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Abstract
The growth of video trafficmakes it increasingly likely that multiple

clients share a bottleneck link, giving video content providers an

opportunity to optimize the experience of multiple users jointly. But

today’s transport protocols are oblivious to video streaming appli-

cations and provide only connection-level fairness. We design and

build Minerva, the first end-to-end transport protocol for multi-user

videostreaming.Minervauses informationabout theplayer stateand

video characteristics to adjust its congestion control behavior to opti-

mize forQoE fairness.Minerva clients receive no explicit information

about other video clients, yet when multiple of them share a bottle-

neck link, their rates converge to a bandwidth allocation that max-

imizes QoE fairness. At the same time, Minerva videos occupy only

their fair share of the bottleneck link bandwidth, competing fairly

with existingTCP traffic.We implementMinervaonan industry stan-

dard video player and server and show that, compared to Cubic and

BBR, 15-32%of thevideosusingMinerva experience an improvement

in viewing experience equivalent to a jump in resolution from 720p

to 1080p. Additionally, in a scenario with dynamic video arrivals and

departures, Minerva reduces rebuffering time by an average of 47%.
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1 Introduction
HTTP-based video streaming traffic has grown rapidly over the

past decade. Video traffic accounted for 75% of all Internet traffic in

2017, and is expected to rise to 82% by 2022 [9]. With the prevalence

of video streaming, a significant body of research over the past

decade has developed robust adaptive bitrate (ABR) algorithms

and transport protocols to optimize video quality of experience

(QoE) [3, 7, 13, 18, 27, 40, 44]. The majority of this research focuses

on QoE for a single user in isolation. However, due to the fast-paced
growth of video traffic, it is increasingly likely that multiple video
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streaming clients will share a bottleneck link. For example, a home

or campus WiFi network may serve laptops, TVs, phones, and

tablets, all streaming video simultaneously. In particular, themedian

household in the U.S. contains five streaming-capable devices, while

one-fifth of households contain at least ten [36].

Video content providers today are beholden to the bandwidth

decisions made by existing congestion control algorithms: all

widely-used protocols today (e.g. Reno [4] and Cubic [16]) aim to

achieve connection-level fairness, giving competing flows an equal

share of the link’s capacity on average. Therefore, content providers

running these protocols can only optimize for user viewing expe-

rience in isolation, e.g. by deploying ABR algorithms. They miss the

bigger picture: allocating bandwidth carefully between video clients

can optimize the overall utility of the system. The opportunity to

optimize viewing experience collectively is particularly relevant for

large content providers. Netflix, for example, occupies 35% of total

Internet traffic at peak times and may therefore control a significant

fraction of the traffic on any given bottleneck link [38].

Specifically, there are two problems with standard transport

protocols that split bandwidth evenly between video streams. First,

they are blind to user experience. Users with the same bandwidth

may be watching a variety of video genres in a range of viewing

conditions (e.g. screen size), thereby experiencing significant

differences in viewing quality. Today’s transport protocols are

unaware of these differences, and cannot allocate bandwidth in a

manner that optimizes QoE.

Second, existing congestion protocols are blind to the dynamic

state of the video client, such as the playback buffer size, that influ-

ences the viewer’s experience. For example, knowing that a client’s

videobuffer isabout to runoutwouldallowthe transport to temporar-

ily send at a higher rate to build up the buffer, lowering the likelihood

of rebuffering. Protocols like Cubic, however, ignore player state

and prevent clients from trading bandwidth with each other.

We design and implement Minerva, an end-to-end transport proto-
col formulti-user video streaming.Minervaclientsdynamicallyand in-

dependently adjust their rates to optimize forQoE fairness, ameasure

of how similar the viewing experience is for different users. Minerva

clients require no explicit information about other competing video

clients, yet whenmultiple of them share a bottleneck link, their rates

converge toabandwidthallocation thatmaximizesQoEfairness.Cru-

cially, throughout this process,Minerva clients together occupy only

their fair share of the link bandwidth, which ensures fairness when

competing with non-Minerva flows (including other video streams).

Since clients operate independently, Minerva is easy to deploy, re-

quiring changes to only the client and server endpoints but not to the

network. A content provider can deploy Minerva today to optimize

QoE fairness for its users, without buy in from other stakeholders.

Central to Minerva are three ideas. First is a technique for

deriving utility functions that capture the relationship between

network bandwidth and quality of experience. Defining these

functions is challenging because standard video streaming QoE

metrics are expressed in terms of video bitrates, rebuffering time,
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smoothness, and other application-level metrics, but not network

link rates. We develop an approach that reconciles the two and

exposes the relationship between them.

Second is a new distributed algorithm for achieving fairness

between clients using these utility functions. Our solution supports

general notions of fairness, such as max-min fairness and propor-

tional fairness [22]. Each client computes a dynamicweight for its
video. The transport layer then achieves a bandwidth allocation

for each video that is proportional to its weight. A client’s weight

changes throughout the course of the video, based on network condi-

tions, the video’s utility function, and client state, but independently

of other clients. Collectively, the rate allocation determined by these

weights converges to the optimal allocation for QoE-fairness.

Third is a weight normalization technique used by Minerva

to compete fairly with standard TCP. This step allows clients to

converge to a set of rates that simultaneously achieves QoE fairness

while also ensuring fairness with non-Minerva flows on average.

We implementMinervaon topofQUIC [23] andadapt an industry-

standard video player to make its application state available to the

transport. For deployability, our implementation uses Cubic [16] as

its underlying congestion control algorithm for achieving weighted

bandwidth allocation. We runMinerva on a diverse set of network

conditions and a large corpus of videos and report the following:

(1) Compared to existing video streaming systems running

Cubic and BBR, Minerva improves the viewing quality of

between 15-32% of the videos in the corpus by an amount

equivalent to a bump in resolution from 720p to 1080p.

(2) By allocating bandwidth to videos at risk of rebuffering, Min-

erva is able to reduce total rebuffering time by 47% on average

in a scenario with dynamic video arrivals and departures.

(3) We find that Minerva competes fairly with videos and

emulated wide area traffic running Cubic, occupying within

4% of its true fair share of the bandwidth.

(4) Minerva scales well to many clients, different video quality

metrics, and different notions of fairness.

(5) We runMinerva over a real, residential network and find that

its benefits translate well into the wild.

This work does not pose any ethical concerns.

2 Motivation
Central to Minerva is the realization that connection-level fairness,

where competing flows get an equal share of link bandwidth, is

ill-suited to the goals of video providers like Netflix and YouTube.

In particular, connection-level fairness has two undesirable effects

from a video provider’s point of view.

First, it is oblivious to the bandwidth requirements of different

users. Different videos require different amounts of bandwidth to

achieve the same viewing quality. For example, a viewer will have

a better experience streaming a given video on a smartphone at

1 Mbit/s than a large 4K TV at 1 Mbit/s [26]. Further, discrepancies

in viewing experience extend beyond differences in screen size. User

studies show that the perceived quality of a video is influenced by

its content as well, e.g., its genre or degree of motion. Fig. 1 plots

the average video quality, as rated by viewers, at several bitrates for

a diverse set
1
of videos [24]. A client watching the video “V3”, for

example, would require a higher bandwidth than a client watching

“V19” to sustain the same viewing quality. If both received the same

bandwidth, “V3” would likely appear blurrier and less visually

satisfying. However, current transport protocols that provide

1
For a description of each video, see Appendix A.

Figure 1: Perceptual quality for a diverse set of videos based on a
Netflix user study [24]. Also shown is the “average” perceptual qual-
ity (dotted), which is Minerva’s normalization function (§5.4). For
context, the average qualities at 720p and 1080p are 82.25 and 89.8.

(a) Cubic (b) Minerva

Figure 2: To demonstrate buffer pooling, we start one video client,
allow it to build up a large buffer, and then introduce a second video
after 70 seconds. (a) With Cubic, the first video maintains a large
buffer, causing the second video to sacrifice its quality to avoid
rebuffering. (b) Minerva trades the large buffer of the first video to
fetch higher quality chunks for the second.

connection-level fairness are unaware of these differences in videos,

and thus they relegate some viewers to a worse viewing experience.

Second, protocols that split bandwidth evenly between connec-

tions are blind to the state of the video client, such as the playback

buffer size, so they cannot react to application-level warning signs.

In particular, a video client with a low buffer, e.g. at video startup,

has a higher likelihood of rebuffering, which prevents the ABR

algorithm from requesting high-quality chunks. Consider such a

video sharing the network with other clients that have large buffers.

Dynamically shifting bandwidth to the resource-constrained video

in question would allow it to quickly build up its buffer, mitigating

the adverse effects of rebufferingwithout sacrificing its own viewing

experience or that of the other clients. This dynamic reallocation

effectively creates a shared buffer pool, letting clients with small

video buffers tap into the large buffers of other video clients, as

illustrated in Fig. 2. Equal bandwidth sharing, on the other hand,

isolates clients and prevents them from pooling their resources.

While most Internet traffic expects bandwidth to be shared

equally between competing flows, connection-level fairness between
videos is not ideal: providers should be able to allocate bandwidth
between their videos in a way that optimizes their viewers’

experience, provided they play fairly with other traffic. In fact,

providers have economic incentives to consider video quality when

delivering content: to boost user engagement, improving viewing

quality at lower bitrates is often more important than at higher

bitrates.
2
Connection-level fairness, being blind to video quality,

2
Corroborated in private communication with a large content provider.
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is therefore ill-suited to a video provider’s needs. Instead, having

the ability to shift bandwidth based on video quality considerations

would allow them to directly optimize relevant business objectives.

