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ABSTRACT
Searchable symmetric encryption (SSE) allows a party to
outsource the storage of its data to another party (a server)
in a private manner, while maintaining the ability to se-
lectively search over it. This problem has been the focus
of active research in recent years. In this paper we show
two solutions to SSE that simultaneously enjoy the follow-
ing properties:
1. Both solutions are more efficient than all previous constant-

round schemes. In particular, the work performed by
the server per returned document is constant as op-
posed to linear in the size of the data.

2. Both solutions enjoy stronger security guarantees than
previous constant-round schemes. In fact, we point out
subtle but serious problems with previous notions of
security for SSE, and show how to design constructions
which avoid these pitfalls. Further, our second solu-
tion also achieves what we call adaptive SSE security,
where queries to the server can be chosen adaptively
(by the adversary) during the execution of the search;
this notion is both important in practice and has not
been previously considered.

Surprisingly, despite being more secure and more efficient,
our SSE schemes are remarkably simple. We consider the
simplicity of both solutions as an important step towards
the deployment of SSE technologies.

As an additional contribution, we also consider multi-
user SSE. All prior work on SSE studied the setting where
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only the owner of the data is capable of submitting search
queries. We consider the natural extension where an ar-
bitrary group of parties other than the owner can submit
search queries. We formally define SSE in the multi-user
setting, and present an efficient construction that achieves
better performance than simply using access control mech-
anisms.

Categories and Subject Descriptors
E.3 [Data Encryption]; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval.

General Terms
Algorithms, Security, Theory.

Keywords
Searchable symmetric encryption, multi-user searchable en-
cryption, security definitions.

1. INTRODUCTION
Private-key storage outsourcing [24, 4, 26] allows clients

with either limited resources or limited expertise to store and
distribute large amounts of symmetrically encrypted data at
low cost. Since regular private-key encryption prevents one
from searching over encrypted data, clients also lose the abil-
ity to selectively retrieve segments of their data. To address
this, several techniques have been proposed for provision-
ing symmetric encryption with search capabilities [30, 17,
8, 11, 13]; the resulting construct is typically called search-
able encryption. The area of searchable encryption has been
identified by DARPA as one of the technical advances that
can be used to balance the need for both privacy and na-
tional security in information aggregation systems [2]. In
addition, it can allow services such as Google Desktop [1]
to offer valuable features (e.g., the ability of searching a
client’s data across several computers) without sacrificing
the client’s privacy.

Searchable encryption can be achieved securely in its full
generality using the work of Ostrovsky and Goldreich on
software protection based on oblivious RAMs [27, 19]. While
oblivious RAMs hide all information about the RAM use
from a remote and potentially malicious server with a poly-
logarithmic overhead in all parameters (including computa-
tion and communication), this comes at the cost of a loga-
rithmic number of rounds of interaction for each read and
write. In the same paper, they show a 2-round solution,
but with considerably larger square-root overhead. There-
fore, the previously mentioned work on searchable encryp-
tion achieves more efficient solutions (typically in one or two



rounds) by weakening the privacy guarantees (e.g., revealing
the access pattern).

We start by examining the definition of what it means to
reveal the user’s access and search patterns (precise defini-
tions below) while “hiding everything else,” and show that
the existing security definitions have several important lim-
itations. Additionally, we show that the current definitions
only achieve what we call non-adaptive SSE security, while
the more natural usage of searchable encryption calls for
adaptive security (a notion that we make precise in Sec-
tion 3). We propose new security definitions for both the
non-adaptive and adaptive cases, and present efficient con-
structions for both based on any one-way function.

Our first construction is the most efficient non-adaptive
SSE scheme to date in terms of computation on the server,
and incurs a minimal (i.e., constant) cost for the user. Our
second construction achieves adaptive security, which was
not previously achieved by any constant-round solution. (Later
on we perform a detailed comparison between our construc-
tions and previous work—see Table 1.)

We also extend the problem of SSE to the multi-user set-
ting, where a client wishes to allow an authorized group of
users to search through its document collection.

Before providing a detailed comparison to existing work,
we put our work in context by providing a classification of
the various models for privacy-preserving searches.

On different models for private search. In recent years,
there has been some confusion regarding three distinct mod-
els for searching with privacy: searching on private-key en-
crypted data (which is the subject of this work); searching
on public-key encrypted data; and (single-database) private
information retrieval (PIR).

Common to all three models is a server (sometimes called
the “database”) that stores data, and a user that wishes to
access, search, or modify the data while revealing as little
as possible to the server. There are, however, important
differences between these three settings.

In the setting of searching on private-key-encrypted
data, the user himself encrypts the data, so he can organize
it in an arbitrary way (before encryption) and include addi-
tional data structures to allow for efficient access of relevant
data. The data and the additional data structures can then
be encrypted and stored on the server so that only someone
with the private key can access it. In this setting, the initial
work for the user (i.e., for preprocessing the data) is at least
as large as the data, but subsequent work (i.e., for access-
ing the data) is very small relative to the size of the data
for both the user and the server. Furthermore, everything
about the user’s access pattern can be hidden [27, 19].

In the setting of searching on public-key-encrypted
data, users who encrypt the data (and send it to the server)
can be different from the owner of the decryption key. In a
typical application, a user publishes a public key while mul-
tiple senders send e-mails to the mail server [11, 3]. Anyone
with access to the public key can add words to the index,
but only the owner of the private key can generate “trap-
doors” to test for the occurrence of a keyword. Although
the original work on public-key encryption with keyword
search (PEKS) by Boneh, di Crescenzo, Ostrosvky and Per-
siano [11] reveals the user’s access pattern, recently Boneh,
Kushilevitz, Ostvrosky and Skeith [12] have shown how to
build a public-key encryption scheme that hides even the

access pattern. This construction, however, has an over-
head in search time that is proportional to the square root
of the database size, which is far less efficient then the best
private-key solutions.

