
Constant-Round Concurrent Non-Malleable Zero
Knowledge in the Bare Public-Key Model

Rafail Ostrovsky∗ Giuseppe Persiano† Ivan Visconti‡

APPEARED IN ICALP (2) 2008: 548-559

Abstract

One of the central questions in Cryptography is the design of round-efficient protocols
that are secure under concurrent man-in-the-middle attacks. In this paper we present the first
constant-round concurrent non-malleable zero-knowledge argument system for NP in the Bare
Public-Key model [Canetti et al. STOC 2000], resolving one of the major open problems in
this area. To achieve our result, we introduce and study the notion of non-malleable witness
indistinguishability, which is of independent interest. Previous results either achieved relaxed
forms of concurrency/security or needed stronger setup assumptions or required a non-constant
round complexity.

Keywords: non-malleable zero knowledge, witness indistinguishability.

1 Introduction
Interactive proof systems play a central role in cryptography. Starting with the seminal paper of
Goldwasser, Micali and Rackoff [1], the notion of zero knowledge and the simulation paradigm
have been adopted in order to prove security of interactive proof systems. Dolev, Dwork and
Naor [2] proposed the notion of a non-malleable zero-knowledge (NMZK, in short) proof systems
where security must be preserved even under a man-in-the-middle attack. This stronger attack
allows the adversary to act as a prover in a proof and as a verifier in another proof with full
control over the scheduling of the messages. The notion of NMZK is proved to be extremely
important in cryptography, since it captures the notion of proof independence, and led to multiple
applications. Feasibility results for NMZK have been shown by using either black-box techniques
and a super-constant number of rounds by Dolev et al. [2] or by using non-black-box techniques
and obtaining computational soundness in a constant number of rounds by Barak [3] and Pass and

∗Department of Computer Science and Department of Mathematics, UCLA, Los Angeles, CA, Email:
rafail@cs.ucla.edu. Supported in part by IBM Faculty Award, Xerox Innovation Group Award, NSF grants
0430254, 0716835, 0716389 and U.C. MICRO grant.

†Dipartimento di Informatica ed Applicazioni, Università di Salerno 84084 Fisciano (SA), ITALY. Email:
giuper@dia.unisa.it

‡Dipartimento di Informatica ed Applicazioni, Università di Salerno 84084 Fisciano (SA), ITALY. Email:
visconti@dia.unisa.it

1

Rosen [4]. Another stronger variation of zero knowledge is concurrent zero knowledge, introduced
by Dwork, Naor and Sahai [5], where security has to work against adversaries that are involved in
many concurrent executions of a proof system.

In this paper we consider an adversary A mounting a concurrent man-in-the-middle attack
in which A acts as a verifier interacting with a honest prover in polynomially many left proofs
and acts as a prover interacting with honest verifiers in polynomially many right proofs. The
problem of designing protocols that combine concurrent security with security against man-in-
the-middle adversaries has received a lot of attention; several questions still remain open, though.
In particular, constant-round concurrent non-malleable zero-knowledge (cNMZK, for short) proof
systems have been shown to exist by assuming the existence of trusted third parties or a trusted
common reference string [6, 7] or by using relaxed security notions [8] or relaxed concurrency [9].
A construction with poly-logarithmic round complexity for concurrent NMZK in the plain model
has been given by Barak, Prabhakaran, and Sahai [10]. The possibility of constructing constant
round cNMZK proof system in the plain model or under weaker setup assumptions is an open
problem.

Non-malleable witness indistinguishability. A weaker but still useful security notion for proof
systems is that of witness indistinguishability [11], where it is required that the adversarial verifier
does not distinguish the witness used by the prover. Despite the tremendous applicability of witness
indistinguishability, while a lot of attention has been given to zero knowledge with respect to man-
in-the-middle attacks, very little attention has been given to witness indistinguishability in case of
man-in-the-middle attacks.