Many video providers have already abandoned connection-level

fairness. Netflix and YouTube typically use three parallel TCP

connections to download video chunks, effectively giving their

videos larger bandwidth shares and preventing poor viewing

experiences [28, 32, 41]. Additionally, Netflix uses a larger number of

connections at video startup, when buffer is low, to avoid potential

rebuffering events early in the video [41]. These remedies are ad-hoc,

coarse (adding or removing only an integral number of connections),

heavyweight (incurring startup time for a new connection), and

make no effort to be fair to competing web traffic.

Minerva offers video providers a more principled solution. It dy-

namically allocates bandwidth between videos in a manner that (a)

allows fine-grained control over a video’s rate share, (b) responds

quickly to low buffers and (c) competes fairly with non-video traffic.

Importantly, each provider has full control over their use ofMinerva.

Theymay deployMinerva on their client and server endpoints, inde-

pendentlyof otherproviders, andwithout any change to thenetwork.

Minerva is able to ameliorate the drawbacks of connection-level

fairness by dynamically modifying a video’s rate allocation to

optimize aQoE fairnessmetric. Minerva uses a standard definition

of QoE fairness (max-min QoE fairness) that aims to improve

the video quality for clients with the worst QoE (§4.1). However,

Minerva is flexible and can optimize for a variety of QoE fairness

definitions (§8.6). It is beyond the scope of this work to determine

the best fairness metric for video providers.

3 RelatedWork

Minerva is informed by a large body of work focused on improving

user experience while streaming video.

Single-user streaming. In single-user video streaming, each

video optimizes only within the bandwidth allocation prescribed

by the underlying transport. The underlying bandwidth share

between videos is not modified in response to video-level metrics,

such as perceptual quality or playback buffer. Improvements to

single-user streaming includeABRalgorithms,whichuse bandwidth

measurements to choose encodings that will improve perceptual

quality and minimize rebuffering. State of the art algorithms are

typically also aware of client state and may optimize for QoE either

explicitly [3, 44] or implicitly, e.g. via a neural network [27].

Further single-user streaming improvements include techniques

that correct for the shortcomings of DASH [39] to achieve fairness

across multiple users, by improving bandwidth estimation [25] or

avoiding idle periods during chunk downloads [45]. Other schemes

manage the frequency at which chunks are requested [20] or model

the choices of other clients using a game-theoretic framework [6]. As

a result, these methods improve utilization, perceptual smoothness,

and fairness among competing videos. However, they improve

only connection-level fairness and ignore the perceptual quality

differences between videos, so they cannot optimize QoE fairness.

Furthermore, they are still ultimately bound by the equal-bandwidth

allocation prescribed by the underlying transport.

Transport Protocols. Alternate transport protocols may also

improve a viewer’s experience. PCC has been shown to make

better use of available link bandwidth and thus improve a user’s

QoE [12]. However, PCC is a general purpose transport and is

not aware of video quality metrics. Salsify [13] designs real-time

video conferencing applications that are network aware; the video

encoder uses estimates of available bandwidth to choose its target

bitrate. However, Salsify targets the real-time conferencing use case,

while Minerva targets DASH-based video-on-demand.

Centralized multi-user streaming. Existing systems that

optimize QoE fairness over multiple users only consider centralized
solutions [8, 43]. They require a controller on the bottleneck link

with access to all incident video flows. This controller computes

the bandwidth allocation that optimizes QoE fairness and enforces

it at the link; clients are then only responsible for making bitrate

decisions via traditional ABR algorithms. However, this requires a

network controller to run at every bottleneck link and thus presents

a high barrier to deployment.

Video qualitymetrics.Another line of work has focused on defin-
ing metrics to better capture user preferences. Content-agnostic

schemes [26] use screen size and resolution as predictors of viewing

quality. Other efforts [29, 42], including Netflix’s VMAFmetric [24],

use content-specific features to compute scores that better align

with actual user preferences. Minerva can support any metric in

its definition of QoE.

Decentralized schemes.Minerva clients use a distributed rate up-

date algorithm to converge toQoE fairness. A popular framework for

decentralizing transport protocols that optimize a fairness objective

is NetworkUtilityMaximization (NUM) [22]. NUMuses link “prices”

that reflect congestion to solve the utility maximization problem by

computing rates based on prices at each sender; repeated iterations

of thepriceupdates and rate computations converges to anallocation

that optimizes the fairness objective. In practice, NUM-based rate

control schemes can be difficult to stabilize. Another approach solves

NUM problems by dynamically deciding aweight for each sender,
and then using a rate control scheme to achieve rates proportional to

those weights. This avoids over-and under-utilization of links [31].

Minerva implements this second approach and is therefore able to

simultaneously achieve full link utilization and QoE fairness.

4 Problem Statement

4.1 QoE Fairness

Minerva optimizes for a standard definition of QoE found in the

video streaming literature [44]. QoE is defined for the kth chunk

ck based on the previous chunk and the time Rk spent rebuffering

prior to watching the chunk:

QoE(ck ,Rk ,ck−1)=P (ck )−βRk −γ ∥P (ck )−P (ck−1)∥. (1)

P (e ) denotes the quality gained from watching a chunk at bitrate

e , which we term Perceptual Quality (PQ), β is a penalty per second

of rebuffering, andγ penalizes changes in bitrate between adjacent

chunks (smoothness). In general, PQmay vary between videos and

clients, based on parameters such as the client’s screen size, screen

resolution, and viewing distance, as well as the video content and

genre. It also typically varies by chunk over the course of a single

video: chunks with the same bitrate may have different PQ levels

depending onhow the content in those chunks are encoded.Minerva

can use any definition of PQ that meets the loose requirements in

Appendix B, e.g., it is sufficient that P (e ) be increasing and concave.3

Suppose N clients share a bottleneck for a time periodT , during
which each client i watches ni chunks and experiences a total

(summed over all chunks)QoE ofQoEi . Our primary goal ismax-min
fairness of the per-chunk average QoE between clients, i.e., to

maximize mini
QoEi
ni

.

3
This property, standard for utility functions, captures the notion that clients experience

diminishing marginal utility at successively higher encodings.
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Max-min QoE fairness, a standard notion of fairness, captures the

idea that providers may reasonably seek to improve the experience

of their worst-performing clients. However, achieving max-min

QoE fairness may require very different rate allocations for two

videos with substantially different perceptual qualities. Providers

who are unhappy with such a rate allocation have two alternatives.

First, Minerva allows optimizing for max-min QoE fairness subject
to the constraint that no video achieves a bandwidth that differs

from its fair share by more than a given factor µ. Second, it also
supports different definitions of fairness, such as proportional

fairness. Both approaches are discussed further in §5.5.

4.2 Goals

Minerva’s overarching motivation is to provide a practical mech-

anism to achieve QoE fairness among competing video flows. In

particular, we desire that Minerva

(1) be an end-to-end scheme. Deploying Minerva should only

require modifications to endpoints, without an external

controller or changes to the network.

(2) improve QoE fairness. N video flows using Minerva should

converge to a bandwidth allocation that maximizes QoE

fairness between those N videos. The clients do not know

N or any information about other video flows.

(3) ensure fairness with non-Minerva flows. The total throughput
of N Minerva videos should equal that of N Cubic flows to

not adversely impact competing traffic.We designMinerva

to compete fairly against Cubic, since it is a widely deployed

scheme, but our approach extends to other protocols as well.

(4) be ABR agnostic. The ABR algorithm should be abstracted

away, so that Minerva can work with any ABR algorithm.

Minerva may have access to the ABR algorithm, but can only

use it as a black box.

These properties offer benefits to large video providers, like

Netflix, to use Minerva. Netflix videos constitute 35% of total

Internet traffic, making them likely to share bottleneck links [38].

This large bandwidth footprint motivates using Minerva to improve

collective experience for Netflix viewers. Additionally, since

Minerva video streams operate independently, it can be deployed

without knowing which videos share bottlenecks or where those

bottlenecks occur. Further, even a single provider can benefit from

Minerva, independently of whether other providers deployMinerva

as well, since Minerva videos achieve a fair total throughput share

with other competing traffic.

5 Design

5.1 Approach

Minerva repeatedly updates clients’ download rates in a way that

increases mini
QoEi
ni . However, making rate control decisions in the

context of dynamic video streaming is a tricky task. The definition

of QoE does not directly depend on the client’s download rate, so it

is not immediately apparent how to optimize QoE fairness by simply

changing the bandwidth allocation. In fact, the effects of rate changes

on QoE may not manifest themselves immediately; for example,

increasing the download ratewill not change the bitrate of the chunk

currently being fetched. However, it may have an indirect impact:

if a client’s bandwidth improves, its ABR algorithmmay measure

a higher throughput and choose higher qualities for future chunks.

To solve the above optimization problem with a rate control

algorithm, Minerva must recast it in a form that depends only on

network link rates. This is made difficult by the fact that the QoE is

BOTTLENECK LINK

VIDEO 1
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Figure 3: Minerva’s high-level control flow. Clients run
Minerva’s formulate-solve-send process independently and
receive feedback only through the rate they measure on the
next iteration.

also a function of other parameters, such as buffer level and bitrate.

