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Abstract

In this paper we introduce the notion of a Public-Key Encryption Scheme that is also a
Locally-Decodable Error-Correcting Code (PKLDC). In particular, we allow any polynomial-
time adversary to read the entire ciphertext, and corrupt a constant fraction of the bits of the
entire ciphertext. Nevertheless, the decoding algorithm can recover any bit of the plaintext
with all but negligible probability by reading only a sublinear number of bits of the (corrupted)
ciphertext.

We give a general construction of a PKLDC from any Semantically-Secure Public Key En-
cryption (SS-PKE) and any Private Information Retrieval (PIR) protocol. Since Homomorphic
encryption implies PIR, we also show a reduction from any Homomorphic encryption protocol
to PKLDC.

Applying our construction to the best known PIR protocol (that of Gentry and Ramzan), we
obtain a PKLDC, which for messages of size n and security parameter k achieves ciphertexts of
size O(n), public key of size O(n + k), and locality of size O(k2). This means that for messages
of length n = ω(k2+ε), we can decode a bit of the plaintext from a corrupted ciphertext while
doing computation sublinear in n.

Keywords: Public Key Cryptography, Locally Decodable Codes, Error Correcting Codes,
Bounded Channel Model, Chinese Remainder Theorem, Private Information Retrieval.

1 Introduction

Error correction has been an important field of research since Shannon laid the groundwork for a
mathematical theory of communication in the nineteen forties, and active research continues until
this day. An error correcting code is a pair of algorithms C and D such that given a message x,
C(x) is a codeword such that, given a string y, if the Hamming Distance between d(C(x), y) is
“small”, then D(C(x)) = x. When speaking of an error correcting code, two of its most important
characteristics are the information rate, which is the ratio of the message size to the codeword size
|x|

|C(x)| , and the error rate which is the smallest ε such that if d(C(x), y) > ε|C(x)| then D(C(x)) fails
to recover x uniquely. Since the field’s inception, many codes have been found that exhibit both
constant information rate, and constant error rate, which, in a sense, is optimal. These codes all
share the property that to recover even a small portion of the message x from the codeword y, the
receiver must decrypt the entire codeword. In [1], Katz and Trevisan posed the question: can codes
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be found in which a single bit of the message can be recovered by decoding only a small number of
bits from the codeword? Codes of this type are called locally-decodable, and would be immensely
useful in encoding large amounts of data which only need to be recovered in small portions, for
example any kind of database or archive. Currently the best known locally-decodable codes are
due to Yekhanin [2]; they can tolerate a constant error rate, but achieve only slightly better than
exponentially small information rates1.

In 1994, Lipton examined the notion of error-correction in the computationally bounded channel
model [3]. In this model, errors are not introduced in codewords at random, but in a worst case
fashion by a computationally bounded adversary who can corrupt up to a constant fraction of the
entire codeword. This realistic restriction on the power of the channel allowed for the introduction
of cryptographic tools into the problem of error correction. In Lipton [3] and Gopalan, Lipton, Ding
[4] it was shown how, assuming a shared private key, one can use hidden permutations to achieve
improved error correcting codes in the private key setting. Recently, Micali, Peikert, Sudan and
Wilson used the computationally bounded channel model to show how existing error correcting
codes could be improved in the public-key setting [5]. After seeing the dramatic improvement
of error-correcting codes in the computationally bounded channel model, a natural question then
becomes whether locally-decodable codes can also be improved in this model.

The first progress in this setting was by Ostrovsky, Pandey and Sahai [6], where they construct
a constant information-rate, constant error-rate locally-decodable code in the case where the sender
and receiver share a private key. This left open the question whether the same can be accomplished
in the Public-Key setting, which does not follow from their results. Indeed, a näıve proposal (that
does not work) would be to encrypt the key needed by [6] separately and then switch to the private-
key model already solved by [6]. This however leaves unresolved the following question: how do you
encrypt the private key from [6] in a locally-decodable fashion? Clearly, if we allow the adversary
to corrupt a constant fraction of all the bits (including encryption of the key and the message), and
we encrypt the key separately, then the encryption of the key must consume a constant fraction
of the message, otherwise it can be totally corrupted by an Adversary. But if this is the case all
hope for local decodability is lost. Another suggestion is to somehow hide the encryption of the
key inside the encryption of the actual message, but it is not clear how this can be done.

A more sophisticated, but also flawed, idea is to use Lipton’s code-scrambling approach [3].
In his paper, Lipton uses a private shared permutation to “scramble” the code and essentially
reduce worst-case error to random error. A first observation is that we can use PIR to implement a
random permutation in the public-key setting. We would then proceed as follows: the receiver would
generate a random permutation σ ∈ Sr, and the receiver’s public key would be a set of PIR queries
Q1, . . . , Qr, where Qi is a PIR query for the σ(i)th block of an r block database, using some known
PIR protocol. The sender would then break their message x into blocks, x1, . . . , xr, apply standard
error correction to each block, calculate the Q1, . . . , Qr on their message, apply standard error
correction to each PIR response Ri = Qi(ECC(x)), and send the message ECC(R1), . . . , ECC(Rr).
If ECC and PIR have constant expansion rates, as is the case with many ECCs and the Gentry-
Ramzan PIR [7], the resulting code has only constant expansion rate. But an adversary can still
destroy a single block, by focusing damage on a single PIR response. If we add redundancy by
copying the message c times, and publishing cr PIR queries, the adversary can still destroy a block
with non-negligible probability by destroying constant number of blocks at random, and with non-
negligible probability the adversary will destroy all c responses corresponding to the same block,
and the information in that block will be lost. Recall that we demand that no bit of information

1Yekhanin achieves codewords of size 2n1/ log log n

for messages of length n, assuming there exist infinitely many
Mersenne primes.
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should be destroyed except with negligible probability. Hence this method does not work. Of
course, this can be fixed by increasing the redundancy beyond a constant amount, but then the
codeword expansion becomes more than constant as does the public key size. Thus, this solution
does not work, and new ideas are needed. Indeed, in this paper, we use PIR to implement a
hidden permutation, but we achieve a PKLDC which can recover from constant error-rate with
only constant ciphertext expansion.

