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Abstract

Consider the following problem: Alice wishes to maintain her email using a storage-provider
Bob (such as a Yahoo! or hotmail e-mail account). This storage-provider should provide for
Alice the ability to collect, retrieve, search and delete emails but, at the same time, should learn
neither the content of messages sent from the senders to Alice (with Bob as an intermediary),
nor the search criteria used by Alice. A trivial solution is that messages will be sent to Bob in
encrypted form and Alice, whenever she wants to search for some message, will ask Bob to send
her a copy of the entire database of encrypted emails. This however is highly inefficient. We
will be interested in solutions that are communication-efficient and, at the same time, respect
the privacy of Alice. In this paper, we show how to create a public-key encryption scheme for
Alice that allows PIR searching over encrypted documents. Our solution provides a theoretical
solution to an open problem posed by Boneh, DiCrescenzo, Ostrovsky and Persiano on “Public-
key Encryption with Keyword Search”, providing the first scheme that does not reveal any partial
information regarding user’s search (including the access pattern) in the public-key setting and
with non-trivially small communication complexity. The main technique of our solution also
allows for Single-Database PIR writing with sublinear communication complexity, which we
consider of independent interest.
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1 Introduction

Problem Overview Consider the following problem: Alice wishes to maintain her email using
a storage-provider Bob (such as Yahoo! or hotmail e-mail account). She publishes a Public Key
for a semantically-secure Public-Key Encryption scheme, and asks all people to send their e-mails’
encrypted under her Public Key to the intermediary Bob. Bob (the storage-provider) should allow
Alice to collect, retrieve, search and delete emails at her leisure. In known implementations of
such services, either the content of the emails is known to the storage-provider Bob (and then the
privacy of both Alice and the senders is lost) or the senders can encrypt their messages to Alice, in
which case privacy is maintained, but sophisticated services (such as search by keyword) cannot be
easily performed and, more importantly leak information to Bob, such as Alice’s access pattern. Of
course, Alice can always ask Bob, the storage-provider, to send her a copy of the entire database of
emails. This however is highly inefficient in terms of communication, which will be a main focus in
this work. In all that follows, we will denote the number of encrypted documents that Bob stores
for Alice by the variable n.

In this paper, we will be interested in solutions that are communication-efficient and, at the
same time, respect the complete privacy of Alice. A seemingly related concept is that of Private
Information Retrieval (PIR) (e.g., [13, 23, 10]). However, existing PIR solutions either allow only
for retrieving a (plain or encrypted) record of the database by address, or allow for search by
keyword [12, 23, 25] in a non-encrypted data. The challenge of creating a Public-Key Encryption
that allows for keyword search, where keywords are encrypted in a probabilistic manner, remained
an open problem prior to this paper.

In our solution, Alice creates a public key that allows arbitrary senders to send her encrypted e-
mail messages. Each such message M is accompanied by an “encoded” list of keywords in response
to which M should be retrieved. These email messages are collected for Alice by Bob, along with
the “encoded” keywords. When Alice wishes to search in the database maintained by Bob for
e-mail messages containing certain keywords, she is able to do so in a communication-efficient way
and does not allow Bob to learn anything about the messages that she wishes to read, download or
erase. In particular, Alice is not willing to reveal what particular messages she downloads from the
mail database, from which senders these emails are originating and/or what is the search criterion,
including the access pattern.

Furthermore, our solution allows the communication from any sender to Bob to be non-
interactive (i.e. just a single message from the sender to Bob), and allow a single round of commu-
nication from Alice to Bob and back to Alice, with total communication complexity sublinear in n.
Furthermore, we show a simple extension that allows honest-but-curious Bob to tolerate malicious
senders, who try to corrupt messages that do not belong to them in Bob’s database, and reject all
such messages with overwhelming probability.

Comparison with Related Work Recently, there was a lot of work on searching on encrypted
data (see [7, 6] and references therein). However, all previous solutions either revealed some partial
information about the data or about the search criterion, or work only in private-key settings. In
such settings, only entities who have access to the private key can do useful operations; thus, it is
inappropriate for our setting, where both the storage-provider and the senders of e-mail messages
for Alice have no information on her private key. We emphasize that, in settings that include only a
user Alice and a storage-provider, the problem is already solved; for example, one can apply results
of [17, 27, 9, 7]. However, the involvement of the senders who are also allowed to encrypt data for
Alice (but are not allowed to decrypt data encrypted by other senders) requires using public-key
encryption. In contrast to the above work, we show how to search, in a communication-efficient
manner, on encrypted data in a public-key setting, where those who store data (encrypted with a
public key of Alice) do not need to know the private key under which this data is encrypted. The
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only previous results for such a scenario in the public-key setting, is due to Boneh et al. [6] and
Abddalla et al. [1] who deal with the same storage-provider setting we describe above; however,
their solution reveals partial information; namely, the particular keyword that Alice is searching
for is given by her, in the clear, to Bob (i.e., only the content of the email messages is kept private
while the information that Alice is after is revealed). This, in particular, reveals the access pattern
of the user. The biggest problem left was creating a scheme that hides the access pattern as well.
This is exactly what we achieve in this paper. That is, we show how to hide all information in a
semantically-secure way.

As mentioned, private information retrieval (PIR) is a related problem that is concerned with
communication-efficient retrieval of public (i.e., plain) data. Extensions of the basic PIR primitive
(such as [12, 23], mentioned above, and, more recently, [22, 15, 25]) allow more powerful keyword
search un-encrypted data. Therefore, none of those can directly be used to solve the current problem.

It should also be noted that our paper is in some ways only a partial solution to the problem.
Specifically, we put the following constraint in our model: the number of total messages associated
to each keyword is bounded by a constant. It is an interesting question as to whether this condition
can be relaxed, while keeping communication non-trivially small and maintaining the strict notions
of security presented here.

Our Techniques We give a short overview of some of the tools that we use. The right combina-
tion of these tools is what allows for our protocol to work.

