
Smooth Histograms for Sliding Windows
Vladimir Braverman∗ Rafail Ostrovsky†

Appeared in FOCS 2007: 283-293

Abstract

In the streaming model, elements arrive sequentially and can be observed only once. Main-
taining statistics and aggregates is an important and non-trivial task in the model. This becomes
even more challenging in the sliding windows model, where statistics must be maintained only
over the most recent n elements. In their pioneering paper, Datar, Gionis, Indyk and Motwani
[15] presented exponential histograms, an effective method for estimating statistics on sliding
windows. In this paper we present a new smooth histograms method that improves the approx-
imation error rate obtained via exponential histograms. Furthermore, our smooth histograms
method not only captures and improves multiple previous results on sliding windows but also
extends the class functions that can be approximated on sliding windows. In particular, we pro-
vide the first approximation algorithms for the following functions: Lp norms for p /∈ [1, 2],
frequency moments, length of increasing subsequence and geometric mean.

∗Dept. of Computer Science, UCLA. E-mail: vova@cs.ucla.edu. Work supported in part by NSF Cybertrust
grant #0430254.

†Depts. of Computer Science and Mathematics, UCLA. E-mail: rafail@cs.ucla.edu. Work supported in
part by an IBM Faculty Award, a Xerox Innovation Group Award, NSF Cybertrust grant #0430254, and a U.C. MICRO
grant.

1 Introduction
Many recent applications deal with large data volumes for which methods that require multiple
data passes may be infeasible. For these applications, the data stream model is often more ap-
propriate. In this model, data arrives sequentially and can be observed only once. The number
of data elements is unknown and may be unbounded. A typical goal is to continuously maintain
statistics or aggregates over past data using minimal memory while keeping the desired precision
of the answers. In this scenario, it may be challenging to maintain even simple statistics. Re-
cently, numerous algorithms were developed for various problems in the data stream model. We
refer readers to the books of Muthukrishnan [27] and Aggarwal [2] for detailed surveys on data
steaming models and algorithms.

Most applications tend to discard old data and base their queries only on the recent elements.
Thus, the sliding window model in which only the last n elements are taken into consideration
is important in data stream processing. In this model we separate past elements into two groups.
Recent elements represent a window of active or non-expired elements, and the rest are expired.
An active element may eventually become expired, but expired elements stay in this status forever.
Only active elements are relevant for statistics or queries. The window can be sequence-based,
where every insertion corresponds to a deletion of the oldest element. In timestamp-based win-
dows, there is no restriction on the number of insertions and deletions. (Typically, each element is
associated with a timestamp, and the window contains all elements with active timestamps.)

1.1 Notations
We use the following notations throughout our paper. We denote D as a stream and pi, i ≥ 0 as its
i-th element. For 0 ≤ x < y we define [x, y] = {i, x ≤ i ≤ y}. Bucket B(x, y) is the set of all
stream elements between px and py−1: B(x, y) = {pi, i ∈ [x, y−1]}. For function f that is defined
on buckets we denote f(i, j) = f(B(i, j)). We denote N as the size of the stream and n as the size
of a window. For the Lp problem, we denote m as the size of a vector that is presented by a stream.
An algorithm maintains ε-approximation of function f on stream D if at any moment the algorithm
outputs f ′ s.t. (1 − ε)f(D) ≤ f ′(D) ≤ (1 + ε)f(D). Similarly, an algorithm maintains (ε, δ)-
approximation of function f if at any moment the algorithm outputs f ′ s.t. (1−ε)f(D) ≤ f ′(D) ≤
(1 + ε)f(D) w.p. at least 1 − δ. We denote Õ(f(m)) = O(1

εO(1) (log m)O(1)(log n)O(1)f(m)). We
use notation B ⊆r A to indicate that bucket B is a suffix of A; i.e., it contains the most recent part
of A. We denote by A ∪ C the union of adjacent buckets A and C.

1.2 Problems, Results and Related Work
Research on the sliding window model has a long history. In their pioneering paper, Datar, Gionis,
Indyk and Motwani [15] gave memory-optimal algorithms for such fundamental statistics as count,
sum of positive integers, average, Lp, p ∈ [1, 2] etc. A further improvement to count and sum was
reported by Gibbons and Tirthapura [19] who provided memory and time optimal algorithms for
these problems. Lee and Ting [25] provided optimal solution for a relaxed version of the counting

2

problem, where the correct answer is provided only if it is comparable with the window’s size. Be-
sides these basic statistics, numerous problems were effectively solved on sliding windows. Chi,
Wang, Yu and Muntz in [13] considered a problem of frequent itemsets. Algorithms for frequency
counts and quantiles were proposed by Arasu and Manku [4] and by Lee and Ting [24]. Datar
and Muthukrishnan [16] solved problems of rarity and similarity. Babcock, Datar, Motwani and
O’Callaghan [6] provided algorithms for variance and k-medians problems. Feigenbaum, Kannan
and Zhan [17] presented an efficient solution for the diameter of a data set in multidimensional
space. Later, Chan and Sadjad [11] presented optimal solutions for this and other geometric prob-
lems. Agarwal, Har-Peled, and Varadarajan [1] used coresets to maintain statistics in streaming
model. Babcock, Datar and Motwani [5] presented algorithms for uniform random sampling from
sliding windows. For more details about recent results in the sliding windows model, we refer
readers to the survey by Datar and Motwani [2].

The use of exponential histograms as a general technique for sliding windows was proposed by
Datar, Gionis, Indyk and Motwani [15]. This method is widely used and numerous algorithms are
based on exponential histograms or their variations (see [2] for examples of such applications). It
is applicable to a wide class of “weakly additive” functions [2] with the following properties. (A
and B are adjacent buckets and ∪ denotes concatenation.)

1. f(A) ≥ 0.

2. f(A) ≤ poly(|A|).
3. f(A ∪B) ≥ f(A) + f(B).

4. f(A ∪B) ≤ Cf (f(A) + f(B)) for some constant Cf ≥ 1.

5. The function f(A) admits a “sketch” which requires gf (|B|) space and is composable; i.e.,
the sketch for f(A ∪B) can be composed efficiently from the sketches for f(A) and f(B).

For this class of functions, [15] presents two general results. If sketches can be computed pre-
cisely, then it is possible to maintain f with relative error (εC2

f + Cf − 1), using O(1
ε
log n(g +

log n)) bits and O(1) amortized time per element. Moreover, given an algorithm that main-
tains ε̂-approximation of f on D, f can be approximated on sliding windows with relative error
(1 + ε̂)2εC2

f + Cf − 1 + ε̂, using the same space and time.