1.1 Previous Work

The first work on error correction in the computationally bounded channel model was done by Lip-
ton in [3]. In Lipton [3] and Gopalan, Lipton, Ding [4] it was shown how to use hidden permutations
to achieve improved error correcting codes in the private key setting. In [5], Micali, Peikert, Sudan
and Wilson demonstrate a class of binary error correcting codes with positive information rate,
that can uniquely decode from 1

2 − ε error rate, under the assumption that one-way functions exist.
These codes decode from an error rate above the proven upper bound of 1

4 − ε in the (unbounded)
adversarial channel model. The first application of the computationally bounded channel to Locally
Decodable Codes was given by Ostrovsky, Pandey and Sahai [6], although their work was in the
private-key setting, and does not extend to the public-key setting.

In addition to extending the work in the computationally bounded channel model, our work
draws heavily from the field of Computational Private Information Retrieval (PIR). The first com-
putational PIR protocol was given by Ostrovsky and Kushilevitz [8], and since then there has been
much progress. For a survey of work relating to computational PIR see [9].

1.2 Our Results

In this paper, we present a general reduction from semantically-secure encryption and a PIR proto-
col to a Public Key Encryption system with local decodability (PKLDC). We also present a general
reduction from any homomorphic encryption to a PKLDC. In §5 we present the first Locally Decod-
able Code with constant information-rate which does not require the sender and receiver to share a
secret key. To achieve this, we work in the Computationally Bounded Channel Model, which allows
us to use cryptographic tools that are not available in the Adversarial Channel Model. Our system
presents an improvement in communication costs over the best codes in the information-theoretic
setting. We create codes with constant information-rate, as compared with the best known locally
decodable codes [2] in the information-theoretic setting which have an almost exponentially small
information rate.

Informally, our results can be summarized as follows,

Main Theorem (informal). Given a computational PIR protocol with query size |Q|, and re-
sponse size |R| which retrieves dk bits per query, and a semantically-secure encryption scheme,
there exists a Public Key Locally Decodable Code which can recover from a constant error-rate
in the bits of the message, which has public key size O(n|Q|/(dk2) + k) and ciphertexts of size
O(n|R|/(dk2)), where n is the size of the plaintext and k is the security parameter. The resulting
code has locality O(|R|k/d), i.e. to recover a single bit from the message we must read O(|R|k/d)
bits of the codeword.

Combining the main theorem with the general reduction from homomorphic encryption to PIR,
we obtain

Corollary 1. Under any homomorphic encryption scheme which takes plaintexts of length m to
ciphertexts of length αm, there is a Public-Key Locally Decodable Code which can recover from a
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constant error-rate in the bits of the message, with public key size O(nkβ β
√

n) and ciphertexts of
size O(nαβ−1k), for any β ∈ N, where n is the size of the plaintext and k is the security parameter.
The resulting code has locality O(αβ−1k2), i.e. to recover a single bit from the message we must
read O(αβ−1k2) bits of the codeword.

We can further improve efficiency if we have a Length-Flexible Additively Homomorphic En-
cryption like D̊amgard-Jurik [10], using this cryptosystem we obtain

Corollary 2. Under the Decisional Composite Residuousity Assumption [11] there is a Public-Key
Locally Decodable Code which can recover from a constant error-rate in the bits of the message,
with public key size O(n log2(n) + k) and ciphertexts of size O(n log(n)), where n is the size of
the plaintext and k is the security parameter. The resulting code has locality O(k2 log(n)), i.e. to
recover a single bit from the message we must read O(k2 log(n)) bits of the codeword.

We also give a specific construction of a system based on the Φ-hiding assumption first intro-
duced by Cachin, Micali and Stadler in [12], and later used by Gentry and Ramzan in [7]. Under
this assumption we obtain

Corollary 3. Under the Small Primes Φ-Hiding Assumption there is a Public-Key Locally Decod-
able Code which can recover from a constant error-rate in the bits of the message, with public key
size O(n) and ciphertexts of size O(n), where n is the size of the plaintext and k is the security
parameter. The resulting code has locality O(k2), i.e. to recover a single bit from the message we
must read O(k2) bits of the codeword.

Note that in full generality, our main result requires two assumptions, the existence of a PIR
protocol and a semantically-secure encryption protocol. In practice, however, two separate assump-
tions are usually not needed, and all the corollaries apply under a single hardness assumption.