Therefore, Minerva first formulates a bandwidth utility function

for each client that decomposes the optimization problem into a

function of only its download rate.

Following formulation, the competing videosmust solve theQoE
fairness maximization problem in a decentralized manner. Since

Minerva cannot change the available capacity, it can control only

the relative allocation of bandwidth to each video. It determines this

allocation by assigning each video a weight based on the solution

of the bandwidth utility optimization, using a custom decentralized

algorithm. Then in the send step, Minerva utilizes existing

congestion control algorithms to achieve a bandwidth allocation

for each video proportional to its weight, while also fully utilizing

the link capacity. Fig. 3 illustrates Minerva’s high level control flow.

Each video runs Minerva’s three-step formulate-solve-send

process once everyT milliseconds, whereT is tunable parameter.

§5.2 details the basic operation of these three steps, including the

form of the bandwidth utility functions, the method by which

weights are determined, and how existing congestion control

algorithms are adapted to achieve thoseweights. §5.3 discusses a key

optimization to improve performance, §5.4 explains howMinerva

achieves fairness with TCP, and §5.6 outlines howMinerva can be

used on top of a variety of existing congestion control algorithms.

5.2 Basic Minerva

Formulating the bandwidth utility.Given the definition of QoE
(Eq. 1), we aim to construct a bandwidth utility functionU (r ) that
is a function of only the client’s download rate.U (r ) should capture
the QoE the client expects to achieve given a current bandwidth

of r . In Minerva’s basic design,U (r ) assumes that the client is able

to maintain a bandwidth of r for the rest of the video.
Buffer dynamics provide insight into what this QoE value will

be. After downloading a single chunk of duration D and size C ,

the client loses
C
r seconds of download time but gains D seconds

from the chunk’s addition. In the client’s steady state, the average

change in the buffer level is close to 0 over long time periods (several

chunks). During this time, the bitrate averages to approximately r ; if
r lies between two available bitrates ei and ei+1, the client switches
between those bitrates such that its average bitrate per chunk is

r . Therefore, the expected per-chunk QoE is a linear interpolation

of the PQ function between P (ei ) and P (ei+1) at r . This observation
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yields a formalization ofU (r ):

U (r )=



P (ei ) if r =ei

Interpolate(P ,r ) if ei <r <ei+1
(2)

assuming the video is available to stream at discrete bitrates {ei }.
r is the client’s average download rate, measured over the past T
milliseconds.

This definition of the bandwidth utility only considers the PQ

component of the QoE; it does not take into account client state,

such as buffer level, nor does it factor in penalties for rebuffering

or smoothness. We present a more sophisticated bandwidth utility

function in §5.3 that does both.

SolvingU (r ). Given a bandwidth utility functionUi (ri ), which is
an estimate of a client’s expectedQoE, theQoE fairness optimization

problem now becomes:

maximize min

i
Ui (ri )

Each client must find a weight wi , such that the set of all client

weights determines a relative bandwidth allocation that optimizes

QoE fairness. Assuming theUi are continuous, the solution to the
optimization problem occurs when the Ui are all equal and none

can be made larger. Minerva relies on the Send step to ensure that

clients achieve full link utilization. Therefore, this step focuses only

on distributing the link bandwidth to achieve equality between the

bandwidth utility functions.

Reaching equality is complicated by the fact that Minerva is

completely decentralized: each client is not aware of the utility

functions of the others. However, Minerva uses a decentralized

algorithm to achieve max-min utility fairness on a bottleneck link,

where each video makes decisions based only on its own state. At

every timestep, the weightwi for the next interval is

wi =
ri

Ui (ri )
(3)

This iterative update rule has two key properties. First, provided

a fixed capacity link, the optimal rates {r∗i } are a fixed point. To see
why, notice that at the optimal rates, {Ui (r

∗
i )} are equal for all clients.

Therefore, if the clients are downloading at the optimal rates, after

one weight update, the ratio of the new rates will be

r ′i
r ′j
=
r ∗i/Ui (r ∗i )

r ∗j/Uj (r ∗j )
=
r∗i
r∗j

Therefore, the rate ratios remain identical. Minerva assumes the

link capacity stays constant in the short term, so identical rate ratios

will result in identical rates.

Second, each iteration of (3) moves the rates closer towards their

optimal values. Consider two clients with ratio ρ=
r1
r2
. If r1<r

∗
1
and

r2>r
∗
2
, thenU1 (r1)<U2 (r2). Correspondingly, the ratio in the next

iteration is ρ ′ = ρ ·
U2 (r2)

U1 (r1)
> ρ. Client 1’s share of bandwidth will

then increase, and Client 2’s will decrease, moving the clients closer

toU1 (r1)=U2 (r2). See Appendix B for a full proof of convergence.

Setting rates. After the Solve step, clients have weights wi that

they must use to achieve rates proportional towi , while still fully

utilizing the link capacity. A straightforward method to realize

these rates is to emulatewi connections using a congestion control

algorithm that achieves per-flow fairness. This makes Minerva

capable of building on top of any transport protocol that accepts

such a weight. §5.6 discusses examples of such protocols.

5.3 A Client-Aware Utility Function

The basic bandwidth utility function takes into account only the cur-

rent download rate and the PQ function. However, while this model

of QoE is approximately accurate over long time scales, it is overly

simplistic for several reasons. First, it is blind to client state. The

client holds valuable information, such as buffer level, that influences

its future QoE. For example, having a larger buffer may allow the

client to receive less bandwidth in the short term without reducing

its encoding level. A more sophisticated utility function should be

able to capture the positive value of buffer on a client’s expectedQoE.

Second, it accounts for only the PQ term in the QoE and ignores

the rebuffering and smoothness terms. The basic utility function

does not understand that a client with a lower bandwidth or low

buffer has a higher likelihood of rebuffering. Additionally, though

it expects the client to fetch encodings that average to r , it does not
factor in the smoothness penalty between these encodings.

Third, it only looks at future QoE, while ignoring the past. A

client that rebuffers early on will afterwards be treated identically

to a client that never rebuffered. In order to achieve max-min QoE

fairness, the rebuffering client should be compensated with a higher

bitrate. Only a utility function that is aware of the QoE of previous

chunks can hope to have this capability.

Recognizing the limitations of the basic PQ-aware utility function,

we construct a client-aware utility function that addresses all

three limitations. This new utility function directly estimates the

per-chunk QoE using information from past chunks, the current

chunk being fetched, and predicted future chunks:

U (r )=
φ1(Past QoE)+φ2(QoE from current chunk)+Vh (r ,b,ci )

1+φ1+φ2
where φ1,φ2 are positive weights that determines relative impor-

tance of the three terms. The QoE of the current chunk is estimated

by using the current rate r to determine if the video stream will

rebuffer. Suppose that a client with buffer level b is downloading

a chunk ci and has c bytes left to download, Minerva computes the

expected rebuffering timeR= [c/r−b]+ and estimates theQoE of the

current chunk asQoE (ci ,R,ci−1), where QoE is defined as in Eq. 1.

One of Minerva’s key ideas isVh , a value function computing the

expected per-chunkQoEover the nexth chunks,whereh is a horizon
that can be set as desired. It captures the notion that the QoE a client

will achieve depends heavily on the ABR algorithm that decides

the encodings. In order to accurately estimate future QoE, clients

simulate the ABR algorithm over the nexth chunks as follows:

r ← Measured download rate

S ← client state

do h times:

e = ABR(S)

S, rebuf ← client state and

rebuffer time after chunk

e is downloaded at rate r

The value function uses the chunk encodings and rebuffer times

at every iteration to evaluate the expected QoE. Clients need not

modify the ABR implementation; they can simply use it as a black

box when computing the value function.

Fig. 4 shows the value function for MPC [44] with h = 5. Note
the dependence on rate and buffer. In particular, a large buffer has

diminishing marginal returns. The jump in value due to increasing

the buffer from 0s to 4s approximately equals the bump due to

increasing the buffer from 4s to 20s. This aligns with intuition:

clients with a low buffer are at a higher risk of rebuffing and

therefore place a high value on each second of buffer.

In general, the value function depends heavily on the underlying

ABR algorithm used to compute it, which has two implications. First,
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Figure 4: The value function simulated with MPC for a range of
buffers and rates. Higher rates and buffers yield a higher value, and
larger buffers have diminishingmarginal utility.

it may be expensive to compute. Since the value function for a video

does not change across sessions, Minerva precomputes the value

function before streaming begins (§6). Second, the value function

may not exactly satisfy the convergence conditions of Minerva’s

rate update rule. Appendix C discusses methods to overcome this.

5.4 Normalization: Fairness with TCP

§5.2 describes how Minerva flows competing with each other

converge to the correct bandwidth allocation. However, in the wild,

they will have to also compete with, and be fair to, other TCP flows

(e.g., Cubic), includingMinerva flows from different video providers.

In this section, we describe howMinerva flows achieve fairness with

TCP while optimizing the relative bandwidth allocation between

themselves.

As discussed previously, flows updating their weights using Eq. 3

converge to a steady state where theUi (ri ) are equal. This conver-
gence is not specific to the exact functional form ofUi ; in fact, we
can replaceUi (ri ) with f (Ui (ri )) if the function f is the same across

all Minerva clients. As long as f is monotonically increasing and

f (Ui (ri )) satisfy the loose requirements outlined in Appendix B, all

clients will still reach a steady state such that the f (Ui (ri )) are equal;
the monotonicity of f then implies that theUi (ri ) are also equal.

