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Abstract

In this paper we show a general transformation from any honest verifier statistical
zero-knowledge argument to a concurrent statistical zero-knowledge argument. Our
transformation relies only on the existence of one-way functions. It is known that
the existence of zero-knowledge systems for any non-trivial language implies one way
functions. Hence our transformation unconditionally shows that concurrent statistical
zero-knowledge arguments for a non-trivial language exist if and only if standalone
secure statistical zero-knowledge arguments for that language exist.

Further, applying our transformation to the recent statistical zero-knowledge ar-
gument system of Nguyen et al (STOC’06) yields the first concurrent statistical zero-
knowledge argument system for all languages in NP from any one way function.

1 Introduction

Zero-knowledge proof systems were introduced by Goldwasser, Micali and Rackoff [GMR89]
and have the remarkable property that they yield nothing except the validity of assertion
being proved. Such protocols involve a prover, who tries to prove some assertion, and a
verifier, who is trying to decide if he believes the assertion. A cheating prover may act
maliciously by trying to prove a false statement; a cheating verifier may try to learn more
than the validity of the statement being proved. The property that the verifier learns nothing
(except the validity of the statement) is formalized as the zero-knowledge condition and the
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property that the prover cannot prove a false statement is formalized as the soundness
condition.

Depending upon how strong we want the zero-knowledge property or the soundness
property to be, we can define several different types of zero-knowledge systems. In statistical
zero-knowledge, we require the zero-knowledge condition to hold even against an infinitely
powerful cheating verifier. When we relax the zero-knowledge condition so that it need
only hold against a probabilistic polynomial time cheating verifier, we get the so called
computational zero-knowledge. Similarly, we can have zero-knowledge with either statistical
soundness (known as zero-knowledge proof systems) or just computational soundness (known
as zero-knowledge argument systems).

It would be desirable to construct statistical zero-knowledge proof systems for all lan-
guages in NP. Unfortunately it was shown that such systems can only be obtained for
languages in AM∩coAM [BHZ87], and AM∩coAM cannot contain NP unless the poly-
nomial hierarchy collapses. Thus if we want a zero-knowledge system for all language in NP,
we can only have either statistical soundness or statistical zero-knowledge (but not both).

The original definition of zero-knowledge considers protocols running alone in isolation.
That is, we have a single prover interacting with a single verifier. The concurrent setting
was introduced by Dwork et al [DNS98] (see also [Fei90]) with a motivation to construct
zero-knowledge protocols for more realistic settings (such as when the protocols are to be
executed over the Internet). In the concurrent setting, many protocol executions are run at
the same time with possibly a single prover simultaneously talking to many verifiers. The
prover in this setting runs the risk of a coordinated attack from many different verifiers which
interleave the execution of protocols and choose their responses to the prover based on each
others’ messages. If a zero-knowledge protocol maintains its zero-knowledge property even
in the concurrent setting, it is said to be concurrent zero-knowledge.

Our Results. We give the first general transformation from any zero-knowledge system to
concurrent zero-knowledge system that maintains the statistical zero-knowledge property of
the system. Hence our compiler can be used to transform a computational zero-knowledge
argument system into a concurrent computational zero-knowledge argument system as well
as a statistical zero-knowledge argument system into a concurrent statistical zero-knowledge
argument system. Our transformation only relies on the existence of one-way functions.
Further, it does not require that the original protocol be public coin. These properties
separate it from the compiler in [MP03], since the compiler in [MP03] was designed to
maintain statistical soundness (whereas we deal with statistical zero-knowledge) and was
designed to be very efficient (our transformation is polynomial time but we do not optimize
for efficiency). Additionally, the compiler in [MP03] relies on specific number theoretic
assumptions.

We would like to emphasize that our compiler only uses one-way functions. It is known
that the existence of zero-knowledge systems for any non-trivial language implies one way
functions [OW93]. Hence our transformation unconditionally shows that concurrent statisti-
cal zero-knowledge arguments for a non-trivial language exist if and only if standalone secure
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statistical zero-knowledge arguments for that language exist. This feature also allows us to
achieve a main goal of ours: applying our transformation to the statistical zero-knowledge
system from [NOV06], we get the first concurrent statistical zero-knowledge argument system
for an NP-complete language from any one-way function.

