CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky

Lecture 6
Lecture date: Wed. 16,23 of February, 2005 Scribe: M. Bradongié, S. Lu, J. Otchin

1 Digital Signatures

1.1 Introduction

Say Bob wants to communicate with Alice over a channel in which Eve can intercept and
transmit messages. We have already considered the problem of message security - how Bob
can encrypt messages for Alice such that Eve cannot distinguish any two messages it in
polynomial time with non-negligible probability.

Now we consider a different problem: if Bob receives a message purportedly from Alice
who has published a public key PK, how can he be certain it isn’t a forgery by Eve? One
solution is to have Alice “sign” the message in some way that Bob will recognize, and that
Eve will be unable to forge. There are a number of properties we would ideally like for such
a signature:

e Alice can efficiently sign any message, for some reasonable limit on the message size.

e Given any document D that Alice has not signed, nobody can efficiently forge Alice’s
signature on D.

e Given a document D and a signature, anyone (not just Bob!) can efficiently tell
whether the signature is valid for D.

We introduce digital signatures schemes as a way of accomplishing this.

1.2 Digital Signatures

We now give a definition of a digital signature scheme. A digital signature scheme is a
triple of poly-time computable algorithms (KeyGen,Sign,Verify) over a message space M
that satisfy the following conditions:

1. KeyGen(1™, R) is a probabilistic(with coin flips R) poly-time algorithm that outputs
a public key and a secret key pair, (PK, SK)



Alice has a public key PK

_ m,s pk(mM)
Alice Bob

m’,s px(M’)

Eve

Figure 1: Eve tries to forge a signature.

2. Sign(D, PK, SK, R) is a probabilistic(with coin flips R) poly-time algorithm that signs
a document D € M with a signature o(D). Note: |o(D)| should be polynomially
related to | D|

3. Verify(PK, D, s) is a (probabilistic) poly-time algorithm that outputs an element of
{Yes,No}. It returns Yes (with negligible error) if s is a valid signature of D, i.e.
s=o0(D)

Alice can set up her document signer as follows. First she generates (PK,SK) «
KeyGen(1", R) and publishes PK while keeping SK secret. It is important to note
that we assume that everyone agrees what Alice’s public key is (including Eve). Then
when she wants to sign a document, D, she can run the signing algorithm o(D) «
Sign(D, PK,SK, R) and sends the pair (D,o(D)) to Bob. Bob can then verify the sig-
nature by running Verify(PK, D, o (D)) using the same PK that was agreed upon. We also
say that Eve forges a signature if she can produce a D and a o(D) (that was not signed by
Alice) such that Verify(PK, D,o(D)) = Yes with non-negligible probability.

6-2



1.3 Security of a Digital Signature Scheme

When we talk about security for a digital signature scheme, we consider an adversary, Eve,
who attempts to send a message to Bob and try to forge Alice’s signature. What possible
information does Eve have access to before attacking the system? Here are some reasonable
assumptions that have been proposed:

e Eve only knows the public key. (Key-only Attack)

e Eve has seen a set of messages {my, ..., my} with their corresponding signatures. The
set of messages is given to her but not chosen by her. (Known Message Attack)

e Eve chooses a fixed set of messages {mi,...,my} (there are two cases, where the
messages are chosen independently of the public key or not) and gets to see the
signatures of those messages. (Chosen Message Attack)

e Eve is allowed to query the system for the signatures of messages that may be de-
pendent on both the public key and previous messages and signatures. (Adaptive
Chosen Message Attack)

Once this information is given to her, what does it mean for the signature scheme to be
broken by Eve?

e Eve computes the secret key. This is as bad as it gets because now Eve can sign any
message she wants. (Total Break)

e Eve computes a poly-time algorithm that can forge a signature for any message.
(Universal Forgery)

e Eve can forge a signature for a particular message of her choice. (Selective Forgery)

e Eve can forge a signature for at least one message. Notice this message is not of her
choice, but it may be some nonsensical message. (Existential Forgery)

The previous examples will ultimately motivate our definition of security for signature
schemes; but first we consider security after a single document is signed.