1.2.1 Summary of Our Results

In this paper we introduce a notion of smooth function and present technique that allows to maintain
smooth functions over sliding windows. Informally, smooth functions are defined as follows. Let
A be a bucket and B be its suffix; that is, B contains recent elements from A and does not contain
the old elements. Consider the case when f(B) is close to f(A). If this closeness remains no
matter what elements are added to both buckets and does not depend on A and B, we say that f is
smooth (for formal definition see Section 2). To measure the closeness before and after insertions,
we introduce two parameters α and β that depend only on function f and approximation parameter
ε. Function f is (α, β)-smooth if, once f(B) is β-approximation of f(A), we can guarantee that

3

f(B ∪ C) is α-approximation of f(A ∪ C) for any portion of new elements C. Assume that
there exists an algorithm that computes f precisely using g space and h time per element. Our
main result states that it is possible to maintain α-approximation of f over sliding windows, using
O(1

β
log n(g + log n)) bits and O(1

β
h log n) time. Further, ε̂-approximation of f on D results in

(α + ε̂)-approximation of f over sliding windows.
It turns out that many functions are smooth. For instance, sum, count, min, diameter are (ε, ε)-

smooth that gives ε-approximations repeating previously known results [11, 15]. More interesting,
we prove that weakly additive functions, Lp norms, frequency moments, length of longest subse-
quence, and geometric mean are smooth. We apply our method to these function and obtain the
following results:

• We improve the general results from [15] mentioned above. For weakly additive functions
that can be computed precisely on D, the relative error is improved from εC2

f + Cf − 1 to
1− 1−ε

Cf
. For Cf = 1 it gives ε-approximation, similar to [15]. For larger Cf the ratio between

relative errors is approximately Cf . The space and time complexities remain unchanged. For
weakly additive functions that can be approximated on D, the relative error is improved from
(1 + ε̂)2εC2

f + Cf − 1 + ε̂ to 1− 1−ε
Cf

+ ε̂.

• We improve the result of [15] for Lp, p ∈ [1, 2] norms and extend it to any p. For p ∈ [1, 2] we
decrease relative error from 4ε(1+ε̂)2+1+ε̂ to 1+ε

2
+ε̂, preserving memory and time. We also

show that adding a multiplicative factor of 1
εp−1 to memory can further decrease relative error

to ε. For p > 2 we give an optimal (ε + εp

4p
, δ)-approximation algorithm that uses Õ(m1− 2

p)

memory, where m is a size of the estimated vector. For p < 1 we present a (ε + ε/4, δ)-
approximation algorithm using O

(
1
ε
log n(1

ε2
log M log log n

δε
+ log n)

)
bits, where M is the

maximal value of an update.

• We provide the first memory-optimal algorithm for frequency moments over sliding win-
dows for constant p > 2. The algorithm maintains (ε+ εp

pp , δ)-approximation using Õ(m1− 2
p)

space.

• We extend the results of Sun and Woodruff [29] to sliding windows and improve (in terms
of space) the recent results of Chen, Yang and Yuan [12], providing ε-approximation of
the length of longest increasing subsequence (LIS) in sliding windows. Our algorithm uses
O(1

ε
log n(k log L

k
+ log n)) bits, where k is the length of LIS and L is the number of distinct

elements in the window.

• We provide the first ε-approximation of geometric mean on sequence-based windows using
O(1

ε
log n(k + log n)) memory. Here k is the number of bits needed to store the value of

geometric mean.

Below we describe these problems in detail and discuss our and previous results.

4

1.2.2 Lp Norms and Frequency Moments

Lp, p ≥ 0 norm of a vector X = {x1, . . . , xm} is defined as (
∑m

i=1 xp
i)

1
p . In the streaming model

X is represented as follows. Each element of a stream D is a pair (i, a), i ∈ [m], a ∈ [−M, M],
for some positive M . The value of i-th coordinate is given by the summation xi =

∑
(i,a)∈D a. If

m is small, it is easy to calculate the Lp norm simply by maintaining the value of each coordinate.
However, the usual assumption is that m is large and Ω(m) space is not allowed.

Frequency moment is a fundamental problem that is directly related to Lp norms. In this
paper we use the definition that was presented by Bhuvanagiri, Ganguly, Kesh and Saha [8], Fp =∑m

i=1 xp
i = Lp

p . In many papers the simpler model is considered, where a = 1 for all pairs (i, a)
and a’s are omitted.

The first algorithms for frequency moments were proposed in the seminal paper of Alon, Ma-
tias and Szegedy [3]. For p = 0, 2 they provided (ε, δ)-approximation algorithms that use only
polylogarithmic memory. For p ≥ 3 they present an algorithm that uses O(m1− 1

p) memory and
show a lower bound of Ω(m1− 5

p). For p > 2, numerous improvements to lower and upper bounds
were reported, including the work of Bar-Yossef, Jayram, Kumar and Sivakumar [7], Chakrabarti,
Khot and Sun [10], Coppersmith and Kumar [14] and Ganguly [18]. Finally, Indyk and Woodruff
[23] and later Bhuvanagiri, Ganguly, Kesh and Saha [8] presented algorithms that use Õ(m1− 2

p)
memory and are optimal. The last algorithm can be used as well for approximation of Lp, p > 2
norms. For p ∈ [0, 2] Indyk [22] presented an algorithm that maintains Lp norms using polyloga-
rithmic space.

The extension of these problems to sliding windows is straightforward. At any moment Lp(W) =

(
∑m

i=1 xp
i)

1
p , where xi =

∑
(i,a)∈W a and W is the current window. Similar to [15], we restrict a

to be positive. For negative a it was shown [15] that even for p = 1 and m = 1, the lower bound
on the memory is Ω(n). The only known result for Lp norms was presented in [15] for p ∈ [1, 2].
The algorithm maintains Lp with high probability and relative error 4ε(1 + ε)2 + 1 + ε using
O(1

ε
log N(log N + log M log (1/δ)/ε2)) bits.

