Caesar: Cross-camera Complex Activity Recognition

Xiaochen Liu Pradipta Ghosh Oytun Ulutan
University of Southern California University of Southern California University of California, Santa
liu851 @usc.edu pradiptg@usc.edu Barbara
ulutan @ece.ucsb.edu
B.S. Manjunath Kevin Chan Ramesh Govindan
University of California, Santa ARL University of Southern California

Barbara
manj@ece.ucsb.edu

ABSTRACT

Detecting activities from video taken with a single camera is an
active research area for ML-based machine vision. In this paper,
we examine the next research frontier: near real-time detection of
complex activities spanning multiple (possibly wireless) cameras, a
capability applicable to surveillance tasks. We argue that a system
for such complex activity detection must employ a hybrid design:
one in which rule-based activity detection must complement neural
network based detection. Moreover, to be practical, such a system
must scale well to multiple cameras and have low end-to-end latency.
Caesar, our edge computing based system for complex activity de-
tection, provides an extensible vocabulary of activities to allow users
to specify complex actions in terms of spatial and temporal rela-
tionships between actors, objects, and activities. Caesar converts
these specifications to graphs, efficiently monitors camera feeds,
partitions processing between cameras and the edge cluster, retrieves
minimal information from cameras, carefully schedules neural net-
work invocation, and efficiently matches specification graphs to the
underlying data in order to detect complex activities. Our evalua-
tions show that Caesar can reduce wireless bandwidth, on-board
camera memory, and detection latency by an order of magnitude
while achieving good precision and recall for all complex activities
on a public multi-camera dataset.

CCS CONCEPTS

¢ Information systems — Information systems applications; ¢
Networks; * Computing methodologies — Computer vision;

KEYWORDS

Action Detection, Computer Vision, Mobile Sensing, Camera Net-
works, Edge Computing

ACM Reference Format:

Xiaochen Liu, Pradipta Ghosh, Oytun Ulutan, B.S. Manjunath, Kevin Chan,
and Ramesh Govindan. 2019. Caesar: Cross-camera Complex Activity
Recognition. In SenSys ’19: Conference on Embedded Networked Sensor

The research was sponsored by the Army Research Laboratory with the Cooperative Agreement
Number W911NF-09-2-0053 (the ARL Network Science CTA). The views and conclusions contained
in this document are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on. This work was also supported in part by the CONIX
Research Center, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA.

kevin.s.chan.civ@mail.mil

ramesh @usc.edu

Systems, November 10-13, 2019, New York, NY, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3356250.3360041

1 INTRODUCTION

Being able to automatically detect activities occurring in the view
of a single camera is an important challenge in machine vision.
The availability of action data sets [1, 12] has enabled the use of
deep learning for this problem. Deep neural networks (DNNs) can
detect what we call atomic actions occurring within a single camera.
Examples of atomic actions include “talking on the phone”, “talking
to someone else”, “walking” efc.

Prior to the advent of neural networks, activity detection relied
on inferring spatial and temporal relationships between objects. For
example, consider the activity “getting into a car”, which involves a
person walking towards the car, then disappearing from the camera
view. Rules that specify spatial and temporal relationships can ex-
press this sequence of actions, and a detection system can evaluate
these rules to detect such activities.

In this paper, we consider the next frontier in activity detection
research, exploring the near real-time detection of complex activities
potentially occurring across multiple cameras. A complex activity
comprises two or more atomic actions, some of which may play out
in one camera and some in another: e.g., a person gets into a car in
one camera, then gets out of the car in another camera and hands off
a bag to a person.

We take a pragmatic, systems view of the problem, and ask:
given a collection of (possibly wireless) surveillance cameras, what
architecture and algorithms should an end-to-end system incorporate
to provide accurate and scalable complex activity detection?

Future cameras are likely to be wireless and incorporate onboard
GPUs (§2). However, activity detection using DNNS is too resource
intensive for embedded GPUs on these cameras. Moreover, because
complex activities may occur across multiple cameras, another de-
vice may need to aggregate detections at individual cameras. An
edge cluster at a cable head end or a cellular base station is ideal
for our setting: GPUs on this edge cluster can process videos from
multiple cameras with low detection latency because the edge cluster
is topologically close to the cameras (Figure 1).

Even with this architecture, complex activity detection poses sev-
eral challenges: (a) How to specify complex activities occurring
across multiple cameras? (b) How to partition the processing of the
videos between compute resources available on the camera and the
edge cluster? (c) How to reduce the wireless bandwidth requirement

https://doi.org/10.1145/3356250.3360041

between the camera and the edge cluster? (d) How to scale process-
ing on the edge cluster in order to multiplex multiple cameras on
a single cluster while still being able to process cameras in near
real-time?

Contributions. In addressing these challenges, Caesar makes three
important contributions.

First, it adopts a hybrid approach to complex activity detection
where some parts of the complex activity use DNNs, while oth-
ers are rule-based. This architectural choice is unavoidable: in the
foreseeable future, purely DNN-based complex activity detection is
unlikely, since training data for such complex activities is hard to
come by. Moreover, a hybrid approach permits evolution of complex
activity descriptions: as training data becomes available over time, it
may be possible to train DNNs to detect more atomic actions.

Second, to support this evolution, Caesar defines a language to
describe complex activities (§3). In this language, a complex activity
consists of a sequence of clauses linked together by temporal rela-
tionships. A clause can either express a spatial relationship, or an
atomic action. Caesar users can express multiple complex activities
of interest, and Caesar can process camera feeds in near real-time to
identify these complex activities.

Third, Caesar incorporates a graph matching algorithm that effi-
ciently matches camera feeds to complex activity descriptions (§3).
This algorithm leverages these descriptions to optimize wireless
network bandwidth and edge cluster scaling. To optimize wireless
network bandwidth, it performs object detection on the camera, then,
at the edge cluster, lazily retrieves images associated with the de-
tected objects only when needed (e.g., to identify whether an object
has appeared in another camera). To scale the edge cluster computa-
tion, it lazily invokes the action detection DNNs (the computational
bottleneck) only when necessary.

Using a publicly available multi-camera data set, and an imple-
mentation of Caesar on an edge cluster, we show (§4) that, compared
to a strawman approach which does not incorporate our optimiza-
tions, Caesar has 1-2 orders of magnitude lower detection latency
and requires an order of magnitude less on-board camera memory (to
support lazy retrieval of images). Caesar’s graph matching algorithm
works perfectly, and its accuracy is only limited by the DNNs we
use for action detection and re-identification (determining whether
two human images belong to the same person).

While prior work (§5) has explored the single-camera action
detection [46, 54, 61], tracking of people across multiple overlapping
cameras [33, 47, 59] and non-overlapping cameras [22, 42, 53], to
our knowledge, no prior work has explored a near real-time hybrid
system for multi-camera complex activity detection.

2 BACKGROUND AND MOTIVATION

Goal and requirements. Caesar detects complex activities across
multiple non-overlapping cameras. It must support accurate, effi-
cient, near real-time detection while permitting hybrid activity spec-
ifications. In this section, we discuss the goal and these requirements
in greater detail.

Atomic and complex activities. An afomic activity is one that can
be succinctly described by a single word label or short phrase, such

Detected frames and objects

QD User Defined Action

“A person gets on a car

then leaves with a bag” .’

Figure 1: The high-level concept of a complex activity detection system:

the user defines the rule then the system monitors incoming videos and

outputs the matched frames.
as “walking”, “talking”, “using a phone”. In this paper, we assume
that atomic activities can be entirely captured on a single camera.

A complex activity (i) involves multiple atomic activities (ii)

related in time (e.g., one occurs before or after another), space
(e.g., two atomic activities occur near each other), or in the set of
participants (e.g., the same person takes part in two atomic activities),
and (iii) can span multiple cameras whose views do not overlap. An
example of a complex activity is: “A person walking while talking
on the phone in one camera, and the same person talking to another
person at a different camera a short while later”. This statement
expresses temporal relationships between activities occurring in two
cameras (“a short while later””) and spatial relationships between
participants (“talking to another person”).

Applications of complex activity detection. Increasingly, cities are
installing surveillance cameras on light poles or mobile platforms
like police cars and drones. However, manually monitoring all cam-
eras is labor intensive given the large number of cameras [13], so
today’s surveillance systems can only deter crimes and enable foren-
sic analysis. They cannot anticipate events as they unfold in near real
time. A recent study [27] shows that such anticipation is possible:
many crimes share common signatures such as “a group of people
walking together late at night” or “a person getting out of a car and
dropping something”. Automated systems to identify these signa-
tures will likely increase the effectiveness of surveillance systems.

The retail industry can also use complex activity detection. Today,
shop owners install cameras to prevent theft and to track consumer
behavior. A complex activity detection system can track customer
purchases and browsing habits, providing valuable behavioral ana-
Iytics to improve sales and design theft countermeasures.