Our construction does have a few disadvantages over the information-theoretic codes. First, our
channel is computationally limited. This assumption is fairly reasonable, but it is also necessary
one for any type of public key encryption. In [5], Micali et al. show that if a true adversarial
channel exists, which can always introduce errors in a worst-case fashion, then one-way functions
cannot exist. Second, our code has a larger “locality” than most information-theoretic codes. For
example, in Yekhanin’s Codes, the receiver is only required to read three letters of the codeword
to recover one letter of the message. In our code in §5 the receiver must read O(k2) bits to recover
1 bit of the plaintext, where k is the security-parameter. It should be noted, however, that to
maintain the semantic security of the cryptosystem, the receiver must read ω(log k) bits to recover
any single bit of the message. It is an interesting question whether the locality of our code can be
reduced from O(k2) to O(k). For long messages (i.e. n = ω(k2+ε)) our code still presents a very
significant improvement in locality over standard error correcting codes.

2 Computationally Locally Decodable Codes

2.1 Modelling Noisy Channels

When discussing error correcting, or locally-decodable codes, it is important to consider how the
errors are introduced by the channel. While it may be natural to assume the errors are introduced
“at random”, small changes in the exact nature of these errors can result in substantial changes in
the bounds on the best possible codes.

The first definition of a noisy channel is due to Claude Shannon [13]. Shannon defined the
symmetric channel where each message symbol is independently changed to a random different
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symbol with some fixed probability, called the error rate. An alternative definition of a noisy
channel is Hamming’s adversarial channel, where one imagines an adversary corrupting bits of the
message in a worst-case fashion, subject only to the total number of bits that can be corrupted per
block.

In 1994, Lipton [3] observed that the adversarial channel model assumes that the adversarial
channel itself is computationally unbounded. In that paper, Lipton proposed a new model of
computationally bounded noise, which is similar to Hamming’s adversarial channel, except the
adversary is restricted to computation which is polynomial in the block length of the code. This
restriction on the channel’s ability to introduce error is a natural one, and it is implied by the
existence of any one-way function [5]. Throughout this paper, we use Lipton’s model.

2.2 Definitions

We use the standard definition of computational indistinguishability for public key encryption,
where we also view the size of the plaintext as a function of the security parameter. That is, we
set the plaintext x to be of length kα, where k is the security parameter and α > 1.

The primary difference between our definition and the standard definition of semantic security
is the local decodability property of the cryptosystem. Roughly, this says that given an encryption
c of a message x, and a corrupted encryption c′ such that the hamming distance of c and c′ is less
than δ|c|, the time it takes the decoder to decode any bit xi of the plaintext x from c′ is much
shorter than the length of the message, and does not increase as the message length increases.

Definition 1. We call a Public Key Cryptosystem semantically-secure (in the sense of indistin-
guishability) and δ-computationally locally-decodable if there is a triple of probabilistic polynomial-
time algorithms (G,E,D), such that for all k and for all α sufficiently large

• (PK, SK) ← G(1k, α),

• c ← E(PK, x, r) (where |x| = kα is a plaintext message of length polynomial in k, and r is
the randomness of the encryption algorithm);

• b′ ← D(SK, c′, i)

so that for all probabilistic polynomial-time adversaries A,A′:

Pr[(PK, SK) ← G(1k, α); {x0, x1, γ} ← A(PK);A′(E(PK, xb, r), γ) = b] <
1
2

+ ν(k),

where x0 and x1 must both be of length kα, and the probability is taken over the key generation
algorithm’s randomness, b, randomness r used in the encryption algorithm E and the internal
randomness of A and A′.2 Furthermore, it is computationally, locally-decodable. That is, for all
probabilistic polynomial-time adversaries A′′ and A′′′,

Pr[(PK, SK) ← G(1k, α); (x, γ) ← A′′(PK);
c ← E(PK, x, r); {c′, i} ← A′′′(c, γ) :

D(SK, c′, i) = xi] > 1− ν(k),

where xi denotes the ith bit of x, x must be of the length kα, c′ and c must be of the same length
and the hamming distance between c′ and c is at most δ|c|, and where the probability is taken over

2As is standard practice, we allow the adversary A to pass state information γ, which could include information
about the plaintexts x0, x1, which might be of use in determining which plaintext is encrypted by E(PK, xb, r).
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the key generation algorithm’s randomness, the randomness r used in the encryption algorithm
E and the internal randomness of both A′′ and A′′′. The information-rate is |m|

|c| and we call the
decryption algorithm locally-decodable if its running time is o(kα), and the efficiency of the local
decodability is measured as a function of k and α.

3 Building Blocks

Our construction relies on a number of standard cryptographic tools and for completeness we briefly
review them here.

3.1 Private Information Retrieval

A computational Private Information Retrieval protocol (PIR) is a protocol in which a user or
client wants to query a position from a database, while keeping the position queried hidden from
the server who controls the database. In particular the user generates a decryption key DPIR,
picks a position j and generates a query Qj . Then, given Qj , the server who has a database (or
message) x, can execute query Qj on x and obtain a response Rj . The privacy requirement is
that the server cannot guess the position j with probability noticeably greater than random. The
correctness requirement is that given DPIR, and Rj the user can correctly recover the jth position
of the message x. The efficiency of a PIR protocol is measured in the communication complexity,
i.e. the sizes of Q and R. Currently, the most efficient PIR protocol is that of Gentry and Ramzan
[7], which has |Q| = |R| = O(k) where k is a security parameter, and each query successfully
retrieves approximately k/4 bits of the message x.

Formal definitions and concrete constructions of computational Private Information Retrieval
protocols can be found in [8], [14], [12], [15] or [7].