We extend this result to any p and provide a better approximation ratio for p ∈ [1, 2]. We
prove that Lp is (ε, εp

p
)-smooth for p ≥ 1 and (ε, ε)-smooth for p < 1, so our method can be

applied. For p > 2, we apply the algorithm from [8] to show an optimal (ε, δ)-approximation
algorithm using Õ(m1− 2

p) bits. For Lp, p < 1, we use the algorithm from [22] to construct an
(ε+ε/4, δ)-approximation algorithm using O

(
1
ε
log n(1

ε2
log M log log n

δε
+ log n)

)
bits. Finally, for

Lp, 1 ≤ p ≤ 2, we improve [15] by decreasing the relative error from 4(1 + ε̂)2ε + 1 + ε̂ to 1+ε
2

+ ε̂

using O
(

1
ε
log n(1

ε2
log M log log n

δε
+ log n)

)
bits. We exploit the fact that Lp

p is weakly additive
with Cf ≤ 2 and thus (1+ε

2
, ε)-smooth. However, it is also (ε, εp

p
)-smooth and, alternatively, we

can achieve an ε-approximation using O
(

1
εp log n(1

ε2
log M log log n

δε
+ log n)

)
bits; i.e., increasing

memory usage by the factor 1
εp−1 .

One may argue that for p > 2, Lp
p is also a weakly additive function, so we can apply the

exponential histograms method. While this is true, note that the relative error that can be achieved
using exponential histograms is εC2

f + Cf − 1 (see [15]). For large p the relative error becomes
significantly larger then 1.

5

We show similar results for frequency moments. In particular, we prove that Fp is (ε, εp

pp)-

smooth, and thus smooth histograms can be used to approximate frequency moments with Õ(ppm1− 2
p)

bits. Thus, for constant p > 2 we obtain optimal results.

1.2.3 Length of Longest Increasing Subsequence

Let D be a stream where pi is an integer, pi ∈ [L] for some L. An increasing subsequence is
defined as px1 , . . . , pxk

such that xi < xi+1 and pxi
≤ pxi+1

for i < k. (In fact, the sequence is non-
decreasing, but we follow the notations of the previous works.) The largest increasing subsequence
LIS(D) is an increasing subsequence with maximal size k. Correspondingly, LIS(W) on window
W is defined as a largest increasing subsequence on the set of last n elements. This is a well-studied
statistic that is used in bioinformatics and other fields. (See works of Gusfield [21] and Pevzner
[28].) Recent results in the streaming model include the papers by Liben-Nowell, Vee and Zhu
[26], Gopalan, Jayram, Krauthgamer and Kumar [20] and Sun and Woodruff [29]. The last paper
presents memory-optimal algorithm that uses Θ(k log L

k
) memory. For sliding windows Chen,

Yang and Yuan [12] present an algorithm that uses Ω(n) memory.
We extend the result of Sun and Woodruff [29] to sliding windows and improve the result

of Chen, Yang and Yuan [12]. Our algorithm uses O(1
ε
log n(k log L

k
+ log n)) bits and provides

ε-approximation of the length of LIS.

1.2.4 Geometric Mean

Let D be a stream of real numbers. Geometric mean is defined as GM(D) =
(∏N

i=1 pi

) 1
N

.

For sliding windows we define geometric mean as GM(W) =
(∏N

i=N−n pi

) 1
n

. To the best of
our knowledge, this problems was not considered in the sliding windows model. While we can
use exponential histograms [15] to maintain arithmetic and harmonic means, geometric mean
is not an additive function, and therefore it cannot be solved by this method. We present the
first approximation algorithm for geometric mean on sequence-based sliding windows that uses
O

(
1
ε
log n(k + log n)

)
space, where k is the number of bits needed to store the answer.

1.2.5 High-Level Ideas Behind Our Approach

Let f be (α, β)-smooth for which there exists an algorithm Λ that calculates f on D using g space
and h operation per element. To maintain f on sliding windows, we construct a data structure that
we call smooth histogram. It consists of a set of indexes x1 < x2 < · · · < xs = N and instances
of Λ for each bucket B(xi, N). The smooth histogram ensures the following properties of the
sequence. First, the last active element should be located between first and the second elements
of the sequence; that is, x1 ≤ N − n < x2. Since f is monotonic, this implies f(x2, N) ≤
f(W) ≤ f(x1, N). Second, the values of f on successive suffixes should be close, namely (1 −
α)f(xi, N) ≤ f(xi+1, N). (There is an exception, when f drops immediately after xi, that is
(1 − α)f(xi, N) > f(xi + 1, N), in which case we require xi+1 = xi + 1.) The first and second
requirements imply that f(x2, N) is an α-approximation of f on W . Finally, we ensure that f

6

is decreasing, requiring (1 − β)f(xi, N) > f(xi+2, N). Since f is polynomially bounded, we
conclude that s = O(1

β
log n). We maintain s instances of Λ and s timestamps and indexes, thus

space complexity is s(g+log n) = O(1
β

log n(g+log n)). It is easy to maintain a smooth histogram,
using (α, β)-smoothness of f . We ensure that an index u becomes a successor of index v < u only
if at some point we have (1− β)f(v,N) ≤ f(u, N). Since f is (α, β)-smooth this implies that for
any N ′ > N we have (1−α)f(v, N ′) ≤ f(u,N ′); thus the second requirement can be maintained.
To ensure the third property, we traverse the list and if (1−β)f(v,N) ≤ f(u,N) for some u that is
not a successor of v, we delete all indexes between u and v. This requires O(1

β
h log n) time. (The

time can be reduced to an amortized O(h) when Λ supports merging of buckets.) Similarly, we
solve the case when Λ approximates f on D, although the structure becomes more complicated.

Our approach is similar to exponential histograms in the sense that both methods capture grad-
ual lessening of f using a logarithmic number of Λ instances. However, there is a critical difference
between these approaches that makes our results possible. Exponential histograms divide W into
distinct blocks B1, . . . , Bk. This requires a strong assumption about Λ, namely the ability to merge
buckets. Further, the algorithm [15] requires f(Bi) to be close to

∑
j>i f(Bj), and that limits

applicability of exponential histograms to additive functions. Smooth histograms maintain f on
suffixes rather then on distinct parts of the window and require closeness between these suffixes,
eliminating the above restrictions. The ability to work with suffixes is due to the smoothness of f ;
thus it is a critical property.

1.3 Roadmap
Section 2 briefly describes smooth histograms and states our main results. In Section 3 we ap-
ply smooth histograms to approximate weakly additive functions, Lp norms, frequency moments,
length of largest increasing subsequence and geometric mean. Finally, in Section 4 we discuss our
future work on frequency moments.

2 Smooth Histograms
Definition 1. Function f is (α, β)-smooth if it preserves the following properties:

1. f(A) ≥ 0.

2. f(A) ≥ f(B) for B ⊆r A.