We first show the definition and construction of a new concurrent non-malleable primitive that
extends the notion of witness indistinguishability to the setting in which the adversary is a concur-
rent man-in-the-middle. For defining this new primitive, we focus on a specific class of argument
systems referred to as commit-and-prove1 functionality introduced in [12] and also considered
in [6]. We then construct a constant-round concurrent non-malleable witness indistinguishable
(cNMWI, for short) argument of knowledge (under Def. 2) for all NP in the plain model (see The-
orem 4). This construction relies upon the work by Pass and Rosen [13] where constant-round
concurrent non-malleable (NM, for short) commitments have been achieved. In a next work we
also show that the notions of NMWI and NMZK argument systems are incomparable, this is sur-
prising since all previously introduced notions of witness indistinguishability were implied by the
corresponding notions of zero knowledge.

Non-malleable zero knowledge. We show the construction of a a constant-round cNMZK ar-
gument system under standard complexity theoretic assumptions and security notions in the Bare
Public-Key model, a set-up assumption introduced in [14] that does not require any trusted third
party. So far this has been achieved only under stronger setup assumptions. On the other hand,
constant-round concurrent zero knowledge has been obtained in the BPK model in [14] (in [15]

1We restrict our study to this class of argument systems as: 1) they allow us to define the notion of witness encoded
in a proof; 2) they suffice for our constructions and applications. It is possible however to generalize this notion.

2

with a concurrent soundness guarantee, and in [16, 17] under standard assumptions). Given our re-
sults, the BPK model is, at the best of our knowledge, the weakest model in which constant-round
cNMZK has been achieved.

Corruption model and adaptive inputs. In all our results we consider the static corruption
model where the adversary has to choose the corrupted parties before the protocols start. Following
the previous work on NMZK, in the proof of our concurrent NMZK argument of knowledge in the
BPK model we assume that the inputs (i.e., statements) for honest parties are fixed according to
some predetermined distribution while the adversary can choose its inputs adaptively. Instead, for
our cNMWI argument of knowledge in the plain model, following [18] we also allow the adversary
to choose the inputs of the prover by giving it both the statements and the witnesses.

Work related to witness indistinguishability and cNMZK zero knowledge in the plain model.
Recently and independently from our work Micali, Pass and Rosen [19] presented an extension
of the notion of witness indistinguishability for achieving a relaxed notion of secure computa-
tion that does not resort to the simulation paradigm. Their techniques are similar to ours but in
this work, in contrast to [19], we achieve arguments of knowledge and focus on the use of these
strong notions of witness indistinguishability for achieving a notion of security based on simula-
tion (i.e., concurrent NMZK). Moreover, achieving input-indistinguishability involves significantly
more complicated protocols; furthermore, it is not clear how easy this notion is to work with when
used as a “sub-protocol”. The power of our simple and specific definition of non-malleable wit-
ness indistinguishability is that it can achieved essentially directly by relying on the non-malleable
commitment protocol of [13] and it is easy to work with.

We observe that in the plain model constant-round (non-concurrent) NMZK has been recently
obtained [3, 4] whereas obtaining constant-round concurrent zero knowledge in the plain model
has been open for quite some time. The only constant-round concurrent zero-knowledge argu-
ments known in the plain model impose a bound on the number of concurrent executions that the
adversary can perform [20]. If we do not insist on constant-round protocols, non-malleability and
security in a concurrent setting have been achieved by [10] which present a protocol with logarith-
mic round complexity.

2 Non-Malleable Witness Indistinguishability
For lack of space, the definition of standard tools and the ones about non-malleability can be found
in the full version of this work [21, 22].

We now start by discussing and defining the new non-malleable notion of proof systems. In
our definition of NM witness indistinguishability we shall require that the witness encoded in the
proof given by the man-in-the-middle adversary A is independent from the witness used by the
honest prover in the left proof. Notice that A might be unaware of the witness it has used in the
right proof. More specifically, we focus on a specific class of argument systems referred to as
commit-and-prove argument systems (previously considered in [6, 12]). Informally, the transcript

3

of a commit-and-prove argument encodes in an unambiguous way the witness used by the prover
(even though it might not be efficiently extracted from the transcript). In a NMWI commit-and-
prove argument we require the witness encoded in the proof produced by the man-in-the-middle
adversary to be independent of the witness used (by the honest prover) in the proof in which the
adversary acts as a verifier.