Caesar architecture. Figure 1 depicts the high-level functional ar-
chitecture of Caesar. Today, video processing and activity detection
are well beyond the capabilities of mobile devices or embedded
processors on cameras (§4). So Caesar will need to leverage edge
computing, in which these devices offload video processing to a
nearby server cluster. This cluster is a convenient rendezvous point
for correlating data from non-overlapping cameras.

Caesar requirements. Caesar should process videos with high
throughput and low end-to-end latency. Throughput, or the rate
at which it can process frames, can impact Caesar’s accuracy and
can determine if it is able to keep up with the video source. Typical
surveillance applications process 20 frames per second. The end-
to-end latency, which is the time between when a complex activity
occurs and when Caesar reports it, must be low to permit fast near
real-time response to developing situations. In some settings, such
as large outdoor events in locations with minimal infrastructure [6],
video capture devices might be un-tethered so Caesar should con-
serve wireless bandwidth when possible. To do this, Caesar can

leverage significant on-board compute infrastructure: over the past
year, companies have announced plans to develop surveillance cam-
eras with onboard GPUs [2]. Since edge cluster usage is likely to
incur cost (in the same way as cloud usage), Caesar should scale
well: it should maximize the number of cameras that can be concur-
rently processed on a given set of resources. Finally, Caesar should
have high precision and recall detecting complex activities.

The case for hybrid complex activity detection. Early work on ac-
tivity detection used a rule-based approach [35, 51]. A rule codifies
relationships between actors (people); rule specifications can use on-
tologies [51] or And-Or Graphs [35]. Activity detection algorithms
match these rule specifications to actors and objects detected in a
video.

More recent approaches are data-driven [46, 54, 61], and train
deep neural nets (DNN5s) to detect activities. These approaches ex-
tract tubes (sequences of bounding boxes) from video feeds; these
tubes contain the actor performing an activity, as well as the sur-
rounding context. They are then fed into a DNN trained on one or
more action data sets (e.g., AVA [1], UCF101 [11], and VIRAT [12]),
which output the label associated with the activity. Other work [32]
has used a slightly different approach. It learns rules as relationships
between actors and objects from training data, then applies these
rules to match objects and actors detected in a video feed.

While data-driven approaches are preferable over rule-based ones
because they can generalize better, complex activity detection cannot
use purely data-driven approaches. By definition, a complex activity
comprises individual actions combined together. Because there can
be combinatorially many complex activities from a given set of
individual activities, and because data-driven approaches require
large amounts of training data, it will likely be infeasible to train
neural networks for all possible complex activities of interest.

Thus, in this paper, we explore a hybrid approach in which rules,
based on an extensible vocabulary, describe complex activities. The
vocabulary can include atomic actions: e.g., “talking on a phone”, or
“walking a dog”. Using this vocabulary, Caesar users can define a rule
for “walking a dog while talking on the phone”. Then, Caesar can
detect a more complex activity over this new atomic action: “walking
a dog while talking on the phone, then checking the postbox for mail
before entering a doorway”. (For brevity of description, a rule can,
in turn, use other rules in its definition.)

Challenges. Caesar uses hybrid complex activity detection to pro-
cess feeds in near real-time while satisfying the requirements de-
scribed above. To do this, it must determine: (a) How to specify
complex activities across multiple non-overlapping cameras? (b)
How to optimize the use of edge compute resources to permit the
system to scale to multiple cameras? (c) How to conserve wireless
bandwidth by leveraging on-board GPUs near the camera?

3 CAESAR DESIGN

In Caesar, users first specify one or more rules that describe complex
activities (Figure 5): this rule definition language includes elements
such as objects, actors, and actions, as well as spatial and temporal
relationships between them.

Cameras generate video feeds, and Caesar processes these using a
three-stage pipeline (Figure 2). In the object detection stage, Caesar

Object RelD & Activity
Detect Tracking Detection
b

Output:

[) M & Detected Actions

Figure 2: The high-level design of Caesar. Dots with different colors
represent different DNN modules for specific tasks.

\’ [pemmemme——m———o | Input:
V1 ° N Data Control Action Definition

Input Output
Object Image Object Bounding Boxes
Detection €) J
Track & RelD Object Bounding Boxes Object TrackID
Image
Action Object Boxes & TrackID .
. Actions
Detection Image

Table 1: Input and output content of each module in Caesar.

generates bounding boxes of actors and objects seen in each frame.
For wireless cameras, Caesar can leverage on board mobile GPUs
to run object detection on the device; subsequent stages must run
on the edge cluster. The input to, and output of, object detection
is the same regardless of whether it runs on the mobile device or
the edge cluster. A re-identification and tracking module processes
these bounding boxes. It (a) extracts fubes for actors and objects by
tracking them across multiple frames and (b) determines whether
actors in different cameras represent the same person. Finally, a
graph matching and lazy action detection module determines: (a)
whether the relationships between actor and object tubes match
pre-defined rules for complex activities and (b) when and where to
invoke DNNSs to detect actions to complete rule matches. Table 1
shows the three modules’ data format.

Figure 3 shows an example of Caesar’s output for a single camera.
It annotates the live camera feed with detected activities. In this
snapshot, two activities are visible: one is a person who was using
a phone in another camera, another is a person exiting a car. Our
demonstration video! shows Caesar’s outputs for multiple concur-
rent camera feeds.

Caesar meets the requirements and challenges described in §2 as
follows: it processes streams continuously, so can detect events in
near-real time; it incorporates robustness optimizations for tracking,
re-identification, and graph matching to ensure accuracy; it scales
by lazily detecting actions, thereby minimizing DNN invocation.

3.1 Rule Definition and Parsing

Caesar’s first contribution is an extensible rule definition language.
Based on the observation that complex activity definitions specify re-
lationships in space and time between actors, objects, and/or atomic
actions (§2, henceforth simply actions), the language incorporates
three different vocabularies (Figure 4).

Vocabularies. An element vocabulary specifies the list of actors or

¢

objects (e.g., “person”, “bag”, “bicycle”) and actions (e.g., “talking

! Caesar’s demo video: https://vimeo.com/330176833

Detected

Complex activity
Green Box:
Vehicles

= White Box:
Other Objects

Yellow Box:
Person

Figure 3: The output of Caesar with annotations.

DNN Actions: l Carry-Bag ‘ l Sitting ‘ l Talking ‘ lUse-Phone‘
Spatial Actions: | Near | | Move | |Close| | RelD | | Overlap |
Logic Relation: l Then ‘ l And ‘ l Or ‘ l Not ‘ l () ‘

Figure 4: Examples of the vocabulary elements.

on the phone”). As additional detectors for atomic actions become
available (e.g., “walking a dog”) from new DNNs or new action
definition rules, Caesar can incorporate corresponding vocabulary
extensions for these.

A spatial operator vocabulary defines spatial relationships be-
tween actors, objects, and actions. Spatial relationships use binary
operators such as “near” and “approach”. For example, before a per-
son p1 can talk to p2, p1 must “approach” p2 and then come “near”
p2 (or vice versa). Unary operators such as “stop” or “disappear”
specify the dispensation of participants or objects. For example, after
approaching p2, p1 must “stop” before he or she can talk to p2. An-
other type of spatial operator is for describing which camera an actor
appears in. The operator “re-identified” specifies an actor recognized
in a new camera. The binary operator “same-camera” indicates that
two actors are in the same camera.

Finally, a temporal operator vocabulary defines concurrent as
well as sequential activities. The binary operator “then” specifies that
one object or action is visible after another, “and” specifies that two
objects or actions are concurrently visible, while “or” specifies that
they may be concurrently visible. The unary operator “not” specifies
the absence of a corresponding object or action.

A complex activity definition contains three components (Fig-
ure 5). The first is a unique name for the activity, and the second is
a set of variable names representing actors or objects. For instance,
p1 and p2 might represent two people, and c a car. The third is the
definition of the complex activity in terms of these variables. A
complex activity definition is a sequence of clauses, where each
clause is either an action (e.g., p1 use-phone), or a unary or
binary spatial operator (e.g., (p1 close p2),or (pl move)).
Temporal operators link two clauses, so a complex activity definition
is a sequence of clauses separated by temporal operators. Figure 5
shows examples of two complex actions, one to describe a person
getting into a car, and another to describe a person who is seen, in
two different cameras, talking on the phone while carrying a bag.

Action Name: Action Name:

get_on_car use_phone_and_cross_cam
_with_bag
Subjects:
Person p1 Subjects:
Carc Person p1

Action Definition:
(p1 approach c) and Action Definition:
(p1 near c) and (c (p1 use_phone) and (p1
stop) then (p1 close ¢) | move) and (p1 overlap b)
and (p1 disappear)
and (c stop)

then (p1 reid) then (p1 move)
and (p1 overlap b)

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
! Bag b |
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Figure 5: Two examples of action definition using Caesar syntax.