3. f(A) ≤ poly(n). 1

4. For any 0 < ε < 1 there exists α = α(ε, f) and β = β(ε, f) such that

• 0 < β ≤ α < 1.
1Similar to [15], we assume that f(A)/f(pN) ≤ poly(n). Otherwise, exponentially decreasing sequences will

require linear memory for both smooth and exponential histograms.

7

• If B ⊆r A and (1 − β)f(A) ≤ f(B) then (1 − α)f(A ∪ C) ≤ f(B ∪ C) for any
adjacent C.

In this section we assume that f is (α, β)-smooth and there exists an algorithm Λ that calculates
f (precisely or approximately) on the whole stream D. We construct α-approximation algorithms
for such f on sliding windows. Typically, α = ε, so we obtain ε-approximation; however, for
weakly additive functions, we put α = 1 − 1−ε

Cf
. First, we assume that Λ calculates f precisely

using g space and h operations per element. Λ applied on bucket B(i, j) is denoted by Λ(i, j).

Definition 2. A smooth histogram is a structure that consists of an increasing set of indexes XN =
{x1, . . . , xs = N} and s instances of algorithm Λ, namely Λ1, . . . , Λs with the following properties

1. px1 is expired, px2 is active or x1 = 0 and p0 is active.

2. For all i < s one of the following holds

(a) xi+1 = xi + 1 and f(xi+1, N) < (1− β)f(xi, N).

(b) (1− α)f(xi, N) ≤ f(xi+1, N) and if i + 2 ≤ s then f(xi+2, N) < (1− β)f(xi, N).

3. Λi = Λ(xi, N) maintains f(xi, N).

Lemma 1. It is possible to maintain a smooth histogram using O
(

1
β
(g + log n) log n

)
bits and

O
(

1
β
h log n

)
operations per element.

Proof. Note that the conditions 2.(a) and 2.(b) may overlap, so it is possible that both conditions
are true for some xi. For N = 1, we put x1 = 1, s = 1 and initiate Λ with px1 . Given a smooth
histogram at step N , and the new element pN+1, we execute the following update procedure.

I. For all i, calculate f(xi, N + 1) using Λi = Λ(xi, N) and pN+1.

II. Put s = s + 1 and xs = N + 1 and initiate new algorithm instance Λ(N + 1, N + 1).

III. For i = 1 . . . s− 2 do

(a) Find the largest j > i such that f(xj, N + 1) ≥ (1− β)f(xi, N + 1).

(b) Delete all xt, i < t < j and all instances Λ(xt, N), and shift the list accordingly.

IV. Find the smallest i such that pxi
is expired and pxi+1

is active. Delete all xj, j < i and Λj

structures and change the enumeration accordingly.

Below we prove that the update procedure maintains a smooth histogram. It follows from the
last operation that property 1 is preserved. Property 3 follows from the first two steps. To prove
property 2, let v < N + 1 be a fixed index from XN that was not deleted during the update
procedure. Let v′ be the successor of v in the sequence XN at step N ; i.e., for some i we had
xi = v, xi+1 = v′.

8

If v′ /∈ XN+1, let u and w be two successors of v in XN+1. By the update procedure, it must
be the case that f(u,N + 1) ≥ (1 − β)f(v, N + 1) ≥ (1 − α)f(v,N + 1) and f(w,N + 1) <
(1− β)f(v, N + 1). Thus, 2.(b) is correct for v.

If v′ ∈ XN+1 and v′ > v + 1, let N ′ ≤ N be the step when v′ became the successor of v. An
update procedure implies that f(v′, N ′) ≥ (1 − β)f(v, N ′) and since f is (α, β)-smooth we have
f(v′, N + 1) ≥ (1− α)f(v, N + 1). Let u be the successor (if one exists) of v′ in XN+1. Since v′

was not deleted, we have f(u,N + 1) < (1− β)f(v, N + 1). Thus, 2.(b) is correct for v.
Finally, if v′ ∈ XN+1 and v′ = v+1, we have two cases. If f(v′, N +1) < (1−β)f(v,N +1),

then 2.(a) is true. Otherwise, we have f(v′, N + 1) ≥ (1− β)f(v,N + 1) ≥ (1− α)f(v,N + 1).
Let u be the successor (if one exists) of v′ in XN+1. Similarly, f(u,N + 1) < (1− β)f(v, N + 1).
Thus, 2.(b) is correct for v, and property 2 is preserved for any v < N + 1.

Let us estimate size s of the sequence XN . By the properties above, we have that for any i either
f(xi+2, N) or f(xi+1, N) are less then (1 − β)f(xi, N). This and the fact that f is polynomially
bounded imply s = O

(
1
β

log n
)

. Since we maintain exactly s instances of algorithm Λ and

timestamps, the space complexity is O(s(g + log n)) = O
(

1
β
(g + log n) log n

)
, and the time

complexity per element is O(sh) = O
(

1
β
h log n

)
.

Theorem 1. Let f be a (α, β)-smooth function. If there exists an algorithm Λ that calculates pre-
cisely f on streams, uses space g and performs h operations per each element, then there exists an
algorithm Λ′ that calculates α-approximation of f on sliding windows and uses O

(
1
β
(g + log n) log n

)

bits and O
(

1
β
h log n

)
operations per element.

Proof. The algorithm maintains a smooth histogram and outputs f(x2, N) as an approximation
of f on the window. To prove that this is a α-approximation, let j be the index of the last active
element, so the precise value is f(j, N). If 2.(a) is correct for x1, then by property 1, j = x2

and the answer is precise. Otherwise 2.(b) is correct for x1, and we have, since f is monotonic:
f(j, N) ≥ f(x2, N) ≥ (1− α)f(x1, N) ≥ (1− α)f(j, N).

In many cases it is impossible to calculate f precisely. Below we show how to adapt approx-
imation algorithms to sliding windows. We assume that Λ maintains ε̂-approximation of f on D,
ε̂ ≤ β

4
, and uses g(ε̂) space and h(ε̂) operations per element. We call such approximation f ′.

Definition 3. The approximate smooth histogram is a structure that consists of an increasing set
of indexes XN = {x1, . . . , xs = N} and s instances of algorithm Λ, namely Λ1, . . . , Λs with the
following properties

1. px1 is expired, px2 is active or x1 = 0.

2. For all i < s, one of the following holds

(a) xi+1 = xi + 1 and f ′(xi+1, N) < (1− β
2
)f ′(xi, N).