Techniques. Here we describe our techniques at a high level. Our goal is to create a
general compiler that will work for honest verifier statistical zero-knowledge arguments and
turn them into concurrent statistical zero-knowledge arguments. We first use a modified
version of the preamble from the concurrent zero knowledge protocol of [PRS02]. Using
a preamble similar to [PRS02] enables us to have a verifier committed to his randomness
for the run of the protocol and to give a strategy for a simulator that could extract that
randomness in the concurrent setting. Thus we are be able to use a straight-line simulator
after the preamble.

The main technical challenges are to adapt the preamble of [PRS02] to work with an
all-powerful verifier and to base the preamble solely on one-way functions. The proof of
soundness in [PRS02] relies on the verifier using statistically hiding commitments to commit
to its randomness. However using statistically hiding commitments during the preamble does
not seem plausible in our setting even though (independent of this work) they have recently
been constructed from one way functions [HR07]. The main reason is that since we are
dealing with statistical zero-knowledge, the verifier could potentially be all powerful. Thus all
the commitments by the verifier to the prover should be statistically binding. Consequently,
if the randomness of the verifier is not statistically hidden from the prover during the PRS
preamble, it remains unclear how the proof of soundness would go through (even if the prover
uses statistically hiding commitments).

To overcome this problem, the verifier commits using statistically binding commitments
based on one-way functions as it appears essential in our setting. However, the verifier never
actually opens the commitment. Instead the verifier gives a (standalone secure computa-
tional) zero-knowledge proof that his message are consistent with the randomness committed
to in the PRS preamble. Note that it is important that we use a zero-knowledge proof here
since the verifier is all powerful. This idea enables us to prove that our transformation
preserves the soundness of the underlying proof system.

Furthermore, since we are transforming from an honest verifier statistical zero-knowledge
argument into a concurrent statistical zero-knowledge argument, we need to find a way to
relax the requirement that the verifier is honest. In order to achieve this goal, the randomness
that the verifier uses is determined by a coin-flipping protocol between the prover and the
verifier (instead of being chosen freely by the verifier alone). This is important for our proof
of the zero-knowledge condition since our simulator for the underlying protocol will require
verifier responses with correctly distributed randomness. Also, this technique combined with
the trick of using zero-knowledge proofs from the verifier allows us to deal with private-coin
protocols as well.

We are able to combine all of these ideas into a single compiler that lets us achieve our
results.
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1.1 Related Work

Statistical zero-knowledge arguments. In this paper, we will be examining statis-
tical zero-knowledge arguments which were first introduced by [BCC88]. From the con-
structions of [GMW91, BCC88] it is clear that one main technique to construct statistical
zero-knowledge arguments for any language in NP is to first construct statistically hiding
commitments (and plug them into a standard protocol).

Early constructions of statistically hiding commitments were built on specific number
theoretic assumptions [BCC88, BKK90]. In [GK96] it was shown how to construct statis-
tically hiding commitments from claw-free permutations; this was further reduced to any
family of collision-resistant hash functions in [NY89].

Naor et al [NOVY98] showed how to construct statistically hiding commitments from
one way permutations. In [Ost91, OW93] it was shown that one could build a weak from of
one-way functions from statistically hiding commitments. Thus one-way functions would be
the minimal assumption needed to create statistically hiding commitments. Until recently,
no further progress was made. Haitner et al [HHK+05] showed how to construct statistically
hiding commitments from a one-way function that could approximate the pre-image size of
points in the range.

In a recent breakthrough work, Nguyen et al [NOV06] were able to construct statistical
zero-knowledge arguments from any one-way function for all languages in NP. They deviated
from the traditional line of constructing statistically binding commitments from one way
functions. Instead they created a relaxed variant of statistically binding commitments from
one-way functions first introduced by Nguyen and Vadhan [NV06]. Building on [NOV06],
Haitner and Reingold [HR07] recently constructed statistically hiding commitments from
one way functions. We remark that [NOV06] serves as a critical component for our results.

Concurrent zero-knowledge. The notion of concurrent zero knowledge was introduced
by [DNS98] (see also [Fei90]) who also gave a construction based on timing assumptions.
Richardson and Kilian [RK99] exhibited a family of concurrent zero-knowledge protocols for
all languages in NP in the plain model. The analysis of the their protocol required that the
protocol have a polynomial number of rounds. This analysis was improved by Kilian and
Petrank [KP01] who showed that the protocol only required a poly-logarithmic number of
rounds. Prabhkaran, Rosen, and Sahai introduced a variant of the protocol and reduced the
number of rounds further to ω(log n) rounds in [PRS02]. This is the protocol we will mainly
use in our general compiler.