As a starting point, we examine Bloom filters (see Section 2.1 for a definition). Bloom filters
allow us to use space which is not proportional to the number of all potential keywords (which
is typically huge) but rather to the maximal number of keywords which are in use at any given
time (which is typically much smaller). That is, the general approach of our protocols is that the
senders will store in the database of the storage-provider some extra information (in encrypted
form) that will later allow the efficient search by Alice. Bloom filters, allow us to keep the space
that is used to store this extra information “small”. The approach is somewhat similar to Goh’s
use of Bloom filters [16]; the important difference is that in our case we are looking for a public-key
solution, whereas Goh [16] gives a private-key solution. This makes our problem more challenging,
and our use Bloom filter is somewhat different. Furthermore, we require the Bloom filters in our
application to encode significantly more information than just set membership. We modify the
standard definitions of Bloom filters to accommodate the additional functionality.

Recall that the use of Bloom filters requires the ability to flip bits in the array of extra in-
formation. However, the identity of the positions that are flipped should be kept secret from the
storage-provider (as they give information about the keywords). This brings us to an important
technical challenge in this work: we need a way to specify an encrypted length-n unit vector ei (i.e.,
a length n vector with 1 in its i-th position and 0’s elsewhere) while keeping the value i secret, and
having a representation that is short enough to get communication-efficiency beyond that of the
trivial solution. We show that a recent public-key homomorphic-encryption scheme, due to Boneh,
Goh and Nissim [5], allows us to obtain just that. For example, one can specify such a length-n
unit vector using communication complexity which is

√
n times a security parameter.

Finally, for Alice to read information from the array of extra information, she applies efficient
PIR schemes, e.g. [23, 10], that, again, allow keeping the keywords that Alice is after secret.

We emphasize that all the communication in the protocol is sub-linear in n. This includes both
the communication from the senders to the storage-provider Bob (when sending email messages)
and the communication from Alice to Bob (when she retrieves/searches for messages). Furthermore,
we allow Alice to delete messages from Bob’s storage in a way that hides from Bob which messages
have been deleted. Our main theorem is as follows:

MAIN THEOREM (informal): There exists Public-Key Encryption schemes that support
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sending, reading and writing into remote server (honest-but-curious Bob) with the following com-
munication complexity:

• O(
√

n log3 n) for sending a message from any honest-but-curious Sender to Bob. In case the
sender is malicious, the communication complexity for sending a message becomesO(

√
n log n·

polylog(n))

• O(polylog(n)) for reading by Alice from Bob’s (encrypted) memory.

• O(
√

n log3 n) for deleting messages by Alice from Bob’s memory.

Organization: In Section 2, we explain and develop the tools needed for our solutions. Section
3 defines the properties we want our protocols to satisfy. Finally, Section 4 gives the construction
and its analysis.

1.1 Reference Table of Notation

For the reader’s convenience, we provide a table of the most frequently used notation in this work.

• n – size of e-mail database

• s – a security parameter

• k – number of hash functions used in Bloom filter

• m – size of Bloom filter hash table

• {hi}k
i=1 – Bloom filter hash functions

• Hw – set of hash images for a word w ∈ {0, 1}∗, i.e. {hi(w) | i ∈ [k]}
• Bj – a buffer in a Bloom filter with storage (so, j ∈ [m])

• σ – size of fixed length buffers in a Bloom filter with storage

• l – size of the associated values in a Bloom filter with storage

• X – a message sender

• Y – message receiver (owner of public key)

• S – owner of remote storage (mail server)

• K – a set of keywords

• M – a message

• (K, E ,D) – key generation, encryption and decryption, respectively

• c – a constant, greater than 1

• λ – maximum number of messages associated to a specific keyword

• θ – maximum size of a keyword set associated to a specific message
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2 Ingredients

We will make use of several basic tools, some of which are being introduced for the first time in
this paper. In this section, we define (and create, if needed) these tools, as well as outline their
utility in our protocol.

2.1 Bloom Filters

Bloom filters [4] provide a way to probabilistically encode set membership using a small amount of
space, even when the universe set is large. The basic idea is as follows:

Choose an independent set of hash functions {hi}k
i=1, where each function hi : {0, 1}∗ −→ [m].

Suppose S = {ai}l
i=1 ⊂ {0, 1}∗. We set an array T = {ti}m

i=1 such that ti = 1 ⇐⇒ ∃j ∈ [k] and
j′ ∈ [l] such that hj(aj′) = i. Now to test the validity of a statement like “a ∈ S”, one simply
verifies that thi(a) = 1, ∀i ∈ [k]. If this does not hold, then certainly a 6∈ S. If the statement does
hold, then there is still some probability that a 6∈ S, however this can be shown to be negligible.
Optimal results are obtained by having m proportional to k; in this case, it can be shown that
the probability of an inaccurate positive result is negligible as k increases, as will be thoroughly
demonstrated in what follows.

This work will use a variation of a Bloom filter, as we require more functionality. We would
like our Bloom filters to not just store whether or not a certain element is in a set, but also to
store some values v ∈ V which are associated to the elements in the set (and to preserve those
associations).

Definition 2.1 Let V be a finite set. A (k,m)-Bloom Filter with Storage is a collection {hi}k
i=1

of functions, with hi : {0, 1}∗ −→ [m] for all i, together with a collection of sets, {Bj}m
j=1, where

Bj ⊆ V . If a ∈ {0, 1}∗ and v ∈ V , then to insert a pair (a, v) into this structure, v is added to Bhi(a)

for all i ∈ [k]. Then, to determine whether or not a ∈ S, one examines all of the sets Bhi(a) and
returns true if all are non-empty. The set of values associated with a ∈ S is simply

⋂
i∈[k] Bhi(a).

Note: every inserted value is assumed to have at least one associated value.

Next, we analyze the total size of a (k,m)-Bloom filter with storage. For the purpose of analysis,
the functions hi will as usual, be modeled as uniform, independent randomness. For w ∈ {0, 1}∗,
define Hw = {hi(w) | i ∈ [k]}.

