
Server-Driven Video Streaming for Deep Learning Inference
Kuntai Du∗, Ahsan Pervaiz∗, Xin Yuan, Aakanksha Chowdhery†, Qizheng Zhang, Henry Hoffmann, Junchen Jiang

University of Chicago †Google

ABSTRACT
Video streaming is crucial for AI applications that gather videos
from sources to servers for inference by deep neural nets (DNNs).
Unlike traditional video streaming that optimizes visual quality,
this new type of video streaming permits aggressive compres-
sion/pruning of pixels not relevant to achieving high DNN inference
accuracy. However, much of this potential is left unrealized, because
current video streaming protocols are driven by the video source
(camera) where the compute is rather limited. We advocate that the
video streaming protocol should be driven by real-time feedback
from the server-side DNN. Our insight is two-fold: (1) server-side
DNN has more context about the pixels that maximize its infer-
ence accuracy; and (2) the DNN’s output contains rich information
useful to guide video streaming. We present DDS (DNN-Driven
Streaming), a concrete design of this approach. DDS continuously
sends a low-quality video stream to the server; the server runs the
DNN to determine where to re-send with higher quality to increase
the inference accuracy. We find that compared to several recent
baselines on multiple video genres and vision tasks, DDS maintains
higher accuracy while reducing bandwidth usage by upto 59% or
improves accuracy by upto 9% with no additional bandwidth usage.

CCS CONCEPTS
•Networks→Application layer protocols; • Information sys-
tems→Data streaming;Data analytics; •Computingmethod-
ologies → Computer vision problems;

KEYWORDS
video analytics, video streaming, deep neural networks, feedback-
driven

ACM Reference Format:
Kuntai Du, Ahsan Pervaiz, Xin Yuan, Aakanksha Chowdhery, Qizheng
Zhang, Henry Hoffmann, Junchen Jiang. 2020. Server-Driven Video Stream-
ing for Deep Learning Inference. In Annual conference of the ACM Special
Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication (SIGCOMM ’20),
August 10–14, 2020, Virtual Event, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3387514.3405887

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7955-7/20/08. . . $15.00
https://doi.org/10.1145/3387514.3405887

1 INTRODUCTION
Internet video must balance between maximizing application-level
quality and adapting to limited network resources. This perennial
challenge has sparked decades of research and yielded various
models of user-perceived quality of experience (QoE) and QoE-
optimizing streaming protocols. In the meantime, the proliferation
of deep learning and video sensors has ushered in new analytics-
oriented applications (e.g., urban traffic analytics and safety anom-
aly detection [5, 22, 27]), which also require streaming videos from
cameras through bandwidth-constrained networks [24] to remote
servers for deep neural nets (DNN)-based inference. We refer to it
asmachine-centric video streaming. Rather than maximizing human-
perceived QoE, machine-centric video streaming maximizes for
DNN inference accuracy. This contrast has inspired recent efforts to
compress or prune frames and pixels that may not affect the DNN
output (e.g., [30–32, 36, 48, 76, 78, 80]).

A key design question in any video streaming system is where to
place the functionality of deciding which actions can optimize applica-
tion quality under limited network resources. Surprisingly, despite
a wide variety of designs, most video streaming systems (both
machine-centric and user-centric) take an essentially source-driven
approach—it is the content source that decides how the video should
be best compressed and streamed. In traditional Internet videos
(e.g., YouTube, Netflix), the server (the source) encodes a video at
several pre-determined bitrate levels, and although the mainstream
protocol, DASH [7], is dubbed a client-driven protocol, the client
does not provide any instant user feedback on user-perceived QoE
to let server re-encode the video. Current machine-centric video
streaming relies largely on the camera (the source) to determine
which frames and pixels to stream.

While the source-driven approach has served us well, we argue
that it is suboptimal for analytics-oriented applications. The source-
driven approach hinges on two premises: (1) the application-level
quality can be estimated by the video source, and (2) it is hard
to measure user experience directly in real time. Both need to be
revisited in machine-centric video streaming.