Recently, Bellare, Boldyreva and O’Neill [7] introduced
the notion of asymmetric efficiently searchable encryption
(ESE) and proposed three constructions in the random or-
acle model. Unlike PEKS, asymmetric ESE schemes allow
anyone with access to a user’s public key to add words to
the index and to generate trapdoors to search. While ESE
schemes achieve optimal search time (same as our construc-
tions – see below), they are inherently deterministic and
therefore provide security guarantees that are weaker than
the ones considered in this work.

In single-database private information retrieval, (or
PIR) introduced by Kushilevitz and Ostrovsky [25], they
show how a user can retrieve data from a server contain-
ing unencrypted data without revealing the access pattern
and with total communication less then the data size. This
was extended to keyword searching, including searching on
streaming data [28]. We note, however, that since the data
in PIR is always unencrypted, any scheme that tries to hide
the access pattern must touch all data items. Otherwise, the
server learns information: namely, that the untouched item
was not of interest to the user. Thus, PIR schemes require
work which is linear in the database size. Of course, one can
amortize this work for multiple queries and multiple users
in order to save work of the database per query, as shown in
[22, 23], but the key feature of all PIR schemes is that the
data is always unencrypted, unlike the previous two settings
on searching on encrypted data.

Related work. We already mentioned the work on soft-
ware protection and oblivious RAMs by Goldreich and Os-
trovsky [19]. In an effort to reduce the round complexity as-
sociated with oblivious RAMs, Song, Wagner and Perrig [30]
showed that a solution for searchable encryption was possi-
ble for a weaker security model. Specifically, they achieve
searchable encryption by crafting, for each word, a special
two-layered encryption construct. Given a trapdoor, the
server can strip the outer layer and assert whether the inner
layer is of the correct form. This construction, however, has
some limitations: while the construction is proven to be a
secure encryption scheme, it is not proven to be a secure
searchable encryption scheme; the distribution of the un-
derlying plaintexts is vulnerable to statistical attacks; and
searching is linear in the length of the document collection.

The above limitations are addressed by the works of Goh
[17] and of Chang and Mitzenmacher [13], who propose con-
structions that associate an “index” to each document in
a collection. As a result, the server has to search each of
these indexes, and the amount of work required for a query
is proportional to the number of documents in the collec-
tion. Goh introduces a notion of security for indexes (IND-
CKA, for “chosen-keyword attack,” and the slightly stronger
IND2-CKA), and puts forth a construction based on Bloom
filters [9] and pseudo-random functions. Chang and Mitzen-
macher achieve a notion of security similar to IND2-CKA,
except that it also tries to guarantee that the trapdoors do
not leak any information about the words being queried. We
discuss these security definitions and their shortcomings in
more detail in Section 3.

As mentioned above, encryption with keyword search has



Properties [27, 19] [27, 19]-light [30] [17] [13] SSE-1 SSE-2

hides access pattern yes yes no no no no no

server computation O(log3 n) O(
√
n) O(n) O(n) O(n) O(1) O(1)

server storage O(n · logn) O(n) O(n) O(n) O(n) O(n) O(n)

number of rounds logn 2 1 1 1 1 1

communication O(log3 n) O(
√
n) O(1) O(1) O(1) O(1) O(1)

adaptive adversaries yes yes no no no no yes

Table 1: Properties and performance (per query) of various SSE schemes. n denotes the number of documents
in the document collection. For communication costs, we consider only the overhead and omit the size of
the retrieved documents, which is the same for all schemes. For server computation, we show the costs per
returned document. For simplicity, the security parameter is not included as a factor for the relevant costs.

also been considered in the public-key setting [11, 3], where
anyone with access to a user’s public-key can add words to
an index, but only the owner of the private-key can gener-
ate trapdoors to test for the occurrence of a keyword. While
related, the public-key solutions are suitable for different ap-
plications and are not as efficient as private-key solutions,
which is the main subject of this work. Asymmetric ESE [7]
achieves comparable efficiency, but at the price of provid-
ing weaker security guarantees. Further, we also note
that the notion of multi-user SSE—which we introduce in
this work—combined with a classical public-key encryption
scheme, achieves a functionality similar to that of asymmet-
ric ESE, with the added benefit of allowing the owner to
revoke search privileges.

Our results. We now summarize our contributions.

1. We review existing security definitions for searchable
encryption, including IND2-CKA [17] and the simulation-
based definition in [13], and highlight their shortcomings.
Specifically, we point out that IND2-CKA is not an ade-
quate notion of security for SSE and then highlight (and fix)
technical issues with Chang and Mitzenmacher’s simulation-
based definition. We address both of these issues by propos-
ing new indistinguishability and simulation-based definitions
that provide security for both indexes and trapdoors, and
show their equivalence.

2. We introduce new adversarial models for SSE. The first,
which we refer to as non-adaptive, only considers adversaries
that make their search queries without taking into account
the trapdoors and search outcomes of previous searches.
The second—adaptive—considers adversaries that can choose
their queries as a function of previously obtained trapdoors
and search outcomes. All previous work on SSE (with the
exception of oblivious RAMs) falls within the non-adaptive
setting. The implication is that, contrary to the natural
use of searchable encryption described in [30, 17, 13], these
definitions only guarantee security for users that perform
all their searches at once. We address this by introducing
indistinguishability and simulation-based definitions in the
adaptive setting, and show that they are equivalent.