In [MP03], Micciancio and Petrank give a general compiler to compile any public-coin
honest verifier zero-knowledge proof system into a concurrent zero-knowledge proof system
while incurring only an additional ω(log n) rounds. This reduction is based on perfectly
hiding commitment schemes (having some additional special properties) based on the Deci-
sional Diffie-Hellman assumption. These reductions do not however maintain the statistical
zero-knowledge property. In other words, even if the original protocol is statistical zero-
knowledge, the resulting protocol may not be.
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Concurrent statistical zero-knowledge. There has not been much work on concurrent
statistical zero-knowledge. In [MOSV06], Micciancio et al show how to build concurrent
statistical zero-knowledge proofs for a variety of problems unconditionally, that is, without
making any unproven complexity assumptions. However since these were statistical zero-
knowledge proofs, their results could not include proofs for all languages in NP (unless NP
is in AM∩coAM and the polynomial hierarchy collapses).

2 Preliminaries

Statistical Difference The statistical difference between two random variables X, Y tak-
ing values in a universe U is defined to be

∆(X, Y )
def
= max

S⊂U

∣∣∣Pr[X ∈ S]− Pr[Y ∈ S]
∣∣∣ =

1

2

∑

x∈U

∣∣∣Pr[X = S]− Pr[Y = S]
∣∣∣

We say two distributions are statistically close if ∆(X, Y ) is negligible.

Definition 1 (Argument Systems ([Gol01])). An interactive protocol (P, V ) is an argument
(or computationally sound proof system) for a language L if the following three conditions
hold:

1. (Efficiency) P and V are computable in probabilistic polynomial time.

2. (Completeness) If x ∈ L, then V outputs accept with probability at least 2/3 after
interacting with the honest prover P .

3. (Soundness) If x 6∈ L, then for every nonuniform PPT adversarial prover P ∗, V outputs
accept with probability at most 1/3.

For an argument system (P, V ), we define the following terms. If x ∈ L, then the value
that lower bounds the probability of V outputting accept after interacting with the honest
prover P is called the completeness bound. Similarly, If x 6∈ L, then the value that upper
bounds the probability of V outputting accept after interacting with any nonuniform PPT
adversarial prover P ∗ is called the soundness error.

We say that an argument system is public coin if all the messages sent by V are chosen
uniformly at random, except for the final accept/reject message (which is computed as a
deterministic function of the transcript).

Concurrent Zero-knowledge We assume the conversation between the prover P and the
verifiers V1 . . . Vn is of the form v1, p1, v2, p2, . . . , vt, pt where each vj is a messages sent to the
prover from a verifier Vij and the provers’ response is the message pj. We assume that there
is an adversary A which controls the verifiers and the verifiers’ messages. The adversary
will take as input the partial conversation so far, i.e., v1, p1 . . . vk, pk and output a pair (i, v)
specifying that P will receive message v from verifier Vi. The view of the adversary on input
x will include the verifiers’ random tapes and all the messages exchanged between the prover
and the verifiers. This view will be denoted by (P,A)(x).
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Definition 2. We say that an argument system (P, V ) for a language L is statistical (resp.,
computational) black box concurrent zero-knowledge if there exists a probabilistic polynomial
time oracle machine S (the simulator) such that for any unbounded (resp., probabilistic poly-
nomial time) adversary A, the distributions (P,A)(x) and SA(x) are statistically close (resp.,
computationally indistinguishable) for every string x in L.

We call the statistical difference of these distributions the zero-knowledge error of the
protocol. If we are dealing with computational indistinguishability, the probability that
a probabilistic polynomial time adversary can distinguish these distributions is called the
zero-knowledge error of the protocol as well.

Honest Verifier We say a proof system is an honest verifier proof system if the zero-
knowledge property is guaranteed to hold only if the verifier acts according to the protocol.

Note on Notation We will use P (T, r) (resp., V (T, r)) to signify the correct next message
of an honest P (resp., V ) as per the protocol (P, V ), given the random coins r and the
interaction transcript T observed so far. Sometimes, the random coin r might be implicit
(instead of being explicitly supplied as an input).

