Even, O. Goldreich and A. Lempel. A randomized protocol for signing contracts. In

Communications of the ACM, 28(6):637{647, 1985.

[fs89] U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In

CRYPTO'89, Springer-Verlag (LNCS 435), pages 526{544, 1989.

[gm00] J. Garay and P. Mackenzie. Concurrent Oblivious Transfer. In 41st FOCS, pages 314{

324, 2000.

[g98] O. Goldreich. Secure Multi-Party Computation. Manuscript. Preliminary version, 1998.

Available from http://www.wisdom.weizmann.ac.il/�oded/pp.html.

[g01] O. Goldreich. Foundations of Cryptography: Volume 1 { Basic Tools. Cambridge Uni-

versity Press, 2001.

78

[gl89] O. Goldreich and L. Levin. A Hard Predicate for All One-way Functions. In 21st STOC,

pages 25{32, 1989.

[gmw87] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game { A Com-

pleteness Theorem for Protocols with Honest Majority. In 19th STOC, pages 218{229,

1987. For details see [g98].

[gl90] S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence of

Immoral Majority. In CRYPTO'90, Springer-Verlag (LNCS 537), pages 77{93, 1990.

[gl02] S. Goldwasser and Y. Lindell. Secure Computation Without Agreement. To appear in

16th DISC, 2002.

[gmr89] S. Goldwasser, S. Micali and C. Racko� The Knowledge Complexity of Interactive Proof

Systems. SIAM Journal of Computing, 18(1):186{208, 1989.

[k89] J. Kilian. Uses of Randomness in Algorithms and Protocols. The ACM Distinguished

Dissertation 1989, MIT press.

[llr02] Y. Lindell, A. Lysysanskaya and T. Rabin. On the Composition of Authenticated Byzan-

tine Agreement. In 34th STOC, pages 514{523, 2002.

[mr91] S. Micali and P. Rogaway. Secure computation. Unpublished manuscript, 1992. Prelim-

inary version in CRYPTO'91, Springer-Verlag (LNCS 576), pages 392{404, 1991.

[n91] M. Naor. Bit Commitment using Pseudorandom Generators. Journal of Cryptology,

4(2):151{158, 1991.

[pw00] B. P�tzmann and M. Waidner. Composition and integrity preservation of secure reactive

systems. 7th ACM Conference on Computer and Communication Security, 2000, pp.

245-254.

[r81] M. Rabin. How to exchange secrets by oblivious transfer. Tech. Memo TR-81, Aiken

Computation Laboratory, Harvard U., 1981.

[rb89] T. Rabin and M. Ben-Or. Veri�able Secret Sharing and Multi-party Protocols with

Honest Majority. 21st STOC, pages 73{85, 1989.

[rk99] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs.

In Eurocrypt'99, Springer-Verlag (LNCS 1592), pages 415{413, 1999.

[s99] A. Sahai. Non-Malleable Non-Interactive Zero-Knowledge and Adaptive Chosen-

Ciphertext Security. In 40th FOCS, pages 543{553, 1999.

79