For general argument systems it is not clear whether the notion of witness encoded is well
defined as there could be more than one. Therefore, we focus on commit-and-prove argument sys-
tems for which the notion of the witness encoded is well defined and commit-and-prove arguments
actually suffice for proving our next result (i.e., cNMZK n the BPK model).

Commit-and-prove argument systems. A commit-and-prove argument system Π = 〈P, V 〉 for
a language L is a two-stage protocol. On input x, in the first stage the prover and the verifier
execute a commitment protocol by which the prover commits to a string w. In the second stage,
the prover proves to the verifier that the committed string w is a valid witness for “x ∈ L”. We
study commit-and-prove argument systems in which the commitment scheme used in the first stage
is non-interactive and statistically binding, therefore the notion of witness encoded in the proof is
well defined and it corresponds to the string committed to by the first prover-to-verifier message.
If the proof is not accepted by the verifier, we consider the witness to be encoded in the proof to
be the string ⊥. We shall require that in a NMWI commit-and-prove argument system the man-in-
the-middle adversary encodes in the right proof a witness that is independent from the one that the
honest prover has used in the left proof.

Tag-based NMWI commit-and-prove arguments. We consider a man-in-the-middle adversary
A interacting in the left proof with tag tag with the honest prover P that is running on input
instance x and witness w. In the right proof,A is interacting with the honest verifier V on common
input x̃ and tag ˜tag of its choice. We denote by z the auxiliary information available to A.

The notion of tag-based NM witness indistinguishability is defined in terms of the random
variable wmimA(tag, x, w, z) that is the distribution of the output of the following process: a
transcript trans of an interaction of A, including the left and the right proof, is picked according
to distribution ViewP

A(tag, x, w, z) (i.e., the view ofA when running with z as auxiliary input and
playing with P that runs on input (x,w) and tag tag) and the output of a procedure wit applied to
trans is returned. The procedure wit returns ⊥ if the right proof is not accepting (i.e., V outputs
0) or tag is the tag of the right proof. Otherwise it returns the witness encoded in the right proof.

Definition 1 (tag-based NMWI argument) A family of commit-and-prove argument systems
Π = {〈Ptag, Vtag〉}tag for an NP-language L is a tag-based non-malleable witness indis-
tinguishable (tag-based NMWI, in short) argument with tags of length ` if, for all probabilis-
tic polynomial-time man-in-the-middle adversaries A, for all probabilistic polynomial-time al-
gorithms D, there exists a negligible function ν such that for all x ∈ L, for all tags tag ∈ {0, 1}`,
for all pairs (w, w′) of witnesses for x, and for all auxiliary information z it holds that

|Prob[D(x,w,w′, wmimA(tag, x, w, z), z) = 1]−
Prob[D(x,w,w′, wmimA(tag, x, w′, z), z) = 1]| < ν(|x|).

4

A NMWI argument system is an argument of knowledge when for any prover that proves a
given statement with probability p, there exists an efficient extractor that outputs a valid witness
with essentially the same probability p (see the definition of [23]).

Comparison with NMZK. We stress here that NMZK requires the existence of a simulator
while NM witness indistinguishability does not. Instead, NM witness indistinguishability crucially
considers the possible witnesses that are encoded in the proofs given by the man-in-the-middle
while NMZK requirements are satisfied when a valid witness is given in output by the simulator-
extractor.

Comparison with NM commitments. The notion of NM witness indistinguishability is similar
to the notion of NM commitment with respect to commitment [2, 4]. Indeed, both notions con-
cern the security of a primitive against man-in-the-middle attacks by considering a string that is
encoded in the messages sent by the adversary. This string is a committed message in case of NM
commitments while it is an encoded witness in case of NM witness indistinguishability.