3.2 Semantically-Secure Public Key Encryption

Our construction requires a semantically-secure encryption protocol, SSE. The only requirement
we make on the protocol SSE, is that for a message x, |SSE(x)| = O(|x|). For concreteness, we
assume |SSE(x)| = c1|x| for some constant c1. This is achieved by many cryptosystems for example
[11], [10], [16], [17], or the Φ-hiding based scheme in described §5.1.

To avoid making additional intractability assumptions, it is natural to choose a hardness as-
sumption that yields both a semantically-secure encryption protocol as well as a PIR protocol. In
practice this is almost always the case, for example Paillier’s Cryptosystem [11] and Chang’s PIR
[15], or Gentry-Ramzan [7] (or Cachin-Micali-Stadler PIR [12]) and the encryption protocol out-
lined in Section 5.1. It is also worth noting that since [14] shows that any homomorphic encryption
protocol immediately yields a PIR protocol, if we have a homomorphic encryption, we need not
make an additional assumption to obtain a PIR protocol.

3.3 Reed-Solomon Codes

The Reed-Solomon Error Correcting Code (RS-ECC) works as follows: first we fix a prime p of
length k, and all computations are done in the field Z/pZ. Then, given a plaintext x of length n,
we represent x as a polynomial fx of degree n/k − 1 over Z/pZ. This can be done in many ways,
perhaps the simplest is to break x into blocks of size k and view these as the coefficients of fx.
Then, the encoding of x is simply the evaluation of fx at a number of points in Z/pZ. We need
at least n/k evaluations to uniquely determine a polynomial of degree n/k − 1, the RSECC adds
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redundancy by evaluating fx at more points, RSECC(x) = (fx(1), . . . , fx(ρn/k)) for some ρ > 1.
For distinct plaintexts x, y, we have fx − fy 6= 0. Since a nonzero polynomial of degree n/k − 1
has at most n/k − 1 zeros, and RSECC(x) and RSECC(y) must have hamming distance at least
(ρ− 1)n/k + 1, this code can recover from (ρ− 1)n/(2k) errors in the evaluation points, i.e. it can
recover from an error rate of 1

2 − 1
2ρ in the digits of the code.

From now on we will view RSECC(x) as a ρn/k-tuple which can be successfully decoded from
an error rate of 1

2 − 1
2ρ in its digits.

3.4 Binary Error Correction

A desirable property of any error-correcting code is the ability to recover from a constant fraction
of errors among the bits of the codeword. A drawback of many error-correcting codes, and locally-
decodable codes, is that they are defined over large alphabets, and can only recover from a constant
fraction of errors in the alphabet of the code. The natural alphabet of the RSECC described above
is the field Z/pZ. In practice, all these codes are implemented on computers, where the natural
alphabet is {0, 1}. Thus when we say that a code like the Reed-Solomon code can tolerate a
constant fraction of errors, we mean a constant fraction of errors in their natural alphabet. In the
Reed Solomon code, if one bit of each evaluation point is corrupted, there are no guarantees that
the message will not be corrupted. Binary error correcting codes do exist, but they are generally
not as efficient as codes over larger alphabets.

To allow our code to tolerate a constant fraction of errors in the bits of the ciphertext, we will
make use of a binary error correcting code ECC, with two properties. First, |ECC(x)| = c2|x| for
some constant c2, and second ECC can recover from an error-rate of 1

2−δ in the bits of ECC(x). Such
codes exist, for δ > 1

4 in the unbounded adversarial channel model, and δ > 0 in the computationally
bounded channel model. See the full version of this paper for a more in-depth discussion.

4 Construction

4.1 High Level Outline of Our Construction

A public key will be a list of t PIR queries Q1, . . . , Qt, along with the public key to the semantically-
secure encryption SSE. The private key will be the private key for the semantically-secure encryp-
tion, the private key for the PIR protocol and a permutation σ ∈ St such that Qj is a query for
the σ(j)th position of the message. To encrypt an n-bit message X, we first divide X into r blocks
X1, . . . , Xr, then we encrypt each block using our semantically-secure encryption (this can be done
by further subdividing the block if necessary). Then we encode each block using the Reed-Solomon
code, thus obtaining a list of evaluation points that constitute the Reed-Solomon encoding of this
block. Next, we concatenate the evaluation points for all the blocks, and, treating this list as a
single database, we evaluate all t PIR queries on it. Finally, we encode each PIR response with a
standard binary error correcting code ECC.

In more detail, we assume that when we evaluate a PIR query Q on a message X, the PIR
response R encodes dk bits of X where k is our security parameter and d depends on the specific
PIR protocol used. For example the Gentry-Ramzan protocol has d ≈ 1

4 , while a PIR protocol like
[12] which only retrieves a single bit at a time has d = 1/k. Next, we fix a prime p of length k
which will determine the base-field of the RSECC. Then, we set r = n/(`k), thus each block Xi

has |Xi| = `k, where ` is the parameter that will determine the “spread” of our code. Next we
encrypt each block Xi using SSE, obtaining SSE(X1), . . . , SSE(Xr) where |SSE(Xi)| = c1`k. Then
we encode each encrypted block as c1ρ` field elements in Z/pZ using RSECC. Thus we can recover
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any block Xi as long as no more than 1
2 − 1

2ρ of the field elements that encode it are corrupted.
Finally, we concatenate all c1rρ` field elements, thus at this point our “database” is c1rρ`k = c1nρ
bits. Next we evaluate all t queries Q1, . . . , Qt on this database. Since we wish to retrieve all the
information in X, we need t = c1nρ/(dk). Thus we obtain t PIR responses R1, . . . , Rt. Finally, we
send the t-tuple (ECC(R1), . . . ,ECC(Rt)).