1.4 Lamport’s 1-time signature scheme

The following is a construction of a one-time signature scheme (for messages of length n)
out of a one-way permutation, f: {0,1}" — {0,1}".

6-3



1. KeyGen(1™, R) will randomly select 2n elements from {0,1}". We will label them
2y, 2l 2l 2, . 20 2l Then we compute yﬁ’ = f(:cf) forall1 <i<mnandbe {0,1}.
The secret key SK and the public key PK will be

0 .0 0 0 ,0 0
e Ty Ty ... T K Yi Yy .- Y
Ty Ty ... Ty Y1 Ya - YUn

2. Sign(m, PK,SK, R) (R is not used as this is deterministic) will use m = myms ... my,
to index SK meaning it will return (z}"*, 25", ..., 2p"). For example if m = 100...1
then we will return the selected entries:

0 0 0 0

B ) |ay| |xg| ...
o(m) = N . . N
ri| w3y xz ... |z,

3. Verify(PK,m,s) where m = mimsy...m, and s = (s1, S2,. .., Sp) checks that f(s;) =
y;"" and returns Yes if they are equal for all 1 < ¢ < n. Continuing our previous
example where m = 100...1 we check the equalities in the selected entries:

Yy fls2) =8| |f(s3) =8| ... v

f(s1) =y ya Y3 o | fsn) = un

s =1(81,82,---,5n)

Assuming f is a one-way permutation, we claim that this scheme is secure against an
adversary that is allowed only one query for the signature of a message m of his choice,
then has to come up with m’ # m and a forgery o(m/).

Proof We shall prove the contrapositive of the claim. We start by assuming there is an
adversary A that can forge signatures with non-negligible probability, then we show that A
can be used to invert f with non-negligible probability. Suppose A can forge a signature with
probability> ¢ conditioned over all m and PK (because f is a permutation, PK simply
has a uniform distribution). Then we construct an algorithm to invert y as follows:

(PK,SK) < KeyGen(1™, R)

i —{1,...,n}kb —{0,1}

Replace yg’,/ in PK by y.

Give A this new PK, and A will request a signature for m = mims ... my

if m; = b/ then FAIL; else send A the correct signature

A will then output a forged signature (s1, $2,...,s,) for a different message m’
if m, = 0’ then FAIL; else return s;

Notice y is uniformly distributed because f is a permutation, so the modified PKs look like
they are also uniformly distributed, which means that the adversary will invert with the



same probability> e. The first place our algorithm can fail is if the adversary asks us to
sign a message that has b as its i’-th bit because we do not know f~!(y). This occurs with
probability % The second place our algorithm can fail is if the message generated by our
adversary did not pick out b’ as its i’-th bit, which means that we did not get the inverse
to y from him. Because m’ # m, it must differ by at least one bit, which means the chance
that it differs on the #'-th bit is L.

Provided that our algorithm did not fail, then the answer it returns will be x = s;7. Because
s is a valid signature for m’, it must be the case that f(z) = f(sy) = y;," = A
y. Thus the algorithm has succeeded in inverting y. Combining all the probabilities, we
have a probability % - L. ¢ of inverting f. Thus, f cannot be one-way, which proves the

L.
contrapositive. B

Remark This scheme is only secure for signing one message, because the signature reveals
part of your secret key. For example, if you signed 00...0 and 11...1, then your entire
secret key has been revealed.

Some drawbacks of this scheme is that the public key has size 2n? and that it can only be
used to securely sign one message. In the next section we will construct a scheme that can
sign many messages.

1.5 Security over multiple messages

The preceding section gave a signature scheme to sign any one message, after which forging a
new signature is as hard as inverting a one-way function. However, it is clear that Lamport’s
algorithm is not at all secure if the adversary is allowed to see two distinct signed messages.
This motivates the following definition of security over multiple messages(Goldwasser, Mi-
cali, Rivest):

Definition 1 A digital signature scheme is existentially unforgeable under an adaptive
chosen-message attack if for all A € PPT who is allowed to query Sign polynomially many
times (such messages may be dependent on both previously chosen messages and the public
key) cannot forge any new message.