3. We present two constructions which we prove secure un-
der the new definitions. Our first scheme is only secure in
the non-adaptive setting, but is the most efficient SSE con-
struction to date. In fact, it achieves searches in one com-
munication round, requires an amount of work on the server
that is proportional to the actual number of documents that
contain the queried word, requires constant storage on the

client, and linear (in the size of the document collection)
storage on the server. While the construction in [17] also
performs searches in one round, it can induce false positives,
which is not the case for our construction. Additionally, all
the constructions in [17, 13] require the server to perform
an amount of work proportional to the total number of doc-
uments in the collection.
Our second construction is secure against an adaptive ad-
versary, but at the price of requiring a higher communi-
cation overhead per query and more storage at the server
(comparable with the storage required by Goh’s construc-
tion). While our adaptive scheme is conceptually simple,
we note that constructing efficient and provably secure adap-
tive SSE schemes is a non-trivial task. The main challenge
lies in proving such constructions secure in the simulation
paradigm, since the simulator requires the ability to “com-
mit” to a correct index before the adversary has even chosen
its search queries—in other words, the simulator needs to
commit to an index and then be able to perform some form
of equivocation.
Table 1 compares our constructions (SSE-1 and SSE-2) with
the previous SSE schemes. To make the comparison eas-
ier, we assume that each document in the collection has the
same (constant) size (otherwise, some of the costs have to
scaled by the document size). The server computation row
shows the costs per returned document for a query. Note
that all previous work requires an amount of server com-
putation at least linear with the number of documents in
the collection, even if only one document matches a query.
In contrast, in our constructions the server computation is
constant per each document that matches a query, and the
overall computation per query is proportional to the number
of documents that match the query. In all the considered
schemes, the computation and storage at the user is O(1).
We remark that, as an additional benefit, our constructions
can also handle updates to the document collection in the
sense of [13]. We point out an optimization which lowers the
communication size and the server’s computation per query
from linear to logarithmic in the number of updates (see full
version [14]).

4. Previous work on searchable encryption only considered
the single-user setting. We also consider a natural extension
of this setting, namely, the multi-user setting, where a user
owns the data, but an arbitrary group of users can submit
queries to search his document collection. The owner can
control the search access by granting and revoking search-
ing privileges to other users. We formally define search-
able encryption in the multi-user setting, and present an



efficient construction that does not require authentication,
thus achieving better performance than simply using access
control mechanisms.

Finally, we note that in most of the works mentioned
above the server is assumed to be honest-but-curious. How-
ever, using techniques for memory checking [10] and uni-
versal arguments [6] one can make those solutions robust
against malicious servers at the price of additional overhead.
We restrict our attention to honest-but-curious servers as
well, and postpone this extension to the full version.

Due to space limitations, full-fledged security definitions,
security proofs and extensions are presented in the full ver-
sion of the paper [14].

2. PRELIMINARIES
Let ∆ = {w1, . . . , wd} be a dictionary of d words, and 2∆

be the set of all possible documents. Further, let D ⊆ 2∆

be a collection of n documents D = (D1, . . . , Dn) and 22∆

be the set of all possible document collections. Let id(D)
be the identifier of document D, where the identifier can
be any string that uniquely identifies a document, such as
a memory location. We denote by D(w) the lexicograph-
ically ordered list consisting of the identifiers of all docu-
ments in D that contain the word w. We sometimes refer to
D(w) as the outcome of a search for w and to the sequence
(D(w1), . . . ,D(wn)) as the access pattern of a client. We
also define the search pattern of a client as any information
that can be derived from knowing whether two arbitrary
searches were performed for the same word or not.

We write x← X to represent an element x being sampled

from a distribution X and x
R← X to represent an element x

being sampled uniformly from a set X. The output x of an
algorithmA is denoted by x← A. We write || to mean string
concatenation. We call a function ν : N → N negligible if
for every polynomial p(·) and all sufficiently large k, ν(k) <

1
p(k)

.

Model. The participants in a single-user searchable encryp-
tion scheme include a user that wishes to store an encrypted
document collection D = (D1, . . . , Dn) on an honest-but-
curious server S, while preserving the ability to search through
them. We note that while we choose, for ease of exposition,
to limit searches to be over documents, any SSE scheme can
be trivially extended to search over lists of arbitrary key-
words associated with the documents.

The participants in a multi-user searchable encryption
scheme include a trusted owner O, an honest-but-curious
server S, and a set of users N. O owns the document collec-
tion D and wants to grant and revoke searching privileges
to a subset of users in N. We let G ⊆ N be the set of users
allowed to search. We assume that currently non-revoked
users behave honestly. The honest-but-curious server S is
a party that follows the protocol specification correctly, but
may try to analyze the messages received during the proto-
col in order to learn additional information.

Basic primitives. A symmetric encryption scheme is a set
of three polynomial-time algorithms (G, E ,D) such that G
takes a security parameter k in unary and returns a secret
key K; E takes a key K and an n-bit message m and re-
turns a ciphertext c; D takes a key K and a ciphertext c

and returns m if K was the key under which c was pro-
duced. Informally, a symmetric encryption scheme is con-
sidered secure if the ciphertexts it outputs do not leak any
partial information about the plaintext even to an adversary
that can adaptively query an encryption and a decryption
oracle.

In addition to encryption schemes, we also make use of
pseudo-random functions (PRF) and permutations (PRP),
which are polynomial-time computable functions that can-
not be distinguished from random functions by any proba-
bilistic polynomial-time adversary.

3. REVISITING SSE DEFINITIONS
We begin by reviewing the definition of a SSE scheme.

Definition 3.1. (Searchable Symmetric Encryption
Scheme (SSE)) A SSE scheme is a collection of four poly-
nomial-time algorithms (Keygen,BuildIndex,Trapdoor,Search)
such that:

Keygen(1k) is a probabilistic key generation algorithm that is
run by the user to setup the scheme. It takes a security
parameter k, and returns a secret key K such that the
length of K is polynomially bounded in k.

BuildIndex(K,D) is a (possibly probabilistic) algorithm run
by the user to generate indexes. It takes a secret key K
and a polynomially bounded in k document collection D
as inputs, and returns an index I such that the length
of I is polynomially bounded in k.