Thus our final encryption is of size c1c2nρ|Rj |/(dk). If |Rj | ≈ k as is case in [12], [15], [7],
then our encryption will be of length c1c2ρn/d. If we use the PIR protocol in [7] then, d will be
constant, thus our code will have constant information rate. Notice that the spread parameter `
has no effect on the length of the encryption. This encryption is error correcting because as long
as no more than 1

2 − 1
2ρ of the responses that encode a given block are corrupted, the block can be

recovered correctly by first decoding each point using ECC, and then reconstructing the block using
the RSECC. This cryptosystem is also locally-decodable since to decrypt a given block, it suffices
to read the c1ρ`

dk PIR responses that encode it.

4.2 Error Correcting Public Key Encryption

We now define a triple of algorithms G,E,D for our encryption scheme.

Key Generation: G(1k, α).

• Fix a prime p of length k.

• Generate public-key private-key pair for SSE, PKE , SKE .

• Generate a PIR decryption key DPIR.

• Generate a random permutation σ ∈ St.

• Generate t PIR queries Q1, . . . , Qt, where Qj queries the block of dk bits at position (σ(j)−
1)c1dk + 1 of a c1nρ bit database.

The public key will then be
PK = (PKE , Q1, . . . , Qt)

and the secret key will be
SK = (σ, SKE , DPIR)

Thus the public key will be of length t|Q|+ |SKE | = c1nρ|Q|/(dk). If we use [7], then |Q| = k
and d is constant, so assuming |SKE | = O(k), we obtain |PK| = O(n + k).
Encryption: given an n-bit message X,

• Break X into r = n
`k blocks Xi of size `k.

• Encrypt each block using SSE. If SSE can only encrypt strings of length k, we simply divide
Xi into shorter strings, encrypt the shorter strings and then concatenate the encryptions.

• For each encrypted block, SSE(Xi) we encode it as a list of c1ρ` field elements Zi,1, . . . , Zi,c1ρ`

in Z/pZ using the RSECC.

• Concatenate all the evaluations, creating X̃ = Z1,1, . . . , Z1,c1ρ`, . . . , Zr,1, Zr,c1ρ`. Thus |X̃| =
rc1ρ`k = c1nρ bits, and we run each PIR query {Q1, . . . , Qt} on X̃ receiving responses
R1, . . . , Rt. Since each PIR query recovers dk bits, we will need c1/d queries to recover each
field element Z.
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• Encode each Rj individually using the binary error correcting code ECC.

• The encryption is then the t-tuple (ECC(R1), . . . , ECC(Rt)).

Decryption: to recover the ith block, of a message X from the t-tuple
(ECC(R1), . . . ,ECC(Rt))

• We wish to retrieve the encoding Zi,1, . . . , Zi,c1ρ`, which are the bits of X̃ in positions (i −
1)c1ρ`/d+1, . . . , ic1ρ`/d, Thus we select the c1ρ`/d responses that encode Xi, {ECC(Rσ−1((i−1)c1ρ`/d+1)), . . . , ECC(Rσ−1(ic1ρ`/d))}.

• Decode each ECC(Rj) to obtain {Rσ−1((i−1)c1ρ`/d+1), . . . , Rσ−1(ic1ρ`/d)}.
• Decode each of the c1ρ`/d PIR responses Rj to obtain Zi,1, . . . , Zi,c1ρ`.

• Using the RSECC reconstruct SSE(Xi) from Zi,1, . . . , Zi,c1ρ`.

• Decrypt SSE(Xi).

Notice that to recover block Xi we only need to read c1c2|R|ρ`/d bits of the encryption. In the
Gentry-Ramzan PIR |R| = k and d = 1/4, so we are reading only O(`k) bits of the message. For
correctness we will choose ` = k, thus in this case our scheme will achieve locality O(k2).

4.3 Local-Decodability

One of the most interesting features of our construction is the local-decodability. To recover a
small portion of the message X, only a small portion of the ciphertext (ECC(R1), . . . ,ECC(Rt))
needs to be decoded. During encryption the message X is broken into blocks of length `k bits, and
this is the smallest number of bits that can be recovered at a time. To recover a single bit of X,
or equivalently the entire block Xi that contains it, we must read c1ρ`/d blocks of the ciphertext
{ECC(Rσ−1((i−1)c1ρ`/d+1)), . . . ,ECC(Rσ−1(ic1ρ`/d))}. Since |ECC(Rj)| = c2|Rj |, we must read a total
of c1c2|R|ρ`/d bits. Since the probability of error will be negligible in `, we will set ` = k. Here c2

and ρ are parameters that determine the error-rate of our code.
Using the Gentry-Ramzan PIR, we have |R| = k and d = 1/4, so the locality is O(k2). Using

the Chang’s PIR [15] based on Paillier’s cryptosystem [11] we have |R| = 2k and d = 1/2 so
we achieve the same encryption size and locality, although in this situation the public key size is
O(n3/2) instead of O(n) in the Gentry-Ramzan case.