6-5



Signer Adversary

Mpoly

S (mpoly)

m',s(m")

Adversary

Where m' is different from my ... Mpoy

Figure 2: An Adaptive Chosen Message Attack

This is the strangest known definition of security for any signature scheme. We mention
that the definition is quite strong. For instance, consider the following scheme proposed
by Diffie and Hellman: let (Gen, f, f~1) be a one-way permutation, where Gen outputs a
(public) key k and a (private) trapdoor td. Given a document D, Sign gives the signature
o(D)=f, L(D). To verify a signature, any party can compute whether f,(c) = D. Therefore
this indeed defines a legitimate signature scheme. But is it secure in the sense of the above
definition?

It turns out that the scheme is not secure. An adversary can pick a random o and define D
to be fx(o). Note that D could be completely meaningless as a document, but nevertheless
the adversary has given a new document and a valid signature, so by definition, the scheme
is not secure.

1.6 Signing multiple messages

We saw a secure scheme that could sign one message, and from this we can build a scheme
that can sign many messages. All the schemes we will present in this section will require
the signer to save a “state” based on how many messages have been already signed. Under
the formal definition of a digital signature scheme this is not allowed, but we will relax this

6-6



condition.

One way we can sign N messages is to generate N secret key and public key pairs
{(PKy,SKy),...,(PKn,SKy)} under the Lamport 1-time signature scheme. Then to
sign the i-th message, one can simply sign it using (PKj;, SK;) under the Lamport scheme.
This way of signing multiple messages is highly impractical because our public key is unrea-
sonably huge (in fact proportional to the number of documents to be signed) and we need
to know a priori how many messages to sign.

By introducing hash functions into our schemes, we can make a great deal of improvement
on the lengths of messages we can sign, and how many we can sign. For example, one may
first hash a message using a so-called collision resistant hash function (which we describe
in the next section) and then sign the hashed document. Merkle in 1989 constructed a
multi-time signature scheme using trees by “hashing-down” public keys to a single root
which will be the master public key.

6-7



1.7 Introduction to Hash Functions

Collision Resistance: Challenger X,y Adversary

Universal 1-way: Challenger h Adversary

X,y

2-wise independent: Challenger h Adversary

Figure 3: Three games of collision resistance.

We want to define the notion of a hash function. Intuitively, it should be a function that is
easy to compute, and the output should be shorter in length than the input.

Definition 2 A hash function h : {0,1}" — {0,1}™ is a deterministic, poly-time com-
putable function such that n > m.

Because h is length decreasing, the function is many-to-one, i.e. there always exists a pair
(x,2") such that h(z) = h(2'). In cryptographic constructions using a family of hash func-
tions we want to have control over how these collisions occur. We consider a family of hash
functions defined by a key-gen algorithm Gen(1™, R) — h where R is some randomness. We
define the following three notions of collision resistance on the family, H, of hash functions
generated by Gen(1", R):

Definition 3 (Collision resistance) (VA € PPT)(Yc > 0)(3N.)(Vn > N.)
Pry r[h < Hy; (%0, yn) — A(R) : h(zy) = h(y,)] < 2

S e



Definition 4 (Universal one-way [Naor-Yung]) (VA € PPT)(Ve > 0)(IN,.)(Vn > N,)
Pry r[(wn, @) « A(1");h « Hyyy — Ala, hyz) @ h(z,) = h(y,)] < .

S qe

Definition 5 (Two-wise independence) (VA € PPT)(Vc > 0)(3N.)(Vn > N.)
Pryrl(@n, yn) — A(1");h — Hy : h(x,) = h(y,)] < .

1.8 Generating New Keys

We now give a secure signature scheme that allows us to sign an unspecified number of
messages. Let (KeyGen,Sign,Verify) be a one-time scheme that signs messages longer than
the public key.

Gen outputs keys Pky and Skg by calling KeyGen. For i>1, message m; is signed as follows:
KeyGen outputs Pk; and Sk;.