And And
| Approach(P, C) H Near(P, C) rn—1 Stop(P) |

People as P, CarasC l Then

And And
| Disappear(P) H Overlap(P, C) H Stop(P) |

People as P, BagasB Move(P)
2. Use phone and

go across And I Then RelD(P) Then And
cameras with bag
Overlap(P, B) Overlap(P, B)

Figure 6: Two examples of parsed complex activity graphs.

1. Geton car

Use-Phone(P)

The rule parser. Caesar parses each rule to extract an intermediate
representation suitable for matching. In Caesar, that representation
is a directed acyclic graph (or DAG), in which nodes are clauses and
edges represent temporal relationships. Figure 6 shows the parsed
graphs of the definition rules. At runtime, Caesar’s graph matching
component attempts to match each complex activity DAG specifica-
tion to the actors, objects, and actions detected in the video feeds of
multiple cameras (§3.4).

3.2 Object Detection

On-camera object detection. The first step in detecting a complex
activity is detecting objects in frames. This component processes
each frame, extracts a bounding box for each distinct object within
the frame, and emits the box coordinates, the cropped image within
the bounding box, and the object label. Today, DNNs like YOLO [40]
and SSD [30] can quickly and accurately detect objects. These de-
tectors also have stripped-down versions that permit execution on
a mobile device. Caesar allows a camera with on-board GPUs to
run these object detectors locally. When this is not possible, Caesar
schedules GPU execution on the edge cluster. (The next step in our
pipeline involves re-identifying actors across multiple cameras, and
cannot be easily executed on the mobile device).

Optimizing wireless bandwidth. When the mobile device runs the
object detector, it may still be necessary to upload the cropped
images for each of the bounding boxes (in addition to the bounding
box coordinates and the labels). Surveillance cameras can see tens
to hundreds of people or cars per frame, so uploading images can be
bandwidth intensive. In Caesar, the mobile device maintains a cache

Obj BBox
Obj Type
Frame ID
Device ID

Image Cache / Images
LT"/JJ LTZ/_M M ¥~ Start Time
End Time

Figure 7: Workflow of object detection on mobile device.

Object Detection

of recently seen images and the edge cluster lazily retrieves images
from the mobile device to reduce this overhead.

Caesar is able to perform this optimization for two reasons. First,
for tracking and re-identification (§3.3), not all images might be
necessary; for instance, if a person appears in 20 or 30 successive
frames, Caesar might need only the cropped image of the person
from one of these frames for re-identification. Second, while all
images might be necessary for action detection, Caesar minimizes
invocation of the action detection module (§3.4), reducing the need
for image transfer.

3.3 Tracking and Re-Identification

The tube abstraction. Caesar’s expressivity in capturing complex
activities comes from the fube abstraction. A tube is a sequence
of bounding boxes over successive frames that represent the same
object. As such, a tube has a distinct start and end time, and a label
associated with the object. Caesar’s tracker (Algorithm (1)) takes as
input the sequence of bounding boxes from the object detector, and
assigns, to each bounding box a globally unique tube ID. In its rule
definitions (§3.1), Caesar detects spatial and temporal relationships
between tubes. Tubes also permit low overhead re-identification, as
we discuss below.

Algorithm 1 Cross-Camera Tracking and Re-Identification

1. INPUT : list of bounding boxes
2. for each person box B in bounding boxes do
3. IDp = update_tubes(existing_tubes, B)

4 if IDp not in existing_tubes then

5: frame = get_frame_from_camera()

6: Fp = get_DNN_feature(frame, B)

7 for ID; .41 in local_tubes do

8: if feature_dist(IDjycq;, IDB) then

9: IDp = ID_local; Update(ID_local); return
10: end if

11: end for

12: for ID ;e in other_tubes do

13: if feature_dist(IDy;per, IDB) then

14: IDg = ID_other; Update(ID_other); return
15: end if

16: end for

17: Update(ID_B);

18 end if

19: end for

Tracking. The job of the tracking sub-component is to extract tubes.
This sub-component uses a state-of-the-art tracking algorithm called
DeepSORT [57] that runs on the edge server side (line 6, Algo-
rithm (1)). DeepSORT takes as input bounding box positions and
extracts features of the image within the bounding box. It then tracks
the bounding boxes using Kalman filtering, as well as judging the
image feature and the intersection-over-union between successive
bounding boxes.

Caesar receives bounding boxes from the object detector and
passes it to DeepSORT, which either associates the bounding box
with an existing tube or fails to do so. In the latter case, Caesar starts
a new tube with this bounding box. As it runs, Caesar’s tracking
component continuously saves bounding boxes and their tube ID
associations to a distributed key-value store within the edge cluster,
described below, that enables fast tube matching in subsequent steps.

Caesar makes one important performance optimization. Normally,
DeepSORT needs to run a DNN for person re-identification features.
This is feasible when object detection runs on the edge cluster (§3.2).
However, when object detection runs on the mobile device, feature
extraction can require additional compute and network resources, so
Caesar relies entirely on DeepSORT's ability to track using bounding
box positions alone. As we show in §4, this design choice permits
Caesar to conserve wireless network bandwidth by transmitting only
bounding box positions instead of uploading the whole frame.

Robust tracking. When in the view of the camera, an object or actor
might be partially obscured. If this happens, the tracking algorithm
detects two distinct tubes. To be robust to partial occlusions, Caesar
retrieves the cropped image corresponding to the first bounding box
in the tube (line 5, Algorithm (1)). Then, it applies a re-identification
DNN (described below) to match this tube with existing tubes de-
tected in the local camera (lines 7-10, Algorithm (1)). If it finds a
match, Caesar uses simple geometric checks (e.g., bounding box
continuity) before assigning the same identifier to both tubes.

Cross-camera re-identification. Cross camera re-identification is
the ability to re-identify a person or object between two cameras.
Caesar uses an off-the-shelf DNN [56] which, trained on a corpus
of images, outputs a feature vector that uniquely identifies the input
image. Two images belong to the same person if the distance between
the feature vectors is within a predefined threshold.

To perform re-identification, Caesar uses the image retrieved for
robust tracking, and searches a distributed key-value store for a
matching tube from another camera (line 12-15, §1). Because the
edge cluster can have multiple servers, and different servers can
process feeds from different cameras, Caesar uses a fast in-memory
distributed key-value store [9] to save tubes.

Re-identification can incur a high false positive rate. To make
it more robust, we encode the camera topology [38] in the re-
identification sub-component. In this topology, nodes are cameras,
and an edge exists between two cameras only if a person or a car
can go from one camera to another without entering the field of
view of any other non-overlapping camera. Given this, when Caesar
tries to find a match for a tube seen at camera A, it applies the re-
identification DNN only to tubes at neighbors of A in the topology.
To scope this search, Caesar uses travel times between cameras [38].

3.4 Action Detection and Graph Matching

In a given set of cameras, users may want to detect multiple complex
activities, and multiple instances of each activity can occur. Caesar’s
rule parser (§3.1) generates an intermediate graph representation for
each complex activity, and the graph matching component matches
tubes to the graph in order to detect when a complex activity has
occurred. For reasons discussed below, graph matching dynamically
invokes atomic action detection, so we describe these two compo-
nents together in this section.

Node matching. The first step in graph matching is to match tubes to
nodes in one or more graphs. Recall that a node in a graph represents
a clause that describes spatial actions or spatial relationships. Nodes
consist of a unary or binary operator, together with the corresponding
operands. For each operator, Caesar defines algorithm to evaluate
the operator.

Matching unary operators. For example, consider the clause
stop c, which determines whether the car c is stationary. This is
evaluated to true if the bounding box for ¢ has the same position in
successive frames. Thus, a tube belonging to a stationary car matches
the node stop c in each graph, and Caesar binds c to its tube ID.

Similarly, the unary operator disappear determines if its
operand is no longer visible in the camera. The algorithm to
evaluate this operator considers two scenarios: an object or person
disappearing (visible in one frame and not visible in the next) by (a)
entering the vehicle or building, or (b) leaving the camera’s field of
view. When either of these happen, the object’s tube matches the
corresponding node in a graph.

Matching binary operators. For binary operators, node matching
is a little more involved, and we explain this using an example. Con-
sider the clause p1 near p2, which asks: is there a person near
another person? To evaluate this, Caesar checks each pair of person
tubes to see if there was any instant at which the corresponding
persons were close to each other. For this, it divides up each tube
into small chunks of duration ¢ (1 second in our implementation),
and checks for the proximity of all bounding boxes pairwise in each
pair of chunks.

To determine proximity, Caesar uses the following metric. Con-
sider two bounding boxes x and y. Let d(x, y) be the smallest pixel
distance between the outer edges of the bounding box. Let b(x)
(respectively b(y)) be the largest dimension of bounding box x (re-
spectively, y). Then, if either d}()fxg)') or dl(;(cy?)
threshold & we say that the two bounding boxes are proximate to
each other. Intuitively, the measure defines proximity with respect to
object dimensions: two large objects can have a larger pixel distance
between them than two small objects, yet Caesar may declare the
larger objects close to each other, but not the smaller ones.