2.1 Concurrent and Simulation-Based NMWI Arguments
We extend the notion of non-malleable witness indistinguishability to the concurrent setting by
considering a concurrent man-in-the-middle adversary A that opens m = poly(k) left and right
proofs each with a common input of length n = poly(k). Here k refers to the security parameter.
A interacts in the i-th left proof with an instance of the honest prover P on common input “xi ∈ L”
and private prover’s input wi ∈ W (xi). In the j-th right proof A is interacting with the honest
verifier V on common input x̃j of its choice.

To define concurrent non-malleable witness indistinguishability, we extend wmimA(X,W, z)
to sequences of inputs and witnesses in the following way. The distribution wmimA(X,W, z) is the
distribution of the output of the following procedure. First a transcript trans is sampled according
to the view ViewP

A(X, W, z) of A. Then the output of the following extension of the procedure wit
applied to trans is returned. Procedure wit returns a sequence (w̃1, · · · , w̃m) where m is the
number of right proofs and it holds that: if the j-th right proof is non-accepting or has the same
common input as one of the left proofs then w̃j =⊥; otherwise, w̃j is the witness encoded in the
j-th right proof.

As done for non-malleable witness indistinguishability, we can obtain a tag-based definition
of concurrent non-malleable witness indistinguishability and we define wmimA(T, X, W, z) so to
take into account the tags and not the inputs of the right proofs. We stress again that A is allowed
to choose the inputs and the tags for the right proofs.

Definition 2 (tag-based cNMWI argument) A family of commit-and-prove argument systems
Π = {〈Ptag, Vtag〉}tag for the language L is a tag-based concurrent non-malleable witness
indistinguishable argument (a tag-based cNMWI) with tags of length ` if, for all probabilis-
tic polynomial-time concurrent man-in-the-middle adversaries A, for all m = poly(k), for all
n = poly(k) and for all probabilistic polynomial-time algorithms D, there exists a negligible func-
tion ν such that for all k, for all sequences X of m elements of L of length n, for all sequences T of

5

tags of length `, for all sequences W and W ′ of witnesses for X , and for all auxiliary information
z it holds that

|Prob[D(X, W,W ′, wmimA(T,X,W, z), z) = 1]−
Prob[D(X,W,W ′, wmimA(T, X, W ′, z), z) = 1]| < ν(k).

We stress that the two above definitions can be adapted by requiring that each statement to be
proved is adaptively chosen by the adversary (that will also provide valid witnesses to the provers)
before the corresponding proof starts, as discussed in [24]. Our constructions will enjoy this extra
property.

We will also consider a relaxed notion of concurrent non-malleable witness indistinguishabil-
ity where the adversary is allowed to run only one left proof. We denote this restricted notion of
concurrent NM witness indistinguishability as one-left many-right concurrent NM witness indis-
tinguishability.

Simulation-based cNMWI Arguments. We also give a simulation-based definition of non-
malleable witness indistinguishability. We consider only the tag-based case. LetA be a concurrent
man-in-the-middle adversary and consider the following two executions. The first execution is
the man-in-the-middle execution where the concurrent man-in-the-middle adversary A interacts
with several copies of the honest prover in the left proofs and with several copies of the honest
verifier in the right proofs. For this execution we define distribution wmimA(T, X, W, z) as done
in the previous section. Also, we stress that A can choose the inputs for the right proofs as well
as the tags. In the second execution, called the stand-alone execution, we consider a simulator S
that, without receiving any witness for the inputs X of the left instances and without interacting
with a honest prover, manages to output the transcripts of the left and the right proofs. We denote
by wstaS(T, X, z) the random variable that describes output of the following procedure. First a
transcript trans is sampled according to the distribution of the output of S(T,X, z). Then the
procedure wit is applied to trans and the output is returned.

Definition 3 (tag-based SBcNMWI argument) A family of commit-and-prove argument system
Π = {〈Ptag, Vtag〉}tag is a tag-based simulation-based concurrent non-malleable witness in-
distinguishable (tag-based SBcNMWI, in short) argument for the language L, if for all polynomials
m = poly(k) and n = poly(k), for all probabilistic polynomial-time concurrent man-in-the-middle
adversaries A, there exists a simulator S running in expected polynomial time, such that the fol-
lowing distributions are computationally indistinguishable:

{wmimA(T, X, W, z)}T∈{0,1}ml,X∈Lm
n ,W∈W (X),z∈{0,1}? and

{wstaS(T, X, z)}T∈{0,1}ml,X∈Lm
n ,z∈{0,1}? .