Define o; by Signgg, , (mi|PK;) (i.e. the concatenation of the strings m; and PK;.)
The signature for m; is given by the tuple
(PK1, my, 01, . . ., PKi—1, mi—1, 0;-1, PK;, 0;).

Note that the last line implies that S stores the values PK;, m;, o; after signing message i,
for all i. Such a signature is accepted iff Verifypy. | (m;|PK;)=accept for all j between 1
and i.

The proof of security for this scheme follows from the following observation: for each new
message, Gen is invoked to generate new public and secret keys. Gen is a randomized
algorithm, and we don’t want ADV to be able to randomly pick a PK and SK and claim to
have a valid signature for some message. So we use our (secure) one-time scheme to “vouch
for” the authenticity of future keys. For ADV to forge a second message, his signature
necessarily provides a forgery in the original scheme; and in general, each public key has
been vouched for by the original secure 1-way scheme. It is this chain of authenticity that
allows us to securely generate new keys.

1.9 Merkle trees

We will present an improvement of Merkle’s tree-based signature scheme. The construction
assumes the one-time security of Lamport’s 1-time signature, (KeyGen,Sign,Verify) as well
as the existence of a family of collision resistant hash functions {h : {0,1}*"* — {0,1}"}
which will be used in the construction of our signature scheme which signs n'°9(") messages
of length n. The main concept for signing is to first pretend we have a complete tree of

6-9



height, say, k = log?(n) which will have an secret key and a public key at each node. Only
the public key PK of the root of this tree will be published, which means our public key
size is independent of the number of messages we need to sign. To sign the i-th message,
we sign it on the i-th leaf using Lamport’s 1-time signature, then include the public keys
of the nodes in the path from the leaf to the root and their siblings. To make sure this
path is authentic, we also need to have each parent sign the public keys of its two children.
This is accomplished by concatenating the public keys of the two children then applying a
hash to it, then signing the result. All of this information is to be included in the signature,
but the good news is that the size of the signature does not grow as the number of signed
messages increases. Notice that because we only pretended to have such a tree, some of
these values may need to be computed and stored on the fly, but still this only takes poly-
time to accomplish. Also notice that because our tree has more than polynomially many
leaves, no polynomially bounded adversary can exhaust all of the leaves, so that we can
always sign a message when an adversary asks for one.

i-th leaf
PK PK "Ew PKy PK'
PK PK'\1 PKy.1

N

PK

PK

Figure 4: Signing the i-th message.

More formally, we can define a triple (MKeyGen,MSign,MVerify) with state information as
follows:

6-10



e MKeyGen(1™, R) will generate the keys for the root of our tree from the 1-time gener-
ator (PK,SK) «— KeyGen(1™, R)

e MSign(m, PK,SK, R) will use state information to sign a message. To sign the i-th
message, m, we first set up some notation. Let nfc denote the j-th node (reading the

tree from left to right) of depth k = log?(n). Then by this notation ni/_z | denotes its
parent, ni/_g denotes its grandparent, and so on. Let ng = n}%, Ng_1 = nz/_Ql, ... and

let 7 = ny denote the root of our tree. Let (PKy;, SK/) be the keys corresponding
to node ny for 1 < ¢ < k with (PK;,S5K;) = (PK,SK). Also, let (PK};,SK})
denote the keys for the sibling of ny for 2 < ¢ < k. Finally, we compute o «+
Sign(m, PKy, SKi, R) and oy «— Sign(h(PKnglPKé_H),PK@,SK@,R) for 1 </ <
k — 1, and output (PK;, PK),0¢,0) as our signature for m.

o MVerify(PK,m,s) will first check that s is of the form s = (PK;, PK),04,0). Then
it will run Verify(PKy, m, o) and Verify(PK,, h(PK; 1 PK;, )) and return Yes if they
both pass.

We mention as a side note that the space requirements can be reduced to a constant if one
uses pseudorandom functions to generate the public keys. Because pseudorandom outputs
are indistinguishable from a uniform distribution, such a construction is equally secure.