(b) (1− α)f(xi, N) ≤ f(xi+1, N) and if i + 2 ≤ s then f ′(xi+2, N) < (1− β
2
)f ′(xi, N).

9

3. Λi = Λ(xi, N) maintains f ′(xi, N).

Lemma 2. It is possible to maintain an approximate smooth histogram using O
(

1
β
(g(ε̂) + log n) log n

)

bits and O
(

1
β
h(ε̂) log n

)
operations per element.

Proof. The update procedure repeats Lemma 1. For N = 1, we put x1 = 1, s = 1 and initiate
Λ with px1 . Given an approximate smooth histogram at step N , and the new element pN+1, we
execute the following update procedure.

I. For all i, calculate f ′(xi, N + 1) using Λi = Λ(xi, N) and pN+1.

II. Put s = s + 1 and xs = N + 1, and initiate a new algorithm instance Λ(N + 1, N + 1).

III. For i = 1 . . . s− 2 do

(a) Find the largest j > i such that f ′(xj, N + 1) ≥ (1− β
2
)f ′(xi, N + 1).

(b) Delete all xt, i < t < j and all instances Λ(xt, N), and shift the list accordingly.

IV. Find the smallest i such that pxi
is expired and pxi+1

is active. Delete all xj, j < i and Λj

structures, and change the enumeration accordingly.

It follows from the last operation that property 1 is preserved. Property 3 follows from the first two
steps. To prove property 2, let v < N + 1 be a fixed index from XN that was not deleted during
the update procedure. Let v′ be the successor of v in the sequence XN at step N ; i.e., for some i
we had xi = v, xi+1 = v′.

If v′ /∈ XN+1, let u and w be two successors of v in XN+1. By update procedure, it must be the
case that f ′(u,N + 1) ≥ (1− β

2
)f ′(v, N + 1), thus

(1− α)f(v, N + 1) ≤ (1− β)f(v, N + 1) ≤

(1− β

2
)
1− β

4

1 + β
4

f(v, N + 1) ≤ 1− β
2

1 + β
4

f ′(v, N + 1) ≤

f ′(u,N + 1)

1 + β
4

≤ f(u,N + 1).

Also, it must be the case that f ′(w, N + 1) < (1− β
2
)f ′(v,N + 1), thus, 2.(b) is correct for v.

If v′ ∈ XN+1 and v′ > v + 1, let N ′ ≤ N be the step when v′ became the successor of v. The
update procedure implies that f ′(v′, N ′) ≥ (1− β

2
)f ′(v, N ′) and thus (1−β)f(v, N ′) ≤ f(v′, N ′).

Since f is (α, β)-smooth we have f(v′, N + 1) ≥ (1 − α)f(v,N + 1). Let u be the successor (if
one exists) of v′ in XN+1. Since v′ was not deleted, we have f ′(u,N + 1) < (1− β

2
)f(v, N + 1).

Thus, 2.(b) is correct for v.
Finally, if v′ ∈ XN+1 and v′ = v+1, we have two cases. If f ′(v′, N +1) < (1− β

2
)f ′(v, N +1),

then 2.(a) is true. Otherwise, we have f(v′, N+1) ≥ (1−α)f(v, N+1), repeating the calculations

10

above. Let u be the successor of v′ in XN+1. Similarly, f ′(u,N +1) < (1− β
2
)f ′(v,N +1). Thus,

2.(b) is correct for v. Thus property 2 is preserved for any v < N + 1.
Properties of a histogram imply that for any i, either f ′(xi+2, N) or f ′(xi+1, N) are less then

(1 − β
2
)f ′(xi, N). This property, the fact that f ′ is at least a β

4
-approximation of f and the fact

that f is polynomially bounded, imply s = O
(

1
β

log n
)

. Since we maintain exactly s instances of

algorithm Λ, the space complexity is O(sg) = O
(

1
β
(g(ε̂) + log n) log n

)
, and the time complexity

per element is O(sh) = O
(

1
β
h log n

)
.

Theorem 2. Let f be a (α, β)-smooth function. If there exists an algorithms Λ that maintains an
ε̂-approximation of f on D, using space g(ε̂) and performing h(ε̂) operations per stream element,
then there exists an algorithm Λ′ that maintains a (α + ε̂)-approximation of f on sliding windows
and uses O

(
1
β
(g(ε̂) + log n) log n

)
bits and O

(
1
β
h(ε̂) log n

)
operations per element.

Proof. The algorithm maintains an approximate smooth histogram and outputs f ′(x2, N) as an
approximation of f on the window. Let j be the index of the last active element, so the precise
value is f(j, N). If 2.(a) is correct for x1, then by property 1, j = x2 and the answer is a ε̂-
approximation of f(j,N). Otherwise 2.(b) is correct for x1, and we have

(1 + α + ε̂)f(j,N) ≥ 1 + α + ε̂

1 + β
4

f ′(x2, N) ≥ f ′(x2, N).

Also,
(1− α− ε̂)f(j,N) ≤ (1− α− ε̂)f(x1, N) ≤

(1− ε̂)f(x2, N) ≤ f ′(x2, N).

Similarly, we can approximate functions for which there exists algorithm Λ that maintains a
(ε̂, δ)-approximation on D. The proof remains the same, we only need to ensure that probability of
failure is at most δ. Recall that the smooth histogram uses O(1

β
log n) instances of Λ. Thus, if for

each instance we limit the probability of failure by δβ
log n

then, by union bound, the total probability
of failure will be at most δ. We obtain the following theorem.

Theorem 3. Let f be a (α, β)-smooth function. If there exists an algorithm Λ that maintains an
(ε̂, δ)-approximation of f on D, using space g(ε̂, δ) and performing h(ε̂, δ) operations per stream
element, then there exists an algorithm Λ′ that maintains a (α + ε̂)-approximation of f on sliding
windows and uses O

(
1
β
(g(ε̂, δβ

log n
) + log n) log n

)
bits and O

(
1
β
h(ε̂, δβ

log n
) log n

)
operations per

element.

Note that the proofs above are correct for sequence-based and timestamp-based widows.

11

3 Applications

3.1 Weakly Additive Functions
Let f be a weakly additive that can be precisely computed on D using space g and time h. It was
proved in [15] that f can be approximated on sliding windows with relative error εC2

f + Cf − 1,
space O(1

ε
(g + log n) log n), and amortized time O(h). Smooth histograms improve the relative

error, preserving space and time complexities.

Lemma 3. Weakly additive function f with parameter Cf is (1− 1−ε
Cf

, ε)-smooth.