Trapdoor(K,w) is run by the user to generate a trapdoor for
a given word. It takes a secret key K and a word w as
inputs, and returns a trapdoor Tw.

Search(I, Tw) is run by the server S in order to search for
the documents in D that contain word w. It takes an
index I for a collection D and a trapdoor Tw for word
w as inputs, and returns D(w), the set of identifiers of
documents containing w.

A correct intuition. So far, establishing correct security
definitions for searchable encryption has been elusive. Clearly,
as we have discussed, one could use the general definitions
from oblivious RAMs, but subsequent work (including ours)
examines if more efficient schemes can be achieved by re-
vealing some information. The first difficulty seems to be in
correctly capturing this intuition as a formal security defini-
tion. In the literature, security for searchable encryption is
typically characterized as the requirement that nothing be
leaked beyond the outcome of a search (i.e., the identifiers
of the documents returned from a search), however we are
not aware of any previous work on SSE that satisfies this
intuition. In fact, with the exception of oblivious RAMs, all
previous constructions leak, in addition to the search out-
comes, the user’s search pattern. This is clearly the case for
the schemes presented in [30, 17, 13] since their trapdoors
are deterministic. Therefore, a more accurate characteriza-
tion of the security notion achieved (or rather, sought) for
SSE is that nothing should be leaked beyond the outcome
and the pattern of a sequence of searches, where the pat-
tern of a search is any information that can be derived from
knowing whether two searches were performed for the same
word or not.

Limitations of previous SSE definitions. The second
issue seems to be in appropriately capturing the adversary’s



power. While Song, Wagner and Perrig proved their con-
struction secure, the definition implicitly used in their work
is that of a classical encryption scheme, where the adver-
sary is not allowed to perform searches. This was partly
rectified by Goh who proposed the notion of indistinguisha-
bility against chosen-keyword attacks (IND2-CKA) in [17]1.
Intuitively, the notion of security that IND2-CKA tries to
achieve can be described as follows: given access to a set of
indexes, the adversary (i.e., the server) is not able to learn
any partial information about the underlying document that
he cannot learn from using a trapdoor that was given to him
by the client, and this holds even against adversaries that
can trick the client into generating indexes and trapdoors for
documents and keywords of its choice (i.e., chosen-keyword
attacks). A formal specification of IND2-CKA is presented
in [14] 2.

We remark that Goh’s work addresses a larger problem
than searchable encryption, namely that of secure indexes,
which are secure data structures that have many uses, only
one of which is searchable encryption. And though much
work on searchable encryption uses IND2-CKA as a security
definition [21, 29, 5], we note that it was never intended as
such. This is simply because, as Goh remarks (cf. Note 1,
p. 5 of [17]), IND2-CKA does not explicitly require that
trapdoors be secure since this is not a requirement for all
applications of secure indexes.

To remedy this, one might be tempted to introduce a
second definition that exclusively guarantees the semantic
security of trapdoors. One would then prove a construc-
tion secure under both IND2-CKA, and the new definition.
While this might seem like a reasonable (though cumber-
some) idea, the straightforward approach of requiring trap-
doors to be indistinguishable does not work. In fact, as we
show in [14], SSE schemes can be built with trapdoors that,
taken independently, leak no partial information about the
word being queried, but when combined with an index al-
low an adversary to recover the entire word. This illustrates
that the security of indexes and the security of trapdoors
are intrinsically linked.

Chang and Mitzenmacher propose a simulation-based def-
inition that aims to guarantee privacy for indexes and trap-
doors [13]. Similarly to the classical definition of seman-
tic security for encryption [20], they require that anything
that can be computed from the index and the trapdoors
for various queries, can be computed from the search out-
come of those queries. However, while the intuition seems
correct, in the case of searchable encryption one must also
take care in describing how the search queries are gener-
ated. In particular, whether they can be made adaptively
(i.e., after seeing the outcome of previous queries) or non-
adaptively (i.e., without seeing the outcome of any queries).
This distinction is important because it leads to security
definitions that achieve drastically different privacy guaran-
tees. Indeed, while non-adaptive definitions only guarantee
security to clients who generate all their queries at once,
adaptive definitions guarantee privacy even to clients who
generate queries as a function of previous search outcomes.

1Goh also defines a weaker notion, IND-CKA, that allows
an index to leak the number of words in the document.
2We note that, unlike the latter and our own definitions
(see below), IND2-CKA applies to indexes that are built
for individual documents, as opposed to indexes built from
entire document collections.

Unfortunately, as we show in [14], the definition presented
in [13] is not only non-adaptive, but can be trivially satisfied
by any SSE scheme, even one that is insecure.

Our security definitions. We now address the above is-
sues. For ease of readability, in this section we present our
approach at a somewhat informal level, but a more rigorous
treatment can be found in the full version of the paper [14].

Above, we mentioned our (and previous work’s) willing-
ness to let the outcome and the pattern of a sequence of
searches be known to the adversary (i.e., the server) in or-
der to achieve greater efficiency. This can be more formally
specified as follows. First, we note that an interaction be-
tween the client and the server will be determined by a doc-
ument collection and a set of words that the client wishes
to search for (and that we wish to hide from the adversary);
we call an instantiation of such an interaction a history.
Given a history, we refer to what the adversary actually
gets to “see” during an interaction as the history’s view. In
particular, the view will consist of the index (of the docu-
ment collection) and the trapdoors (of the queried words).
It will also contain some additional common information,
such as the number of documents in the collection and their
ciphertexts). However (if done properly) the view (i.e., the
index and the trapdoors) should not reveal any informa-
tion about the history (i.e., the documents and the queried
words) besides the outcome and the pattern of the searches
(i.e., the information we are willing to leak). This leads to
the notion of the trace of an interaction/history, which con-
sists of exactly the information we are willing to leak about
the history and nothing else. More precisely, this should
include the identifiers of the documents that contain each
query word in the history (i.e., the outcome of each search),
and information that describes which trapdoors in the view
correspond to the same underlying words in the history (i.e.,
the pattern of the searches).