The notion of a simulation-based non-malleable witness indistinguishable commit-and-prove ar-
gument of knowledge can be obtained by further requiring that S is able to extract witnesses from
the right proofs whenever they use tags different from the left proofs.

The notion of one-left many-right SBcNMWI argument can be obtained by restricting the ad-
versary to be involved only in one left proof.

6

Theorem 4 Assume that there exists a family of claw-free permutations. Then there exists a
constant-round tag-based cNMWI commit-and-prove argument of knowledge for all NP in the plain
model.

The proof of this theorem is obtained by first noticing that a variation of the commitment scheme
of [4] actually allows one to obtain a one-left many-right SBcNMWI argument of knowledge,
then by noticing that any one-left many-right SBcNMWI argument of knowledge is a one-left
many-right cNMWI argument of knowledge, and finally by noticing that any one-left many-right
cNMWI argument of knowledge is a many-left many-right cNMWI argument of knowledge (see
the full version of this work [21, 22] for the protocol and the security proof.)

We finally stress that the above theorem still holds in case the adversary chooses the inputs of
the honest prover, by feeding it also valid witnesses.

3 cNMZK in the BPK Model
In the BPK model [14], each verifier registers some public information (called the public key) in a
public file during a preprocessing stage. Each public key is associated with some secret information
(called the secret key) that is known only to the owner of the public key. After the preprocessing is
completed, parties engage in the proof stage where proofs are run.

We will define and construct in the BPK model constant-round arguments for any NP-language
that are secure with respect to a BPK concurrent man-in-the-middle adversary A which during
the preprocessing stage has complete control over the public file where keys are registered (that
is, A can modify, omit and, add new adaptively chosen keys to the public file) and, once the
preprocessing stage is completed, A acts as a concurrent man-in-the-middle adversary. We stress
that no form of key-authentication is required thus making the BPK model a setting very close to
the plain model.

The BPK model for interactive argument systems. We now review the definition of an inter-
active argument system in the BPK model that were previously given in [25] and the extension to
the concurrent man-in-the-middle attack case.

Formally, a BPK pair is a pair 〈P, V 〉 where P is a probabilistic polynomial-time algorithm
and V is a pair V = (V0, V1) of probabilistic polynomial-time algorithms. The interaction between
provers and verifiers takes place in two stages. In the first stage, called the set-up stage, verifiers
run algorithm V0, on input a security parameter 1k, to obtain a pair (pk, sk) consisting of a public
and a secret key. Each verifier publishes his public key pk in a public file F . The second stage,
called the proof stage, consists of polynomially (in the security parameter) many proofs. In each
of them a prover interacts with a verifier; specifically, the prover runs algorithm P on input x
(of length polynomial in the security parameter), some auxiliary information w (typically w is a
witness for x to be member of some fixed language L) and the public key pk chosen by the verifier.
The verifier instead runs algorithm V1 on input x and sk.

Definition 5 A BPK pair 〈P, V 〉 is complete for the language L if in any interaction on common

7

input x ∈ L and pk constructed by V0, where P receives as additional input w ∈ W (x), and V1

secret key sk associated with pk, V1 accepts except with negligibly probability.

The definitions of argument systems in the BPK model can be found in [14], in particular
in [25, 26] the notions of concurrent zero-knowledge and concurrent soundness have been defined.
We will focus on cNMZK arguments of knowledge in the BPK model that implies both concurrent
zero knowledge and concurrent soundness. Indeed, concurrent zero-knowledge corresponds to
a special case where the man-in-the-middle does not run any right proof. Instead, concurrent
soundness corresponds to the special case where the man-in-the-middle does not run any left proof
and is implied by the fact that we require that a legal NP witness is obtained for any accepting
proof given by the adversary (i.e. proofs where V outputs 1).

3.1 cNMZK in the BPK Model
We next define cNMZK argument of knowledge in the BPK model.