Proof. Let A be a bucket and B be its suffix such that (1 − ε)f(A) ≤ f(B). For any adjacent
bucket C we have

(1− (1− 1− ε

Cf

))f(A ∪ C) ≤ (1− ε)(f(A) + f(C)) ≤

f(B) + f(C) ≤ f(B ∪ C).

Corollary 1. There exists an algorithm that maintains a (1 − 1−ε
Cf

)-approximation f on sliding
windows using O(1

ε
(g + log n) log n) space and O(h) amortized time per element.

Proof. By applying Theorem 1, we almost obtain the result. The only problem is the logarithmic
number of operations per element. This can be reduced using the fact that sketches are composable.
Instead of recalculating f on buckets for each new element, we do it for every log n-th element,
collecting all new elements in an auxiliary buffer. Let v be index of the first collected point. Since
sketches are composable, we can compute f(u,N) using sketch for f(u + 1, N) and pu for any
v ≤ u < N . Using sketch for f(u, N), we compute f(xi, N) for all i. The rest of the algorithm
remains unchanged.

Also, it is shown in [15] that given an algorithm that maintains ε̂-approximation of f on D, f
can be approximated on sliding windows with relative error (1 + ε̂)2εC2

f + Cf − 1 + ε̂, using the
same space and time. Using Theorem 2 and repeating the arguments from Corollary 1, we obtain:

Corollary 2. There exists an algorithm that maintains a
(
1− 1−ε

Cf
+ ε̂

)
-approximation f on slid-

ing windows using O(1
ε
(g + log n) log n) space and O(h) amortized time per element.

Note that 1− 1−ε
Cf

≤ εC2
f + Cf − 1 and 1− 1−ε

Cf
+ ε̂ ≤ (1 + ε̂)2εC2

f + Cf − 1 + ε̂. For large Cf ,
the improvement becomes significant (relative improvement is comparable with Cf).

12

3.2 Lp Norms
We use smooth histograms to approximate Lp norms on sliding windows. Recall that for this
problem D represents a vector X = 〈x1, . . . , xm〉. Each element is a pair (i, a), i ∈ [m], a ∈ [M]
for some positive M ≤ nO(1). The value of the i-th coordinate is given by xi =

∑
(i,a)∈W a, and

Lp(W) is defined as (
∑m

i=1 xp
i)

1
p . For this model Datar, Gionis, Indyk and Motwani [15] showed

a (4ε(1 + ε)2 + 1 + ε, δ)-approximation for p ∈ [1, 2]. We extend this result to any p and improve
the approximation parameter for p ∈ [1, 2]. Below we prove that Lp is a smooth function.

Lemma 4. For p > 1 Lp is a (ε, εp

p
)-smooth function. For p < 1 Lp is a (ε, ε)-smooth function.

Proof. It is easy to see that in this model Lp satisfied the properties of function f ; i.e., it is mono-
tonic on buckets, polynomially bounded and positive. Let p > 1 and X,Y be vectors that are
represented by buckets A,B (B ⊆r A) such that (1 − εp

p
)Lp(A) ≤ Lp(B). Recall that in our

model, xi ≥ yi for all i ∈ [m]. We have

(1− εp)‖X‖p
p ≤ (1− εp

p
)p‖X‖p

p ≤ ‖Y ‖.
p

Since ‖X‖p
p ≥ ‖Y ‖p

p + ‖X − Y ‖p
p, we obtain ‖X − Y ‖p ≤ ε‖X‖p ≤ ε‖X + Z‖p for any Z that is

represented by adjacent bucket C (recall that zi ≥ 0). By triangle inequality

‖X + Z‖p ≤ ‖Y + Z‖p + ‖X − Y ‖p ≤ ‖Y + Z‖p + ε‖X + Z‖p.

That concludes the lemma for p > 1. For p < 1, let X, Y be vectors such that (1− ε)‖X‖ ≤ ‖Y ‖.
We have for any Z:

‖Y + Z‖p
p = ‖Y ‖p

p +
m∑

i=1

((yi + zi)
p − yp

i) ≥

(1− ε)p‖X‖p
p + (1− ε)p

m∑
i=1

((xi + zi)
p − xp

i) =

(1− ε)p‖X + Z‖p
p.

The inequality follows from the assumption that ‖Y ‖p ≥ (1 − ε)‖X‖p and the fact that function
f(x) = (x + a)p − xp is decreasing for x ≥ 0 and p < 1, a > 0.

For p > 2 we apply the algorithm of Bhuvanagiri, Ganguly, Kesh and Saha [8] for frequency
moments. In our model, frequency moments are simply Lp(x) = Fp(x)

1
p . Thus, for p > 1, the

ε-approximation for Fp is also the ε-approximation for Lp. Recall their result.

Theorem 4. [8] There exists an algorithm that computes a (ε, 3
4
)-approximation of Lp, p > 2 using

O
(

p2

ε
2+ 4

p
m1− 2

p log2 N(log m + log N)
)

bits.

13

Corollary 3. There exists an algorithm that uses Õ(m1− 2
p) memory and calculates a (ε + εp

4p
, δ)-

approximation of Lp, p > 2 norm over sliding windows.

Proof. We apply Theorem 3 and the algorithm from [8] (after amplification). The resulting space
complexity is O

(
p3

ε2p+4 m
1− 2

p log3 n(log m + log n) log log n
δε

)
.

For p < 1, similar to [15] we can apply the algorithm of Indyk [22]. Recall that this algo-
rithm provides a (ε, δ)-approximation of Lp(D), p ∈ [1, 2] and uses O(1

ε2
log M log 1

δ
) bits for each

sketch. Additionally, O(1
ε2

log M log m
δ

log 1
δ
) bits are required and are common for all sketches.

Since Lp(W) is a (ε, ε)-smooth function, we can apply Theorem 3 using the algorithm above.

Corollary 4. There exists an algorithm that calculates a (ε + ε
4
, δ)-approximation of Lp, p < 1

norm on sliding windows and uses space O
(

1
ε
log n(1

ε2
log M log log n

δε
+ log n)

)
.

For p ∈ [1, 2] we present two solutions. We can repeat the arguments above or we can apply
Corollary 1 noting that Lp

p, p ∈ [1, 2] is a weakly additive with Cf ≤ 2.

Corollary 5. It is possible to maintain a (ε + εp

p
, δ)-approximation of Lp, p ∈ [1, 2] over sliding

windows using O
(

1
εp log n(1

ε2
log M log log n

δε
+ log n)

)
bits. Also, it is possible to maintain a (1+ε

2
+

ε̂, δ)-approximation using O
(

1
ε
log n(1

ε2
log M log log n

δε
+ log n)

)
bits.