We are now ready to state our first security definition for
SSE. First, we assume that the adversary generates the his-
tories in the definition at once. In other words, it is not
allowed to see the index of the document collection or the
trapdoors of any query words it chooses before it has fin-
ished generating the history. We call such an adversary
non-adaptive.

Definition 3.2. (Non-Adaptive Indistinguishability
Security for SSE—informal version) A SSE scheme is
secure in the sense of non-adaptive indistinguishability if for
any two adversarially constructed histories with equal length
and trace, no (probabilistic polynomial-time) adversary can
distinguish the view of one from the view of the other with
probability non-negligibly better than 1

2
.

Second, for each history the adversary generates, we give
him the ability to choose the word queries as a function of
the index and the trapdoors corresponding to the document
collection and the previous queries it chose. More precisely,
for each history, the adversary must choose a document col-
lection and multiple query words. So in this version of our
definition, after he chooses a document collection, he will
receive its corresponding index before he chooses his first
query word. And he will then receive that query word’s
trapdoor before he chooses his next query word, and so on.
What this implies is that for the two histories he constructs,
he can choose query words as a function of the index and



his previous query words’ trapdoors. Intuitively, this could
enable the adversary to perform more sophisticated attacks
than in the previous case. We call such histories “(adversar-
ially) adaptively constructed” (a formal specification of this
process is described in [14]).

Definition 3.3. (Adaptive Indistinguishability Se-
curity for SSE—informal version) A SSE scheme is
secure in the sense of adaptive indistinguishability if for any
two adaptively-constructed histories with equal length and
trace, no (probabilistic polynomial-time) adversary can dis-
tinguish the view of one history from the view of the other
with probability non-negligibly better than 1

2
.

An alternative approach to security definitions is the so-
called semantic security or “simulation-based” approach [20,
18]. At a high level, in such an approach the security guar-
antee is provided by the existence, for all adversaries, of
a polynomial-time algorithm (the simulator) which, being
given very little information (in our case, a history’s trace),
is able to compute whatever the adversary is able to compute
from the given information (in our case, the history’s view).
In [14], we also present simulation-based definitions for SSE
(overcoming the shortcomings of the simulation-based defi-
nition in [13]), both for the non-adaptive and adaptive set-
tings, and, moreover, we are able to prove:

Theorem 3.4. Non-adaptive (respectively, adaptive) in-
distinguishability security of SSE is equivalent to non-adaptive
(resp., adaptive) semantic security of SSE.

We remark that the existence of such an equivalence proof
typically vouches for the soundness of the definitions pre-
sented herein. Further, it allows us to state that an SSE
scheme is simply non-adaptively (resp., adaptively) secure,
without any reference to the proof methodology.

4. EFFICIENT AND SECURE SSE
In this section we present our efficient SSE constructions,

and state their security in terms of the definitions presented
in Section 3 (the security proofs are presented in the full
version [14]). We start by introducing some additional no-
tation and the data structures used by the constructions.
Let ∆′, ∆′ ⊆ ∆, be the set of distinct words that exist in
the document collection D. We assume that words in ∆ can
be represented using at most p bits. Also, recall that D(w)
is the set of identifiers of documents in D that contain word
w ordered in lexicographic order.

We use several data structures, including arrays, linked
lists and look-up tables. Given an array A, we refer to the
element at address i in A as A[i], and to the address of el-
ement x relative to A as addr(A(x)). So if A[i] = x, then
addr(A(x)) = i. In addition, a linked list L, stored in an
array A, is a set of nodes Ni = 〈vi; addr(A(Ni+1))〉, where
1 ≤ i ≤ |L|, vi is an arbitrary string and addr(A(Ni+1)) is the
memory address of the next node in the list.

4.1 An efficient SSE construction
We first give an overview of our one-round non-adaptive

SSE construction. We associate a single index I with a
document collection D. The index I consists of two data
structures:

An array A, in which we store in encrypted form the set
D(w), for each word w ∈ ∆′, and

a look-up table T, which contains information that en-
ables one to locate and decrypt the appropriate ele-
ments from A, for each word w ∈ ∆′.

We start with a collection of linked lists Li, wi ∈ ∆′,
where the nodes of each Li are the identifiers of documents
in D(wi). We then write in the array A the nodes of all
lists Li, “scrambled” in a random order and encrypted with
randomly generated keys. Before encryption, the j-th node
of Li is augmented with information about the index in A

of the (j + 1)-th node of Li, together with the key used to
encrypt it. In this way, given the position (index) in A and
the decryption key for the first node of a list Li, the server
will be able to locate and decrypt all the nodes in Li. Note
that by storing in A the nodes of all lists Li in a random
order, the size of each Li is hidden.

We now build a look-up table T that allows one to locate
and decrypt the first element of each list Li. Each entry
in T corresponds to a word wi ∈ ∆ and consists of a pair
<address,value>. The field value contains the index in A

and the decryption key for the first element of Li. value is
itself encrypted using the output of a pseudo-random func-
tion. The other field, address, is simply used to locate an
entry in T. The look-up table T is managed using indirect
addressing (described below).

The user computes both A and T based on the un-encrypted
D, and stores them on the server together with the encrypted
D. When the user wants to retrieve the documents that
contain word wi, it computes the decryption key and the
address for the corresponding entry in T and sends them to
the server. The server locates and decrypts the given entry
of T, and gets the index in A and the decryption key for the
first node of Li. Since each element of Li contains informa-
tion about the next element of Li, the server can locate and
decrypt all the nodes of Li, which gives the identifiers in
D(wi).