We take advantage of this flexibility by choosing an f that allows

Minerva flows, in the steady state, to collectively occupy their fair

share of the link bandwidth. In particular, for each Minerva flow

to occupy the equivalent of α TCP flows on average, we normalize
their weights, so they average to α :

1

N

∑
i

ri
f (Ui (ri ))

=α

where N is the number of flows on that link, and we typically

choose α = 1. Since allUi (ri ) converge to the steady-state value u,
the resulting form of f is:

f (u)=
1

αN

∑
i
U −1i (u)

In practical deployments of Minerva, clients are not aware of N or
the utility functions used by competing flows. Therefore, we compute

f (u) using a popularity distribution, which video providers can

measure. If video i has popularity pi , where
∑
ipi =1, then:

f (u)=
1

α

∑
i
piU

−1
i (u)

We call f −1 the normalization function instead of f because f −1

has the same signature as theUi and can be compared to them. Fig. 1

shows a diverse set of PQ curves along with their normalization

function.

If this popularity distribution over videos is accurate, then on av-

erage,N randomly sampledMinerva flowswill converge to the same

bandwidthasN TCPflows,givingMinerva thepropertyof fairness to

non-Minerva flows. The normalization function is also howMinerva

isolatesvideos fromdifferentproviders: if twoprovidersAandB have
videos sharing a bottleneck link, and each provider uses a suitable

normalization function based on the popularity distribution of its

ownvideos, thenA’s videoswill occupy their fair shareonaverage, as
will B’s. Therefore, videos from one provider do not affect the other.

It’s important to note that Minerva achieves fairness with

competing traffic in expectation over its video distribution. At any
particular bottleneck, the aggregate bandwidth consumed byMin-

erva is determined largely by the PQ curves of the videos in question.

Consider client i playing a video whose PQ curve lies above f , i.e.
Ui (ri ) > f (ri ). This client will compute f −1 (Ui (ri )) > ri , sowi < 1,

and it will occupy less than its fair share of bandwidth. The converse

holds for videos with PQ curves under f . However, over several
samples from the video distribution,Minerva’s aggregate bandwidth

footprint is fair to competing traffic, by the law of large numbers.

The function f maps utilities back to rates, so the weight

computed by each Minerva flow is unitless. As a result, weights

from all clients are comparable to each other, even if those clients
are using different QoE definitions that cannot be compared (e.g.,

PSNR and SSIM). This property is crucial to the design of Minerva:

different video providers using Minerva can properly compete with

each other without sharing information about their utility functions.

5.5 GeneralizingMax-Min Fairness

Practically, providers may not want any of their videos to consume

toomuchmore (or less) bandwidth than their equal share.Minerva al-

lows them to optimizemax-min fairness subject to constraints on the
video’s bandwidth. This is accomplished by setting upper and lower

bounds on the weightwi of each client. The weight has a straightfor-

ward interpretation: it is the ratio of that client’s rate to a standard

Cubic flow, on average. Keeping it from straying past a bound µ
ensures that its rate is never µ times more than its equal link share.

Alternatively, Minerva is able to optimize for different notions

of fairness, such as proportional fairness. We relegate further

discussion of proportional fairness to Appendix D.

5.6 Using Existing Transport Protocols

§5.2 describes how the first two steps (formulate and solve) result

in a weight wi for each flow that Minerva must translate to a

rate proportional towi , while ensuring that the flows achieve full

link utilization. To accomplish this, Minerva can use any existing

transport protocol that accepts such a weight and can achieve a

bandwidth share proportional to that weight. Abstracting out the

congestion control layer is valuable, since there are many protocols

that have this property and can be plugged into Minerva. We

discuss two such protocols here: Cubic [16], which is loss-based and

allows Minerva to compete with wide area traffic, and FAST [21],

a delay-based congestion control scheme.

For the sake of deployability, we choose Cubic [16], as our

primary underlying congestion control mechanism. Minerva

emulates multiple Cubic connections using a technique similar

to MulTCP [10]: a client emulating w connections counts every

ACK towards allw flows but counts a loss against only a single flow.

Note thatw need not be an integer for this to work. The average

throughput of a Cubic flow as a function of loss probability p is [19]:

T =C

(
3+β

4(1−β )

)1/4 (RTT
p

)3/4
,
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Figure 5: System architecture for Minerva. Clients run MPC and
convey their state to the QUIC video server via chunk requests. The
server is responsible for setting the download rate.

where β is Cubic’s multiplicative decrease factor, i.e., the factor

by which Cubic cuts its congestion window after a packet loss.

Substituting β with

β ′=
β (w+1)+w−1

β (w−1)+w+1
multiplies the throughput by the desired factor ofw .

We also describe how to implement Minerva on top of the

delay-based FAST, which has been shown to achieve faster

convergence times than Cubic [21]. Faster convergence times of the

underlying congestion control protocol mean that the measurement

interval T can be shortened, resulting in faster convergence of

Minerva’s decentralized algorithm.

A client with weightwi sets its congestion window to

cnwd′=

(
RTT

RTTmin
·cwnd+κwi

)
(4)

This attempts to keep κwi packets in the bottleneck queue, for some

positive constant κ >1, and can be shown to achieve an allocation
proportional to {wi }.

6 Implementation
Minerva is implemented using aDASHVideo client [2] and aHTTPS

video server running over QUIC [23]. Fig. 5 shows the overall flow

of data in Minerva. The QUIC server runs Minerva’s weight update

algorithm and uses that weight to adjust the download rate (equiv-

alently, the server’s sending rate) via the underlying congestion

control protocol. In order to send the necessary state from clients to

the server, e.g. playback buffer and past QoE, the client piggybacks

its state onto the HTTP chunk requests as URL parameters.

6.1 Client

InMinerva, video clients are headless Google Chrome [14] browsers

(Version 62) watching their video using a DASH video player.

Chrome was configured to send HTTP requests to the server using

QUIC. We use a modified version of dash.js (Version 2.4) [2] with

a ABRmodule running MPC [44]. The player requests video chunks

via HTTPS, and is responsible for tracking the playback buffer,

rebuffer time, QoE from previous chunks, chunk download times

(for bandwidth estimation), and other client parameters, such as

screen size and device. This information is sent to the ABRmodule,

which responds with the next quality for the client to fetch. Note

that the client’s bandwidth measurement is only used to make the

ABR decision and is not sent to the video server; the server makes

its own higher resolution rate measurements. However, all other

data listed above are appended on video chunk requests.

6.2 Video Server

Choosing a QUIC-based server made it easy to test rate control

changes. In addition to updating congestion control specific

parameters, like the congestion window, the video server was also

responsible for tracking client state and performing the weight

update computation from §5.2. QUIC uses a persistent connection

for each client, preserving state across requests made on that

connection. Therefore, when video clients request a new chunk,

congestion control information, such as congestion window, is car-

ried over from the previous chunk request, preventing clients from

having to re-enter slow start. Persistence grants Minerva enough

time (several chunks) to converge to the QoE-fair rate allocation.

Rate Measurements. In order to predict the expected QoE from

the current chunk and future chunks, the video server requires rate

measurements at finer granularity than once per chunk. §5 notes

that weight updates are made everyT milliseconds, independently

for each flow. Following aweight update, the serverwaits
T
2
millisec-

onds to allow the flow to converge to its new rate, and thenmeasures

the number of bytes acked over the next
T
2
milliseconds to estimate

the current instantaneous rate ri . We useT =25∗RTTmin, to allow

time for convergence. In practice, we found that this instantaneous

rate measurement can fluctuate and be noisy. Rate measurements

that exceed the true rate cause the client to overestimate its utility

and drop its weight significantly; this increases the chance of

rebuffering. To mitigate this problem, we compute a conservative
rate estimate ri,cons =max(0.8ri ,ri−0.5σ ), where σ is the standard

deviation of the last 4 rate measurements. Each client uses their

conservative rate estimate to calculate their utility.

Specifically, Minerva computes the weight update based on §5.2

with two modifications. First, wi =
r̃i,cons

f (Ui (r̃i,cons ))
, where r̃i,cons

is an exponential weighted moving average (EWMA) over the

conservative instantaneous rate:

r̃i,cons =0.1ri,cons+0.9r̃i,cons
Second, we apply another EWMA, w̃i , to the computed weight:

w̃i =0.1wi+0.9w̃i
Minervapassesw̃i as theweight to the sendstep.Minervaclamps this

weight to the interval [0.5,20], although this is only as a precaution;

we do not observe the weight passing these bounds in practice.

Control Flow. Clients only begin updating weights after down-

loading the first chunk, which is always fetched at the lowest quality.

This allows the client’s bandwidth share to stabilize before starting

Minerva’s rate update algorithm. Starting on the second chunk,

when a new rate measurement is available after T milliseconds,

Minerva allows clients to update theirweights.When computing the

utility function, we use φ1=
1

N , where N is the number of chunks

already played, and φ2 = 1. This equally weights the contribution
from past QoE, current chunk, and value function.