3 Compiler Parts

In this section, we give the different parts of the compiler in isolation before putting them
together in the next section to give our full protocol.

3.1 Underlying zero-knowledge protocol

We assume that as input to our compiler, we have an honest verifier statistical zero-knowledge
argument system for some language L. This protocol will have a prover, a verifier, a com-
pleteness bound, a soundness error, a simulator, the number of rounds and a zero-knowledge
error (denoted by P, V, ec, es, S, t and ez respectively). We let p1, . . . pt denote the messages of
the prover and v1, . . . vt the messages of the verifier in a particular execution of the argument
system.

3.2 Statistically binding commitments from any OWF

In our protocol, we shall use statistically binding commitments from any OWF. Building on
techniques from [HILL99], such commitments were constructed by Naor [Nao91].

We denote such a commitment scheme by COM. We denote the probability of an all
powerful adversary breaking the binding property of the scheme as bcom. We denote the
probability of a PPT adversary breaking the hiding property of the scheme as hcom.
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3.3 Computational zero-knowledge proof based on any OWF for
all of NP

In our protocol, we shall use a computational zero-knowledge proof based on one-way func-
tions for every language in NP with negligible soundness error and perfect completeness.
One way to construct them is to create statistically binding commitments based on a OWF
as stated earlier [HILL99, Nao91]. These commitments can then be used in the 3-colorability
protocol of [GMW91] to give us a zero-knowledge proof for any language in NP. We can
then repeat the protocol sequentially n2 times (where n is the security parameter) to achieve
negligible soundness error. We note that this protocol will also have perfect completeness.
We denote the final protocol after the sequential repetitions as (P ′, V ′).

This protocol will have a prover, a verifier, a completeness bound, a statistical soundness
error, a simulator, the number of rounds and a zero-knowledge error (denoted by P ′, V ′, e′c =
1, e′s, S

′, t′ and e′z respectively).

3.4 Preamble from PRS [PRS02]

In this subsection, we describe the preamble from [PRS02] and give its useful properties for
our context. We note that [RK99, KP01] also have similar preambles (with round complexity
higher than [PRS02]) which could be used for our purpose.

The preamble of the PRS protocol is simple. Let n be the security parameter of the
system and k be any super-logarithmic function in n. Let σ be the bit string we wish to
commit to and γ be the length of σ. We break σ up into two random shares k2 times. Let
these shares be denoted by {σ0

i,`}k
i,`=1 and {σ1

i,`}k
i,`=1 with σ0

i,` ⊕ σ1
i,` = σ for every i, `. The

verifier will commit to these bits using COM with fresh randomness each time. The verifier
then sends these k2 commitments to the prover. This is then followed by k iterations where
in the `th iteration, the prover sends a random k-bit string b` = b1,`, . . . , bk,`, and the verifier

decommits to the commitments COM(σ
b1,`

1,` ), . . . , COM(σ
bk,`

k,` ).
The goal of this protocol is to enable the simulator to be able to rewind and find the value

σ with high probability by following a fixed strategy. Since the verifier commitments are set
after the first round, once we rewind the verifier, the simulator will have the opportunity to
have the verifier open both the σ0 commitment and the σ1 commitment. In the concurrent
setting, rewinding a protocol can be difficult since one may rewind past the start of some
other protocol in the system as observed by [DNS98]. The remarkable property of this
protocol is that there is a fixed rewinding strategy the simulator can use to get the value of
σ, for every concurrent cheating verifier strategy V∗, with high probability.

We will follow [MOSV06] in formalizing the properties of the PRS preamble we need.
Without loss of generality, assume that there are Q concurrent sessions. Recall that k is the
number of rounds of the PRS preamble.

We call the simulator for the PRS preamble CEC-Sim. CEC stands for concurrently-
extractable commitments. CEC-Sim will have oracle access to V∗ and will get the following
inputs.
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• Commitments schemes COM = COM1, COM2, . . . , COMQ, where COMs is the com-
mitment scheme used for session s.

• Parameters γ, k, n and Q, all given in unary.

We also need to give the following definitions adapted from [MOSV06]:

Definition 3 (Major Decommitment). A major decommitment is a reveal after the PRS
preamble in which V∗ reveals the opening of commitments {COM(σ0

i,`)}k
i,`=1 and {COM(σ1

i,`)}k
i,`=1.