Finally, p1 near p2 is true for two people tubes if there is a
chunk within those tubes in which a majority of bounding boxes
are proximate to each other. We use the majority test to be robust in
bounding box determinations in the underlying object detector.

Caesar includes similar algorithms for other binary spatial opera-
tors. For example, the matching algorithm for p1 approaches
p2 is a slight variant of p1 near p2:in addition to the proximity

is less than a fixed

check, Caesar also detects whether bounding boxes in successive
frames decrease in distance just before they come near each other.

Time of match. In all of these examples, a match occurs within a
specific time interval (¢, t2). This time interval is crucial for edge
matching, as we discuss below.

Edge matching. In Caesar’s intermediate graph representation, an
edge represents a temporal constraint. We permit two types of tem-
poral relationships: concurrent (represented by and which requires
that two nodes must be concurrent, and or which specifies that two
nodes may be concurrent), and sequential (one node occurs strictly
after another).

To illustrate how edge matching works, consider the following
example. Suppose there are two matched nodes a and b. Each node
has a time interval associated with the match. Then a and b are
concurrent if their time intervals overlap. Otherwise, a then b is
true if b’s time interval is strictly after a’s.

Detecting atomic actions. Rule-based activity detection has its lim-
its. Consider the atomic action “talking on the phone”. One could
specify this action using the rule p1 near m, where pl represents
a person and m represents a mobile phone. Unfortunately, phones
are often too small in surveillance videos to be captured by object
detectors. DNNs, when trained on a large number of samples of
people using phones, can more effectively detect this atomic action.

Action matching. For this reason, Caesar rules can in-
clude clauses matched by a DNN. For example, the clause
talking_phone (pl) tries to find a person tube by applying
each tube to a DNN. For this, Caesar uses the DNN described in [54].
‘We have trained this on Google’s AVA [1] dataset which includes
1-second video segments from movies and action annotations.
The training process ensures that the resulting model can detect
atomic actions in surveillance videos without additional fine-tuning;
see [54] for additional details. The model can recognize a handful
of actions associated with person tubes, such as: “talking on the
phone”, “sitting”, and “opening a door”. For each person tube, it
uses the Inflated 3D features [20] to extract features which represent
the temporal dynamics of actions, and returns a list of possible
action labels and associated confidence levels. Given this, we say
that a person tube matches talking_phone (pl) if there is a
video chunk in which “talking on the phone” has a higher confidence
value than a fixed threshold 7.

Efficiency considerations. In Caesar’s rule definition language,
an action clause is a node. Matching that node requires running
the DNN on every chunk of every tube. This is inefficient for two
reasons. The first is GPU inefficiency: the DNN takes about 40 ms
for each chunk, so a person who appears in the video for 10 s would
require 0.4 s to process (each chunk is 1 s) unless Caesar provisions
multiple GPUs to evaluate chunks in parallel. The second is network
inefficiency. To feed a person tube to the DNN, Caesar would need
to retrieve all images for that person tube from the mobile device.

Lazy action matching. To address these inefficiencies, Caesar
matches actions lazily: it first tries to match all non-action clauses
in the graph, and only then tries to match actions. To understand
how this works, consider the rule definition a then b then c,
where a and c are spatial clauses, and b is a DNN-based clause.
Now, suppose a occurs at time ¢t; and c at ¢y, Caesar executes the

F=——==—=====- 1 r———=—=—=—=—=--- 1
1 1
" | | Action Detection Modul Pl Talke) |
' Sit - Talk(p3) ction Detection Module ' sit < !
: : mmmmmmmm oo | i Talk(p2) 1
____________ | Action Graph ! ‘o1
R ——) ! Sit— Talk > Run S \
| P2 Vil ---mmmm e ! P2 !
.) L ___ i
........... iy . T
r 1 1
1 1
: P3 : New action: : P3 :
| Sit — Talk(p1) - Talk(p1, p2) I Sit — Talk(p1) — Run |
I ! - Run(p3) , !
1

Figure 8: An example of graph matching logic: the left three graphs
are unfinished graphs of each tube, and the right three graphs are their
updated graphs.

DNN Speed (FPS)
Object Detection [30, 40] | 40~60

Tracking & RelD [57] 30~40

Action Detection [54] 50~60 (per tube)

Table 2: The runtime frame rate of each DNN model used by Caesar
(evaluated on a single desktop GPU [7]).

DNN on all tubes that start after ¢t; and end before t2 in order to
determine if there is a match. This addresses both the GPU and
network inefficiency discussed above, since the DNN executes fewer
tubes and Caesar retrieves fewer images.

Algorithm (2) shows the complete graph matching algorithm. The
input contains the current frame number as timestamp and a list of
positions of active tubes with their tube IDs and locations. If Caesar
has not completed assembling a tube (e.g., the tube’s length is less
than 1 second), it appends the tube images to the temporary tube
videos and records the current bounding box locations (lines 2-3).
When a tube is available, Caesar attempts to match the spatial clauses
in one or more complex activity definition graphs (line 5). Once it
determines a match, Caesar marks the vertex in that graph as done,
and checks the all its neighbor nodes in the graph. If the neighbor is
a DNN node, it adds a new entry to the DNN checklist of the graph,
and moves on to its neighbors. The entry contains the tube ID, DNN
action label, starting time, and the ending time. The starting time
is the time when the node is first visited. The end time is the time
when Caesar matches its next node. In our example above, when a
is matched at timestamp T1, Caesar creates an entry for b in this
graph, with the starting time as T1. When c is matched at T2, the
algorithm adds T2 to b’s entry as the ending timestamp.

4 EVALUATION

In this section, we evaluate Caesar’s accuracy and scalability on a
publicly available multi-camera data set.

4.1 Methodology

Implementation and experiment setup. Our experiments use an
implementation of Caesar which contains (a) object detection and
image caching on the camera, (b) tracking, re-identification, action
detection, and graph matching on the edge cluster. Caesar’s demo
code is available at https://github.com/USC-NSL/Caesar.

Algorithm 2 Activity Detection with Selective DNN Activation
: INPUT : incoming tube

I
2. if tube_cache not full then

3 tube_cache.add(tube); return

4. end if

5. spatial_acts = get_spatial_actions (tube_cache)
6: for sa in spatial_acts do

7. for g in tube_graph_mapping [sa.tube_id] do
8: if sa not in g.next_acts then

9: continue

10: end if

1 if g.has_pending_nn_act then

12: nn_acts = get_nn_actions (g.nn_start, cur_time())
13: if g.pending_nn_act not in nn_acts then
14: continue

15: end if

16: end if

17: g.next_acts = sa.neighbors()

18: tube_graph_mapping.update()

19: if g.last_node_matched then

20: add g to output activities

21: end if

2: end for

23: end for

In our experiments, we use multiple cameras equipped with
Nvidia’s TX2 GPU boards [8]. Each platform contains a CPU, a
GPU, and 4 GB memory shared between the CPU and the GPU.
Caesar runs a DNN-based object detector, SSD-MobilenetV2 [43],
on the camera. As described earlier, Caesar caches the frames on the
camera, as well as cropped images of the detected bounding boxes. It
sends box coordinates to the edge cluster using RPC [5]. The server
can subsequently request a camera for additional frames, permitting
lazy retrieval.

A desktop with three Nvidia RTX 2080 GPUs [7] runs Caesar
on the server side. One of the GPUs runs the state-of-the-art online
re-identification DNN [56] and the other two execute the action
detection DNNs [54]. Each action DNN instance has its own input
data queue so Caesar can load-balance action detection invocations
across these two for efficiency. We use Redis [9] as the in-memory
key-value storage. Our implementation also includes Flask [4] web
server that allows users to input complex activity definitions, and
visualize the results.

DNN model selection. The action detector and the ReID DNN
require 7.5 GB of memory, far more than the 4 GB available on the
camera. This is why, as described earlier, our mobile device can only
run DNN-based object detection. Among the available models for
object detection, we have evaluated four that fit within the camera’s
GPU memory. Table 3 shows the accuracy and speed (in frames per
second) of these models on our evaluation dataset. Our experiments
use SSD-Mobilenet2 because it has good accuracy with high frame
rate, which is crucial for Caesar because a higher frame rate can lead
to higher accuracy in detecting complex activities.

We use [56] for re-identification because it is lightweight enough
to not be the bottleneck. Other ReID models [50, 62] are more
accurate than [56] on our dataset (tested offline), but are too slow (<

https://github.com/USC-NSL/Caesar

L — —

Figure 9: Camera placement and the content of each camera.

10 fps) to use in Caesar. For atomic actions, other options [25, 49]
have slight higher accuracy than [54] on the AVA dataset, but are not
publicly available yet and their performance is not reported.