4.4 Proof of Security

The semantic security of our scheme follows immediately from the semantic security of the un-
derlying encryption SSE. The full proof of the correctness (i.e. local decodability) of our scheme
requires some care. The formal proof can be found in the full version of this paper. Here, we
outline only the high-level ideas of the proof. The structure of the proof is as follows. Given an
encryption (ECC(R1), . . . ,ECC(Rt)), the outer ECC forces an adversary to concentrate their errors
among only a few Rj . Thus, we may assume that the adversary is only allowed to introduce errors
into a constant fraction of the Rj . Then, we note that any polynomial-time adversary cannot tell
which remainders Rj encode which block Xi by the privacy of the PIR protocol. Thus any errors
introduced in the Rj will be essentially uniform among the Z’s that make up the Reed-Solomon en-
cryptions. Next, we show that our code has sufficient “spread” so that errors introduced uniformly
among the Rj will cluster on the Rj encoding a given block Xi with only negligible probability.
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Finally, if the errors are not clustered among the Rj that encode a given block, we show that the
RSECC will correctly recover that block.

Thus we arrive at the following result

Main Theorem. Given a computational PIR protocol with query size |Q|, and response size |R|
which retrieves dk bits per query, and a semantically-secure encryption protocol SSE, there exists
a Public Key Locally Decodable Code which can recover from a constant error-rate in the bits of
the message, which has public key size O(n|Q|/(dk2) + k) and ciphertexts of size O(n|R|/(dk2)),
where n is the size of the plaintext and k is the security parameter. The resulting code has locality
O(|R|k/d), i.e. to recover a single bit from the message we must read O(|R|k/d) bits of the
codeword.

4.5 Extensions

For convenience, in our proof of correctness, we set the parameter ρ equal to 1/2. It should be clear
that this value is somewhat arbitrary and that by increasing ρ we increase the error tolerance of
the code along with the ciphertext expansion. Similarly, in our proof we set the parameter ` to be
the security parameter k. We can change `, and an increase in ` corresponds to a decrease in the
probability that the channel succeeds in introducing an error, and a decrease in the locality of the
code. In particular our code fails with probability that is negligible in `, and the smallest number
of bits that can be recovered from the message is O(`k).

Our protocol also benefits nicely from the idea of Batch Codes [18]. Since our protocol requires
making multiple PIR queries to the same message, this is an ideal application of Batch Codes,
which can be used to amortize the cost of making multiple PIR queries to a fixed database. By
first “batching” the message X̃ in §4.2, we can significantly decrease server computation by slightly
increasing ciphertext expansion, or we can decrease ciphertext expansion by paying a slight increase
in server computation. It should be noted that batch codes are perfect, in the sense that batching
the message in this way does not change the probability of correctness.

We can also increase the efficiency of our construction by further taking advantage of the
bounded channel model. If in addition to the sender knowing the receiver’s public key, we as-
sume that the receiver knows the verification key to the senders signature algorithm (a reasonable
assumption since anyone receiving messages from the sender should be able to verify them), our
scheme benefits nicely from the sign and list-decode methods described in [5]. The use of digital
signatures before applying the RSECC or the binary ECC has the effect of increasing the maximum
tolerable error-rate, and decreasing the codeword expansion. Unlike the application of Batch Codes
above, this sign and list-decode technique will slightly increase the probability that a message fails
to decrypt, although it still remains negligible.

4.6 Constructions Based on Homomorphic Encryption

It was shown in [14] that any homomorphic encryption protocol yields a PIR protocol, thus our
construction can be achieved based on any homomorphic encryption protocol. In this situation, it
is unnecessary to first encrypt each block Xi before applying the RSECC since the PIR protocol
described in [14] is already semantically-secure. Thus the idea of coupling encryption and error-
correction is even more natural in this situation. Using the construction in [9] to construct a PIR
protocol from a homomorphic encryption protocol and then applying our construction yields

Corollary 1. Under any homomorphic encryption protocol which takes plaintexts of length m to
ciphertexts of length αm, there is a Public-Key Locally Decodable Code which can recover from a
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constant error-rate in the bits of the message, with public key size O(nkβ β
√

n) and ciphertexts of
size O(nαβ−1k), for any β ∈ N, where n is the size of the plaintext and k is the security parameter.
The resulting code has locality O(αβ−1k2), i.e. to recover a single bit from the message we must
read O(αβ−1k2) bits of the codeword.

Using a Length-Flexible Additively Homomorphic Encryption protocol such as the one described
in [10] yields an even more efficient PIR protocol. Using the methods outlined in [9] and applying
our construction we arrive at the following result

Corollary 2. Under the Decisional Composite Residuousity Assumption [11] there is a Public-Key
Locally Decodable Code which can recover from a constant error-rate in the bits of the message,
with public key size O(n log2(n) + k) and ciphertexts of size O(n log(n)), where n is the size of
the plaintext and k is the security parameter. The resulting code has locality O(k2 log(n)), i.e. to
recover a single bit from the message we must read O(k2 log(n)) bits of the codeword.