First, it is inherently difficult for the source (camera) to estimate
the inference accuracy of the server-side DNN by itself. Inference
accuracy depends heavily on the compute-intensive feature ex-
tractors (tens of NN layers) in the server-side DNN. The disparity
between most cameras and GPU servers in their compute capabil-
ity means that any camera-side heuristics are unlikely to match
the complexity of the server-side DNNs. This mismatch leads to
the suboptimal performance of the source-driven protocols. For
instance, some works use inter-frame pixel changes [30] or cheap
object detectors [80] to identify and send only the frames/regions
that contain new objects, but they may consume more bandwidth
than necessary (e.g., background changes causing pixel-level differ-
ences) and/or cause more false negatives (e.g., small objects could
be missed by the cheap camera-side object detector).

https://doi.org/10.1145/3387514.3405887

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, J. Jiang

Second, while eliciting real-time feedback from human users may
be hard, DNN models can provide rich and instantaneous feedback.
Running an object-detection DNN on an image returns not only
detected bounding boxes, but also additional feedback for free, like
the confidence score of these detections, intermediate features, etc.
Moreover, such feedback can be extracted on-demand by probing
the DNN with extra images. Such abundant feedback information
has not yet been systematically exploited by prior work.

In this paper, we explore an alternative DNN-driven approach
to machine-centric video streaming, in which video compression
and streaming are driven by how the server-side DNN reacts to
real-time video content. DNN-driven video streaming follows an
iterativeworkflow. For each video segment, the camera first sends it
in low quality to the server for DNN inference; the server runs the
DNN and derives some feedback about the most relevant regions to
the DNN inference and sends this feedback to the camera; and the
camera then uses the feedback to re-encode the relevant regions in a
higher quality and sends them to the server for more accurate infer-
ence. (The workflow can have multiple iterations though this paper
only considers two iterations). Essentially, by deriving feedback di-
rectly from the server-side DNN, it sends high-quality content only
in the minimal set of relevant regions necessary for high inference
accuracy. Moreover, unlike prior work that requires camera-side
vision processing or hardware support (e.g., [30, 48, 80]), we only
need standard video codec on the camera side.

The challenge of DNN-driven protocols, however, is how to derive
useful feedback from running DNN on a low-quality video stream.
We present DDS (DNN-Driven Streaming), a concrete design which
utilizes the feedback regions derived from DNN output on the low-
quality video and sparingly uses high-quality encoding for the
relatively small number of regions of interest. We apply DDS to
three vision tasks: object detection, semantic segmentation, and
face recognition. The insight is that the low-quality video may not
suffice to get sufficient DNN inference accuracy, but it can produce
surprisingly accurate feedback regions which intuitively require
higher quality for the DNN to achieve desirable accuracy. Feedback
regions are robust to low-quality videos because they are more
akin to binary-class tasks (i.e.,whether a region might contain an
object and need higher quality) than to more difficult tasks such as
classifying what object is in each region. Moreover, DDS derives
feedback regions from DNN output without extra GPU overhead.

DDS is not the first to recognize that different pixels affect DNN
accuracy differently, e.g., prior works also send only selected re-
gions/frames to trigger server-side inference [54, 80]. But unlike
DDS, these regions are selected either by simple camera-side log-
ics [80] which suffer from low accuracy, or by region-proposal
networks (RPNs) [54] which are designed to capture where objects
are likely present, rather than where higher quality is needed (e.g.,
large targeted objects will be selected by RPNs but they do not need
high video quality to be accurately recognized). Using RPNs also
limits the applications to object detection and does not generalize
to other tasks such as semantic segmentation. In a broader context,
DDS is related and complementary to the trend in deep learning
of using attention mechanisms (e.g., [61, 74])—attention improves
DNN accuracy by focusing computation on the important regions,
while DDS improves bandwidth efficiency by sending only a few

(a) Input (b) Object detection (c) Sem. segmentation

Figure 1: The input and output of object detection and semantic
segmentation on one example image. We use red to label the car and
blue to label the truck.

regions in high quality to achieve the same DNN accuracy as if the
whole video is sent in the highest quality.