Dataset. We use DukeMTMC [3] for our evaluations. It has videos
recorded by eight non-overlapping surveillance cameras on cam-
pus. The dataset also contains annotations for each person, which
gives us the ground truth of each person tube’s position at any time.
We selected 30 minutes of those cameras’ synchronized videos for
testing Caesar. There are 624 unique person IDs in that period, and
each person shows up in the view of 1.7 cameras on average. The
average number of people showing up in all cameras is 11.4, and the
maximum is 69.

Atomic action ground truth. DukeMTMC was originally de-
signed for testing cross-camera person tracking and RelD, so it
does not have any action-related ground truth. Therefore, we labeled
the atomic actions in each frame for each person, using our current
action vocabulary. Our action ground truth contains the action label,
timestamp, and the actor’s person ID. We labeled a total of 1,289
actions in all eight cameras. Besides the atomic actions, we also la-
beled the ground truth traces of cars and bikes in the videos. Figure 9
shows the placement of these cameras and a sample view from each
camera.

Complex activity ground truth. We manually identified 149 com-
plex activities. There are seven different categories of these complex
activities as shown in Table 4. This table also lists two other attributes
of the complex activity type and the dataset. The third column of
the table shows the number of instances in the data set of the cor-
responding complex activity, broken down by how many of them
are seen on a single camera vs. multiple cameras. Thus, for the first
complex activity, the entry /2/1 means that our ground-truth contains
12 instances that are visible only on a single camera, and one that is
visible across multiple cameras.

These complex activities are of three kinds. #1’s clauses, labeled
“NN-only”, are all atomic actions detected using a NN. #2 through
#5, labeled “Mixed”, have clauses that are either spatial or are atomic
actions. The last two, #6 and #7, labeled “Spatial-only”, have only
spatial clauses.

Metrics. We replay the eight videos at 20 fps to simulate the real-
time camera input on cameras. Caesar’s server takes the input from
all mobile nodes, runs the action detection algorithm for a graph,
and outputs the result into logs. The results contain the activity’s
name, timestamp, and the actor or object’s bounding box location
when the whole action finishes. Then we compare the log with the
annotated ground truth. A frue positive is when the detected activity
matches the ground truth’s complex activity label, overlaps with the
ground truth’s tubes for the complex activity, and has timestamp
difference within a 2-second threshold. We report: recall, which

DNN Speed (FPS) | Accuracy (mAP)
SSD [30] 3.7 91
YOLOV3 [40] 4.1 88
TinyYOLO [39] 8.5 84
SSD-MobileNetv2 [43] | 11.2 83

Table 3: Speed and accuracy of different DNNs on mobile GPU.

ID | Complex Activity ’:St;i:l‘:/';l{;tlflii) Type

1 Use phone then talk 1271 NN-only
2 Stand, use phone then open door | 9/2 Mixed

3 Approach and give stuff 10/0 Mixed

4 | Walk together then stop and talk | 6/2 Mixed

5 Load stuff and get on car 2/0 Mixed

6 | Ride with bag in two cams 0/8

7 Walk together in two cams 0/97

Table 4: Summary of labeled complex activities

is the fraction of the ground truth classified as true positives, and
precision, which is the fraction of true positives among all Caesar-
detected complex activities. We also evaluate the Caesar’s scalability,
as well as the impact of its performance optimizations; we describe
the corresponding metrics for these later.

4.2 Accuracy

Overall. Table 5 shows the recall and precision of all complex
activities. #1 (using the phone and then talking to a person) and #4
(walking together then stopping to talk) have the lowest recall at
46.2% and the lowest precision at 36.4%. At the other end, #5’s two
instances achieve 100% recall and precision. Across all complex
activities, Caesar has a recall of %61.0 and a precision of %59.5
precision.

Understanding the accuracy results. Our results show that most
NN-only and Mixed activities have lower position and recall than
those in the Spatial-only category. Recall that Caesar uses off-the-
shelf neural networks for action detection and re-identification. This
suggests that the action detection DNN, used in the first two cate-
gories but not in the third, is the larger source of detection failures
than the re-identification DNN. Indeed, the reported mean average
precision for these two models are respectively 45% and 65% in our
dataset.

We expect the overall accuracy of complex activity detection to
increase in the future for two reasons. We use off-the-shelf networks
for these activities that are not customized for this camera. There is
significant evidence that customization can improve the accuracy of
neural networks [37] especially for surveillance cameras since their
viewing angles are often different from the images used for training
these networks. Furthermore, these are highly active research areas,
so with time we can expect improvements in accuracy.

Two natural questions arise: (a) as these neural networks improve,
how will the overall accuracy increase? and (b) to what extent does
Caesar’s graph matching algorithm contribute to detection error? We
address both of these questions in the following analysis.

Projected accuracy improvements. We evaluate Caesar with the
tracker and the action detector at different accuracy levels. To do this,

Recall (%)

Accuracy of Atomic Action Detection (%)
Accuracy of Atomic Action Detection (%)

50 60 70 80 90 100

Accuracy of Tracker & RelD (%)
(a)

50

60

Precision (%)

70

Miss Detection

‘Missed tallqﬁg
and use_phonhe”

80 90 100

Accuracy of Tracker & RelD (%)
(b)

(0

Figure 10: Caesar’s (a) recall rate and (b) precision rate with different action detection and tracker accuracy. (c) The statistics and sample images of

failures in all complex activities.

for each of these components, we vary the accuracy p (expressed
as a percentage) as follows. We re-run our experiment, but instead
of running the DNNs when Caesar invokes the re-identification
and action detection components, we return the ground truth for
that DNN (which we also have) p% of the time, else return an
incorrect answer. By varying p, we can effectively simulate the
behavior of the system as DNN accuracy improves. When p is 100%,
the re-identification DNN works perfectly and Caesar always gets
the correct person ID in the same camera and across cameras, so
tracking is 100% accurate. Similarly, when the action DNN has
100% accuracy, it always captures every atomic action correctly
for each person. We then compare the end-to-end result with the
complex activity ground-truth to explore precision and accuracy.

Figure 10a and Figure 10b visualize the recall and precision of
Caesar with different accuracy in the tracker and the atomic action
detector. In both of these figures, the red box represents Caesar’s
current performance (displayed for context).

The first important observation from these graphs is that, when
the action detection and re-identification DNNs are perfect, Caesar
achieves 100% precision and recall. This means that the rest of the
system, which is a key contribution of the paper, works perfectly; this
includes matching the spatial clauses, and the temporal relationships,
while lazily retrieving frames and bounding box contents from the
camera, and using shared key-value store to help perform matching
across multiple cameras.

The second observation from this graph is that the re-identification
DNN’s accuracy affects overall performance more than that of the
action detector. Recall that the re-identification DNN tracks people
both within the same camera and across cameras. There are two
reasons for why it affects performance more than the action detector.
The first is the dependency between re-identification, action detec-
tion, and graph matching. If the re-identification is incorrect, then
regardless of whether action detection is correct or not, matching
will fail since those actions do not belong to the same tube. Thus,
when re-identification accuracy increases, correct action detection
will boost overall accuracy. This is also why, in Figure 10b, the

Action ID 1 2 3 4 5 6 7
Recall (%) 46.2 | 54.5 | 60 50 100 | 50 | 65.3
Precision (%) | 43.8 | 41.7 | 42.8 | 36.4 | 100 | 100 | 63

Table 5: Caesar’s recall and precision on the seven complex activities
shown in Table 4.

overall precision is perfect even when the action detector is less
than perfect. Second, 70% (105) samples of complex activities in
the current dataset are Spatial-only, which relies more heavily on
re-identification, making the effectiveness of that DNN more promi-
nent.

From those two figures, for a complex activity detector with >90%
in recall and precision, the object detector/tracker must have >90%
accuracy and the action detector should have >80% accuracy. We
observe that object detectors (which have been the topic of active
research longer than activity detection and re-identification) have
started to approach 90% accuracy in recent years.

Finally, as an aside, note that the precision projections are non-
monotonic (Figure 10b): for a given accuracy of the Re-ID, precision
is non-monotonic with respect to accuracy of atomic action detec-
tion. This results from the dependence observed earlier: if Re-ID is
wrong, then even if action detection is accurate, Caesar will miss the
complex activity.

Failure analysis. To get more insight into these macro-level obser-
vations, we examined all the failure cases, including false positives
and false negatives; Figure 10c shows the error breakdown for each
activity (#5 is not listed because it does not have an error case).

The errors fall into three categories. First, the object detection
DNN is not perfect and can miss the boxes of some actors or objects
such as bags and bicycles, affecting tube construction and subsequent
re-identification. This performance is worse in videos with rapid
changes in the ratio of object size to image scale, large within-class
variations of natural object classes, and background clutter [52].
Figure 10c shows the object detector missing a frontal view of a
bicycle.

. # of Samples Recall(%)
Complex Activity (Single/Multi) | /Precision(%)
Eat then drink 5/0 80/80
Shake hands then sit 6/0 83.3/100
Use laptop then take photo 2/2 75/100
Carry bag and sit then read 2/4 66.7/80
Use laptop, read then drink 0/4 75/100
Read, walk then take photo 0/4 75/100
Carry bag, sit, then eat, then
drink, then read, then take photo 0/4 507100

Table 6: Activities in a three-camera dataset, and Caesar’s accuracy.