Function Evaluation.Minerva’s design involves evaluating both

a value function, to estimate the QoE of future chunks, and a

normalization function. To save computation time when running

the ‘Solve’ step, these functions are pre-computed before running

the video server. Recall that the value functionV (r ,b,ei ) is a function
of the download rate, buffer level, and the bitrate currently being

fetched.We precompute the value function for every chunk, for each

combination of rates, from 0 to 8 Mbit/s in intervals of 100 kbit/s;

buffers, from 0 to 40 seconds in intervals of 0.05 seconds; and pre-

vious bitrates. This amounts to 38.4 million values for a single video,

which is approximately 153MB. We losslessly compress the value

functions by storing them as a series of contiguous line segments,

reducing the space overhead to between 6MB and 16MB, depending

on the video. We discuss ways to reduce this overhead further in §7.

The normalization function is precomputed from the videos being

watched before the videos start, using the PQ curve for each video.



SIGCOMM ’19, August 19–23, 2019, Beijing, China V. Nathan et al.

Although normalization ensures that Minerva converges to its fair

share of bandwidth, this may not be true during the convergence

process. To compensate for the higher bandwidth share occupied

during convergence, we use α =1.65 (QUIC’s Cubic implementation

emulates 2 flows). The normalization function is stored as a table

of values and is loaded when the video server launches.

Tracking client state. The QUIC server keeps an estimate of the

client’s buffer, which it uses to predict the QoE expected from down-

loading the current chunk.This estimate isupdatedafter everychunk

request with the true buffer size, which the client sends as a URL pa-

rameter on theHTTP request.Wefind thatDASH incurs anoverhead

of 0.6 seconds for each chunk, soMinerva decrements the estimate by

0.6 seconds before using it in its weight computation. In addition, the

client sends the total QoE it has experienced for all chunks watched

so far, which the server incorporates into the utility function.

Overhead. The overhead added byMinerva’s computation on the

video server is negligible: we observed no quantifiable increase in

CPU usage when running Minerva as compared to QUIC Cubic.

7 Discussion

Global vs Local Fairness.Minerva guarantees that videos are fair

to Cubic in aggregate over a set of links, provided that the normal-

ization function is crafted from the popularity distribution of videos

over those links.However, popularitydistributionsmayvarybothge-

ographically and over time. In particular, the global distribution over

all videosmay differ substantially from the videos beingwatched in a

particular geographic area, andmay additionally vary frommorning

to evening. Therefore, if the provider bases their normalization off a

single global popularity distribution, videos will be fair to Cubic on

average globally butmay not achieve local fairness. Achieving global
fairness at the expense of local fairness may not be desirable, since

videos playing in the same region may then achieve significantly

more or less than their fair share of bandwidth. Providers have

two remedies to retain control over the weights of their videos and

prevent them from straying too far from their fair-share allocation.

First, providers can achieve local fairness by using a different

normalization function in each geographic region, which accurately

captures the popularity of videos in that particular area. The more

granular the popularity distribution, the more likely it is that videos

in the corresponding area closely match the distribution, and the

less Minerva videos stray from their fair-share allocation. Taken

to the extreme, if providers knew precisely which sets of videos

shared common bottleneck links, they could guarantee that their

videos achieve their fair share allocation on every link. In practice,

obtaining link-level statistics is difficult; however, it may be more

feasible for providers to approach local fairness by specializing their

normalization functions to less granular regions.

Second,Minerva exposes the client’s weightwi , so providers may

cap it at a particular value to limit how far a video’s bandwidth strays

from its equal share. After normalization,wi has a straightforward

interpretation: it will occupywi times what a standard Cubic flow

would occupy. Keepingwi between 0.5 and 2, for example, ensures

that no video grabs less than half or more than twice its fair share,

respectively. However, a more stringent cap limits the range in

whichMinerva can operate, so QoE fairness may suffer.We evaluate

this approach in §8.6.

Deployment Considerations. Minerva requires two types of

modifications to video servers. First, Minerva requires servers

that keep track of application state for each video flow they serve

and have the ability to adjust their sending rates according to that

application state. This may mean that conventional CDNs, which

are stateless and implement a traditional TCP stack, are ill-suited for

serving Minerva videos. However, some providers, such as Netflix,

already deploy video servers with custom software [33].

Second, Minerva’s current implementation precomputes the

value functions and stores them on the video server to avoid the

overhead of real-time computation. This incurs a memory overhead

of 16MB per video, and may be prohibitive when a single server

serves a large number of videos simultaneously. There are multiple

approaches to reducing this overhead. First, we can compute the

value function at a coarser granularity, e.g., for buffers at every

0.5 seconds instead of 0.05 seconds. Second, the video clients can

compute the value function on demand and send them to the video

serverwhen requesting a chunk. Recall that for any given chunk, the

value functionV (r ,b,ei ) depends on the rate, buffer, and previous

bitrate. Since the client knows both its current buffer level B and

previously played bitrate E, it sendsV (r ,B,E), now only a function

of r , for a handful of buffer values close to B. We estimate the size

of this representation to be around 2kB per chunk.

8 Evaluation
Minerva has two design goals: (1) maximizing QoE fairness while

(2) occupying its fair share of the link capacity. We start by isolating

the first goal and asking howwell Minerva is able to improve QoE

max-min fairness in the absence of competing traffic (§8.2), including

dynamic environments with videos arriving and leaving at different

times (§8.3). To test the second goal, we add cross-traffic, and show

that Minerva shares bandwidth fairly with other videos, scales to

many clients (§8.4), and adapts to link conditions that vary with

time (§8.4, §8.4.1). Third, we show that Minerva works in the wild,

over a real residential network (§8.5). Fourth, we explore howMin-

erva can optimize for alternatives to max-min fairness (§8.6). Fifth,

we consider the case of twoproviders competingwithMinerva (§8.7).

8.1 Setup

8.1.1 SystemDetails All clients use dash.js (version 2.4) running

on Google Chrome (version 62), with QUIC support enabled. Each

client runs in a headless Chrome browser, on an Amazon AWS

r5a.4xlarge EC2 instance. The server is based off the HTTP server

distributed with Chromium, modified only to implement Minerva’s

rate control scheme.

Clients choose the bitrate of the next chunk by contacting an

ABR server that implements MPC. The ABR server is colocated on

the same machine as the clients and is shared by all of them. The

overhead of a client’s request to the ABR server, including latency

to/from the server and computation time, is 70ms seconds, which

is small relative to the length of a video chunk download (4 seconds).

Unless otherwise noted, clients begin watching their videos at the

same time, and fairness is computed over a 200 second interval from

the start of the video.

The bulk of our evaluation considers Minerva videos sharing a

single bottleneck link, emulated with a Mahimahi [34] shell. The

link has a minimum RTT of 20ms and a buffer with a capacity of

1.5 bandwidth delay products (BDPs). The link runs a PIE [35] AQM

scheme for both Minerva and baseline flows, with a target delay

of 15ms.
4
However, we also evaluate over droptail buffers. Since all

video traffic travels from server to clients, our evaluation only alters

4
The PIE AQM scheme is a part of the DOCSIS3.1 standard and widely deployed in

residential areas: Comcast has already deployed DOCSIS3.1 compliant routers to 75%

of their customers [15, 30].
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the Mahimahi downlink (outside to inside) capacity; the uplink is

fixed at 10 Mbit/s and is never saturated.

8.1.2 Videos Our corpus consists of 19 4K videos between 4 and

5 minutes long, which we label V1 to V19. They span a diversity of

genres, including news, action, and animation (Appendix A). Each

video has a corresponding VMAF score, a perceptual quality metric

designed to predict user perceived quality [24]. We use the VMAF

score (version 0.3.1) as the PQ function for each chunk.

For a single video, both the chunk sizes and VMAF scores differ

from chunk to chunk, even at the same bitrate. Fig. 6 shows the

variation in VMAF scores in video V9. Note that while adjacent

chunks may have very different qualities, there is also a temporal

trend over several chunks. This property makes it important for

Minerva to dynamically adjust rates throughout the video.

Since the videos span several genres, the VMAF scores also vary

significantly between videos. Fig. 1 visualizes the score of the 19

videos, averaged over all chunks, at the eight available bitrates. Our

results are presented in termsofVMAFscores. To contextualize these

numbers, Fig. 7 maps popular resolutions to their corresponding

scores on our corpus. For example, a bump from 720p to 1080p

equates to a gain of 7.65 points. We use this as a benchmark for our

evaluation of Minerva, since VMAF scores have a close-to-linear

correlation with user-perceived quality [24]. That is, a delta in

VMAF accurately predicts a delta in viewer experience, regardless

of bitrate or video genre. Consequently, any delta of 7.65 points is

comparable to the jump in quality a user would perceive between

720p and 1080p on a 4K TV, uniformly along the bitrate spectrum.

8.1.3 Metrics We use the definition of Quality of Experience de-

fined inEquation1.TheVMAFscoreP (ck ) ranges from0to100,while

ourQoEmetric uses a rebuffering penalty of β =25 and a smoothness

penalty ofγ =2.5. We evaluate Minerva on max-min QoE fairness.

Our baseline is a client running unmodified dash.js over Cubic.

Since Minerva is implemented over QUIC, we use the Cubic

implementation provided by QUIC, which simulates 2 connections

by default. We call this system “Cubic”.

8.2 Benchmarking QoE Fairness

We first evaluate Minerva’s ability to improve QoE fairness, by

playingvideos over afixed emulatedPIE-enabled linkwith capacities

ranging from 4Mbit/s to 16 Mbit/s. We conduct a total of 44 runs, in

each one selecting 4 distinct videos uniformly at random from our

corpus. We play the same videos over four additional benchmarks:

(1) QUIC Cubic running over a PIE-enabled link.