We evaluate DDS and a range of recent solutions [30, 54, 76, 78,
80] on three vision tasks. Across 49 videos, we find DDS achieves
same or higher accuracy while cutting bandwidth usage by upto
59%, or uses the same bandwidth consumption while increasing
accuracy by 3-9%. This work does not raise any ethical issues.

2 MOTIVATION
We start with the background of video streaming for distributed
video analytics, including its need, performance metrics, and design
space. We then use empirical measurements to elucidate the key
limitations of prior solutions.

2.1 Video streaming for video analytics
Vision tasks under consideration: We consider three computer
vision tasks—object detection, semantic segmentation, and face
recognition. Figure 1 shows an example input and output of object
detection (one label for each bounding box) and semantic segmen-
tation (one label for each pixel). These tasks are widely used in
real-world scenarios to detect/segment objects of interest and their
results are used as input to high-level applications (e.g., vehicle
collision detection).
Why streaming videos out from cameras? On one hand, com-
puter vision accuracy has been improved by deep learning at the
cost of increased compute demand. On the other hand, low prices of
high-definition network-connected cameras make them widely de-
ployed in trafficmonitoring [27], video analytics in retail stores [12],
and inspection of warehouses or remote industrial sites [38]. Thus,
the camera operators must scale out the compute costs of analyzing
ever more camera feeds [2, 6, 21]. One solution is to offload the
compute-intensive inference (partially or completely) to centralized
GPU servers. (Sometimes, video feeds must be kept local due to
privacy regulations, but it is beyond our scope.) For the sake of
discussion, let us calculate the costs of 60 HD cameras each run-
ning ResNet50 classification at 90FPS. We use ResNet50 classifier
because our applications require more complex DNN models (e.g.,
FasterRCNN-ResNet101) cannot run on Jetson TX2 [9] at 30FPS.
Now, buying 60 Raspberry Pi 4 Cameras and an NVIDIA Tesla T4
GPU (with a throughput of running ResNet50 at 5,700FPS [17])
costs $23 × 60(cameras)[19]+$2000(GPU)[13]= $3.4K. Buying 60
NVIDIA Jetson TX2 cameras (each running ResNet50 at 89FPS [16])
costs about $400[15]×60 = $24K, which is one order of magnitude
more expensive. These numbers may vary over time, but the price
gap between two approaches is likely to remain. The calculation

Server-Driven Video Streaming for Deep Learning Inference SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

does not include the network bandwidth to send the videos to a
server, which is what we will minimize.
Performance metrics: An ideal video streaming protocol for
video analytics should balance three metrics: accuracy, bandwidth
usage, and freshness.
• Accuracy:We define accuracy by the similarity between the DNN
output on each frame when the video is streamed to the server
under limited bandwidth and the DNN output on each frame
when the original (highest quality) video is streamed to the server.
By using the DNN output on the highest-quality video (rather
than the human-annotated labels) as the “ground truth”, we can
reveal any negative impact of video compression and streaming
on DNN inference, without being affected by any errors made by
the DNN itself. This is consistent with recent work (e.g., [45, 78,
79]). We measure the accuracy by F1 score in object detection (the
harmonic mean of precision and recall for the detected objects’
location and class labels) and by IoU in semantic segmentation
(the intersection over union of pixels associated to the same class).

• Bandwidth usage: In general, the total cost of operating a video
analytics system includes the camera cost, the network cost paid
to stream the video from the camera to the server, and the cost of
the server. In this paper, we focus on reducing the network cost
through reducing the bandwidth usage. §2.4 will highlight the
deployment settings in which the total costs of a video analytics
system are dominated by the network cost and thus reducing
bandwidth usage is crucial. We measure the bandwidth usage by
the size of the sent video divided by its duration.

• Average response delay (freshness): Finally, we define freshness by
the average processing delay per object (or per pixel for semantic
segmentation), i.e., the expected time between when an object
(or a pixel) first appears in the video feed and when its region is
detected and correctly classified, which includes the time to send
it to the server and to run inference on it.2

2.2 Design space of video analytics systems
Next, we discuss the design space of how video analytics systems
can potentially navigate the tradeoffs among these performance
metrics along five dimensions:
• Leveraging camera-side compute power: Since the camera can
naturally access the raw video, one can leverage the camera’s
local compute power (if any) to discard frames [30, 48] or re-
gions [54, 80] that may not contain important information. As
we will elaborate in §2.3, the accuracy of such local filtering
heuristics may cause significant accuracy drops.