The second result strictly improves [15], while the first one significantly improves relative error
and increases memory requirements by 1

εp−1 .

3.3 Frequency Moments
The observations above are valid for frequency moments, for constant p.

Lemma 5. For p ≥ 1, Fp is a (ε, εp

pp)-smooth function. For p < 1, Fp is a (ε, ε)-smooth function.

Proof. Let p ≥ 1 and X, Y be two vectors such that
(

1− εp

pp

) m∑
i=1

xp
i ≤

m∑
i=1

yp
i .

We have
m∑

i=1

(xy − yi)
p ≤ εp

pp

m∑
i=1

xp
i

Thus for any vector Z that is added to X and Y , we have

(
m∑

i=1

(xy − yi)
p)

1
p ≤ ε

p
(

m∑
i=1

(xy + zi)
p)

1
p

and by triangle inequality

(
m∑

i=1

(yi + zi)
p)

1
p ≥

14

(
m∑

i=1

(xy + zi)
p)

1
p − (

m∑
i=1

(xi − yi)
p)

1
p ≥

(1− ε

p
)(

m∑
i=1

(xy + zi)
p)

1
p .

Thus,
m∑

i=1

(yi + zi)
p ≥ (1− ε

p
)p

m∑
i=1

(xy + zi)
p ≥

(1− ε)
m∑

i=1

(xy + zi)
p.

If p < 1 we have for X,Y, Z as above, assuming (1− ε)Fp(X) ≤ Fp(Y) :

m∑
i=1

(yi + zi)
p =

m∑
i=1

yp
i +

m∑
i=1

((yi + zi)
p − yp

i) ≥

(1− ε)
m∑

i=1

xp
i + (1− ε)

m∑
i=1

((xi + zi)
p − xp

i) =

(1− ε)
m∑

i=1

(xi + zi)
p.

The inequality follows from the assumption above and the fact that function (x + a)p − xp is
decreasing for p < 1, a > 0.

Now, we can apply the algorithm of Bhuvanagiri, Ganguly, Kesh and Saha [8].

Corollary 6. For constant p > 2, there exists an algorithm that uses Õ(m1− 2
p) memory and

calculates a (ε, δ)-approximation of p-th frequency moment over sliding windows.

Proof. The proof is identical to the proof of Corollary 3.

3.4 Length of Longest Increasing Subsequence
First, we show that our technique is applicable.

Lemma 6. LIS − length is a (ε, ε)-smooth function.

Proof. Let Y ⊆r X be two buckets such that (1 − ε)|LIS(X)| ≤ |LIS(Y)|. It is enough to
show that for any new element z we guarantee (1 − ε)|LIS(X ∪ {z})| ≤ |LIS(Y ∪ {z})|. If
|LIS(Y ∪{z})| > |LIS(Y)| or |LIS(X ∪{z})| = |LIS(X)|, the inequality obviously holds. We
prove below that these are the only possible cases. Assume, in contradiction, that |LIS(Y ∪{z})| =

15

|LIS(Y)| and |LIS(X ∪ {z})| > |LIS(X)|. Let x1, . . . , xi and y1, . . . , yj be indexes of some
longest increasing subsequences of X,Y , respectfully.

Under the above assumptions, xi 6= yj , since otherwise we can add z to LIS(Y). We prove that
xi > yj and pxi

< pyj
. Suppose, in contradiction, that xi ≤ yj . If pxi

> pyj
, then |LIS(Y ∪{z})| >

|LIS(Y)| since z > pxi
> pyj

. Otherwise if pxi
≤ pyj

then we can add pyj
to LIS(X) and increase

its length. Both cases contradict the assumptions. If xi > yj and pxi
≥ pyj

, then we can increase
|LIS(Y)| by adding pxi

.
Obviously x1 /∈ Y , otherwise we can increase |LIS(Y)| = |LIS(X)| by adding z. Let xl be

the largest index that does not belong to Y . If j < i − l, we violate the maximality of y1, . . . , yj

and if j = i − l, we violate the assumption that LIS(Y) cannot be increased by adding z; thus
j > i− l. In this case, it must be that pxl

> py1 , since otherwise we can replace xl+1, . . . , xi with
y1, . . . , yj and increase LIS(X). Thus we proved that pxl

> py1 .
Let s be the maximal number for which there exists xt > ys, and for every t s.t. ys < xt

we have pys < pxt . There exists at least one such number, namely y1. Indeed, we have, for any
xt > y1, py1 < pxl

≤ pxt . There exists at least one such t, since xi > yj > y1.
Let t be the minimal number such that ys < xt. Note that xt−1 < ys and pxt−1 ≤ pys+1 (oth-

erwise for every xt′ > xs+1 we have pxt′ ≥ pxt−1 > pys+1 that contradicts the maximality of s).
Therefore the following sequences are increasing: y1, . . . , ys, xt, . . . , xi and x1, . . . , xt−1, ys+1, . . . , yj .
So, it must be that j − s− 1 = i− t. But in this case we can increase LIS(Y) by adding z to the
first sequence. Therefore, the lemma is correct.

Therefore, we can apply Theorem 1 using the algorithm of Sun and Woodruff [29].

Corollary 7. Let D be a steam of integers such that pi ∈ [L]. There exists an algorithm that
computes a ε-approximation of |LIS(W)|, where W is the current window. The algorithm uses
space

O(
1

ε
log n(|LIS(W)| log

L

|LIS(W)| + log n)).

3.5 Geometric Mean

Let D be a stream of real numbers. Recall that GM(W) =
(∏N−n

i=N pi

) 1
n

. We assume that we need
k bits to store the results.

Corollary 8. There exists an algorithm that computes a ε-approximation of geometric mean over
sequence-based sliding windows using O

(
1
ε
(k + log n) log n

)
space.

Proof. We divide D into two sub-streams, D<1 = {pi|pi ≤ 1} and D>1 = {pi|pi ≥ 1}. The active
window W is correspondingly separated into W<1 and W>1. We define two auxiliary functions

on buckets h(B) =
(∏

i∈B pi

) 1
n and g(B) =

(∏
i∈B

1
pi

) 1
n

. We apply our method on these two
sub-streams and then combine the results to obtain the approximation. Note that n is fixed, but
W>1, W<1 are timestamp-based windows.