Claim 2.2 Let ({hi}k
i=1, {Bj}m

j=1) be a (k, m)-Bloom filter with storage as described in Defini-
tion 2.1. Suppose the filter has been initialized to store some set S of size n and associated values.
Suppose also that m = dcnke where c > 1 is a constant. Denote the (binary) relation of element-
value associations by R(·, ·). Then, for any a ∈ {0, 1}∗, the following statements hold true with
probability 1− neg(k), where the probability is over the uniform randomness used to model the hi:

1. (a ∈ S) ⇐⇒ (Bhi(a) 6= ∅ ∀i ∈ [k])

2.
⋂

i∈[k] Bhi(a) = {v | R(a, v) = 1}

Proof: (1., ⇒) Certainly if Bhi(a) = ∅ for some i ∈ [k], then a was never inserted into the
filter, and a /∈ S. (⇐) Now suppose that Bhi(a) 6= ∅ for every i ∈ [k]. We’d like to compute the
probability that for an arbitrary a ∈ {0, 1}∗,

Ha ⊂
⋃

w∈S

Hw
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i.e., a random element will appear to be in S by our criteria. We model each evaluation of the
functions hi as independent and uniform randomness. There were a total of nk (not necessarily
distinct) random sets modified to insert the n values of S into the filter. So, we only need to
compute the probability that all k functions place a in this subset of the Bj ’s. By assumption,
there are a total of dcnke sets where c > 1 is a constant. Let Xk,k′ denote the random variable
that models the experiment of throwing k balls into dcnke bins and counting the number that land
in the first k′ bins. For a fixed insertion of the elements of S into our filter and letting k′ be the
number of distinct bins occupied, Xk,k′ represents how close a random element appears to being
in S according to our Bloom filter. More precisely, Pr[Xk,k′ = k] is the probability that a random
element will appear to be in S for this specific situation. Note that Xk,k′ is a sum of independent
(by assumption) Bernoulli trials, and hence is distributed as a binomial random variable with
parameters, (k, k′

cnk ), where k′ ≤ nk. Hence,

Pr[Xk,k′ = k] =
( k′

cnk

)k
≤

(1
c

)k

So, we’ve obtained a bound that is negligible in k, independent of k′. Hence, if we let Yk be the
experiment of sampling k′ by throwing nk balls into dcnke bins and counting the distinct number of
bins, then taking a random sample from the variable Xk,k′ and returning 1 if and only if Xk,k′ = k,
then Yk is distributed identically to the variable that describes whether or not a random a ∈ {0, 1}∗
will appear to be in S according to our filter. Now, since we have Pr[Xk,k′ = k] < neg(k) and the
bound was independent of k′, it is a trivial exercise to see that Pr[Yk = 1] < neg(k) which is exactly
what we wanted to show.

(2.) This argument is quite similar to part 1. (⊇) If R(a, v) = 1, then the value v has been
inserted and associated with a and by definition, v ∈ Bhi(a) for every i ∈ [k]. (⊆) Now suppose a ∈ S
and v ∈ Bhi(a) for every i ∈ [k]. The probability of this event randomly happening independent of
the relation R is maximized if every other element in S is associated with the same value. And in
this case, the problem reduces to a false positive for set membership with (n− 1)k writes if a ∈ S,
or the usual nk if a /∈ S. This has already been shown to be negligible in part 1. ¥

In practice, we will need some data structure to model the sets of our Bloom filter with storage,
e.g. a linked list. However, in this work we will be interested in oblivious writing to the Bloom filter,
in which case a linked list seems quite inappropriate as the dynamic size of the structure would
leak information about the writing. So, we would like to briefly analyze the total space required
for a Bloom filter with storage if it is implemented with fixed-length buffers to represent the sets.
Making some needed assumptions about uniformity of value associations, we can show that with
overwhelming probability (exponentially close to 1 as a function of the size of our structure) no
buffer will overflow.

Claim 2.3 Let ({hi}k
i=1, {Bj}m

j=1) be a (k,m)-Bloom filter with storage as described in Definition
2.1. Suppose the filter has been initialized to store some set S of size n and associated values.
Again, suppose that m = dcnke where c > 1 is a constant, and denote the relation of element-value
associations by R(·, ·). Let λ > 0 be any constant. If for every a ∈ S we have that |{v |R(a, v) =
1}| ≤ λ then

Pr
[

max
j∈[m]

{|Bj |} > σ
]

< neg(σ)

Again, the probability is over the uniform randomness used to model the hi.

Proof: To begin, let us analyze the case of λ = 1, so there will be a total of nk values placed
randomly into the dcnke buffers. Let Xj be the random variable that counts the size of Bj after the
nk values are randomly placed. Xj of course has a binomial distribution with parameters (nk, 1

cnk ).
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Hence E[Xj ] = (1/c). If (1 + δ) > 2e, we can apply a Chernoff bound to obtain the following
estimation:

Pr[Xj > (1 + δ)/c] < 2−δ/c

Now, for a given σ we’d like to compute Pr[Xj > σ]. So, set (1+ δ)/c = σ and hence δ/c = σ−1/c.
The bound then gives us:

Pr[Xj > σ] < 2−σ+1/c = 2−σ2(1/c) = neg(σ)

Then by the union bound, the probability that any Xj has more values than σ is also negligible
in σ. Now in the case of λ > 1, what has changed? Our analysis above treated the functions as
uniform randomness, but to associate additional values to a specific element of a ∈ S the same
subset of buffers (Ha in our notation) will be written to repeatedly- there is no more randomness to
analyze. Each buffer will have at most a factor of λ additional elements in it, so our above bound
becomes neg(σ/λ) which is still neg(σ) as λ is an independent constant. ¥

So, we can implement a (k, m)-Bloom filter with storage using fixed-length buffers. However, the
needed length of such buffers depends on the maximum number of values that could be associated
to a specific a ∈ S. A priori, this is bounded only by |V |, the size of the value universe: for it
could be the case that all values are associated to a particular a ∈ S, and hence the buffers of
Ha would need to be as large as this universe. But, since we wanted fixed-length buffers ahead of
time, we can’t assume that we can get away with smaller buffers at any location. In our eventual
application of these structures, the (k,m)-Bloom filter with storage would be of no utility without a
bound on the number of associated values to a particular a ∈ S. So, we will enforce a “uniformity”
constraint; namely, that the number of values associated to each word is bounded by a constant.
We summarize with the following observation.

Observation 2.4 One can implement a (k,m)-Bloom filter with storage by using fixed-length ar-
rays to store the sets Bj, with the probability of losing an associated value negligible in the length
of the arrays. The total size of such a structure is linear in the following constants and variables:

1. n — The maximum number of elements that the filter is designed to store.

2. k — The number of functions (hi) used, which serves as a correctness parameter.