Efficient storage and access of sparse tables. We de-
scribe the indirect addressing method that we use to ef-
ficiently manage look-up tables. The entries of a look-up
table T are tuples <address,value>, in which the address

field is used is used as a virtual address to locate the entry
in T that contains some value field. Given a parameter p,
a virtual address is from a domain of exponential size (i.e.,
from {0, 1}p). However, the maximum number of entries
in a look-up table will be polynomial in p, so the number
of virtual addresses that are used can be approximated as
poly(p). If, for a lookup-up table T, the address field is from
{0, 1}p, the value field is from {0, 1}v and there are at most
m entries in T, then we say T is a ({0, 1}p × {0, 1}v × m)
look-up table.

Let Addr be the set of virtual addresses that are used for
entries in a look-up table T. We can efficiently store T such
that, when given a virtual address, it returns the associated
value field. We achieve this by organizing the Addr set in a
so-called FKS dictionary [16], an efficient data structure for
storage of sparse tables that requires O(|Addr|) (+o(|Addr|))
storage and O(1) look-up time. In other words, given some
virtual address A, we are able to tell if A ∈ Addr and if
so, return the associated value in constant look-up time.
Addresses that are not in Addr are considered undefined.

SSE-1 in detail. We are now ready to proceed to the de-
tails of the construction. Let k, ` be security parameters and



Keygen(1k, 1`): Generate random keys s, y, z
R← {0, 1}k and output K = (s, y, z, 1`).

BuildIndex(K,D):

1. Initialization:

a) scan D and build ∆′, the set of distinct words in D. For each word w ∈ ∆′, build D(w);

b) initialize a global counter ctr = 1.

2. Build array A:

a) for each wi ∈ ∆′: // (build a linked list Li with nodes Ni,j and store it in array A)

• generate κi,0
R← {0, 1}`

• for 1 ≤ j ≤ |D(wi)|:

– generate κi,j
R← {0, 1}` and set node Ni,j = 〈id(Di,j)‖κi,j‖ψs(ctr + 1)〉, where id(Di,j) is the jth

identifier in D(wi);

– compute Eκi,j−1 (Ni,j), and store it in A[ψs(ctr)];

– ctr = ctr + 1

• for the last node of Li (i.e., Ni,|D(wi)|), before encryption, set the address of the next node to NULL;

b) let m′ =
P

wi∈∆′ |D(wi)|. If m′ < m, then set remaining (m −m′) entries of A to random values of the

same size as the existing m′ entries of A.

3. Build look-up table T:

a) for each wi ∈ ∆′:

• value = 〈addr(A(Ni,1))||κi,0〉 ⊕ fy(wi);

• set T[πz(wi)] = value.

b) if |∆′| < |∆|, then set the remaining (|∆| − |∆′|) entries of T to random values.

4. Output I = (A, T).

Trapdoor(w): Output Tw = (πz(w), fy(w)).

Search(I, Tw):

1. Let (γ, η) = Tw. Retrieve θ = T[γ]. Let 〈α||κ〉 = θ ⊕ η.

2. Decrypt the list L starting with the node at address α encrypted under key κ.

3. Output the list of document identifiers contained in L.

Figure 1: Efficient SSE construction (SSE-1)

let (G, E ,D) be a semantically secure symmetric encryption
scheme with E : {0, 1}` × {0, 1}r → {0, 1}r. In addition, we
make use of one pseudo-random function f and two pseudo-
random permutations π and ψ with the following parame-
ters:

f : {0, 1}k × {0, 1}p → {0, 1}`+log2(m);

π : {0, 1}k × {0, 1}p → {0, 1}p; and

ψ : {0, 1}k × {0, 1}log2(m) → {0, 1}log2(m).

Let m be the total size of the plaintext document collection,
expressed in units. A unit is the smallest possible size for
a word (e.g. one byte).3 Let A be an array of size m. Let

T be a ({0, 1}p × {0, 1}`+log2(m) × |∆|) look-up table, man-
aged using indirect addressing as described previously. Our
construction SSE-1 = (Keygen,BuildIndex,Trapdoor,Search)
is described in Fig. 1.

Consistent with our security definitions, SSE-1 reveals
only the outcome and the pattern of a search, the total size
of the encrypted document collection and the number of doc-
uments in D. Recall that the array A can be seen as a collec-
tion of linked lists Li, where each Li contains the identifiers
of documents containing word wi. Let m′ =

P
wi∈∆′ |Li|.

If, for all Dj ∈ D, a word does not appear more than once

3If the documents are not encrypted with a length preserv-
ing encryption scheme or if they are compressed before en-
cryption, then m is the maximum between the total size of
the plaintext D and the total size of the encrypted D.

in document Dj , it is clear that m = m′. If the size of A is
smaller than m, then the array A reveals that at least one
document in D contains a word more than once. To avoid
such leakage, we set the size of A equal to m and fill the
(m−m′) remaining entries with random values. We follow
the same line of reasoning for the look-up table T, which
has at least one entry for each distinct word in D. To avoid
revealing the number of distinct words in D, we add addi-
tional (|∆| − |∆′|) entries in T, filled with random values,
such that the number of entries in T is always equal to |∆|.

In the full version of the paper [14], we show:

Theorem 4.1. SSE-1 is a non-adaptively secure SSE scheme.

Regarding efficiency, we remark that each query takes only
one round, and O(1) message size. In terms of storage, the
demands are O(1) on the user and O(m) on the server; more
specifically, in addition to the encrypted D, the server stores
the index I, which contains the array A of size O(m) and the
look-up table T of size O(|∆|). Since the size of encrypted D
is O(m), accommodating the auxiliary data structures used
for searching does not change (asymptotically) the storage
requirements for the server. The user spends O(1) time to
compute a trapdoor, while for a query for word w, the server
spends time proportional to |D(w)|.