It is easy to see that h is (ε, ε)-smooth on D>1. Indeed, its is monotonic (for fixed n), poly-
nomially bounded, and new elements do not change the ratio h(A)

h(B)
for any buckets A, B. Thus,

16

we can maintain a ε-approximation of h(W) = GM(W>1) using O
(

1
ε
(k + log n) log n

)
mem-

ory. Similarly, g is a (ε, ε)-smooth function on D<1, and thus we obtain a ε-approximation of
g(W) = 1

GM(W<1)
. Dividing h by g, we obtain a 2ε-approximation of the geometrical mean.

4 Future Work on Frequency Moments
In the current paper we prove that Fp is (ε, εp

pp)-smooth, and thus smooth histograms can be used to

approximate frequency moments with Õ(ppm1− 2
p) bits. Thus, for constant p > 2 we obtain optimal

results. However, the additional factor of pp makes the smooth-histogram approach infeasible for
large p, which current paper does not handle. In a follow-up work [9], we show how to handle
frequency moments for arbitrary p. In particular, we show how to compute Fp using Õ(m1− 1

p) bits
for any p > 2.

References
[1] P. K. Agarwal, S. Har-Peled, and K. Varadarajan, ”Geometric approximation via coresets”,

Combinatorial and Computational Geometry (J. E. Goodman, J. Pach, and E. Welzl, eds.),
Math. Sci. Research Inst. Pub., Cambridge, 2005.

[2] C. Aggarwal (editor), “Data Streams: Models and Algorithms”, Springer Verlag, 2007.

[3] N. Alon, Y. Matias, M.Szegedy, “The space complexity of approximating the frequency mo-
ments”. Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pp. 20–29, 1996.

[4] A. Arasu, G. S. Manku, “Approximate counts and quantiles over sliding windows”, Pro-
ceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, 2004.

[5] B. Babcock, M. Datar, R. Motwani, “Sampling from a moving window over streaming data”,
Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, pp.
633–634, 2002.

[6] B. Babcock, M. Datar, R. Motwani, L. O’Callaghan, “Maintaining variance and k-medians
over data stream windows”, Proceedings of the twenty-second ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pp. 234–243, 2003.

[7] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, “An Information Statistics Approach
to Data Stream and Communication Complexity”, Proceedings of the 43rd Symposium on
Foundations of Computer Science, pp. 209–218, 2002.

[8] L. Bhuvanagiri, S. Ganguly, D. Kesh, C. Saha, “Simpler algorithm for estimating frequency
moments of data streams”, Proceedings of the seventeenth annual ACM-SIAM symposium on
Discrete algorithm, pp. 708–713, 2006.

17

[9] V. Braverman, R. Ostrovsky, C. Zaniolo, “Succinct sampling on streams”,
http://arxiv.org/abs/cs.DS/0702151, 2007.

[10] A. Chakrabarti, S. Khot, X. Sun, “Near-optimal lower bounds on the multi-party communi-
cation complexity of set-disjointness”, Proceedings of the 18th Annual IEEE Conference on
Computational Complexity, 2003.

[11] T. Chan, B. Sadjad, “Geometric Optimization Problems Over Sliding Windows”, Proc 15th
Annual International Symposium on Algorithms and Computation, pp. 246–258, 2004.

[12] E. Chen, L. Yang, H. Yuan, “Longest Increasing Subsequences in Windows based on Canoni-
cal Antichain Partition”,Proceedings of 16th Annual International Symposium on Algorithms
and Computation, pp. 1153–1162, 2005.

[13] Y. Chi, H. Wang, P. S. Yu, R. R. Muntz, “Moment: Maintaining Closed Frequent Itemsets
over a Stream Sliding Window”, Fourth IEEE International Conference on Data Mining
(ICDM’04), pp. 59–66, 2004.

[14] D. Coppersmith , R. Kumar, “An improved data stream algorithm for frequency moments”,
Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pp.151–
156 , 2004.

[15] M. Datar, A. Gionis, P. Indyk, R. Motwani, “Maintaining stream statistics over sliding win-
dows”, SIAM J. Comput. 31, 6, pp.1794–1813, 2002.

[16] M. Datar, S. Muthukrishnan, “Estimating Rarity and Similarity over Data Stream Windows”,
Proceedings of the 10th Annual European Symposium on Algorithms, pp.323–334, 2002.

[17] J. Feigenbaum, S. Kannan, J. Zhan, “Computing diameter in the streaming sliding-window
models”, Algorithmica 41, pp. 25–41, 2004.

[18] S. Ganguly. “Estimating Frequency Moments of Update Streams using Random Linear Com-
binations”. Proceedings of the 8th International Workshop on Randomized Algorithms, pp.
369-380, 2004.

[19] P. B. Gibbons, S. Tirthapura, “Distributed streams algorithms for sliding windows”, Pro-
ceedings of the fourteenth annual ACM symposium on Parallel algorithms and architectures,
pp.10–13, 2002.

[20] P. Gopalan, T. S. Jayram, R. Krauthgamer, R. Kumar, “Estimating the Sortedness of a Data
Stream”, Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2007.

[21] D. Gusfield, “Algorithms on Strings, Trees, and Sequences”, Cambridge University Press,
1997.

[22] P. Indyk, “Stable Distributions, Pseudorandom Generators, Embeddings and Data Stream
Computation”, Proc. IEEE Symp. Foundations of Computer Science, pp. 189–197, 2000.

18

[23] P. Indyk, D. Woodruff, “Optimal approximations of the frequency moments of data streams”,
Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pp.202–
208, 2005.

[24] L. K. Lee, H. F. Ting, “Frequency counting and aggregation: A simpler and more efficient
deterministic scheme for finding frequent items over sliding windows”, Proceedings of the
twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems
(PODS ’06), pp. 290–297, 2006.

[25] L. K. Lee, H. F. Ting, “Maintaining significant stream statistics over sliding windows”, Pro-
ceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pp.724–
732, 2006.

[26] D. Liben-Nowell, E. Vee, A. Zhu, “Finding Longest Increasing and Common Subsequences
in Streaming Data”, 11th International Computing and Combinatorics Conference, 2005.

[27] S. Muthukrishnan, “Data Streams: Algorithms And Applications” Foundations and Trends
in Theoretical Computer Science, Volume 1, Issue 2.

[28] P. Pevzner, “Computational Molecular Biology”, Elsevier Science Ltd., 2003.

[29] X. Sun, D. Woodruff, “The Communication and Streaming Complexity of Computing the
Longest Common and Increasing Subsequences”, SODA, 2007.

19