3. σ — The size of the buffer arrays, which serves as a correctness parameter. Note that σ
should be chosen to exceed λ, the maximum number of values associated to any single element
of the set.

4. l — The storage size of an associated value.

5. c — Any constant greater than 1.

So, for our application of public-key storage with keyword search, if we assume that there are as
many keywords as there are messages, then we have created a structure of size O(n · l) = O(n log n)
to hold the keyword set and the message references. However, the correctness parameter σ has
logarithmic dependence on n, leaving us with O(n log2 n).

2.1.1 Oblivious Modification

For our application, we will need message senders to update the contents of a Bloom filter with
storage. However, all data is encrypted under a key which neither they, nor the storage provider has.
So, they must write to the buffers in a somewhat oblivious way- they will not (and cannot) know
what areas of a buffer are already occupied, as this will reveal information about the user’s data,
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and the message-keyword associations. One model for such a writing protocol has been explored
by Ostrovsky and Skeith, in their work on private keyword searches [25]. They provide a method
for obliviously writing to a buffer which with overwhelming probability in independent correctness
parameters, is completely correct: i.e., there is a method for extracting documents from the buffer
which outputs exactly the set of documents which were put into it.

In [25], the method for oblivious buffer writing is simply to write messages at uniformly random
addresses in a buffer, except to ensure that data is recoverable with very high probability, messages
are written repeatedly to an appropriately sized buffer, which has linear dependence on a correctness
parameter. And to ensure that no additional documents arise from collisions, a “collision detection
string” is appended to each document from a special distribution which is designed to not be
closed under sums. We can apply these same methods here, which will allow message senders to
update an encrypted Bloom filter with storage, without knowing anything about what is already
contained in the encrypted buffers. For more details on this approach, see the appendix (Section
5). Another approach to this situation was presented in the work of Bethencourt, Song, and Waters
[3], which solves a system of linear equations to recover buffer contents. These methods may also be
applicable, but require additional interaction to evaluate a pseudo-random function on appropriate
input.

So, with an added factor of a correctness parameter to the buffer lengths, one can implement
and obliviously update an encrypted Bloom filter with storage, using the probabilistic methods of
[25], or [3].

As a final note on our Bloom filters with storage, we mention that in practice, we can replace
the functions hi with pseudo-random functions in which case our claims about correctness are still
valid, only with a computational assumption in place of the assumption about the hi being truly
random, provided that the participating parties are non-adaptive1.

So, we now have an amicable data structure to work with, but there is a piece of the puzzle
missing: this data structure will be held by a central storage provider that we’d like to keep in
the dark regarding all operations performed on the data. We need to give message senders a way
to update this data structure without revealing to the storage provider any information about the
update, and to do so with small communication. This brings us to our next ingredient:

2.2 Modifying Encrypted Data in a Communication Efficient Way

Our next tool is that of encrypted database modification. This will allow us to privately manipulate
the Bloom filters that we constructed in the preceding section. The situation is as follows:

• A database owner holds an array of ciphertexts {ci}n
i=1 where the ciphertexts ci = E(vi) are

encrypted using a public-key for which he does not have the private key.

• A user would like to modify one plaintext value vi in some way, without revealing to the
database owner which value was modified, or how it was modified.

Furthermore, we would like to minimize the communication between the parties beyond the trivial
O(n) solution which could be based on any group homomorphic encryption. Using the cryptosystem

1In the case of malicious message senders, we cannot reveal the seeds to the random functions and still guarantee
correctness, however, we can entrust the storage provider with the seeds, and have the message senders execute a
protocol for secure two-party computation with the storage provider to learn the value of the functions. This can
be accomplished without the storage provider learning anything, and with the message sender learning only hi(w)
and nothing else. An example of such a protocol can be found in the work of Katz and Ostrovsky [20] if we disallow
concurrency, and the work of Canetti, Lindell, Ostrovsky, and Sahai [11] to allow concurrency. Here, the common
reference string can be provided as part of the public key. These solutions, of course, require additional rounds of
communication between the senders and the storage provider, and additional communication. However, the size of
the communication is proportional to the security parameter and is independent of the size of the database. We defer
this and other extensions to the full version of the paper.
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of Boneh, Goh, and Nissim [5], we can accomplish this with communication O(
√

n), where n is the
size of the database.

The important property of the work of [5], for our paper, is the additional homomorphic property
of the cryptosystem: specifically, in their system, one can compute multivariate polynomials of total
degree 2 on ciphertexts. i.e., if E is the encryption map and if

F =
∑

1≤i≤j≤u

aijXiXj

then from an array of ciphertexts, {cl = E(xl)}u
l=1, then there exists some function F̃ on ciphertexts

(which can be computed using public information alone) such that

D(F̃ (c1, ..., cu)) = F (x1, ..., xu)

Applying such a cryptosystem to encrypted database modification is trivial. Suppose {xij}
√

n
i,j=1

is our database (not encrypted). Then to increment the value of a particular element at position
(i∗, j∗) by some value α, we can proceed as follows: Create two vectors v, w of length

√
n where,

vi = δii∗ and wj = αδjj∗

(here δk` = 1 when k = ` and 0 otherwise). Then

viwj =
{

α if (i = i∗ ∧ j = j∗)
0 otherwise

Then, we wish to add this value viwj to the i, j position of the database. Note that, for each
i, j, we are just evaluating a simple polynomial of total degree two on vi, wj and the data element
xij . So, if we are given any cryptosystem that allows us to compute multivariate polynomials of
total degree two on ciphertexts, then we can simply encrypt every input (the database, and the
vectors v, w) and perform the same computation which will give us a private database modification
protocol with communication complexity O(

√
n).

We formalize as follows. Suppose (K, E ,D) is a CPA-secure public-key encryption scheme that
allows polynomials of total degree two to be computed on ciphertexts, as described above. Suppose
also that an array of ciphertexts {cl = E(xl)}n

l=1 is held by a party S, which have been encrypted
under some public key, Apublic. Suppose that n is a square (if not, it can always be padded by
< 2

√
n + 1 extra elements to make it a square). Define F (X, Y, Z) = X + Y Z. Then by our

assumption, there exists some F̃ such that D(F̃ (E(x), E(y), E(z))) = F (x, y, z) for any plaintext
values x, y, z. We define a two party protocol ModifyU ,S(l, α) by the following steps, where l and α
are private inputs to U :

1. U computes i∗, j∗ as the coordinates of l (i.e., i∗ and j∗ are the quotient and remainder of
l/n, respectively).

2. U sends {vi = E(δii∗)}
√

n
i=1, {wj = E(αδjj∗)}

√
n

j=1 to S where all values are encrypted under
Apublic.