This (stateful) digital signature scheme we constructed is existentially unforgeable adap-
tively secure if the Lamport 1-time scheme is secure and universal one-way hash functions
exist. The sketch of the proof is as follows:

Sketch of Proof Assume for the contrapositive that there exists a poly-time adversary
A that can forge a signature with non-negligible probability, ¢ after p = poly(n) steps.
Because there is a path of signatures from each leaf down to the root, two cases can occur
in a forgery (1) A found a collision to h or (2) A can sign a message on an existing leaf or
a message different from h(PK,PK)) on an existing node. One of the two cases occur with
probability at least £/2 so either we can show h is not universal 1-way, or we can show f is
not one-way, which proves the contrapositive. B

We summarize this result as showing secure digital signatures exist if one-way permutations
exist (for the Lamport scheme to work) and collision resistant hash functions exist. The
contribution of Naor and Yung is that they defined universal 1-way hash functions, and
showed that collision-resistance can be replaced with this weaker notion. In the next section
we will show how to construct a family of universal 1-way hash functions from a one-way
permutation.

6-11



1.10 One-way Permutations Imply Universal 1-way Hash Functions

We will construct a family of universal 1-way hash functions from a one-way permutation
f. The hash functions we construct will take n bits to n — 1 bits and they will be indexed
by h = (a,b) where a,b € GF(2"). The algorithm for hashing a string z of length n is to
apply y < f(x) then z < chop(ay+b) to n—1 bits (operations are taken over GF(2")). By
the fact that f and the linear map ay + b are both 1-1 and chop is 2-1, our hash function is
a 2-1 mapping from {0,1}" — {0,1}"~L. We claim that this is a family of universal 1-way
hash functions if f is a one-way permutation.

Proof Assume for the contrapositive that this family is not universal 1-way. Let A be a
poly-time adversary that chooses z and is given h chosen from a uniform distribution can
find a 2’ such that h(z) = h(2’) with probability> e. Then to invert ¥’ = f(7), we first look
at x and we solve for (a, b) to satisfy the equation chop(af(z)+b) = chop(af(vy)+b). Because
f is a permutation, and the fact that this linear equation does not skew the distribution
of the (a,b) returned, the hash function h = (a,b) looks as if it were chosen truly from a
uniform distribution. Then A will return 2’ such that chop(af(x) + b) = chop(af(z') + b),
but f(z) and f(v) are the only two solutions to that linear equation, so f(z') = f(v) =¥ .
Thus we can invert f with probability> €, proving that it is not one-way. B

X X

Figure 5: Setting a trap.

Assuming that there exists a family of one-way permutations: fpoiy(n)s fpoly(n)—1s- - - » fn+1,
such that f; : {0,1}" — {0,1}", we may construct a family of universal 1-way hash functions

6-12



h: {0, 1}Pow(m) — £0,1}" as follows:

0 — {0, 1}Poly()
fork = 0 topoly(n) —n — 1
ay < GF(2poly(n)—k); by — GF(2poly(n)sz)
Th+1 < Chop(akfpoly(n)fk(xk) + bk)

Output Zpory(n)—n

Proof Idea

Assume that there was a poly-time adversary A who could break this construction with
probability> €. Then we can pick a random location in our chain to set a trap by solving
for (ag,by) at that level as before. If the adversary finds a collision, then at some level in
our construction there will be a collision. The probability of which that level will be equal
to the one we set the trap is ﬁ. This will allow for us to invert the one-way permutation
at that location with probability> ﬁ, thus contradicting the one-way property of the
function.

[ |
Thus we have shown the following theorem:

Theorem 6 Universal 1-way hash functions exist if one-way permutations exist.

1.11 Application to Signatures

Assuming that there exists a family of one-way permutations: fy,2, fan2,--., fnt+1, such
that f; : {0,1}* — {0,1}, we may construct a family of universal 1-way hash functions
h: {0,1}47* — {0,1}" as seen in the previous section. This gives the following result:

Theorem 7 (Naor-Yung) Secure digital signatures exist if one-way permutations ezist.
To conclude on this topic, we mention that it has also been shown:
Theorem 8 (Rompel) Secure digital signatures ezist iff any one-way function exists.

The forward direction is the easy direction, the other direction is the hard direction.

6-13