P only accepts the major decommitment if: (a) all these openings are valid openings to the
commitments in the transcript, and, (b) there exists σ such that for all i, `, σ0

i,` ⊕ σ1
i,` = σ.

Definition 4 (Valid Commit Phase). For a transcript T of the commit phase interaction
between P and V∗, let T [s] denote the messages in session s. T [s] is a valid commit phase
transcript if there exists a major decommitment D such that P (T [s], D)= accept.

Definition 5. (Compatibility). Message M=(σ, σ0
i,j, σ

1
i,j) is compatible with T [s] if

1. σ = σ0
i,j ⊕ σ1

i,j

2. There exist commitments COMs(σ
0
i,j)[s] and COMs(σ

1
i,j)[s] that are part of the tran-

script of the first message of T [s].

Observe that if a message M=(σ, σ0
i,j, σ

1
i,j) is compatible with the transcript T [s], the

cheating verifier can major-decommit to a message different from σ only with probability at
most bcom. Thus we call σ the extracted message.

Definition 6. A Simulator CEC − SimV∗ has the concurrent extraction property if for
every interaction T it has with V∗, it also provides (on a separate output tape) an array of
messages (M1,M2, . . . , MQ) with the following property:

For every session s ∈ {1, 2, . . . , Q}, if T [s] is a valid commit phase transcript, then Ms

is compatible with T [s].

A simulator that has the concurrently extractable property is also called a concurrently-
extractable simulator.

Using the simulation and rewinding techniques in [PRS02], we can obtain a concurrently-
extractable simulator for the PRS preamble. Let 〈P,V∗〉 denote the output of V∗ after
concurrently interacting with P. Recall that V∗ is an unbounded adversary.

Lemma 1. (implicit in [PRS02], adapted from [MOSV06]). There exists a PPT concurrently-
extractable simulator CEC-Sim with a fixed strategy SIMULATE such that for COM and
all concurrent adversaries V∗, for settings of parameters σ=poly(n), k = Õ(log n), and
Q =poly(n), we have the ensembles

{
CEC-SimV∗(COM, 1σ, 1k, 1n, 1Q)

}

n∈N
and

{
〈P,V∗〉(COM, 1σ, 1k, 1n, 1Q)

}

n∈N

have statistical difference ε, where ε is negligible.
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4 The Compiler

In this section, we discuss the compiler in detail. It takes as input an honest verifier sta-
tistical zero knowledge argument system (P, V ) and compiles it into a concurrent statisti-
cal zero knowledge argument system (P,V) assuming the existence of one way functions.
The compiler uses statistically binding commitments and computational zero knowledge
proofs as building blocks. Both of these can be constructed out of any one way function
[HILL99, GMW91].

Common Input to P and V: (P, V ), (P ′, V ′), x,COM

Compiler:

1. V→ P: Generate r
r← R. Using COM, commit to r and the shares

{r0
i,`}k

i,`=1, {r1
i,`}k

i,`=1 such that r0
i,` ⊕ r1

i,` = r for every i, `.

2. For ` = 1, . . . k:

(a) P→ V: Send b1,`, . . . , bk,`
r← {0, 1}k.

(b) V→ P: Decommit to r
b1,`

1,` , . . . , r
bk,`

k,` .

3. V↔ P: Zero-knowledge proof (P ′, V ′) where V acts as P ′ and proves to P
that r0

i,` ⊕ r1
i,` = r for every i, ` and that there exist valid openings to the

commitments in the PRS preamble to r0
i,`, r

1
i,`. If P accepts the

zero-knowledge proof, the transcript of the commit phase is guaranteed to be
a valid commit phase transcript.

4. P→ V: send r′ r← R.

5. V calculates r′′ def
= r ⊕ r′

6. For j = 1, . . . t:

(a) P→ V: send P (T P
j ) = pj.

(b) V→ P: send V (T V
j , r′′) = vj.

(c) V↔ P: zero-knowledge proof (P ′, V ′) where V acts as P ′ and proves to
P that there exist an r′′ such that r ⊕ r′ = r′′ and V (T V

j , r′′) = vj.

7. V→ P: send V (T, r′′) = accept/reject.

Figure 1: Compiler

The compiler is presented formally in Figure 1. Let R denote the uniform distribution.
The verifier V first generates a random string r (i.e., r

r← R). P and V then carry out the
PRS preamble [PRS02] where V sets σ to be r.