3. S computes F̃ (cij , vi, wj) for all i, j ∈ [
√

n], and replaces each cij with the corresponding
resulting ciphertext.

By our remarks above, this will be a correct database modification protocol. It is also easy to
see that it is private, in that it resists a chosen plaintext attack. In a chosen plaintext attack, an
adversary would ask many queries consisting of requests for the challenger to execute the protocol
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to modify positions of the adversary’s choice. But all that is exchanged during these protocols is
arrays of ciphertexts for which the plaintext is known to the adversary. Distinguishing two different
modifications is precisely the problem of distinguishing two finite arrays of ciphertexts, which is
easily seen to be infeasible assuming the CPA-security of the underlying cryptosystem and then
using a very standard hybrid argument.

3 Definitions

In what follows, we will denote message sending parties by X , a message receiving party will be
denoted by Y, and a server/storage provider will be denoted by S.

Definition 3.1 A Public Key Storage with Keyword Search consists of the following probabilistic
polynomial time algorithms and protocols:

• KeyGen(1s): Outputs public and private keys, Apublic and Aprivate of length s.

• SendX ,S(M, K,Apublic) This is either a non-interactive or interactive two-party protocol that
allows X to send the message M to a server S, encrypted under some public key Apublic, and
also associates M with each keyword in the set K. The values M,K are private inputs that
only the message-sending party X holds.

• RetrieveY,S(w, Aprivate): This is a two party protocol between a user Y and a server S that
retrieves all messages associated with the keyword w for the user Y. The inputs w, Aprivate

are private inputs held only by Y. This protocol also removes the retrieved messages from the
server and properly maintains the keyword references.

We now describe correctness and privacy for such a system.

Definition 3.2 Let Y be a user, X be a message sender and let S be a server/storage provider.
Let Apublic, Aprivate ←− KeyGen(1s). Fix a finite sequence of messages and keyword sets:

{(Mi,Ki)}m
i=1 .

Suppose that, for all i ∈ [m], the protocol SendX ,S(Mi,Ki, Apublic) is executed by X and S. Denote
by Rw the set of messages that Y receives after the execution of RetrieveY,S(w, Aprivate). Then, a
Public Key Storage with Keyword Search is said to be correct on the sequence {(Mi,Ki)}m

i=1 if

Pr
[
Rw = {Mi | w ∈ Ki}

]
> 1− neg(1s)

for every w, where the probability is taken over all internal randomness used in the protocols Send
and Retrieve. A Public Key Storage with Keyword Search is said to be correct if it is correct on all
such finite sequences.

Definition 3.3 A Public Key Storage with Keyword Search is said to be (n, λ, θ)-correct if whenever
{(Mi,Ki)}m

i=1 is a sequence such that

• m ≤ n

• |Ki| < θ, for every i ∈ [m], and

• for every w ∈ ⋃
i∈[m] Ki, at most λ messages are associated with w

then, it is correct on {(Mi,Ki)}m
i=1 in the sense of Definition 3.2.
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For privacy, there are several parties involved, and hence there will be several definitional
components.

Definition 3.4 We define Sender-Privacy in terms of the following game between an adversary A
and a challenger C. A will play the role of the storage provider and C will play the role of a message
sender. The game consists of the following steps:

1. KeyGen(1s) is executed by C who sends the output Apublic to A.

2. A asks queries of the form (M, K) where M is a message string and K is a set of keywords,
and C answers by executing the protocol Send(M, K,Apublic) with A.

3. A now chooses two pairs (M0,K0), (M1,K1) and sends this to C, where both the messages
and keyword sets are of equal size, the latter being measured by set cardinality.

4. C picks a bit b ∈ {0, 1} at random and executes the protocol Send(Mb,Kb, Apublic) with A.

5. A may ask more queries of the form (M, K) and C responds by executing Send(M,K, Apublic)
with A.

6. A outputs a bit b′ ∈ {0, 1}.
We define the adversary’s advantage as

AdvA(1s) =
∣∣∣Pr[b = b′]− 1

2

∣∣∣.

We say that a Public-Key Storage with Keyword Search is CPA-Sender-Private if, for all A ∈ PPT,
we have that AdvA(1s) is a negligible function.2

Definition 3.5 We define Receiver-Privacy in terms of the following game between an adversary
A and a challenger C. A will again play the role of the storage provider, and C will play the role of
a message receiver. The game consists of the following steps:

1. KeyGen(1s) is executed by C who sends the output Apublic to A.

2. A asks queries of the form w, where w is a keyword, and C answers by executing the protocol
RetrieveC,A(w,Aprivate) with A.

3. A now chooses two keywords w0, w1 and sends both to C.
4. C picks a bit b ∈ {0, 1} at random and executes the protocol RetrieveC,A(wb, Aprivate) with A.

5. A may ask more keyword queries w and C responds by executing RetrieveC,A(w, Aprivate) with
A.

6. A outputs a bit b′ ∈ {0, 1}.
We define the adversary’s advantage as

AdvA(1s) =
∣∣∣Pr[b = b′]− 1

2

∣∣∣.

We say that a Public Key Storage with Keyword Search is CPA-Receiver-Private if, for all A ∈ PPT,
we have that AdvA(1s) is a negligible function.

2“PPT” stands for Probabilistic Polynomial Time. We use the notationA ∈ PPT to denote thatA is a probabilistic
polynomial-time algorithm.
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Remark: Note that we could have also included a separate protocol for erasing items. At
present, the implementation erases messages as they are retrieved. These processes need not be tied
together. We have done so to increase the clarity and simplicity of our definitions and exposition.
(A separate protocol for erasing messages would then require additional definitional overhead to
describe correctness and privacy, which can be defined in a manner highly analogous to the current
definitions of receiver privacy.)