Re-ID either within a single camera, or across multiple cameras, is
error-prone. Within a camera, a person may be temporarily occluded.
Tracking occluded people is difficult especially in a crowded scene.
Existing tracking algorithms and Re-ID DNN5 have not completely
solved the challenge, and result in many ID-switches within a single
camera. Similarly, Re-ID can fail across cameras even with our ro-
bustness enhancements which encode camera topology. This occurs
because of different lighting conditions, changes in pose between
different cameras, different percentage of occlusions, and different
sets of detectable discriminative features [18, 48]. An incorrect re-
identification results in Caesar missing all subsequent atomic actions
performed by a person.

Action detection is the third major cause of detection failures.
Blurry frames, occlusions, and an insufficient number of frames in
a tube can all cause high error rates for the action DNN, resulting
from incorrect labeling [34]. As described earlier, errors in other
modules can propagate to action detection: object detection failures
can result in shorter tubes for action detection; the same is true of
re-identification failures within a single camera.

Object detection failure is the least important factor, although it

affects #6 because it requires detecting a bicycle. For the graphs that
require DNN-generated atomic actions, the action detection error is
more influential than tracking. In the Spatial-Only cases, the tracking
issue is the major cause of errors.
Caesar performance on more complex activities. Since the
MTMC dataset has few complex activities, we recorded another
dataset to test Caesar on a variety of cross-camera complex
activities Table 6. We placed three non-overlapping cameras in a
plaza on our campus. Volunteers acted out activities not included
in Table 4, such as “shake hands”, “eat”, and “take a photo”;
these invoke our action DNN. We observe (Table 6) that Caesar
can capture these complex activities with precision >80% (100%
for 5 of the 7 activities) and recall >75% for 5 of the activities.
All failures are caused by incorrect re-ID due to varying lighting
conditions.

4.3 Scalability

We measure the scalability of Caesar by the number of concurrent
videos it can support with fixed server-side hardware, assuming
cameras have on-board GPUs for running action detection.

Strawman approach for comparison. Caesar’s lazy action detec-
tion is an important scaling optimization. To demonstrate its effec-
tiveness, we evaluate a strawman solution which disables lazy action

detection. The strawman retrieves images from the camera for every
bounding box, and runs action detection on every tube.

Recall that lazy invocation of action detection does not help for
NN-only complex activities. Lazy invocation first matches spatial
clauses in the graph, then selectively invokes action detection. But,
NN-only activities do not contain spatial clauses, so Caesar invokes
action detection on all tubes, just like the strawman. However, for
Mixed or Spatial-only complex activities lazy invocation conserves
the use of GPU resources.

To highlight these differences, we perform this experiment by
grouping the complex activities into these three groups: Strawman
(which is the same as NN-only for the purposes of this experiment),
Mixed, and Spatial-Only. Thus, for example, in the Mixed group
experiment, Caesar attempts to detect all Mixed complex activities.

Latency. Figure 11(a) shows Caesar’s detection latency is a func-
tion of the number of cameras for each of these three alternatives.
The detection latency is the time between when a complex activity
completes in a camera to when Caesar detects it.

The results demonstrate the impact of the scaling optimization in
Caesar. As the number of cameras increases, detection latency can
increase dramatically for the strawman, going up to nearly 1000 sec-
onds with eight cameras. For Mixed complex activities, the latency
is an order of magnitude less at about 100 seconds; this illustrates
the importance of our optimization, without which Caesar’s perfor-
mance would be similar to the Strawman, an order of magnitude
worse. For Spatial-only activities that do not involve action detection,
the detection latency is a few seconds; Caesar scales extremely well
for these types of complex activities.

Recall that in these experiments, we fix the number of GPU re-
sources. In practice, in an edge cluster, there is likely to be some
elasticity in the number of GPUs, so Caesar can target a certain de-
tection latency by dynamically scaling the number of GPUs assigned
for action detection. We have left this to future work.

Finally, we note that up to 2 cameras, all three approaches perform
the same; in this case, the bottleneck is the object detector on the
camera with a frame rate of 20 fps.

Frame rate. Figure 11(b) shows the average frame rate at which
Caesar can process these different workloads, as a function of the
number of cameras. This figure explains why Strawman’s latency
is high: its frame rate drops precipitously down to just two frames
per second with eight concurrent cameras. Caesar scales much more
gracefully for other workloads: for both Mixed and Spatial-only
workloads, it is able to maintain over 15 frames per second even up
to eight cameras.

These results highlight the importance of hybrid complex activity
descriptions. Detecting complex activities using neural networks can
be resource-intensive, so Caesar’s ability to describe actions using
spatial and temporal relationships while using DNNs sparingly is
the key to enabling scalable complex activity detection system.
Cache size. Caesar maintains a cache of image contents at the cam-
era. The longer the detection latency, the larger the cache size. Thus,
another way to examine Caesar’s scalability is to understand the
cache size required for different workloads with different number of
concurrent cameras. The camera’s cache size limit is 4 GB.

Figure 11(c) plots the largest cache size observed during an ex-
periment for each workload, as a function of the number of cameras.

103{ EEE Strawman:All
Caesar:Mix 17.5
Il Caesar:Spatial

—
=]
©

Latency (s)
FPS (per camera)

-
2

BN Strawman:All
5.0 Caesar:Mix

I Caesar:Spatial

B
-

103

B Strawman:All
10! Caesar:Mix
B Caesar:Spatial

1 2 3 4 5 6 7 8 “o 2
Number of cameras

(a)

Number of cameras

Max cache size on mobile device (MB)

6 8 2 4 6 8

Number of cameras

(O]

Figure 11: (a) Latency of Caesar and the strawman solution with different number of inputs. (b) Throughput of Caesar and the strawman solution with
different number of Inputs. (c) Maximum cache size needed for Caesar and the strawman solution to reach the best accuracy, with different number of

Inputs.

[Strawman:All [Caesar:Mix I Caesar:Spatial

Data Uploaded (GB)

0 1 2 3 4 5 6 7
Camera ID

Figure 12: The total amount of data to be uploaded from each camera,
with different uploading schemes.

Especially for the Strawman, this cache size exceeded the 4 GB limit
on the camera, so we re-did these experiments on a desktop with
more memory. The dotted-line segment of the Strawman curve de-
notes these desktop experiments. When Caesar exceeds memory on
the device, frames can be saved on persistent storage on the mobile
device, or be transmitted to the server for processing, at the expense
of latency and bandwidth.

Strawman has an order of magnitude higher cache size require-
ments precisely because its latency is an order of magnitude higher
than the other schemes; Caesar needs to maintain images in the cache
until detection completes. In contrast, Caesar requires a modest and
fixed 100 MB cache for Spatial-only workloads on the camera: this
supports lazy retrieval of frames or images for re-identification. The
cache size for Mixed workloads increases in proportion to the in-
creasing detection latency for these workloads.

4.4 Data Transfer

Caesar’s lazy retrieval of images conserves wireless bandwidth, and
to quantify its benefits, we measure the total amount of data uploaded
from each camera (the edge cluster sends small control messages to
request image uploads; we ignore these). In Figure 12, the strawman
solution simply uploads the whole 30-min video with metadata

3 Idle [Caesar:Mix
[Strawman:All B Caesar:Spatial
2500

£ 2000

g

E 1500

)

o

m

T 1000

g

=

12

g 500

&)

Figure 13: The average energy consumption of cameras in Caesar,
with different uploading scheme and action queries.

(more than 1.5 GB for each camera). Mixed transfers >3x fewer
data, and Spatial-only is an order of magnitude more efficient than
Strawman. Caesar’s data transfer overhead can be further optimized
by transferring image deltas, leveraging the redundancy in successive
frames or images within successive bounding boxes; we have left
this to future work.

4.5 Energy Consumption

Even for wireless surveillance cameras with power sources, it may
be important to quantify the energy required to run these workloads
on the camera. The TX2 GPUs’ onboard power supply chipset pro-
vides instantaneous power consumption readings at 20 Hz. We plot,
in Figure 13, the total energy required for each workload by inte-
grating the power consumption readings across the duration of the
experiment. For context, we also plot the idle energy consumed by
the device when run for 30 mins.

Strawman consumes 1800 mAh for processing our dataset, com-
parable to the battery capacity of modern smart phones. For Mixed
and Spatial workloads, energy consumption is, respectively, 6 to
10x lower, for two reasons: (a) these workloads upload fewer images,
reducing the energy consumed by the wireless network interface; (b)

Strawman needs to keep the device on for longer to serve retrieval
requests because its detection latency is high.