• Model distillation: DNNs are often trained on large datasets, but
when used exclusively for a specific category of video scenes, a
DNN can be shrunk to a much smaller size (e.g., via knowledge
distillation), in order to save compute cost (GPU cycles) without
hurting accuracy (e.g., [48]). This approach is efficient only in
training smaller DNNs that work well on less expensive hardware.

2Average response delay is meaningful if the follow-up analysis can by updated when
a new objects/pixel is detected/classified (e.g., estimating the average speed of vehicles
on a road). That said, this definition does not apply to applications that are sensitive
to worst-case delays rather than average delay, e.g., if one queries for the total number
of vehicles, the answer will not be completed until all vehicles are detected.

(a) Video streaming for human viewers

(b) Video streaming for computer-vision analytics

Source
(Video server)

Human
Viewer

Source
(Camera)

Server
(DNN)

Figure 2: Unlike video streaming for human viewers, machine-centric
video streaming has unique bandwidth-saving opportunities.

• Video codec optimization: Unlike traditional video codecs that
optimize for human visual quality, video analytics emphasizes in-
ference accuracy and thus opens up possibility to more analytics-
oriented video codecs (e.g., analytics-aware super resolution [76]).

• Temporal configuration adaptation: To cope with the temporal
variance of video content, one can adapt the key configurations
(e.g., the frame rate, resolution and DNN model) to save compute
costs [45] or network costs [78]. That said, it fails to exploit the
uneven spatial distribution of important information in videos.

• Spatial quality adaptation: Information of interest (e.g., target
objects) is sparsely distributed in each frame, so some pixels are
more critical to accurate DNN inference than others. One can
save bandwidth usage by encoding each frame with a spatially
uneven quality distribution (e.g., region-of-interest encoding [54])
so that high video quality is used only where pixels are critical
to DNN inference [54, 80].

In this paper, we take a pragmatic stance to focus on a specific point
in the design space—no camera-side frame-dropping heuristics, no
model distillation (use the server-side DNN as-is), and no change
to the video codec; instead, we use the server-side DNN output to
drive spatial quality adaptation.
2.3 Potential room for improvement
Traditional video streaming maximizes human quality of experi-
ence (QoE)—a high video resolution and smooth playback (min-
imum stalls, frame drops or quality switches) [35, 46, 50]. For
machine-centric video streaming, however, it is crucial that the
server-received video has sufficient video quality in the regions
that heavily affect the DNN’s ability to identify/classify objects;
however, the received video does not have to be smooth or have
high quality everywhere.

This contrast has a profound implication—machine-centric stream-
ing could achieve high “quality” (i.e., accuracy) using much less
bandwidth. Each frame can be spatially encoded with non-uniform
quality levels. In object detection, for instance, one may give low
quality to (or even blackout) the areas other than the objects of
interest (Figure 2(b))3. While rarely used in traditional video stream-
ing, this scheme could significantly reduce bandwidth consumption
and response delay, especially because objects of interest usually
only occupy a fraction of the video size. Figure 3 shows that across
3This may look like region-of-interest (ROI) encoding [59], but even ROI encoding
does not completely remove the background either, and the ROIs are defined with
respect to human perception.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, J. Jiang

Figure 3: Bandwidth-saving opportunities: Over 50-80% of frames,
the objects (cars or pedestrians) occupy less than 20% of the frame area,
so most pixels do not contribute to the accuracy of video analytics.

three different scenarios (the datasets will be described in §5.1),
in 50-80% of frames, the objects of interest (cars or pedestrians)
only occupy less than 20% of the spatial area of a frame. We also
observe similar uneven distributions of important pixels in face
recognition and semantic segmentation. The question then is how
to fully explore the potential room for improvement?