4.2 Adaptive SSE security
While our SSE-1 construction is efficient, it was only proven

secure against non-adaptive adversaries. We now show a



Keygen(1k): Generate random key s
R← {0, 1}k and output K = s.

BuildIndex(K,D):

1. Initialization:

• scan D and build ∆′, the set of distinct words in D. For each word w ∈ ∆′, build D(w).

2. Build look-up table T:

a) for each wi ∈ ∆′:

• for 1 ≤ j ≤ |D(wi)|:
– value = id(Di,j), where id(Di,j) is the jth identifier in D(wi);

– set T[πs(wi||j)] = value.

b) let m′ =
P

wi∈∆′ |D(wi)|. If m′ < m, then set values for the remaining (m−m′) entries such that for all

D ∈ D, it holds that value = id(D) for exactly max entries. Also, set the address field of these remaining
entries to random values.

3. Output I = T.

Trapdoor(w): Output Tw = (Tw1 , . . . , Twmax ) = (πs(w||1), . . . , πs(w||max)).
Search(I, Tw): For 1 ≤ i ≤ max: retrieve id = T[Twi ] and output id.

Figure 2: Adaptively secure SSE construction (SSE-2)

second construction, SSE-2, which achieves semantic secu-
rity against adaptive adversaries, at the price of requiring
higher communication size per query and more storage on
the server. (Asymptotically, however, costs are the same—
see Table 1.)

The difficulty of proving our SSE-1 construction secure
against an adaptive adversary stems from the difficulty of
creating in advance a view for the adversary that would be
consistent with future (unknown) queries. Given the intri-
cate structure of the SSE-1 construction, with each word
having a corresponding linked list whose nodes are stored
encrypted and in a random order, building an appropriate
index is quite challenging. We circumvent this problem as
follows.

For a given word w and a given integer j, we derive a
label for w by concatenating w with j (j is first converted
to a string of characters). For example, if w is “coin” and
j is 1, then w||j is “coin1”. We define the family of a word
w ∈ ∆′ to be the set of labels Fw = {w||j : 1 ≤ j ≤ |D(w)|}.
For example, if the word “coin” appears in three documents,
then Fw = {“coin1”, “coin2”, “coin3”}. Now, for each word
w ∈ ∆′, we choose not to keep a list of nodes with the iden-
tifiers in D(w), but instead to simply derive the family Fw of
w, and insert the elements of Fw into the index. Searching
for w becomes equivalent with searching for all the labels
in w’s family. Since each label in w’s family will appear in
only one document, a search for it “reveals” only one entry
in the index. Translated to the proof, this will allow the
simulator to easily construct a view for the adversary that
is indistinguishable from a real view.

We now give an overview of the SSE-2 construction. We
associate with the document collection D an index I, that
consists of a look-up table T. For each label in a word w’s
family, we add an entry in T, whose value field is the identi-
fier of the document that contains an instance of w. In order
to hide the number of distinct words in each document, we
have to “pad” the look-up table T such that the identifier of
each document appears in the same number of entries. The
search for a word w is slightly different than for the SSE-1
construction: a user needs to search for all the labels in w’s
family.

Let k be a security parameter. We use a pseudo-random

permutation π : {0, 1}k × {0, 1}p → {0, 1}p. Recall that a
unit is the smallest possible size for a word (e.g. one byte).
Also, recall that ∆′ is the set of distinct words that exist in
D. Let max be the size of the largest plaintext document in
D, expressed in units. Letm = max·n, where n is the number
of documents in D. Let T be a ({0, 1}p × {0, 1}log2(n) ×
m) look-up table, managed using indirect addressing. The
construction SSE-2 is described in Fig. 2. In [14] we prove:

Theorem 4.2. SSE-2 is an adaptively secure SSE scheme.

Just like SSE-1, SSE-2 requires for each query one round of
communication and an amount of computation on the server
proportional with the number of documents that match the
query (i.e., O(|D(w)|). Similarly, the storage and computa-
tional demands on the user are O(1). The communication
is equal to max and the storage on the server is increased by
a factor of max when compared to SSE-1. We note that the
communication cost can be reduced if in each entry of T cor-
responding to an element in some word w’s family, we also
store |D(w)| in encrypted form. In this way, after search-
ing for a label in w’s family, the user will know |D(w)| and
can derive Fw. The user can then send in a single round all
the trapdoors corresponding to the remaining labels in w’s
family.

5. MULTI-USER SSE
In this section we consider the natural extension to the

SSE setting where a user owns a document collection, but
an arbitrary group of users can submit queries to search his
collection. A familiar question arises in this new setting,
that of managing access privileges, but while preserving pri-
vacy with respect to the server. We first present a definition
of a multi-user searchable encryption scheme (MSSE) and
some of its desirable security properties, followed by an effi-
cient construction which, in essence, combines a single-user
SSE scheme with a broadcast encryption (BE) scheme [15].
Let N denote the set of all possible users, and G ⊆ N the set
of users that are currently authorized to search.

Definition 5.1. (Multi-User Searchable Symmetric
Encryption Scheme) A multi-user SSE scheme is a collec-
tion of six polynomial-time algorithms M-SSE = (MKeygen,



MKeygen(1k, 1`): let Ks ← Keygen(1k, 1`) and r
R← {0, 1}k. Output KO = (Ks, r).

MBuildIndex(KO,D): run Is ← BuildIndex(Ks,D). Initialize the BE scheme. Set R = {∅}. Send r and EBE
N (r) to the

server. Output Im = Is.

AddUser(KO, U): send KU = (Ks, r) to user U , where r is the current key used for φ. Also send to U the long-lived
secrets needed for the BE scheme.

RevokeUser(KO, U): R = R ∪ {U}. Pick a new key r′
R← {0, 1}k and send r′ and EBE

N\R
(r′) to S. S overwrites the old

values of r and EBE
N\R∪{U}(r) with r′ and EBE

N\R
(r′), respectively.