5 A Concrete Protocol Based on Φ-Hiding

We now present a concrete example of our reduction based on the Gentry-Ramzan [7] PIR protocol.
A straightforward application of our main construction in §4.2 already yields a PKLDC with public
key size O(n) and constant ciphertext expansion, but the Gentry-Ramzan PIR protocol has many
nice properties which can be exploited to simplify the construction and further increase the efficiency
of the protocol. The construction we present here differs from the straightforward application of our
general reduction to the Gentry-Ramzan protocol in two ways. First, we are able to integrate the
basic semantically-secure encryption protocol into our construction, thus reducing the ciphertext
expansion by a constant factor, and eliminating the need for another hardness assumption. Second,
we use the Chinese Remainder Theorem Error Correcting Code (CRT-ECC) instead of the Reed-
Solomon code used in the general construction. This is because the Φ-hiding assumption allows us
to do hidden chinese-remaindering, and so it is a more natural code to use in this context. This
does not change the arguments in any substantial way, since from the ring-theoretic perspective,
the CRT-ECC and the Reed-Solomon ECC are exactly the same.3

5.1 A Φ-hiding based Semantically-Secure Encryption Protocol

Here, we describe a simple semantically-secure public key encryption scheme, BasicEncrypt that
will be an essential building block of our construction. The encryption protocol consists of three
algorithms, G, E, D described below.

To generate the keys, G(1k) first selects a small prime-power π, then generates m ∈ Hπ
k , i.e.

m = pq, where p, q ∈R Pk
4, subject to π | p− 1. The public key will be PK = (g,m, π) where g is

a generator for the cyclic group Gm, and SK = ϕ(m)
π .

To encrypt a message x ∈ Z/πZ, we have

E(x) = gx+πr mod m,

for a random r ∈ Z/mZ. To decrypt, we do

D(y) = yϕ(m)/π = gxϕ(m)/π mod ϕ(m) mod m =
(
gϕ(m)/π

)x
mod m,

3See the full version for a more detailed discussion of this point.
4We use the notation ∈R to denote selecting uniformly at random from a set.
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then, using the Pohlig-Hellman algorithm to compute the discrete logarithm in the group 〈gϕ(m)/π〉,
we can recover x mod π = x. If a is a small prime, and π = ac, the Pohlig-Hellman algorithm
runs in time c

√
a. Thus the decryption requires O(log(m/π) + c

√
a) group operations in Gm

which is acceptable for small primes a. In our locally decodable code, we will require multiple
different prime powers π1, . . . , πt, and we will choose the small primes a, as the first primes, i.e.
π1 = 5e1 , π2 = 7e2 , π3 = 11e3 . If we require t prime powers πi, the Prime Number Theorem implies
that the largest a will be approximately t log t. Since t will be less than the message length, n,

√
a

will be polynomial in the message length, and hence polynomial in the security parameter k.
It is worth noticing that this scheme is additively homomorphic over the group Z/πZ, although

we do not have an explicit use for this property. When π = 2, this is just Goldwasser-Micali
Encryption [19], for larger π it was described in [20] and [21]. An extension of this scheme is
described in [16].

While this protocol is not new, none of the previous descriptions of this protocol make use of the
Φ-hiding assumption, and instead their security is based on some form of composite residuousity
assumption, i.e. it is impossible to tell whether a random group element h belongs to the subgroup
of order π in Gm. We are able to prove security under the Φ-hiding assumption because the Φ-
hiding assumption is strictly stronger than these other assumptions. The proof that this protocol
is semantically-secure under the Φ-hiding assumption is in the full version [22].

5.2 Outline of Our Φ-hiding based Construction

We begin by fixing a list of t prime powers {π1, . . . , πt} as part of the public parameters. For
concreteness we choose π1 = 5e1 , π2 = 7e2 , . . . as in §5.1. A public key will be a list of t RSA
moduli {m1, . . . ,mt}, such that each mj Φ-hides some prime power πj′ . The Private key will be
the factorizations of the mj , more specifically ϕ(m1), . . . , ϕ(mt), along with a random permutation
σ ∈ St such that mj Φ-hides πσ(j). To encrypt a message X ∈ {0, 1}n, we first divide X into
blocks Xi of size `k. Where k is the security parameter, and ` is a parameter determining the
“spread” of the code. As in the Gentry-Ramzan PIR scheme, we view each block as a number in
the range

{
0 . . . 2`k

}
. Our public key will be t = ρn

dk RSA moduli {m1, . . . ,m ρn
dk
} such that each

modulus Φ-hides a prime power πj . We will use s = dρ`/de of the πj to encode each block Xi.
Since there are dn/`ke blocks, and for each block we use dρ`/de prime powers, we use a total of
n
`k · ρ`

d = ρn
dk = t prime powers. The parameter ρ determines the redundancy of the CRT-ECC,

hence increasing ρ increases the error tolerance and also the ciphertext expansion. Recall that d
is the information rate of the Gentry-Ramzan PIR, so d is some fixed constant less than 1/4, for
concreteness we may assume d = 1/5. Exactly which prime is hidden by which modulus will be
chosen at random at the time of key generation, and is part of the receiver’s secret key. For each
block Xi, the sender encrypts Xi modulo the s prime powers {π(i−1)s+1, . . . , πis}, where each πj

is roughly of size dk. Notice here that we have used ρ times as many moduli πj as necessary to
encode each block, thus for each block Xi we have effectively calculated an encoding of Xi under
the CRT-ECC which can tolerate

(
1
2 − 1

2ρ

)
`
d corrupted moduli.5 We do this for each block, and

thus the resulting encryption is ρ`
d · n

`k residues. Since each residue is of size k, the encryption of
the whole message is now n

`k
ρ`
d = ρn

dk encryptions of size k. Finally, we encode each of the ρn/(kd)
encryptions independently using the error correcting code in §3.4. So our final encryption is of size
ρc2n/d bits, which is a constant multiple of n. This encryption is error correcting because as long
as no more than 1

2 − 1
2ρ of the residues that encode a given block are corrupted, the block can be

recovered correctly by first decrypting each residue, and then reconstructing the CRT-ECC. This
5See the full version for a more in-depth discussion of the error tolerance of the CRT-ECC
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cryptosystem is also locally-decodable since to decrypt a given block, it suffices to decrypt the ρ`
d

encryptions that encode it.