(2) Minerva over a link with a droptail buffer of 1.5 BDPs.

(3) BBR, running over a droptail link sized to 1.5 BDPs.

(4) The “Fixed-Rate Optimal”, computed offline, which is the

max-min QoE fairness assuming that each video receives

a constant rate over the course of the video. This optimal

changes for each video combination, since it depends heavily

on the PQ curves of the videos involved.

Fig. 8 shows two representative combinations of videos with these

points of comparison. There are four main takeaways.

First, the magnitude of improvement of Minerva over Cubic

depends on the link bandwidth and the particular videos used.

Videos whose PQ values are far from each other at a particular link

rate require a larger bandwidth difference to achieve the same QoE,

creating more room for Minerva to surpass Cubic. For example,

Fig. 8a and Fig. 8b show average improvements of 12.5 and 3 points,

respectively. At high link rates, e.g. 16Mbit/s, the difference between

videos’ PQ curves is typically smaller, so Cubic’s allocation is closer

to optimal and there is less room forMinerva to improve. Conversely,

at low link rates, e.g. 4 Mbit/s, or 1 Mbit/s per video on average, the

gap between utilities is large. However, VMAF curves are steep at

those low rates; in order to improve the worse-off video, QoEs of

other videos must drop sharply. As a result, the QoE fairness gain is

small.We observe the largest gains on a 10Mbit/s link, where videos’

utilities have a sufficiently large difference with gentler slopes.

Fig. 9 shows the gains Minerva is able to achieve over Cubic on a

variety of different video combinations and links. The videos are cho-

sen uniformly at randomwithout replacement from our corpus, and

are played over a 4 Mbit/s, 10 Mbit/s, and 16 Mbit/s link. To put the

magnitude of Minerva’s improvement over Cubic into perspective,

consider that the average difference between 720p and 1080p is 7.65

VMAF points, on a scale of 100. For 24% of cases across our corpus

(24%, 32%, and16%on4Mbit/s, 10Mbit/s, and16Mbit/s, respectively),

theworst-performing video client sees a boost in viewing experience

equivalent to or better than a jump in resolution from 720p to 1080p.

The second takeaway is that Minerva substantially closes the gap

between Cubic and the optimal allocation. For videos like Fig. 8a,

Cubic’s gap to optimal is 17.5 points on average, which Minerva

reduces to 4, an improvement of 77%. For videos with more similar

PQ curves (Fig. 8b), Cubic’s bandwidth split is closer to optimal (6.5

points), but Minerva is still able to bring this down by 53% (3 points).

Third, Minerva’s improvements over Cubic do not hinge on

using PIE; it performs nearly identically over droptail, with only

a marginal reduction in fairness. This reduction is 2.5 points and 0.5

points on average, respectively, over the scenarios in Fig. 8. Cubic

relies on independent drops in order to give weighted Cubic flows

their expected bandwidth share. Links with droptail queues result

in drops that are bursty and correlated, a possible barrier for videos

to achieve their desired rate ratios.

Fourth, BBR may achieve better link utilization [7, 11] but it

performs poorly from a fairness perspective. Some BBR flows,

determined seemingly arbitrarily, grab a larger bandwidth share,

starving the others. This observation matches previous findings

that BBR does not achieve fairness with itself [17].

8.3 Minerva in a Dynamic Environment

We now evaluate Minerva in a setting where videos sharing the

same link start and stop over the course of more than an hour. In
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(a) Videos V2, V7, V18, V19 (b) Videos V1, V2, V6, V10

Figure 8:Max-min QoE fairness for protocols over a constant link. The black whiskers extend from theminimum tomaximumQoEs.
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Figure9:Minerva’s improvement inQoEfairnessoverCubicover44
runs, eachusing 4 distinct videos sampled fromour 18-video corpus.

contrast to §8.2, in which all videos started simultaneously and

played throughout the entire experiment, each video starts at a

randomly determined start time and then plays to completion.

We sample 48 videos uniformly at random fromour corpus to play

over a linkwith a constant total capacity of 8Mbit/s. Video start times

are determined by a Poisson process such that, on average, 4 videos

share the link at a given time. Appendix E shows the arrival pattern

of the videos in this experiment. We run the same configuration of

videos using both Minerva and Cubic as the underlying transports.

Since Minerva siphons bandwidth away from videos with a high

perceptual quality, onemight expect those videos to be at higher risk

for rebuffering. This additional rebuffering may not be reflected by

max-minQoEfairness,whichconsidersonly thevideowith theworst

quality.Therefore, Fig. 10a examines the effect ofMinervaonboth the
perceptual quality and rebuffering time, considering the distribution

over all videos. In our setup, every video fetches the first chunk at the

lowest bitrate and must stall until it finishes downloading. Addition-

ally, Minerva’s rate control does not kick in until the second chunk.

We therefore focus on non-startup rebuffering time, i.e. the amount of

time thevideo spends stallingwhendownloadinganychunkafter the

first. Unlike startup delay, non-startup rebuffering time materially

interrupts the viewing experience and is visually jarring for users.

Minerva increases the minimumQoE by 9.3 VMAF points, while

simultaneously reducing rebuffering time across the board: average

total rebuffering time (including startup delay) decreases by 17%,

while the average non-startup rebuffering time falls by 38%. The

drop in rebuffering time is due to Minerva’s use of a buffer-aware

utility function that captures the negative effects of rebuffering. By

understanding when a client is at risk for rebuffering, Minerva can

increase that client’s weight, improving its bandwidth share and
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(a) Dynamic environment with randomly sampled videos.
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(b) Dynamic environment with identical videos.

Figure 10: Minerva’s effect on visual quality and rebuffering time
in a dynamic setting, with videos joining and leaving.

growing its buffer. This allows videos to tap into the global buffer
pool formed by the other clients sharing the bottleneck link.

Buffer Pooling. The results in Fig. 10a combine improvements due

to both static attributes, such as the differences in PQ values between

videos, and dynamic factors like buffer level, which vary across

sessions for the same video. To isolate the potential of the global

buffer pool, we repeat the same long-running experiment, but with

all clients watching the same video. This eliminates the potential

for QoE improvements arising from static differences, and focuses

on the ability of Minerva to take advantage of dynamic differences

in buffer size among clients sharing the same link. Additionally, to

place clients in challenging network conditions where rebuffering

is more likely, the Poisson process that governs video start time is

adjusted so that 8 videos share the link at any given time, on average.

Fig. 10b shows that, by harnessing the buffers of other clients,

Minerva is able to significantly reduce time spent rebuffering,

but does not hurt the video’s perceptual quality in the process.

Minerva reduces average visual quality by only 0.4% compared to

Cubic, but is able to cut average non-startup rebuffering time by

47% and the number of rebuffering events by 45%. This shows that

Minerva can achieve notable gains in viewing experience that do

not just stem from perceptual quality differences. In particular, even

if information about the videos’ perceptual qualities is absent or

videos are perceptually similar, Minerva can still provide substantial

gains by tapping into the global buffer pool.
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Figure 11: Minerva improves QoE fairness when competing with Cubic, each using 4 (a) and 8 (c) videos. Minerva’s bandwidth share, as a
fraction of total traffic, for these videos is close to equal (b), indicating that it is fair to cross-traffic.

8.4 Fairness with Cross Traffic

Minerva should improve QoE fairness without violating its second

design goal: achieving an equal bandwidth split with competing

traffic, on average. That is, a collection of N Minerva flows should

occupy the same bandwidth as N Cubic flows. To evaluate Minerva

on connection-level fairness, we play multiple Minerva videos,

again chosen uniformly at random, simultaneously with the same

N videos running over Cubic. All videos start at the same time and

play for the duration of the experiment, as in §8.2. The reasons

for choosing video cross-traffic are twofold. First, even videos

running over Cubic are not able to achieve fairness with long-lived

Cubic flows, due to the idle periods between chunk requests [45].

Pitting Minerva against other video flows evens the playing field.

Second, the QoE fairness achieved by the Cubic videos serves as

a convenient point of comparison for Minerva.

Fig. 11a shows that Minerva videos achieve an improvement in

median QoE fairness of 5 points over Cubic. 42% of cases result in

a 7.65 improvement, corresponding to the same perceptual jump

between 720p and 1080p. Minerva’s gains in this setting should

be viewed in the context of its bandwidth share, i.e. its fraction of

the total traffic throughput (Fig. 11b). Minerva maintains a 75th

percentile bandwidth share that is within 5% of a perfectly even split

with Cubic across the board. However, we note that slightly uneven

bandwidth shares may be partly responsible for Minerva’s QoE

fairness gains exceeding those in the setting without cross-traffic.

Although Minerva’s median QoE fairness is higher, Cubic still

attains amaximum fairness that exceedsMinerva’s. These are due to

runs in which all videos have PQ curves that lie above the normaliza-

tion function. In these particular cases, Minerva occupies less than

its fair share of bandwidth, which reduces QoE of all videos. The con-

verse is true when all the videos lie under the normalization curve.

These situations, while they exist, constitute only 12% of all cases.

The gap betweenMinerva and Cubic only improves when more

clients are added (Fig. 11c). The median improvement is 14.9 points

when Minerva and Cubic run 8 videos each; for perspective, a

change from 360p to 480p is an improvement of only 11 points. A

full 95% of cases see an improvement larger than the 7.65 point

gap between 720p and 1080p. The large improvement is due to this

larger set of videos having a higher chance of including two videos

with significantly different PQ curves; this creates a large room for

improvement over Cubic. A larger number of videos also means

that the average PQ curves of the videos more closely matches the

normalization function, so Minerva bandwidth share is closer to

50% with lower variance. (Fig. 11b).