3.1 Extensions

The reader may have noted that from the sender’s point of view, this protocol deviates from the
usual view of sending mail in that the process requires interaction between a message sender and
a server. For simplicity, this point is not addressed in the main portion of the paper, however, it
is quite easy to remedy. The source of the problem is that the mail server must communicate the
internal address of the new message back to the sender so that the sender can update the Bloom
filter with storage to contain this address at the appropriate locations. However, once again,
using probabilistic methods from [25], we can solve this problem. As long as the address space
is known (which just requires knowledge of the database size, which could be published) the mail
sender can simply instruct the server to write the message to a number of random locations, and
simultaneously send modification data which would update the bloom filter accordingly. There are
of course, prices to pay for this, but they will not be so significant. The bloom filter with storage
now has addresses of size log2(n), since there will be a logarithmic number of addresses instead
of just one, and furthermore, to ensure correctness, the database must also grow by a logarithmic
factor. A detailed analysis follows in Section 5.

Another potential objection to this construction is that mail senders are somewhat free to access
and modify the keyword-message associations. Hence, a malicious message sender could of course
invalidate the message-keyword associations, which is another way that this protocol differs from
what one may expect from a mail system. (We stress however, that an arbitrary sender has no means
of modifying other senders’ mail data- only the keyword association data can be manipulated.)
However, this too can be solved by an application of ”off the shelf” protocols, namely non-interactive
efficient zero knowledge proof systems of Groth, Ostrovksy and Sahai [18]. In particular, the receiver
publishes a common reference string of [18] (based on the same cryptography assumption as used
in this paper, namely, [5] The mail sender is now required to include a NIZK proof that the data
for updating the Bloom filter is correct according to the protocol specification. The main point to
observe is that the theorem size is O(

√
n log n) and the circuit that generated it (and its witness)

are O(
√

n log n ·polylog(n)). The [18] NIZK size is proportional to the circuit size times the security
parameter. Thus, assuming poly-logarithmic security parameter the result follows.

4 Main Construction

We present a construction of a public-key storage with keyword search that is (n, λ, θ)-correct, where
the maximum number of messages to store is n, and the total number of distinct keywords that
may be in use at a given time is also n (however, the keyword universe consists of arbitrary strings
of bounded length, say proportional to the security parameter). Correctness will be proved under
a computational assumption in a “semi-honest” model, and privacy will be proved based only on a
computational assumption. In our context, the term “semi-honest party” will refer to a party that
correctly executes the protocol, but may collect information during the protocol’s execution. We
will assume the existence of a semantically secure public-key encryption scheme with homomorphic
properties that allow the computation of polynomials of total degree two on ciphertexts, e.g., the
cryptosystem of [5]. The key generation, encryption and decryption algorithms of the system will
be denoted by K, E , and D respectively. We define the required algorithms and sub-protocols below.
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First, let us describe our assumptions about the parties involved: X ,Y and S. Recall that X will
always denote a message sender. Note that, in general, there could be many different senders but,
for the purposes of describing the protocol, we need only to name one. Sender X is assumed to hold
a message, keyword(s) and the public key. Receiver Y holds the private key. S has a storage buffer
for n encrypted messages, and it also has a (k,m)-Bloom filter with storage, as defined in Definition
2.1, implemented with fixed-length buffers and encrypted under the public key distributed by Y.
Here, m = dcnke, where c > 1 is a constant. The functions and buffers will be denoted by {hi}k

i=1

and {Bj}m
j=1, as usual. The buffers {Bj} will be initialized to 0 in every location. S maintains

in its storage space encryptions of the buffers, and not the buffers themselves. We denote these
encryptions {B̂j}m

j=1. The functions hi are implemented by pseudo-random functions, which can
be published by Y. Recall that for w ∈ {0, 1}∗, we defined Hw = {hi(w) | i ∈ [k]}.

• KeyGen(k): Run K(1s), the key generation algorithm of the underlying cryptosystem to
create public and private keys, call them Apublic and Aprivate respectively. Private and public
parameters for a PIR protocol will also be generated by this algorithm.

• SendX ,S(M, K,Apublic): Sender X holds a message M , keywords K and Apublic and wishes to
send the message to Y via the server S. The protocol consists of the following steps:

1. X modifies M to have K appended to it, and then sends E(M), an encryption of the
modified M to S.

2. S receives E(M), and stores it at an available address ρ in its message buffer. S then
sends ρ back to X .

3. For every j ∈ ⋃
w∈K Hw, sender X writes γ copies of the address ρ to B̂j , using the

probabilistic methods from [25], which are discussed in Section 2 and Section 5. How-
ever, the information of which buffers were written needs to be hidden from S. So, to
accomplish the buffer writing in an oblivious way, X repeatedly executes the protocol
ModifyX ,S(x, α) for appropriate (x, α), in order to update the Bloom filter buffers. To
write a single address may take several executions of the Modify protocol depending on
the size of the plaintext set in the underlying cryptosystem. Also, if |⋃w∈K Hw| < k|K|,
execute additional Modify(r, 0) protocols (for any random r) so that the total number
of times that the Modify protocol is invoked is uniform among all keyword sets of equal
size.

• RetrieveY,S(w, Aprivate): Y wishes to retrieve all messages associated with the keyword w, and
erase them from the server. The protocol consists of the following steps:

1. Y repeatedly executes an efficient PIR protocol (e.g., [23, 10]) with S to retrieve the
encrypted buffers {B̂j}j∈Hw which are the Bloom filter contents corresponding to w. If
|Hw| < k, then Y executes additional PIR protocols for random locations and discards
the results so that the same number of protocols are invoked regardless of the keyword
w. Recall that Y possesses the seeds used for the pseudo-random functions hi, and hence
can compute Hw without interacting with S.

2. Y decrypts the results of the PIR queries to obtain {Bj}j∈Hw , using the key Aprivate.
Receiver Y then computes L =

⋂
j∈Hw

Bj , a list of addresses corresponding to w, and
then executes PIR protocols again with S to retrieve the encrypted messages at each
address in L. Recall that we have bounded the maximum number of messages associated
with a keyword. We refer to this value as λ. Receiver Y will, as usual, execute additional
random PIR protocols so that it appears as if every word has λ messages associated to
it. After decrypting the messages, Y will obtain any other keywords associated to the
message(s) (recall that the keywords were appended to the message during the Send
protocol). Denote this set of keywords K.
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3. Y first retrieves the additional buffers {B̂j}, for all j ∈ ⋃
w′ 6=w∈K Hw′ , using PIR queries

with S. Note that the number of additional buffers is bounded by the constant θt. Once
again, Y executes additional PIR protocols with S so that the number of PIR queries in
this step of the protocol is uniform for every w. Next, Y modifies these buffers, removing
any occurrences of any address in L. This is accomplished via repeated execution of
ModifyY,S(x, α) for appropriate x and α. Additional Modify protocols are invoked to
correspond to the maximum θk buffers.