Instead of using statistically hiding commitments as in the PRS preamble, we will use sta-
tistically binding commitments based on one way functions. This however causes a problem
in the PRS soundness proof [PRS02] since the statistical hiding property of the commitments
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is used in an essential manner in the soundness proof1. We resolve this problem later on.
Once P and V have finished the PRS preamble,V gives a computational zero knowledge

proof acting as P ′ in the system (P ′, V ′) (constructed using a OWF as described in section
3). It proves that all the shares it committed to in the PRS preamble (first message) are
“consistent” with r. In other words, r0

i,` ⊕ r1
i,` = r for every i, `. The prover P then draws

r′ r← R and sends it to V. Now P and V will begin the supplied honest verifier statistical
zero knowledge argument protocol (P, V ) with some modifications. The random coins of the

verifier V are fixed to be r ⊕ r′ def
= r′′.

Let the protocol (P, V ) have t rounds where one round involves a prover message followed
by the verifier’s response. P and V interact as follows. In the jth round, P calculates the next
message pj of P on the transcript T P

j of the interaction so far. Transcript T P
j is defined to

contain all the messages exchanged between P and V so far, i.e., T P
j = (p1, v1, . . . , pj−1, vj−1).

The verifier V receives pj from P. It will now calculate V ’s response in the protocol
(P, V ) using randomness r′′ and V ’s transcript T V

j (= (T P
j , pj)) of the interaction so far; we

call this response vj. Now V will act as the P ′ in the computational zero-knowledge proof
system (P ′, V ′).
V will prove that his response is indeed consistent with V acting on input T V

j and
randomness r′′. The statement being proven by V is in NP since it is possible to check
the statement given the opening of the commitment to r. We are using the computational
zero-knowledge proof here instead of just revealing the commitments to make our soundness
proof go through. P acts as V ′ during this zero-knowledge proof. If the proof is accepted by
V ′ then P accepts vj.

Once these t rounds are complete, V accepts if and only if V would accept on the complete
transcript T (=(T V

t , vt)).

4.1 Parameters of the compiler

Let (P, V ) be an honest verifier zero-knowledge argument system with t rounds, ec complete-
ness bound, es soundness error, and ez zero-knowledge error. Let (P ′, V ′) be a computation
zero-knowledge proof system with t′ rounds, e′c completeness bound, e′s soundness error, and
e′z zero-knowledge error. Let ε be the value from Lemma 1 that represents the statistical
difference of a simulated run of the PRS preamble using SIMULATE from a real run against
an arbitrary unbounded concurrent verifier strategy. Let k be the number of rounds in the
PRS preamble. Let ep be the probability that the PRS preamble is accepted by the prover
and the verifier if they are behaving honestly. Let COM be the commitment used in the
PRS preamble. Let hcom be the probability of a PPT machine breaking the hiding prop-
erty of COM and bcom be the probability of an all powerful adversary breaking the binding
property of COM. Let S be the simulator for (P, V ) and S be a simulator for (P,V).

We give the parameters that we obtain with our compiler in the following theorem.

1For example, if the verifier uses computationally hiding commitments, a cheating prover could potentially
create dependencies between his own commitments and the verifier challenge

10



Theorem 1. Running the compiler given in Section 4 on the argument system (P, V ) results
in a system (P,V) with the following properties.

• The completeness bound of (P,V) is epec.

• The soundness error of (P,V) is es + (k2hcom + e′z)t.

• The zero-knowledge error of the protocol is:

∆((P,V∗)(x), SV∗(x)) = ε + ez + k2bcom + e′st

Proof. The proof of each of the above claims is given below individually.

Completeness Suppose x ∈ L. Then the probability that the protocol is accepted by V
is:

Pr[(PRS is accepted) ∧ ((P, V ) is accepted) ∧ (each execution of (P ′, V ′) is accepted)] =

(ep)(ec)(e
′
c)

t

Note that e′c is one since our protocol (P ′, V ′) has perfect correctness. Thus we get the
probability that the transformed protocol is accepted is (ep)(ec).

Soundness Suppose x 6∈ L and there exists an adversarial PPT prover P∗ that can get V to
accept with non-negligible probability φ. In other words, suppose (P,V) has non-negligible
soundness error φ. We will show how to use P∗ to build a machine D that breaks the
soundness of the underlying zero-knowledge protocol (P, V ). We give a formal description
of D in Figure 2.