8.4.1 Variable Cross Traffic We now shift from video cross-

traffic to web cross traffic, still over an emulated link. This
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Figure 12: QoE fairness achieved by Minerva and Cubic, each
playing 4 videos, over 10 runs on a 20Mbit/s link with various loads
of emulated web cross traffic.

experiment pitsMinerva against cross-traffic it is likely to encounter

in practice, and tests its performance over link conditions that

vary with time. Time varying links stress Minerva’s future QoE

estimation, which assumes that the client will continue to see the

rate they most recently measured for the next several chunks.

We emulate web traffic from 200 servers, drawing flow sizes from

an empirical distribution derived from CAIDA data [1]. The cross

traffic’s average offered load varies between 4 and 16 Mbit/s on a

20 Mbit/s emulated link. We perform 10 runs of Minerva with each

cross-traffic load, using 4 distinct videos each time. For comparison,

we separately run Cubic over identical loads and videos. Minerva

and Cubic achieve similar aggregate bandwidths, soMinerva’s gains

do not come at the expense of competing traffic; see Appendix F

for a sample trace of Minerva’s performance.

We observe thatMinerva’s gains do not suffer when running over

a time-variable link. The distribution of Minerva’s QoE fairness is

more diffuse, due to the workload variability. However, across all

tested loads, 37% of video combinations hit our benchmark of 7.65

points. We conclude that Minerva is still able to maintain its QoE

fairness improvements and equal-bandwidth guarantees even in

variable link conditions.

8.5 A Real Residential Network

The experiments thus far have tested Minerva in a controlled

environment using emulated links. To test Minerva in the wild,

we run it over an actual residential WiFi link during both peak

evening and non-peak hours. The WiFi router supports speeds of

343 Mbit/s [5]. The ISP advertises a rate of 25 Mbit/s, although we

see a larger rate in our measurements.

We run two video servers on an Amazon EC2 r5a.4xlarge

instance; one is responsible for servingMinerva videos, while the

other serves videos over Cubic. We simultaneously launch 8 clients
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Figure 13: QoEs of Minerva and Cubic videos for 23 runs over a
real residential link, each with randomly selected videos. Runs are
ordered by increasing total bandwidth.
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of the rate bounding policy they implement.

(4 Minerva and 4 Cubic) as separate Google Chrome instances for

200 seconds. Fig. 13 compares the QoEs achieved byMinerva flows

to those achieved by Cubic over 23 independent runs. We observe

that the bandwidth of the link fluctuates over time, so results from

different runs are not comparable. Averaged over all runs, Minerva

stays close to its equal bandwidth share, while improving the

minimum QoE from 79 to 85 points; however, the improvement

varies substantially between runs, with 3 of 25 runs (12%) not seeing

any improvement over Cubic. Minerva also pushes QoEs of all

videos closer together: while the range between Cubic video QoEs

is 11 VMAF points, Minerva reduces it to 3.75.

8.6 GeneralizingMax-Min Fairness

Max-min QoE fairness may not be suitable for all video providers,

since it may require a large deviation from each client’s equal-

bandwidth share, particularly when videos have substantially differ-

ent PQ curves; however, Minerva is not tied to this metric. Here, we

consider two ways that Minerva generalizes past max-min fairness.

First, Minerva allows policies that optimize max-min fairness

subject to the constraint that the bandwidth shares of the videos

don’t exceed a value set by the provider. In particular, providers

can implement policies to limit the amount of bandwidth a video

grabs above its equal-share allocation. Of course, restricting the

client limits the space of rate allocations available to Minerva;

Fig. 14 shows the tradeoff as a function of the amount by which the

provider chooses to constrain the flows. Minerva videos stay within

the target rate bounds, improving QoE fairness as the bounds are

relaxed. Ideally, as the bounding policy is relaxed, the QoEs would

converge to be equal; however, Minerva’s allocation isn’t perfectly

optimal and still leaves a small gap.

Second, Minerva’s weight update rule allows it to optimize for

other fairness metrics by choosing the proper utility function for

each client. Appendix D demonstrates howMinerva can optimize

for proportional fairness, another popular fairness metric.
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Figure 15: Bandwidth share between two providers using different
metrics (PSNR and VMAF) over 20 video combinations. On average,
the providers achieve close to a 50% bandwidth split.

8.7 Multiple Providers usingMinerva

We demonstrate here that multiple providers can use Minerva inde-

pendently on the same bottleneck link, without exchanging informa-

tion or even being aware of otherMinerva providers sharing the link.

We run two instances of Minerva against each other, emulating

two providers using different measures of video quality: VMAF and

PSNR [37]. These metrics use different scales and cannot directly

be compared to each other (see Appendix G). Each provider serves

4 videos and uses a normalization computed over the entire corpus

with their respective metric. Fig. 15 shows that both providers split

bandwidth about equally on average, over 20 randomly sampled

video combinations and a variety of link rates. Appendix G contains

additional results showing that both providers still achieve QoE

fairness improvements despite using different metrics.

This result has two implications. First, the normalization step

is critical to the performance of Minerva. Normalization places all

providers’ weights on the same scale, without them sharing any

information. Without it, providers would have to collaborate to

decide on a single QoE metric. Second, providers using Minerva

compete fairly with each other, not just Cubic. This property allows
any number of providers to share the same bottleneck link without

worrying about the others’ presence.

9 Conclusion
Despite the growth of video streaming traffic, there has been

relatively little work on deployable solutions to improve QoE

fairness between multiple users. We propose Minerva, the first

system that achieves QoE fairness in a distributedmanner, requiring

no changes to underlying network infrastructure. Minerva’s

formulate-solve-send control flow updates rates for each client inde-

pendently, such that when they share a bottleneck link, their rates

converge to a bandwidth allocation that maximizes QoE fairness,

while competing fairly with other traffic on average. We implement

Minerva over QUIC and show that, 24% of the time, it can improve

the worst viewing experience among a set of videos, by an amount

roughly equivalent to a jump from 720p to 1080p. Additionally, in a

dynamic environment, Minerva can take effectively pool the buffers

of the competing clients to achieve reduction in rebuffering time of

up to 47%. Minerva generalizes well to multiple clients, different link

speeds, and real residential links, suggesting that it is a deployable

solution for video providers seeking to optimize QoE fairness.
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Name Description
V1 Aerial Footage

V2 Nature

V3 Gaming Livestream

V4 Cooking / Nature

V5 Advertisement (GoPro)

V6 Soccer Match

V7 Action Movie Trailer

V8 Animated Music Video

V9 Animated Short

V10 Tornado Footage

V11 Cat Video

V12 Animated Short

V13 News (Video Blog)

V14 Lecture

V15 Action Movie Clip

V16 Video Game Trailers

V17 Music Video

V18 Advertisement (Apple)

V19 News (Documentary)

Table 1: The 19 videos used in our evaluation corpus.

Appendices are supporting materials that have not been peer

reviewed.

A Video Corpus
Table 1 is the list of videos in our corpus with their genres. The

labels correspond to those in Fig. 1.

B Proof of Convergence
LetR+ denote the non-negative real numbers. Consider any function

f :R+→R+, whereR+ denotes the non-negative real numbers.

Definition B.1. We say that a function f : R+ → R+ is

(α ,β )-subquadratic if for all x ,y such that x ≤y:(y
x

)α
≤

f (y)

f (x )
≤

(y
x

)
2−β

Intuitively, the subquadratic condition implies that f is mono-

tonically increasing but does not grow too fast. In particular,

over any compact interval, any increasing concave function is

(α ,1)-subquadratic for some 0<α ≤ 1.
The following theorem says that, as long as the client is

(α ,β )−subquadratic for any α ,β >0, their rates converge to optimal

in a doubly logarithmic number of iterations. This condition is fairly

broad: it includes all concave function as well as some convex ones.

Theorem B.2. Let ri,t be the rate of client i after t iterations of
Minerva’s decentralized weight update algorithm (§5.2), let the shared
link have constant capacity c , and suppose that each client utility
functionUi (ri ) satisfies the following conditions:
• Ui (x )≥ 0.
• There existα >0,β >0 such thatUi (x ) is (α ,β )-subquadratic on
the interval [0,c]. We take α ,β to be the maximal such values.
• There exists an optimal allocation of rates {r∗i }, with r∗i > 0,
such that theUi (r∗i ) are equal.

Then for all iterations t :∑
i
|logri,t −logr

∗
i |<K (1−min(α ,β ))t

whereK is a constant that depends on the initial rates.

Proof. We prove convergence for two clients, with utility

functionsU1 andU2; the result easily extends to more clients. We

assume the link capacity is a constant c and that the rates of the two
clients, r1,t and r2,t , always sum to c . The optimal rates for the two

clients are r∗
1
and r∗

2
, which satisfyU1 (r

∗
1
)=U2 (r

∗
2
)≡u∗.

Without loss of generality, assume r1,t <r
∗
1
, which implies that

r2,t > r
∗
2
. We aim to prove convergence of r1,t → r∗

1
and r2,t → r∗

2
.