5.3 Error Correcting Public Key Encryption Based on Φ-hiding

We now define a triple of algorithms G,E,D for our encryption scheme.

Key Generation: G(1k, α).

• Let p1, . . . , pt be primes with 5 ≤ p1 < p2 < · · · < pt, and choose ej =
⌊

k
4 log pj

⌋
, thus ej is

the largest integer such that log
(
p

ej

j

)
< dk, for some d < 1

4 . Set πj = p
ej

j . To encrypt n-bit

messages, we will need to choose t = ρn
dk . Since we assume n = kα, this becomes t = ρkα−1

d .

• Generate a random permutation σ ∈R St, the symmetric group on t elements.

• Generate moduli m1, . . . , mt such that mj ∈ Hπσ(j)

k , i.e. mj Φ-hides πσ(j).

• Find generators {gj} of the cyclic groups {Gmj}.
The public key will then be

PK = ((g1,m1, π1), . . . , (gt,mt, πt)),

and the secret key will be

SK =
(

σ,
ϕ(m1)
πσ(1)

, . . . ,
ϕ(mt)
πσ(t)

)
.

Encryption: given an n-bit message X,

• Break X into n
`k blocks Xi of size `k, and treat each Xi as an integer in the range {0 . . . 2`k}.

• For block Xi, we will use the s prime powers π(i−1)s+1, . . . , πis to encode Xi. Since the moduli
mσ−1((i−1)s+1), . . . , mσ−1(is) that correspond to these π’s is unknown to the sender, he must
apply the Chinese Remainder Theorem using all the πj ’s. Thus for each block Xi, using the
CRT, the sender generates X̃i ∈ [1, . . . , (π1 · · ·πt)], such that

X̃i =
{

Xi mod πj for j ∈ [(i− 1)s + 1, . . . , is],
0 mod πj for j ∈ [1, . . . , (i− 1)s] ∪ [is + 1, . . . , t].

To recover from error-rate 1
2 − 1

2ρ , we set s = ρ`
d .

• The sender then sets X̃ =
∑ n

`k
i=1 X̃i. Thus for each j, X̃ = Xi mod πσ(j) for the unique i

such that (i− 1)s + 1 ≤ σ(j) ≤ is.

• For j ∈ [1, . . . , t], generate a random rj ∈ {0, . . . , π1 · · ·πt}.

• Then calculate hj = g
X̃+rjπ1···πt

j mod mj for each j ∈ {1, . . . , t}. Thus

hj = E
(
X̃ mod πσ(j)

)
= E(Xi mod πσ(j)),

where (i − 1)s + 1 ≤ σ(j) ≤ is, and E is the encryption protocol described in §5.1. At this
point, partial information about the block Xi is spread over s of the hj ’s.

13



• Apply the binary Error Correcting Code ECC to each hj individually.

• The encryption is then the t-tuple (ECC(h1), ECC(h2), . . . ,ECC(ht)).

Decryption: to recover the ith block, of a message X from the t-tuple (h1, . . . , ht)

• Select the s encryptions that encode Xi, {ECC(hσ−1((i−1)s+1)), . . . ,ECC(hσ−1(is))}.
• Decode each ECC(hj) to find obtain {hσ−1((i−1)s+1), . . . , hσ−1(is)}.
• Decrypt each of the s encryptions using the decryption algorithm from §5.1. This gives

a1, . . . , as where aj = Xi mod (π(i−1)s+j).

• Using the Chinese Remainder Code Decoding Algorithm, reconstruct Xi from the s remain-
ders a1, . . . , as. Note that if there are no errors introduced, this step can be replaced by
simple Chinese Remaindering.

5.4 Analysis

The proof of security remains essentially the same as in the general setting.
For the locality, we note that to recover a single bit of X, or equivalently the entire block Xi that

contains it, we must read s blocks of the ciphertext {ECC(hσ−1((i−1)s+1)), . . . ,ECC(hσ−1(is))}. Since
|hj | = k and |ECC(hj)| = c2k, we must read a total of sc2k = ρc2`k

d bits. Since the probability of
error will be negligible in `, we set ` ≈ k, and since d < 1

4 , we find that we need to read 5c2ρk2 bits
of the ciphertext to recover one bit of the plaintext, where c and ρ are parameters that determine
the error-rate of our code. Thus our system only achieves local-decodability for n = Ω(k2+ε). For
n ≈ k3, our system already offers a significant improvement over standard error-correcting codes.

Thus we arrive at the following result

Corollary 3. Under the Small Primes Φ-Hiding Assumption there is a Public-Key Locally Decod-
able Code which can recover from a constant error-rate in the bits of the message, with public key
size O(n) and ciphertexts of size O(n), where n is the size of the plaintext and k is the security
parameter. The resulting code has locality O(k2), i.e. to recover a single bit from the message we
must read O(k2) bits of the codeword.
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