2.4 Preliminary comparison of existing solutions
We present a framework to compare the performance, in accuracy,
total cost, and response delay, of four baselines: camera-side lo-
cal inference (“Camera-only”), server-side inference (“AWStream”),
and selecting frames/regions by the camera and sending them to
server for further analysis (“Vigil” and “Glimpse”). We then analyze
the sources of their (suboptimal) performance in §2.5. The tests
are performed on the traffic videos in our dataset (§5.1). We will
give more details about their implementations and include more
baselines in the full evaluation (§5).

For each solution 𝑠 , we use a fixed camera-side logic 𝐿𝑜𝑐𝑎𝑙𝑠
and a fixed server-side DNN 𝑅𝑒𝑚𝑜𝑡𝑒𝑠 . We use 𝑃𝑠 to denote the
data (frames or videos, depending on the solution) sent from the
camera to the server. They together determine the accuracy of 𝑠:
𝐴𝑐𝑐 (𝐿𝑜𝑐𝑎𝑙𝑠 , 𝑅𝑒𝑚𝑜𝑡𝑒𝑠 , 𝑃𝑠).4 Note that 𝑃𝑠 is tunable by changing the
internal configurations of 𝑠 , and with fixed 𝐿𝑜𝑐𝑎𝑙𝑠 and 𝑅𝑒𝑚𝑜𝑡𝑒𝑠 , the
cost-delay-accuracy tradeoff of 𝑠 will be governed by 𝑃𝑠 . We use
the same server-side DNN (FasterRCNN-ResNet101) to make sure
the accuracies are calculated with the same ground truth.

Figure 4a shows the delay-accuracy tradeoffs of the four solutions
(and our solution which will be introduced in next section). Here,
the delay is the average response delay per frame as measured in
our testbed. (We explain the hardware choice in §5.1.) Note that the
local model running on the camera (“Camera-only”) has relatively
lower accuracy than Vigil (which uses both the local DNN and the
server DNN) and AWStream (which fully relies on the server DNN
results). We will explain the reasons in §2.5.

Figure 4b and Figure 4c show the costs to achieve their respective
performance in Figure 4a under two price settings. We measure
the cost by the average total cost of analyzing a 720p HD video at
30FPS (∼5Mbps) for an hour.
• Setting 1 (Total cost is dominated by network): A camera is con-
nected to an in-house server through an LTE network. Since
the camera and the server are purchased upfront, their costs
amortized per frame will approach zero in the long run, but the
LTE cost is paid by time. Here, we consider the AT&T 4G LTE

4Of course, the value𝑃𝑠 and accuracy are video-dependent, but we omit it for simplicity
since we compare solutions on the same videos.

0.0 0.5 1.0
Delay (s)

0.0

0.5

1.0

Ac
cu

ra
cy

DDS (ours)
AWStream

Vigil

Glimpse
Camera-only

(a) Delay-accuracy

0 2 4 6
Cost ($)

0.0

0.5

1.0

Ac
cu

ra
cy

DDS (ours)AWStream

Vigil

Glimpse

Camera-only

(b) Cost vs accuracy
(Setting 1)

0.0 0.5 1.0
Cost ($)

0.0

0.5

1.0

Ac
cu

ra
cy

DDS (ours)
AWStream

Vigil

Glimpse
Camera-only

(c) Cost vs accuracy
(Setting 2)

Figure 4: The trade-offs among cost, delay, and accuracy on the
traffic videos in our dataset under two settings. The cost in setting 1
is dominated by the network cost, so schemes that save bandwidth
usage are more favorable. The cost in setting 2 is dominated by the
server cost, so saving bandwidth does not yield better solutions.

plan, $50 per month [3] for 30GB data (before the speed drops
to measly 128kbps) [10], or equivalently $0.75 for streaming at
1Mbps for one hour. Thus, the per-hour total cost of a solution 𝑠
is 𝐶𝑜𝑠𝑡𝑠 ≈ $0.75 · 𝑆𝑖𝑧𝑒 (𝑃𝑠), where 𝑆𝑖𝑧𝑒 (𝑃) is the total bandwidth
usage (in Mbps) to send 𝑃 .