5 RELATED WORK

Action detection pipelines. Existing pipelines detect the person’s
location (bounding box) in the video, extract representative features
for the person’s tube, and output the probability of each action la-
bel. Recent pipelines [46, 54, 61] leverage DNNSs to extract features
from person tubes and predict actions. Other work [26, 31] esti-
mates human behavior by detecting the head and hand positions and
analyzing their relative movement. Yet others analyze the moving
trajectories of objects near a person to predict the interaction be-
tween the person and the object [15, 32]. By doing this, the action
detector can describe more complex actions. The above approaches
achieve high accuracy only with sufficient training samples, which
limits their applications for more complex activities that involve
multiple subjects and long duration.

Rather than analyzing a single actor’s frames, other complemen-
tary approaches [14, 17] present their solutions to detect group
behavior such as “walk in group”, “stand in queue”, and “talk to-
gether”. The approach is to build a monolithic model that takes input
both the behavior feature of each actor and the spatial-temporal
relation (e.g. distance change), and outputs the action label. The
model could be an recurrent neural network ([17]) or a handcrafted
linear-programming model ([14]). However, both models require
training videos to work properly because the models need training,
rendering these approaches unsuitable for Caesar.

Zero-shot action detection is closely related to Caesar, and targets
near real-time detection even when there are very few samples for
training. Some approaches [36, 58] train a DNN-based feature extrac-
tor with videos and labels. The feature extractor can generate similar
outputs for the actions that share similar attributes. For example,
“surfing” and “swimming” have more in common than “surfing” and
“basketball”. When an unknown action tube arrives, these approaches
cluster it with existing labels, and evaluate its similarity with the
few positive samples. Another approach [24] further decomposes an
action query sentence into meaningful keywords which have corre-
sponding features clusters, and waits for those clusters to be matched
together at runtime. However, these zero-shot detection approaches
suffer from limited vocabulary and low accuracy (<40%).

Cross-camera tracking and re-identification. Several ap-
proaches [33, 47, 59] track multiple people across cameras but
require overlapped cameras, which may be too restrictive for
most surveillance systems. In non-overlapping scenarios, other
approaches [22, 42, 53] leverage the visual similarity between
people’s traces in different cameras to match them. They also
run a bipartite matching algorithm globally to minimize the ID
assignment error. However, these approaches can only work offline
for best performance and are unsuitable for Caesar’s realtime needs.

Scaling DNN pipelines. More and more applications rely on a
chain of DNNs running on edge clusters. This raises challenges
for scaling well with fixed number of computation resources. Recent
work [60] addresses the problem by tuning different performance
settings (frame rate and resolution) for task queries to maximize the
server utilization while keeping the quality of service. Downgrading

frame rates and DNNSs is not a good choice for Caesar because both
options will adversely impact accuracy. [28] proposes a scheduler on
top of TensorFlow Serving [10] to improve the GPU utilization with
different DNNs on it. Caesar could leverage such a model serving
system, but is complementary to it. Recent approaches [23, 29] cache
the intermediate results to save GPU cycles. Caesar goes one step
further with lazily activating the action DNN. [23] also batches the
input for higher per-image processing speed on GPU, which Caesar
also adopts to perform object detection on the mobile device.

Wireless camera networks. Wang et al. [55] discuss an edge-
computing based approach in which a group of camera-equipped
drones efficiently livestream a sporting event. However, they focus
on controlling drone movements and efficiently transmitting the
video frame over a shared wireless medium in order to maintain
good quality live video streaming with low end to end latency. Other
work [16] presents a new FPGA architecture and a communication
protocol for that architecture to efficiently transmit images in a
wireless camera network. San Miguel et al. [44] present a vision
of a smart multi-camera network and the required optimization
and properties, but discuss no specific detection techniques. A
related work [41] proposes a method for re-configuring the camera
network over time based on the description of the camera nodes,
specifications of the area of interest and monitoring activities, and
a description of the analysis tasks. Finally, MeerKats [19] uses
different image acquisition policies with resource management and
adaptive communication strategies. No other prior work has focused
on cross-camera complex activity detection, as Caesar has.

Query optimization. Database query optimization [21, 45] focuses
on deriving an optimal sequence of database operations to execute a
query. Caesar’s lazy evaluation of DNNs is similar in spirit, but is
determined when it matches spatial operators.

6 CONCLUSION

This paper presents Caesar, a hybrid multi-camera complex activ-
ity detection system that combines traditional rule based activity
detection with DNN-based activity detection. Caesar supports an
extensible vocabulary of actions and spatio-temporal relationships
and users can specify complex activities using this vocabulary. To
satisfy the network bandwidth and low latency requirements for near
real-time activity detection with a set of non-overlapping (possibly
wireless) cameras, Caesar partitions activity detection between a
camera and a nearby edge cluster that lazily retrieves images and
lazily invokes DNNs. Through extensive evaluations on a public
multi-camera dataset, we show that Caesar can have high precision
and recall rate with accurate DNN models, while keeping the band-
width and GPU usage an orders of magnitude lower that a strawman
solution that does not incorporate its performance optimizations.
Caesar also reduces the energy consumption on the mobile nodes
by 7X. Future work with Caesar includes evaluations with a larger
dataset that has more cameras and a larger set of complex activities;
deploying Caesar as a public accessible service and extending Caesar
to recognize complex activities in moving cameras (e.g. drones, and
cars).

REFERENCES

(11
[2]

3
[4
[5]
6

(7]
[8]

[9]
[10]
(111
[12]
[13]
[14]
[15]

[16]

(171

[18]

(191

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[36]

[37]

[38]

[391

AVA Actions Dataset. https://research.google.com/ava/.

Dawn of the Smart Surveillance Camera. https://www.zdnet.com/article/dawn-of- the-smart-
surveillance-camera/.

Duke Multi-Target, Multi-Camera Tracking Project. http://vision.cs.duke.edu/DukeMTMC/.
Flask Framework. http://flask.pocoo.org/.

GRPC: A High-performance, Open-source Universal RPC Framework. https://grpc.io/.
Interior Wants Wi-Fi At Burning Man. https://www.nextgov.com/cio-briefing/2018/04/interior-
wants- wi- fi-burning-man/147852/.

Nvidia GeForce RTX 2080. https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080/.
Nvidia Jetson TX2. https://www.nvidia.com/en-us/autonomous- machines/embedded- systems/
jetson-tx2/.

Redis. https://redis.io/.

TensorFlow Serving. https://github.com/tensorflow/serving.

UCF 101 Action Dataset. https://www.crcv.ucf.edu/data/UCF101.php.

VIRAT Action Dataset. http://www.viratdata.org/.

WHAT’S WRONG WITH PUBLIC VIDEO SURVEILLANCE? https://www.aclu.org/other/
whats-wrong- public- video-surveillance.

M. R. Amer, P. Lei, and S. Todorovic. Hirf: Hierarchical Random Field for Collective Activity
Recognition in Videos. In European Conference on Computer Vision, pages 572-585. Springer,
2014.

B. B. Amor, J. Su, and A. Srivastava. Action Recognition using Rate-invariant Analysis of
Skeletal Shape Trajectories. [EEE transactions on pattern analysis and machine intelligence,
38(1):1-13, 2016.

S. M. Aziz and D. M. Pham. Energy Efficient Image Transmission in Wireless Multimedia
Sensor Networks. IEEE communications letters, 17(6):1084—1087, 2013.

T. Bagautdinov, A. Alahi, F. Fleuret, P. Fua, and S. Savarese. Social Scene Understanding: End-
to-end Multi-person Action Localization and Collective Activity Recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4315-4324, 2017.
S. Bak. Human re-identification through a video camera network. PhD thesis, Université Nice
Sophia Antipolis, 2012.

J. Boice, X. Lu, C. Margi, G. Stanek, G. Zhang, R. Manduchi, and K. Obraczka. Meerkats: A
Power-aware, Self-managing Wireless Camera Network for Wide Area Monitoring. In Proc.
Workshop on Distributed Smart Cameras, pages 393-422. Citeseer, 2006.

J. Carreira and A. Zisserman. Quo Vadis, Action Recognition? a New Model and the Kinetics
Dataset. In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 6299-6308, 2017.

S. Chaudhuri. An overview of query optimization in relational systems. In Proceedings of the
seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems,
pages 34-43. ACM, 1998.

W. Chen, L. Cao, X. Chen, and K. Huang. An Equalized Global Graph Model-based Approach
for Multicamera Object Tracking. IEEE Transactions on Circuits and Systems for Video Tech-
nology, 27(11):2367-2381, 2017.

D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and L. Stoica. Clipper: A
Low-latency Online Prediction Serving System. In I4th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 613-627, 2017.

C. Gan, Y. Yang, L. Zhu, D. Zhao, and Y. Zhuang. Recognizing an Action using Its Name: A
Knowledge-based Approach. International Journal of Computer Vision, 120(1):61-77, 2016.
R. Girdhar, J. Carreira, C. Doersch, and A. Zisserman. Video Action Transformer Network.
CoRR, abs/1812.02707, 2018.