Remark: If one wishes to separate the processes of message retrieval and message erasure,
simply modify the retrieval protocol to skip the last step, and then use the current retrieval protocol
as the message erasure procedure.

Theorem 4.1 The Public-Key Storage with Keyword Search from the preceding construction is
(n, λ, θ)-correct according to Definition 3.3, under the assumption that the functions hi are pseudo-
random.

Proof sketch: This is a consequence of Claim 2.2, Claim 2.3, and Observation 2.4. The
preceding claims were all proved under the assumption that the functions hi were uniformly random.
In our protocol, they were replaced with pseudo-random functions, but since we are dealing with
non-adaptive adversaries, the keywords are chosen before the seeds are generated. Hence they are
independent, and if any of the preceding claims failed to be true with pseudo-random functions
in place of the hi, our protocol could be used to distinguish the hi from the uniform distribution
without knowledge of the random seed, violating the assumption of pseudo-randomness. As we
mentioned before, we can easily handle adaptive adversaries, by implementing hi using PRF’s,
where the seeds are kept by the service provider, and users executing secure two-party computation
protocols to get hi(w) for any w using [20] or, in the case of concurrent users, using [11] and having
the common random string required by [11] being part of the public key. ¥

We also note that in a model with potentially malicious parties, we can apply additional ma-
chinery to force “malicious” behavior using [18] as discussed above.

Theorem 4.2 Assuming CPA-security of the underlying cryptosystem (and therefore the security
of our Modify protocol as well), the Public Key Storage with Keyword Search from the above con-
struction is sender private, according to Definition 3.4.

Proof sketch: Suppose that there exists an adversaryA ∈ PPT that can succeed in breaking the
security game, from Definition 3.4, with some non-negligible advantage. So, under those conditions,
A can distinguish the distribution of Send(M0,K0) from the distribution of Send(M1,K1), where
the word “distribution” refers to the distribution of the transcript of the interaction between the
parties. A transcript of Send(M, K) essentially consists of just E(M) and a transcript of several
Modify protocols that update locations of buffers based on K. Label the sequence of Modify
protocols used to update the buffer locations for Ki by {Modify(xi,j , αi,j)}ν

j=1. Note that by our
design, if |K0| = |K1|, then it will take the same number of Modify protocols to update the buffers,
so the variable ν does not depend on i in this case. Now consider the following sequence of
distributions:

E(M0) Modify(x0,0, α0,0) · · · Modify(x0,ν , α0,ν)
E(M0) Modify(x0,0, α0,0) · · · Modify(x1,ν , α1,ν)

...
...

...
...

E(M0) Modify(x1,0, α1,0) · · · Modify(x1,ν , α1,ν)
E(M1) Modify(x1,0, α1,0) · · · Modify(x1,ν , α1,ν)
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The first line of distributions in the sequence is the transcript distribution for Send(M0,K0)
and the last line of distributions is the transcript distribution for Send(M1,K1). We assumed that
there exists an adversary A that can distinguish these two distributions. Hence, not all of the
adjacent intermediate distributions can be computationally indistinguishable since computational
indistinguishability is transitive. So, there exists an adversary A′ ∈ PPT that can distinguish
between two adjacent rows in the sequence. If A′ distinguishes within the first ν + 1 rows, then
it has distinguished Modify(x0,j , α0,j) from Modify(x1,j , α1,j) for some j ∈ [ν] which violates our
assumption of the security of Modify. And if A′ distinguishes the last two rows, then it has
distinguished E(M0) from E(M1) which violates our assumption on the security of the underlying
cryptosystem. Either way, a contradiction. So we conclude that no such A exists in the first place,
and hence the system is secure according to Definition 3.4. ¥

Theorem 4.3 Assuming CPA-security of the underlying cryptosystem (and therefore the security
of our Modify protocol as well), and assuming that our PIR protocol is semantically secure, the
Public Key Storage with Keyword Search from the above construction is receiver private, according
to Definition 3.5.

Proof sketch: Again, assume that there exists A ∈ PPT that can gain a non-negligible
advantage in Definition 3.5. Then, A can distinguish Retrieve(w0) from Retrieve(w1) with non-
negligible advantage. The transcript of a Retrieve protocol consists a sequence of PIR protocols
from steps 1, 2, and 3, followed by a number of Modify protocols. For a keyword wi, denote the
sequence of PIR protocols that occur in Retrieve(wi) by {PIR(zi,j)}ζ

j=1, and denote the sequence of
Modify protocols by {Modify(xi,j , αi,j)}η

j=1. Note that by the design of the Retrieve protocol, there
will be equal numbers of these PIR queries and Modify protocols regardless of the keyword w, and
hence ζ and η are independent of i. Consider the following sequence of distributions:

PIR(z0,0) · · · PIR(z0,ζ) Modify(x0,0, α0,0) · · · Modify(x0,η, α0,η)
PIR(z1,0) · · · PIR(z0,ζ) Modify(x0,0, α0,0) · · · Modify(x0,η, α0,η)

...
. . .

...
...

...
PIR(z1,0) · · · PIR(z1,ζ) Modify(x0,0, α0,0) · · · Modify(x0,η, α0,η)
PIR(z1,0) · · · PIR(z1,ζ) Modify(x1,0, α1,0) · · · Modify(x0,η, α0,η)

...
...

...
. . .