• Setting 2 (Total cost is dominated by server): A camera is connected
to a cloud server through cheap wired network. Unlike the previ-
ous setting, the cloud server is paid by usage so its cost grows
with more server-side compute, but the network cost is negli-
gible compared to 4G LTE plans. To run the server-side DNN
at 30FPS, we assume that we need 3 NVIDIA Telsa K80 cards
and it costs $0.405 per hour [11] (and other cloud providers have
similar price ranges). The per-hour total cost of 𝑠 , therefore, is
𝐶𝑜𝑠𝑡𝑠 ≈ $0.405 ·𝐹𝑟𝑎𝑐 (𝑃𝑠), where 𝐹𝑟𝑎𝑐 (𝑃) is the number of frames
in 𝑃 divided by all frames.
In the first setting (Figure 4b, where the total cost is dominated by

the network cost), prior solutions show unfavorable cost-accuracy
tradeoffs (when compared with our solution). However, in the sec-
ond setting (Figure 4c, where the total cost is dominated by the
server cost), prior solutions in general strike good cost-accuracy
tradeoffs (compared with ours). This is largely because some of
them (Vigil and Glimpse) are designed to minimize server-side
compute cost, which this paper does not explicitly optimize.
2.5 Sources of the limitations
Existing solutions for video streaming are essentially source-driven—
the decisions of which pixels/frames should be compressed and sent
to the server are made by the source (camera), with little real-time
feedback from the server-side DNN that analyzes the video. The
fundamental issue of source-driven protocol is that any heuristic
that fits camera’s limited compute capacity is hard to precisely
identify the minimum information that is needed by the server-side
DNN to achieve high accuracy. The result is a unfavorable trade-
off between bandwidth and accuracy (e.g., Figure 4b): any gain of
accuracy comes at the cost of considerably more bandwidth usage.

This problem manifests itself differently in two types of source-
driven solutions. The first type is uniform-quality streaming, which
modifies the existing video protocols and adapts the quality level
to maximize inference accuracy under a bandwidth constraint. For
instance, AWStream [78] uses DASH/H.264 and periodically re-
profiles the relationship between inference accuracy and video
quality. CloudSeg [76] sends a video at a low quality but upscales
the video using super resolution on the server. They have two
limitations. First, they do not leverage the uneven distribution of

Server-Driven Video Streaming for Deep Learning Inference SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

Cheap model
(SSD-MobileNet-v2)

Compute-intensive model
(FasterRCNN-ResNet101)

Figure 5: Contrasting the inference results between a cheap model
(SSD-MobileNet-v2) and a compute-intensive model (FasterRCNN-
ResNet101) on the same image. The compute-intensive model is more
accurate when the video content is challenging (e.g., having many
small objects).

important pixels; instead, the videos are encoded by traditional
codecs with the same quality level on each frame. Second, while
they get feedback from the server DNN, it is not based on real-time
video content, so it cannot suggest actions like increasing quality
on a specific region in the current frame.

The second type is camera-side heuristics that identifies impor-
tant pixels/regions/frames that might contain information needed
by the server-side analytics engine (e.g., queried objects) by running
various local heuristics (e.g., checking significant inter-frame differ-
ence [30, 54], a cheap vision model [31, 32, 48, 80]), or some DNN
layers [36, 72]. These solutions essentially leverage the camera-side
compute power to save server compute cost and network cost [36].
However, these cheap camera-side heuristics are inherently less
accurate than the more complex DNN models on the server, es-
pecially when the video content is challenging (e.g., consisting of
many small objects, which is typical for drone and traffic videos,
as illustrated in Figure 5). Any false negatives of these camera-side
heuristics will preclude the server from detecting important infor-
mation; any false positives (e.g., pixel changes on the background)
will cost unnecessary bandwidth usage.

3 DNN-DRIVEN VIDEO STREAMING
In this section, we present the design of DDS and discuss its design
rationale and performance tradeoffs.

3.1 Overall workflow
We explore an alternative approach, called DNN-driven stream-
ing (DDS). In DDS, the compression and streaming behaviors are
driven by the feedback judiciously generated by the server-side
DNN, rather than the low-complexity local heuristics on the camera
side, in order to capture what the analytics engine needs from the
real-time video content. Figure 6 contrasts the workflow of DDS
with that of the traditional source-driven approach: source-driven
streaming is “single-shot” (i.e., camera using simple heuristics to de-
termine how the video should be streamed out), but DDS is iterative
and logically contains two streams:
• Stream A (passive, low quality): The camera continuously
sends the video in low quality to the server.