D will use P∗ as follows. D runs P∗ and executes the PRS preamble interacting with it
setting σ to a random r. Now, D gives a computational zero knowledge proof to P∗ and
receives r′ as shown in Figure 2. It then runs the honest verifier machine V acting a cheating
prover P ∗ and trying to break the soundness of the system (P, V ).

In the jth round, D receives pj from P∗ and sends it to V . V will respond to pj with
vj. Now D wants to be able to give vj as his response to P∗ so as to be able to continue the
protocol. However D needs his response to P∗ to be generated using randomness r⊕r′ as per
the protocol (P, V ). D has already committed to r with a statistically binding commitment
and thus can not necessarily decommit to a r such that vj is consistent with r, r′ and (P, V ).

However D does not have to decommit to r, but only needs to give a zero-knowledge proof
that he has committed to a randomness r such that vj is consistent with r, r′ and (P, V ). He
can use the simulator of (P ′, V ′) to do this. Hence, D sends vj to P∗ and simulates a zero
knowledge proof of its correctness by rewinding P∗. The probability that P∗ can differentiate
between such a simulated run and a real run can be analyzed using a simple hybrid argument.
As we move from a real run to a simulated one, we construct the following hybrid. D acts
as an honest V sending correct verifier messages vj. However, instead of giving real zero
knowledge proofs, D gives simulated proofs. In other words, although D would have the
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Common Input to D and V : x

Auxiliary input to D: The cheating prover machine P∗

Description of D, a cheating prover for (P, V )

1. D runs a copy of P∗, acting as the verifier itself.

2. D generates r
r← R. It then interacts with P∗ to carry out the PRS preamble

using r.

3. D gives a zero knowledge proof (P ′, V ′) to P∗ proving that all the shares it
committed to in the PRS preamble are consistent with r.

4. D receives r′ from P∗

5. For j = 1, . . . t:

(a) D gets the message pj from P∗.
(b) D → V : pj.

(c) V → D: vj.

(d) D uses the simulator S ′ of the system (P ′, V ′) and simulates a proof
with P∗ that V (T V

j , r ⊕ r′) = vj.

Figure 2: D acting as a cheating prover for (P, V ).

witness to the NP statement, it does not use it and instead simulates the zero knowledge
proof. Clearly, the probability that P∗ can distinguish this hybrid from a real run is bounded
by the zero-knowledge error (see section 2) of (P ′, V ′). Now, we move from the hybrid to
the simulated run where, in the PRS preamble, D did not commit to a randomness which
could explain his message vj (but rather an unrelated randomness r). Hence, D would not
necessarily possess the witness of his statement.

Using the above hybrid argument, it can be shown that:

Pr[P∗ can distinguish this simulation from a real run] ≤
Pr[P∗can break the ZK condition of (P ′, V ′)]+

Pr[P∗can break any of the commitments during the PRS preamble] ≤
k2hcom + e′z

P∗ will see t of these simulations from D. Thus we can use the union bound and get that
the probability that P∗ will be able to distinguish any of the simulation from a real run is
(k2hcom + e′z)t.

Now, V will only accept in the protocol if the internal V he is running accepts p1, v1, . . . , pt, vt.
Recall that the probability that V accepts when interacting with P∗ is φ. Thus the prob-
ability that V will accept an interaction with D who is running P∗ can be computed as
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follows:
Pr[V accepts] ≥

1− Pr[(P∗ does distinguish) ∨ (V does not accept)] ≥
1− (

Pr[P∗ does distinguish] + Pr[V does not accept]
) ≥

1− ((k2hcom + e′z)t + (1− φ))

This value must be less than the soundness error of (P, V ). Thus we get an upper bound
on the soundness error of the compiled protocol

φ ≤ es + (k2hcom + e′z)t

Note that if es, hcom, e′z are all negligible and t, k are at most polynomial, the soundness
error of the compiled protocol will be negligible.