A BPK concurrent man-in-the-middle adversary A = (A0,A1) is a pair of probabilistic algo-
rithms. A0 on input an auxiliary information z receives the public file F containing the public keys
as computed by the honest verifiers and outputs a modified public file F ′. In computing F ′, A0 is
allowed to add new adaptively chosen keys and to remove some of the keys of the honest verifiers.
A0 also outputs some secret auxiliary information Z relative to F ′. Once F ′ is made public by
A0, it cannot be changed and the control passes to A1 that runs on input F ′ and Z. In the proof
stage, A1 behaves like a concurrent man-in-the-middle adversary with the only restriction that he
can start right proofs in which he plays as a prover with honest verifiers only with respect to entries
of F ′ that were chosen by the honest verifiers and not modified by A0.

We define the view BViewA(X, W, z) of a BPK concurrent man-in-the-middle adversary A =
(A0,A1) with respect to the vector X of left inputs with witnesses W as consisting of the initial
public file received by A0, of all messages received by A1 in the proof stage both in the left proofs
run on input X and right proofs run on inputs adaptively chosen by A1, along with the sequence
of internal states of A0 and A1 and coin tosses, and the output of the honest verifiers.

Definition 6 (cNMZK arguments of knowledge in the BPK) A BPK pair Π = 〈P, V 〉 complete for
the language L is a BPK cNMZK argument of knowledge if for every probabilistic polynomial-
time BPK concurrent man-in-the-middle adversary A, there exists a probabilistic algorithm S
running in expected polynomial time such that, for all m = poly(k) and n = poly(k), by denoting
with S(X, z) = (S0(X, z), S1(X, z)) the output of S on input (X, z), we have

1. {S0(X, z)}X∈Lm
n ,z∈{0,1}? and {BViewA(X, W, z)}X∈Lm

n ,W∈W (X),z∈{0,1}? are computationally
indistinguishable.

2. Writing the second component of S’s output as S1(X, z) = (w̃1, . . . , w̃m), we have that, for
all accepting right proofs j of S0(X, z) with common input x̃j 6∈ X , w̃j ∈ W (x̃j) except
with negligible probability.

8

We stress that the adversary can always see the output of the verifier since this is what con-
cretely happens when protocols are executed in the real world. This is an important issue for proof
systems in which the internal state of the verifier is needed to decide whether a proof is accepted
or not.

As a concurrent verifier and a concurrent prover are both special cases of a concurrent man-in-
the-middle adversary, then it is obvious that a cNMZK argument of knowledge in the BPK model
is both concurrent zero-knowledge and concurrently sound.

3.2 The Constant-Round Protocol
The main idea is to use the FLS paradigm by having the prover prove knowledge of either a
legal witness of the input statement or of the secret key of the verifier. The goal is to design a
simulator that runs the honest verifier algorithm and plays the role of the prover by first extracting
the secret keys used by the adversary and then by using them as witness by running in a straight-
line fashion the honest prover algorithm. In order to make this possible, we have the verifier first
prove knowledge of his secret key so that the simulator will first extract the secret keys of the
adversary. To withstand concurrent man-in-the-middle attack, we employ the cNMWI argument
of knowledge we have developed in the previous section along with the two-key technique by [11].

More in details, in the preprocessing stage, each verifier computes a pair of public keys along
with the corresponding secret keys. He then randomly chooses one of the two secret keys and
discards the other one. This step can be implement by using a one-way function f in the fol-
lowing way: randomly pick two messages sk0, sk1 in the domain of f ; compute public keys
pk0 = f(sk0), pk1 = f(sk1); randomly select b ← {0, 1}; set sk = (b, skb) and pk = (pk0, pk1).