• Stream B (feedback-driven): The server frequently (e.g., every
handful of frames) extracts the feedback regions from the DNN
outputs on the Stream A video and sends them back to the camera
as feedback. Upon receiving the feedback from the server, the
camera then re-encodes the recent history video accordingly

Source
(Camera)

Server
(DNN)

Passive video stream driven
by camera-side heuristics

Source
(Camera)

Server
(DNN)

Stream A:
Passive low-quality

Stream B:
Feedback-driven

(a) Traditional video streaming

(b) Real-time DNN-driven streaming

Figure 6: Contrasting the new real-time DNN-driven streaming (it-
erative) with traditional video streaming in video analytics.

and sends it to the server for a second-round inference on these
“zoomed-in” images.

The key to DDS’s success is the design of the feedback regions,
which we discuss next.
3.2 Feedback regions
High-level framework: DDS extracts the feedback regions by uti-
lizing the information naturally returned/generated by the server-
side DNN, rather than a wholesale change on the DNN architecture.
To deal with a variety of DNNs with different outputs, DDS uses
a custom logic to extract feedback regions from each DNN. But
these logics share the same framework (explained next) and are
integrated with DNNs using a similar interface (explained in §4.1).
For convenience, we use the term “elements” to denote the unit of
a vision task—a bounding box (in object detection and face recogni-
tion) and a pixel (in semantic segmentation). At a high level, given
the DNN output on the low-quality video, we first identify the ele-
ments that are likely to be in the DNN output on the high-quality
video but not in the DNN output on the low-quality video, and we
then pick a small number of rectangles (for encoding efficiency)
as the feedback regions to cover these elements. Next, we present
how this high-level logic is used in two classes of vision tasks.
Object detection (based on bounding boxes): Most bounding-
box-based DNNs are anchor-based (though some are anchor-free
[29]). This means that a DNN will first identify regions that might
contain objects and then examine each region. Each proposed region
is associated with an objectness score that indicates how likely an
object is in the region. For DNNs (e.g., FasterRCNN-ResNet101 [68])
that use region proposal networks (RPNs), each proposed region
is directly associated with an objectness score. However, not all
object-detection DNNs use RPNs. For instance, Yolo [66] does not
and instead, it assigns a score for each class in each region in the
final output. In this case, we sum up the scores of non-background
classes as the objectness score, which indicates how likely a region
includes a non-background object. We keep regions with objectness
score over a threshold (e.g., 0.5 for FasterRCNN-ResNet101, and
Figure 17 will show DDS’s performance under different objectness
thresholds). From these high-objectness regions, we apply two
filters to remove those that are already in the DNN output on the
low-quality video (Stream A). First, we filter out those regions
that have over 30% IoU (intersection-over-union) overlap with the
labeled bounding boxes returned by DNN on the low-quality video.
We empirically pick 30% because it works well on all the videos

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, J. Jiang

high-confidence
inference results

high-objectness-
score results

feedback
regions

(a) Bounding-box-based tasks

high-confidence
inference results

high-objectness-
score results

feedback
regions

(b) Pixel-based tasks

Figure 7: Illustration on how DDS generates feedback regions on two
types of applications.

in our dataset. Second, we remove regions that are over 4% of the
frame size (roughly 20% of each dimension), because we empirically
find that if an object is large, the DNN should have successfully
detected it. The remaining region proposals (bounding boxes) are
used as feedback regions.