Sincewe are bound by the constraint that r1,t +r2,t =c , it is sufficient

to prove that
r2,t
r1,t →

r ∗
2

r ∗
1

or, equivalently,

r ∗
1

r1,t ·
r2,t
r ∗
2

→1. Define:

X1,t =
r∗
1

r1,t
X2,t =

r2,t
r∗
2

so our goal is to showX1,tX2,t→1.

In each iteration of the weight update, the clients compute

weightswi =
ri

Ui (ri )
, and Minerva’s solve step achieves new rates

in proportion to these weights:

r2,t+1
r1,t+1

=
w2

w1

=
u1
u2

r2,t
r1,t

(5)

Therefore, we have:

X1,t+1X2,t+1=

(
U1 (r1,t )

u∗
·X1,t

) (
u∗

U2 (r2,t )
·X2,t

)
Since theUi are (α ,β )−subquadratic:(

r1,t
r∗
1

)
2−β
≤
U1 (r1,t )

u∗
≤

(
r1,t
r∗
1

)α
and likewise for

u∗
U2 (r2,t )

. Note that the direction of the inequality

is flipped from the definition because r1,t <r
∗
1
. It follows that:(

X1,tX2,t
)β−1

≤X1,t+1X2,t+1 ≤
(
X1,tX2,t

)
1−α

It is possible that X1,t+1,X2,t+1 < 1 if β < 1, which means that

r1,t+1>r
∗
1
and r2,t+1<r

∗
2
. In this case:

|logX1,t+1 |+ |logX2,t+1 | ≤ (1−β )
(
|logX1,t |+ |logX2,t |

)
In the other case, where β >1 andX1,t+1>1:

|logX1,t+1 |+ |logX2,t+1 | ≤ (1−α )
(
|logX1,t |+ |logX2,t |

)
We then conclude that:

|logX1,t+1 |+ |logX2,t+1 | ≤ (1−min(α ,β )) |
(
logX1,t |+ |logX2,t |

)
Iterating from the initial rates gives that:

|logX1,t |+ |logX2,t | ≤ (1−min(α ,β ))t
(
|logX1,0 |+ |logX2,0 |

)
completing the theorem for 2 clients.

□

C Convergence with a Value Function

Minerva’s value function (§5.3) depends heavily on the ABR algo-

rithm used to compute it. As a result, it is not possible to always

guarantee that it satisfies the convergence conditions outlined inAp-

pendix B. Here, we consider a sample value function, and show that

while it is not exactly convex, it can still be approximated as such.

First consider the following value function Vh (r ,b, e ), which
captures the optimal QoE possible for a video over the nexth chunks,
given a fixed link rate r , buffer b, and current bitrate e:

Vh (r ,b,e )=max

e ′
Q

(
e,

[
4e ′

r
−b

]

+

,e ′
)
+γVh−1

(
r ,

[
b−

4e ′

r

]

+

+4,e ′
)

whereQ is the QoE of a single chunk given in Eq. 1, and 0 <γ ≤ 1
is a discount factor and we have assumed a chunk duration of 4

seconds. The expression [·]+ is equivalent to max(·,0). MPC [44]

can be formulated in this way usingγ =1 andh=5.
In the non-discounted case,γ =1, it can be seen that the optimal

strategy involves switching between two adjacent bitrates ei and
ei+1 such that ei ≤r ≤ei+1. The client stays at bitrate ei until it has
enough buffer to switch to ei+1 for the remainder of the horizon.

This incurs a smoothness penalty S only once over allh chunks. The



End-to-End Transport for Video QoE Fairness SIGCOMM ’19, August 19–23, 2019, Beijing, China

value function is then:

Vh (r )=
aP (ei )+ (h−a)P (ei+1)

h
+
S

h
for some integer a ≤ h. As h → ∞, Vh (r ) approaches a linear

interpolation of P , the perceptual quality. Vh thus approaches a

concave function, but for any finiteh is not concave. Fig. 4 shows an

example undiscounted value functions over a horizon of 5 chunks at

different starting buffer levels. The step-like nature of the curves in

the figure prevent them frommeeting the convergence conditions

in Appendix B. However, there are two ways to handle this issue.

First, we can fit the value function with a function known to be

meet convergence conditions. For example, the value functions in

Fig. 4 can be approximated by exponential functions of the form:

f (r )=A−Be−Cr , for fitting parametersA,B,C . Though approximat-

ing the value function in this manner guarantees convergence, the

convergence point may not be the true max-min QoE fair allocation.

Alternatively, since the finite-horizon value function largely resem-

bles a concave function, except for local step-like behavior, simply

using the functionas ismaysuffice.Wefind that this is thecase forour

video corpus: we use the actual function, instead of a fit, inMinerva’s

implementation, and find that it yields sufficiently strong results.

D Optimizing for Proportional Fairness

Minerva also allows optimizing for QoE fairness with different

functional forms fromMax-min fairness, such as α−fairness. Here,
we considerα− fairnesswhereα =1, known as proportional fairness.

The only change to Minerva comes in the weight-update step.

The weight update step only requires each client to have some

function of rateZi (r ); Minerva’s decentralized algorithmmodifies

rates to achieve equality between all the Zi (ri ). When Zi =Ui , the
client’s utility function, Minerva achieves max-min fairness. Using

a different Zi would optimize for a different notion of fairness.

To illustrate, consider proportional fairness, which maximizes∑
i log(Ui (ri )). The optimal rate allocation satisfies:

U ′i (ri )

Ui (ri )
=
U ′j (r j )

Uj (r j )
∀i,j

Setting Zi (ri ) to be some function of U ′i (ri )/Ui (ri ) pushes Minerva

towards proportional fairness. However,Zi must still be increasing

and concave, so it must be chosen carefully based on the shape of the

PQ curves. For example, Zi (ri ) =C −U
′
i (ri )/Ui (ri ) has the required

properties for the utility curves in Fig. 1 and can be substituted

for Ui in the weight update step. In particular, the normalization

function must be computed usingZi .
For proportional fairness,U ′i (ri )/Ui (ri ) should be equal for all i . If

P (r ) is the PQ curve averaged over chunks, thenWe computeU ′i (ri )
by taking the numerical derivative of the PQ curve averaged over

all chunks. On each weight update, we compute the expected QoE

q, the representative rate rr =P
−1
(q), and finally Zi =C−U

′
i (rr )/q.

The choice ofC is arbitrary and does not affect convergence.

E Minerva in a Dynamic Environment

In §8.3, the video start times were determined by a Poisson process

such that the average number of videos playing simultaneously

matched a given number, either 4 or 8, depending on the experiment.

Videos have similar runtimes, between 270 and 300 seconds. Fig. 16a

shows the number of videos sharing the link when videos were

sampled randomly from the corpus, such that there were 4 playing

simultaneously, on average. Fig. 16b shows a process targeting 8

videos sharing the link on average.
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(a) 4 videos at a timeonaverage, sampleduniformly fromthe corpus.
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(b) 8 videos at a time on average, all identical (V11).

Figure 16: The number of videos sharing the link over time
in the dynamic environment. All videos are between 4 and 5
minutes long.
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Figure 17: Achieved aggregate bandwidth across all video
flows when 4 Minerva or Cubic flows are running on a
20Mbps link along with web cross traffic that consumes
10Mbps on average.

F Cross Traffic Experimental Supplement
We show an example of Minerva behavior when competing with

a variable wide-area workload. For reference, we show Cubic

competing with the same workload. Fig. 17 highlights the extent

of variability in our workload and demonstrates that Minerva tracks

Cubic’s behavior closely in terms of aggregate bandwidth.

G Minerva with Two Providers
Fig. 15 demonstrates that, on average, two clients using different

quality metrics, VMAF and PSNR, and their own respective normal-

ization functions will split bandwidth approximately equally. The

PSNR quality curves for our video corpus are shown in Fig. 18. Note

that they are noticeably different from the VMAF curves in Fig. 1:

the PSNR curves are on a scale of 53, instead of 100, and are generally

flatter for bitrates above 1Mbit/s. This impacts the magnitude of

gains Minerva achieves, since moving to a higher bitrate does

not result in a large improvement in PSNR value. In particular,

the difference between 720p and 1080p is only 2.26 on the PSNR

scale, averaged over our entire corpus; by contrast, the difference
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Figure 18: The average PSNR scores for the videos in our
corpus, along with the normalization function (dotted).
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Figure 19: Providers both runningMinerva on the same link
achieve improvements inQoE fairness overCubic regardless
of which QoEmetric they use.

in quality between the same bitrates measured with VMAF is 7.65.

Even when accounting for the difference in scale between the two

metrics, the marginal improvement in PSNR between adjacent

bitrates is much less than the corresponding improvement in VMAF.

We now consider the QoE fairness of clients using Minerva to

those using Cubic, in the presence of two providers. As described in

§8.7, both providers run four videos each, sampled randomly from

our corpus. Both providers runMinerva, with one using VMAF as

its quality metric, while the other uses PSNR. As a separate baseline,

we run the same videos over Cubic with an ABRmodule that uses

either VMAF or PSNR. We run 20 different video combinations

over a range of link rates. Fig. 19 shows that, regardless of which

metric is used, both clients see improvements in QoE fairness: the

median improvement is 6.1 VMAF points and 2.41 PSNR points for

the respective providers. Note that the magnitude of improvements

between the two clients are not comparable, since each metric has

a different range and a different overall shape. However, the median

PSNR improvement is larger than the 2.26-point PSNR difference

between 720p and 1080p, suggesting that the improvements in

PSNR are visually significant.
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