Concurrent Statistical Zero-knowledge Lets consider an arbitrary unbounded concur-
rent verifier strategy. Let V∗ be one of the verifiers representing a session in the concurrent
verifier strategy. Given S, the simulator for the underlying protocol (P, V ), we show how
to construct a simulator S for the protocol (P,V). S will output a simulated transcript
from a distribution which is only a negligible statistical distance from the distribution of the
transcript of a real interaction. The simulator S is described formally in Figure 3.
S will first run S, the simulator of the underlying protocol. S will act as the honest

verifier oracle for S recording all the randomness that he uses as the oracle. After running
S, S will have a transcript p̂1, v̂1, . . . p̂t, v̂t and the randomness r̂ (used in creating the honest
verifier responses v̂1, . . . v̂t). This transcript p̂1, v̂1, . . . p̂t, v̂t will be statistically close to a real
run of (P, V ).

As shown in the figure, S then runs the concurrently extractable simulator CEC-Sim
(or in other words, the PRS simulator) and recovers the committed randomness r∗ with
probability at least (1− ε). Since the commitments that V∗ used during the PRS preamble
are statistically binding, even an all powerful V∗ will not be able to change them except with
negligible probability. We call this probability bcom. After finishing the preamble, S will be
a straightline simulator and will not rewind V∗ any further.
S will now give V∗ a string r′ such that r∗ ⊕ r′ = r̂. Note that the distribution of r′ will

look completely uniform to V∗ since V∗ has no information about r̂.
Now for each round of the protocol, the simulator will proceed as follows. In round

j, S will give p̂j to V∗. Since V∗ has already committed to r∗, it will now be forced use
randomness r∗ ⊕ r′ which is exactly r̂, . It will therefore be forced to respond with v̂j,
except of course with the probability that he can break either the binding property of the
commitment or the soundness of the zero-knowledge proof (P ′, V ′). Since we are using
statistically binding commitments and a zero knowledge proof, the probability of an all
powerful adversary breaking the binding property of the commitments or the soundness
property of the (P ′, V ′) is negligible. Thus the randomness that V∗ is forced to use will be
r̂ and his response will therefore be v̂j, exactly as in the transcript created by S. If this is
not the case, S aborts.
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Input: V∗, one of the verifiers in an arbitrary unbounded concurrent verifier strategy.

The simulator S

1. S acts as an honest verifier V and runs the simulator S of the argument
system (P, V ) on itself. S generates r̂

r← R and uses it as randomness to
interact with S. After the interaction, S gets as output the simulated
transcript p̂1, v̂1, . . . p̂tv̂t.

2. S runs a copy of V∗

3. S runs the concurrently extractable simulator CEC-Sim on V∗. CEC-Sim
executes the PRS preamble with V∗ and extracts its committed randomness
r∗.

4. S carries out (P ′, V ′) with V∗ in which V∗ proves that all the shares it
committed to in the PRS preamble are consistent with r∗.

5. S computes r′ such that r∗ ⊕ r′ = r̂ and sends it to V∗ .

6. For j = 1, . . . t:

(a) S sends p̂j to V∗ and receives V∗’s response v̂′j.
(b) S carries out (P ′, V ′) with V∗ in which V∗ proves that its response

v̂′j = V (T V
j , r̂). S aborts if v̂′j 6= v̂j.

Figure 3: The simulator S for (P,V).

We now analyze the probability of failure of the simulator S. From a union bound, we
can directly bound this probability by analyzing the probability of all the events which may
cause S to fail. The failure probability is upper bounded by:

Pr[Output of S is not identically distributed to (P, V )]+

Pr[CEC-Sim is unsuccessful in recovering r∗]+

Pr[V∗ breaks the binding property of any of the commitments]+

Pr[V∗ breaks the soundness property of (P ′, V ′) for any of the executions]

= ε + ez + k2bcom + e′st

Thus ∆((P,V∗)(x),SV∗(x)) = (ε + ez + k2bcom + e′st) as claimed.
Note that if ε, ez, bcom, e′s are all negligible and t, k are at most polynomial, the sim-

ulated transcript will have negligible statistical difference from a real run of the protocol.
¥ ¥
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4.2 Concurrent statistical zero-knowledge arguments from any one
way function

In order to build concurrent statistical zero-knowledge arguments from a OWF, we need the
following theorem implicit in [NOV06].

Theorem 2. If one way functions exist, every language in NP has a public-coin statistical
zero-knowledge argument system.

We can now apply our compiler to the protocol of Nguyen et al [NOV06] to get the
following corollary.

Corollary 1. If one way functions exist, every language in NP has a concurrent statistical
zero-knowledge argument system.
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