...
PIR(z1,0) · · · PIR(z1,ζ) Modify(x1,0, α1,0) · · · Modify(x1,η, α1,η)

The first line is the transcript distribution of Retrieve(w0) and the last line is the transcript dis-
tribution of Retrieve(w1). Since there exists A ∈ PPT that can distinguish the first distribution
from the last, then there must exist an adversary A′ ∈ PPT that can distinguish a pair of adjacent
distributions in the above sequence, due to the transitivity of computational indistinguishability.
Therefore, for some j ∈ [ζ] or j′ ∈ [η] we have that A′ can distinguish PIR(z0,j) from PIR(z1,j) or
Modify(x0,j′ , α0,j′) from Modify(x1,j′ , α1,j′). In both cases, a contradiction of our initial assumption.
Therefore, it must be the case that no such A ∈ PPT exists, and hence our construction is secure
according to Definition 3.5. ¥

Theorem 4.4 (Communication Complexity) We claim that the Public Key Storage with Keyword
Search from the preceding construction has sub-linear communication complexity in n, the number
of documents held by the storage provider S.

Proof: This can be seen as follows: from Observation 2.4, we see that a (k,m)-Bloom filter with
storage that is designed to store n different keywords is of linear size in
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1. n — The maximum number of elements that the filter is designed to store.

2. k — The number of functions (hi) used, which serves as a correctness parameter.

3. σ — The size of the buffer arrays, which serves as a correctness parameter. Note that σ should
be chosen to exceed λ, the maximum number of values associated to any single element of
the set.

4. l = log n — The storage size of an associated value.

5. c — Any constant greater than 1.

However, all the buffers in our construction have been encrypted, giving an extra factor of s,
the security parameter. Additionally, there is another correctness parameter, γ coming from our
use of the methods of [25], which writes a constant number copies of each document into the buffer.
Examining the proof of Theorem 2.2, we see that the parameters k and c are indeed independent
of n. However, {s, l, γ} should have logarithmic dependence on n.

So, the total size of the encrypted Bloom filter with storage is

O(n · k · σ · l · c · s · γ) = O(n log3 n)

as all other parameters are constants or correctness parameters independent of n (i.e., their value
in preserving correctness does not deteriorate as n grows).

Therefore the communication complexity of the protocol is

• O(
√

n log3 n) for sending a message assuming honest-but-curious sender.

• O(
√

n log3 n · polylog(n)) for any malicious poly-time bounded sender.

• O(polylog(n)) for reading using any polylog(n) PIR protocol, e.g. [8, 10, 24].

• O(
√

n log3 n) for deleting messages.

¥
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5 Appendix

5.1 Some Probabilistic Methods from [25]

In the work of [25], a number of probabilistic methods were employed to achieve the oblivious writing
of documents into an encrypted buffer using homomorphic encryption. Some of these methods are
perfectly applicable to this work as well, and are used to update the Bloom filters with storage.
We’ll briefly explain such methods here.

The basic idea is that for simple, non-interactive oblivious writing, a uniform method should be
applied, or else information will be obtainable from what addresses are written to. So, a method
is devised in which messages can be written to a buffer uniformly at random, but still keeping the
property that as long as the buffer in question is of appropriate size (O(n log n), where n is the
total number of documents written), then with overwhelming probability all documents can still
be recovered from the buffer. The authors of [25] make use of the following lemmas, which we state
here without proof, as such proof is easily obtained in the original work.

The first lemma describes and proves correct the method for buffer writing. As discussed,
documents are written uniformly at random to buffer addresses. But if documents are written to
the same place, one or more of the documents at that address may be lost. The following lemma
says that if you write each document γ times to random locations, and make your buffer of size
linear in this parameter, then with overwhelming probability in γ, you’ll be able to recover at least
one copy of every document, even when you assume buffer collisions to be a complete catastrophe,
from which nothing can be recovered. (This is not necessarily the case, see [3].)

Color-survival game: Let m, γ ∈ Z+, and suppose we have m different colors, call them
{colori}m

i=1, and γ balls of each color. We throw the γm balls uniformly at random into 2γm
bins, call them {binj}2γm

j=1 . We say that a ball “survives” in binj , if no other ball (of any color)
lands in binj . We say that colori “survives” if at least one ball of color colori survives. We say
that the game succeeds if all m colors survive, otherwise we say that it fails.

Lemma 5.1 The probability that the color-survival game fails is negligible in γ.

To ensure correctness, i.e., to ensure that precisely the documents put into the buffer are those
that are extracted, [25] makes use of a “collision detection string” which can be appended to
each document to distinguish genuine documents from documents that arise from collisions in the
buffer. (Recall that items are added to the buffer uniformly at random.) These strings are selected
uniformly at random from a certain, contrived distribution which is very unlikely to be preserved
under sums. (I.e., the sum of two elements from the distribution will not be in the distribution
with overwhelming probability). This is formalized for addition modulo 2 as follows.
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Lemma 5.2 Let {ei}3
i=1 be the three unit vectors in Z3

2, i.e., (ei)j = δij. Let n be an odd integer,
n > 1. For v ∈ Z3

2, denote by Tn(v) the number of n-element sequences {vj}n
j=1 in the ei’s, such

that
∑n

j=1 vj = v. Then,

Tn((1, 1, 1)) =
3n − 3

4

For the proof of this lemma, we direct the reader to the original work of [25]. Given this result,
it is easy to see that with overwhelming probability in the length, strings of this format will not
sum to another. Hence, if they are appended to each document, they will be able to distinguish
collisions from originals.

5.2 Non-Interactive Message Sending

As mentioned in the main text, using probabilistic techniques, we can eliminate interaction from
the process of message sending. The idea is quite simple, and very similar to the work of [25]. The
basic idea is to have message senders randomly choose several locations in the database in which
to store their message. This information, along with the description of the modification that is to
be done to the Bloom filter can now all be sent simultaneously to the server, which will simply
store the message at the locations requested by the sender. The same analysis from [25] shows
correctness of such a protocol. Now, let us analyze the cost we must pay in space, and hence
communication. The database of mail messages now has size n log(n), and hence addresses to the
database are of size log(n log(n)) = log(n) + log2(n). Furthermore, the analysis above shows that
we must write the message to a logarithmic number of locations in order to preserve correctness.
So, our Bloom filter units will now contain a block of a logarithmic number of addresses of size
log(n) + log2(n), as opposed to just one address as was the case in the original design. Hence, the
total Bloom filter size changes from O(n log3 n) to O(n(log3 n + log4 n)) = O(n log4 n). And thus,
we still have provided a construction with non-trivial (sub-linear) communication complexity.
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