MTrapdoor(KU , w): let T s
w ← Trapdoor(Ks, w). Retrieve EBE

N\R
(r) from S and use the long-lived BE secrets to recover

r. Output Tm
U,w = φr(T s

w).

MSearch(Im, Tm
U,w): recover T s

w = φ−1
r (Tm

U,w); let T s
w = (γ, η). If γ is a valid virtual address, then run Search(Im, T s

w)

and return its output. Otherwise, return ⊥.

Figure 3: Multi-user SSE construction (M-SSE)

MBuildIndex,AddUser,RevokeUser,MTrapdoor,MSearch) such
that:

MKeygen(1k) is a probabilistic key generation algorithm that
is run by the owner O to setup the scheme. It takes a
security parameter k, and returns an owner secret key,
KO.

MBuildIndex(KO,D) is run by O to construct indexes. It
takes the owner’s secret key KO and a document collec-
tion D as inputs, and returns an index I.

AddUser(KO, U) is run by O whenever it wishes to add a
user to the group G. It takes the owner’s secret key KO

and a user U as inputs, and returns U ’s secret key, KU .

RevokeUser(KO, U) is run by O whenever it wishes to revoke
a user from G. It takes the owner’s secret key KO and
a user U as inputs, and revokes the user’s searching
privileges.

MTrapdoor(KU , w) is run by a user (including O) in order
to generate a trapdoor for a given word. It takes a user
U ’s secret key KU and a word w as inputs, and returns
a trapdoor TU,w.

MSearch(ID, TU,w) is run by the server S in order to search
for the documents in D that contain word w. It takes
the index ID for collection D and the trapdoor TU,w for
word w as inputs, and returns D(w) if user U ∈ G and
⊥ if user U 6∈ G.

We briefly discuss notions of security that a multi-user
SSE scheme should achieve. It should be clear that the (se-
mantic) security of a multi-user scheme can be reduced to
the semantic security of the underlying single-user scheme.
The reason is that in the multi-user case, just like in the
single-user case, we are only concerned with providing secu-
rity against the server. One distinct property in this new
setting is that of revocation, which essentially states that a
revoked user no longer be able to perform searches on the
owner’s documents. A formal specification of this property
is given in the full version of the paper [14].

Definition 5.2 (Correctness). Let D be a document
collection and ID be its corresponding index. We say that a
multi-user SSE scheme, M-SSE = (MKeygen,MBuildIndex,
AddUser,RevokeUser,MTrapdoor,MSearch), is correct if

Pr [MSearch(ID, TU,w) = D(w) : U ∈ G ] = 1.

Our construction makes use of a single-user SSE scheme
and a broadcast encryption (BE) scheme. Recall that in BE,

a center encrypts a message m to a group G of privileged
users who are allowed to access the message. The group
G can be dynamically changing, as users can be added to
or removed from G. Although the encrypted message can
be received by a larger set N of receivers, only the users in
G can recover the message. When a user joins the system,
it receives a set of secrets, referred to as long-lived secrets.
The long-lived secrets are distinct for each user. Given an
encrypted message, the long-lived secrets allow a user to de-
crypt it only if the user was non-revoked at the time the
message was encrypted. We use off-the-shelf BE as a build-
ing block in our multi-user secure index construction in order
to efficiently manage user revocation.

We now provide an overview of the construction. In or-
der to retrieve the documents that contain the word w, an
authorized user U computes a regular single-user trapdoor
TU,w, but applies on it a pseudo-random permutation φ
keyed with a secret key r before sending it to the server.
The server, upon receiving φr(TU,w), recovers the trapdoor
by computing TU,w = φ−1

r (φr(TU,w)). The key r currently
used for φ is only known by the owner, by the set of currently
authorized users and by the server. Each time a user is re-
voked, the owner picks a new r and stores it on the server
encrypted such that only non-revoked users can decrypt it.
Broadcast encryption provides an efficient method to dis-
tribute r to the set of non-revoked users. The server will use
the new r to compute φ−1

r for subsequent queries. Revoked
users cannot recover the current r and, with overwhelming
probability, their queries will not yield a valid trapdoor after
the server applies φ−1

r .
When the owner O of a document collection D gives a

user U permission to search through D, it sends to U all the
secret information needed to perform searches in a single-
user context 4. The extra layer given by the pseudo-random
permutation φ, together with the guarantees offered by the
BE scheme and the assumption that the server is honest-but-
curious, is what prevents users from performing successful
searches once they are revoked.

Next we describe the multi-user SSE construction in de-
tail. Let SSE = (Keygen,BuildIndex,Trapdoor,Search) be
a single-user SSE scheme and BE = (GBE, EBE

G ,DBE
G ) be a

broadcast encryption scheme. Though our MSSE construc-

4Note that O should possess an additional secret that will
not be shared with U and that allows him to perform au-
thentication with the server when he wants to update D.
This guarantees that only O can perform updates to D.



tion is general and can be instantiated with any single-user
SSE scheme, for ease of exposition, we describe it using our
SSE-1 construction. We require a standard security notion
for the BE scheme, namely that it provide revocation-scheme
security against a coalition of all revoked users and that its
key assignment algorithm satisfies key indistinguishability.
Recall that we let N denote the set of all users, and G ⊆ N
the set of users (currently) authorized to search; let R de-
note the set of revoked users. Let φ be a pseudo-random
permutation such that φ : {0, 1}k × {0, 1}p+log2 (m)+` →
{0, 1}p+log2 (m)+`. Our multi-user construction, M-SSE, is
described in Fig. 3.

Our multi-user construction is very efficient on the server
side: when given a trapdoor, the server only needs to eval-
uate a pseudo-random permutation in order to determine if
the user is revoked. If access control mechanisms were used
instead for this step, a “heavier” authentication protocol
would be required. Refer to [14] for further details.
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