D. Gowsikhaa, S. Abirami, et al. Suspicious Human Activity Detection From Surveillance
Videos. International Journal on Internet & Distributed Computing Systems, 2(2), 2012.

H. Haelterman. Crime Script Analysis: Preventing Crimes Against Business. Springer, 2016.
Y. Hu, S. Rallapalli, B. Ko, and R. Govindan. Olympian: Scheduling Gpu Usage in a Deep
Neural Network Model Serving System. In Proceedings of the 19th International Middleware
Conference, pages 53-65. ACM, 2018.

Y. Lee, A. Scolari, B.-G. Chun, M. D. Santambrogio, M. Weimer, and M. Interlandi. PRETZEL.:
Opening the Black Box of Machine Learning Prediction Serving Systems. In 13th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 18), pages 611-626, 2018.
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. Ssd: Single
Shot Multibox Detector. In European conference on computer vision, pages 21-37. Springer,
2016.

X. Liu, Y. Jiang, P. Jain, and K.-H. Kim. Tar: Enabling Fine-grained Targeted Advertising in
Retail Stores. In Proceedings of the 16th Annual International Conference on Mobile Systems,
Applications, and Services, pages 323-336. ACM, 2018.

P. Mettes and C. G. Snoek. Spatial-aware Object Embeddings for Zero-shot Localization and
Classification of Actions. In Proceedings of the IEEE Inter [Conf e on Comp
Vision, pages 4443-4452, 2017.

K. Nithin and F. Brémond. Globality—locality-based Consistent Discriminant Feature Ensemble
for Multicamera Tracking. IEEE Transactions on Circuits and Systems for Video Technology,
27(3):431-440, 2017.

R. Poppe. A survey on vision-based human action recognition. Image and vision computing,
28(6):976-990, 2010.

S. Qi, S. Huang, P. Wei, and S.-C. Zhu. Predicting Human Activities using Stochastic Grammar.
In Proceedings of the IEEE Inter I Confe e on Comp Vision, pages 1164-1172,
2017.

J. Qin, L. Liu, L. Shao, F. Shen, B. Ni, J. Chen, and Y. Wang. Zero-shot Action Recognition
with Error-correcting Output Codes. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2833-2842, 2017.

H. Qiu, K. Chintalapudi, and R. Govindan. Satyam: Democratizing Groundtruth for Machine
Vision. CoRR, abs/1811.03621, 2018.

H. Qiu, X. Liu, S. Rallapalli, A. J. Bency, K. Chan, R. Urgaonkar, B. S. Manjunath, and
R. Govindan. Kestrel: Video Analytics for Augmented Multi-camera Vehicle Tracking. In
2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implemen-
tation (IoTDI), pages 48-59, 2018.
J. Redmon and A. Farhadi.
arXiv:1612.08242, 2016.

Yol09000: Better, Faster, Stronger. arXiv preprint

[47]
[48]

[49]

[50

[51]

[52]

[53]

[54]

[591

[60]

[61]

X
RS

J. Redmon and A. Farhadi.

arXiv:1804.02767, 2018.

B. Rinner, B. Dieber, L. Esterle, P. R. Lewis, and X. Yao. Resource-aware Configuration in

Smart Camera Networks. In 2012 IEEE Comp Society Conference on C Vision and

Pattern Recognition Workshops, pages 58-65. IEEE, 2012.

E. Ristani and C. Tomasi. Features for Multi-target Multi-camera Tracking and Re-

identification. arXiv preprint arXiv:1803.10859, 2018.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: Inverted Resid-

uals and Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4510-4520, 2018.

J. C. SanMiguel, C. Micheloni, K. Shoop, G. L. Foresti, and A. Cavallaro. Self-reconfigurable

Smart Camera Networks. Computer, 47(5):67-73, 2014.

T. K. Sellis. Multiple-query optimization. ACM Transactions on Database Systems (TODS),

13(1):23-52, 1988.

Z. Shou, J. Pan, J. Chan, K. Miyazawa, H. Mansour, A. Vetro, X. Giro-i Nieto, and S.-F. Chang.

Online Detection of Action Start in Untrimmed, Streaming Videos. In Proceedings of the

Euroy Con e on Comj Vision (ECCV), pages 534-551, 2018.

F. Solera, S. Calderara, E. Ristani, C. Tomasi, and R. Cucchiara. Tracking Social Groups Within

and Across Cameras. IEEE Transactions on Circuits and Systems for Video Technology, 2016.

C. Su, S. Zhang, J. Xing, W. Gao, and Q. Tian. Deep attributes driven multi-camera person

re-identification. In Euroy conference on comp vision, pages 475-491. Springer, 2016.

C. Sun, A. Shrivastava, C. Vondrick, K. Murphy, R. Sukthankar, and C. Schmid. Actor-centric

Relation Network. In Proceedings of the Europ C ce on Comp Vision (ECCV),

pages 318-334, 2018.

Y. Sun, L. Zheng, Y. Yang, Q. Tian, and S. Wang. Beyond Part Models: Person Retrieval with

Refined Part Pooling (and a Strong Convolutional Baseline). In Proceedings of the European

Conference on Computer Vision (ECCV), pages 480-496, 2018.

M. Y. K. Tani, A. Lablack, A. Ghomari, and I. M. Bilasco. Events Detection using a Video-

surveillance Ontology and a Rule-based Approach. In European Conference on Computer

Vision, pages 299-308. Springer, 2014.

P. M. Tank and H. A. Patel. Survey on Human Detection Techniques in Real Time Video. Inter-
[Journal of I ive Research in Science, Engineering and Technology, 7(5):5852—

5858, 2018.

Y. T. Tesfaye, E. Zemene, A. Prati, M. Pelillo, and M. Shah. Multi-target Tracking in Multiple

Non-overlapping Cameras using Constrained Dominant Sets. arXiv preprint arXiv:1706.06196,

2017.

O. Ulutan, S. Rallapalli, C. Torres, M. Srivatsa, and B. Manjunath. Actor Conditioned Attention

Maps for Video Action Detection. In the IEEE Winter Conference on Applications of Computer

Vision (WACV). IEEE, 2020.

X. Wang, A. Chowdhery, and M. Chiang. Networked Drone Cameras for Sports Streaming. In

2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pages

308-318. IEEE, 2017.

N. Wojke and A. Bewley. Deep Cosine Metric Learning for Person Re-identification. CoRR,

abs/1812.00442, 2018.

N. Wojke, A. Bewley, and D. Paulus. Simple Online and Realtime Tracking with a Deep

Association Metric. In 2017 IEEE International Conference on Image Processing (ICIP), pages

3645-3649. IEEE, 2017.

X. Xu, T. M. Hospedales, and S. Gong. Multi-task Zero-shot Action Recognition with Pri-

oritised Data Augmentation. In European Conference on Computer Vision, pages 343-359.

Springer, 2016.

Y. Xu, X. Liu, L. Qin, and S.-C. Zhu. Cross-view People Tracking by Scene-centered Spatio-

temporal Parsing. In AAAI, pages 42994305, 2017.

H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and M. J. Freedman. Live

Video Analytics At Scale with Approximation and Delay-tolerance. In /4th USENIX Sympo-

sium on Networked Systems Design and Implementation (NSDI 17), pages 377-392, 2017.

Y. Zhao, Y. Xiong, L. Wang, Z. Wu, X. Tang, and D. Lin. Temporal Action Detection with Struc-

tured Segment Networks. In Proceedings of the IEEE Inters I Conference on Comp

Vision, pages 2914-2923, 2017.

Z.Zheng, X. Yang, Z. Yu, L. Zheng, Y. Yang, and J. Kautz. Joint Discriminative and Generative

Learning for Person Re-identification. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2138-2147, 2019.

Yolov3: An Incremental Improvement. — arXiv preprint

p

https://research.google.com/ava/
https://www.zdnet.com/article/dawn-of-the-smart-surveillance-camera/
https://www.zdnet.com/article/dawn-of-the-smart-surveillance-camera/
http://vision.cs.duke.edu/DukeMTMC/
http://flask.pocoo.org/
https://grpc.io/
https://www.nextgov.com/cio-briefing/2018/04/interior-wants-wi-fi-burning-man/147852/
https://www.nextgov.com/cio-briefing/2018/04/interior-wants-wi-fi-burning-man/147852/
https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://redis.io/
https://github.com/tensorflow/serving
https://www.crcv.ucf.edu/data/UCF101.php
http://www.viratdata.org/
https://www.aclu.org/other/whats-wrong-public-video-surveillance
https://www.aclu.org/other/whats-wrong-public-video-surveillance

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Caesar Design
	3.1 Rule Definition and Parsing
	3.2 Object Detection
	3.3 Tracking and Re-Identification
	3.4 Action Detection and Graph Matching

	4 Evaluation
	4.1 Methodology
	4.2 Accuracy
	4.3 Scalability
	4.4 Data Transfer
	4.5 Energy Consumption

	5 Related Work
	6 Conclusion
	References