The actual argument on input x consists of a sequential composition of two instances of the
tag-based constant-round cNMWI commit-and-prove argument of knowledge we have constructed.
First the verifier proves knowledge of one of the two secret keys associated to his entry in the public
file (this is obviously done by NP-reducing this instance to the NP-complete language used by the
subprotocol). This subprotocol is run using x ◦ 0 as tag. Obviously the honest verifier uses his
knowledge of one of two secret keys to successfully complete this subprotocol. In the second
execution the prover proves knowledge of either w such that R(x,w) = 1 or of one of the two
secret keys associated with the two public keys of the verifier. The tag used in this subprotocol
is x ◦ 1. Obviously the honest prover uses knowledge of a witness w for R(x, ·) to complete the
protocol.

Let us explain how we plan to perform simulation of the protocol. Simulation is easy for right
proofs where the simulator plays the role of the honest verifier. Indeed right proofs are executed
relatively to entry of the public file that have been constructed by the simulator itself and thus
it knows one of the secret keys to perform the first subprotocol of a right proof. Simulating the
second subprotocol of right proofs and the first subprotocol of the left proofs is trivial as the
simulator can simply play the honest verifier algorithm of the subprotocol. In order to simulate the
second subprotocol of left proofs instead the simulator needs to know either a witness for “x ∈ L”
or one of the secret keys associated with the corresponding entries of the public file that are used
by the adversary. However, the adversary has just proved knowledge of at least one of the two keys
in the first subprotocol of the same proof. Therefore we plan on extracting one of these keys from

9

the adversary and then use it to perform the second subprotocol. The use of rewinds is dangerous
in concurrent setting but not in the BPK model as shown in [14]. Indeed the number of extraction
procedures that have to be successfully run is independent of the number of concurrent proofs,
since it is bounded by the size of the public file. Once the simulator knows at least one secret key
for each of the entries of the public file used by the adversary, the simulation is straight-line.

Let us now explain why we can also extract valid witness for all theorems proved by the adver-
sary. We know that in all succeeding proofs for x ∈ L given by the adversary, there is a cNMWI
argument of knowledge for proving that x ∈ L or that the adversary knows one of the two secret
keys of the verifier. During the simulated game we can run the extractor for all these proofs in
order to obtain the valid witnesses thus satisfying definition 6. If instead we extract as witnesses
the secret keys of the verifier, we distinguish two cases. In the former case we extract a secret key
that was not used by the simulator; we show how to reduce this case to an adversary that inverts
the one-way function used for generating the public keys. In the latter case we always extract
the same secret keys used by the simulator; this last case means that the adversary succeeded in
encoding in the cNMWI arguments of knowledge that it proved, the same witness encoded by the
simulator in the cNMWI arguments of knowledge where the adversary played as verifier. This last
case contradicts the NM witness indistinguishability of the cNMWI arguments of knowledge.

The protocol in details. Let L be an NP-language with polynomial-time relation R and let f be
a one-way function. Associated with L and f , we consider two auxiliary NP-languages L1 and L2

with polynomial-time relations R1 and R2 defined as follows:

• (pk0, pk1) ∈ L1 iff there exist b and sk such that pkb = f(sk);

• (x, pk0, pk1) ∈ L2 iff x ∈ L or (pk0, pk1) ∈ L1.

In the description of our BPK cNMZK argument of knowledge (P, V) for any NP-language L
we will use a tag-based cNMWI argument of knowledge Π = {〈Ptag,Vtag〉}tag for an NP-
complete language Λ. When we say that we execute Π for proving that τ ∈ L1 (or σ ∈ L2) we
actually mean that τ (or σ) is reduced to an instance of Λ and Ptag and Vtag are executed on
input this instance. We also remark that known reductions have the property that, if a witness
for τ ∈ L1 (or for σ ∈ L2) is known then a witness for the new instance can be constructed in
polynomial time. (The protocol is formally described in Figure 1.)

Lemma 7 If f is a one-way function and Π is a cNMWI argument of knowledge then the protocol
(P ,V) of Figure 1 is a cNMZK argument of knowledge in the BPK model for any NP language.

For lack of space, the formal can be found in the full version of the paper available at [22, 21].

Theorem 8 Assume that there exists a family of claw-free permutations. Then in the BPK model
there exists a constant-round cNMZK argument of knowledge for all NP.

The proof follows by Theorem 7, and by the observation that claw-free permutations imply the
existence of one-way functions.

10

Input: security parameter 1k.
PREPROCESSING STAGE:
Entry l of the public file is constructed by V0 as follows:

pick skl
0, sk

l
1 ← {0, 1}k, compute pkl

0 = f(skl
0) and pkl

1 =

f(skl
1),
randomly pick bl ← {0, 1}, set pkl = (pkl

0, pkl
1) and skl =

(bl, sk
l
bl
).

output: (pk, sk).

PROOF STAGE:
Sub-protocol: tag-based cNMWI argument of knowledge Π =

{〈Ptag,Vtag〉}tag for a NP-complete language Λ.
Common input: the public file F , entry pkl = (pkl

0, pkl
1) of F ,

n = poly(k)-bit string x ∈ L.
P ’s private input: a witness w for x ∈ L.
V1’s private input: secret key skl = (bl, sk

l
bl
);

V1 −→ P : V1 and P engage in an execution of Π with tag x ◦ 0
where V1 runs Px◦0 to prove to P (running Vx◦0) knowledge of a
witness (bl, sk

l) for σ = (pkl
0, pkl

1) ∈ L1.
P −→ V1: P and V1 engage in an execution of Π with tag x ◦ 1
where P runs Px◦1 to prove to V1 (running Vx◦1) knowledge of a
witness for τ = (x, pkl

0, pkl
1) ∈ L2.

Figure 1: The constant-round BPK cNMZK argument of knowledge 〈P, V 〉 for NP.

References
[1] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof

systems. 18 (1989) 186–208

[2] Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. 30 (2000) 391–437

[3] Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the shared
random string model. (2002) 345–355

[4] Pass, R., Rosen, A.: New and Improved Constructions of Non-Malleable Cryptographic
Protocols. (2005) 533–542

[5] Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. (1998) 409–418

11

[6] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and
multi-party secure computation. (2002) 494–503

[7] Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols with relaxed
set-up assumptions. (2004) 186–195

[8] Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent compo-
sition via super-polynomial simulation. (2005) 543–552

[9] Kalai, Y.T., Lindell, Y., Prabhakaran, M.: Concurrent general composition of secure protocols
in the timing model. (2005) 644–653

[10] Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge. (2006)

[11] Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. (1990) 416–
426

[12] Kilian, J.: Uses of randomness in Algorithms and Protocols. MIT Press, Cambridge, MA
(1990)

[13] Pass, R., Rosen, A.: Concurrent non-malleable commitments. (2005) 563–572

[14] Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge. (2000)
235–244

[15] Di Crescenzo, G., Persiano, G., Visconti, I.: Constant-round resettable zero knowledge with
concurrent soundness in the bare public-key model. (2004) 237–253

[16] Di Crescenzo, G., Visconti, I.: Concurrent zero knowledge in the public-key model. (2005)
816–827

[17] Visconti, I.: Efficient zero knowledge on the internet. (2006) 22–33

[18] Feige, U., Lapidot, D., Shamir, A.: Multiple NonInteractive Zero Knowledge Proofs under
General Assumptions. SIAM Journal on Computing 29 (1999) 1–28

[19] Micali, S., Pass, R., Rosen, A.: Input-indistinguishable computation. (2006) 136–145

[20] Barak, B.: How to go beyond the black-box simulation barrier. (2001) 106–115

[21] Ostrovsky, R., Persiano, G., Visconti, I.: Constant-round concurrent nmwi and its relation to
nmzk. Technical Report ECCC Report TR06-095, ECCC (2006)

[22] Ostrovsky, R., Persiano, G., Visconti, I.: Constant-round concurrent nmwi and its relation to
nmzk. Technical Report 2006-256, Cryptology ePrint Archives (2006)

[23] Bellare, M., Goldreich, O.: On defining proofs of knowledge. (1992) 390–420

12

[24] Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext
security. (1999) 543–553

[25] Micali, S., Reyzin, L.: Soundness in the public-key model. (2001) 542–565

[26] Reyzin, L.: Zero-Knowledge with Public Keys, Ph.D. Thesis. MIT Press, Cambridge, MA
(2001)

13