Figure 7a shows an example: there are nine bounding boxes in
high-objectness-score results, three of which overlap with inference
results in Stream A and one of which is too large. The remaining
five regions are the feedback regions.
Semantic segmentation (based on pixels): Semantic segmen-
tation DNNs assign each pixel a class label (see Figure 1), and in
addition, they also give a score of each class for each pixel (the class
with the highest score is the class label). We first assign a score of
1+𝑚𝑎𝑥 ′−𝑚𝑎𝑥 to each pixel, where𝑚𝑎𝑥 is the largest score among
classes of interest and𝑚𝑎𝑥 ′ is the second largest. Intuitively, the
higher the score is, the more “indecisive” the DNN is about which
class a pixel belongs to. We then pick the feedback regions by cre-
ating 𝑘 rectangles that cover as many high-score pixels as possible.
We repeatedly pick the 𝑛 × 𝑛 rectangle in which the pixels have
maximum average score and zero out the scores of corresponding
pixels until we found 𝑘 rectangles. The values of 𝑛 and 𝑘 control
the total number of pixels in the feedback regions (𝑘 · 𝑛2). We use
𝑛 = 32 and 𝑘 = 16, though we do not claim them to be optimal
values. (Figure 18 shows the performance under different 𝑘 val-
ues.) Figure 7b shows an example and the selection of one feedback
region. We can see that the high-score pixels typically lie at the
boundaries of objects.

We notice three properties of the above logic.
• First, the feedback regions are likely in the DNN output but not
yet in DNN’s output on low-quality video. This provides useful
clue about where video quality should be increased in Stream B.

• Second, to save bandwidth of Stream B, the feedback regions are
created with shapes that can be efficiently encoded. Thus, they
are different from any direct (intermediate/final) output of DNNs
(e.g., region proposals).

• Third, the algorithms to extract feedback regions only assume
the format of the DNN output, rather than particular DNN archi-
tectures or parameters.

3.3 Handling bandwidth variation
Like other video streaming protocols, DDSmust adapt its bandwidth
usage to handle fluctuations in available bandwidth. There are
several effective control knobs that affect the bandwidth usage
of DDS. However, we empirically find that these knobs affect the

Content
Estimator

Controller Optimizer-

high res. high QP

low res.

Estimated
Available

Bandwidth

Bandwidth
Difference

Base
Bandwidth

Bandwidth
Multiplier

Parameter
Settings

Bandwidth used last segment

Bandwidth used by the last segment

1

2

3

low QP

Figure 8: DDS’s adaptive feedback control system dynamically tunes
the low and high quality configurations based on the difference be-
tween the estimated available bandwidth for the next segment and
that used for the previous segment.

bandwidth-accuracy tradeoff in a similar way (i.e., on the same
Pareto boundary; §5.4), so DDS only tunes low quality level and
high quality level.

To tune the low and high quality levels, we implement a feedback
control system (illustrated in Figure 8). Our controller is based on
prior work that proposes a virtual, adaptive control system that
can be customized for specific deployments [28, 60]. To instantiate
this controller, DDS needs to specify three things: a bandwidth
constraint to be met, feedback for monitoring bandwidth usage,
and the tunable parameters that affect bandwidth usage. For DDS,
the bandwidth constraint is the estimated available bandwidth for
the next segment (labelled (1) in the figure), the feedback is the
total bandwidth usage (for both low and high quality) from the
last segment (2), and the tunable parameters are the resolution
and quantization parameters (i.e., the QP in Figure 8) of both the
low and high quality (3). The controller continually estimates the
base bandwidth usage; i.e., the last segment’s bandwidth usage
if the default parameter settings had been used. The controller
then takes this base behavior as well as the difference between the
desired bandwidth constraint for the next segment and the achieved
bandwidth usage for the previous segment and computes a scaling
factor for the base bandwidth. This scaling factor is passed to an
optimizer which finds the low and high quality settings that deliver
the scaled bandwidth usage while maximizing F1 score.

DDS’s dynamic bandwidth adaptation has several useful formal
properties based on its use of feedback control.

First, the content estimator can handle dynamic video content
which changes the relationship between the parameters and band-
width usage. The adaptation mechanism uses a Kalman Filter to
continually estimate the base bandwidth usage. Hence, when the
video content changes, the control model—that captures the rela-
tionship between the parameters and bandwidth usage—will update
itself, allowing DDS to capture unmodeled non-linearities in the re-
lationship between quality settings and bandwidth use. Intuitively,
we can think of the relationship between bandwidth usage and
quality parameters as a curve and the base bandwidth (estimated
by the Kalman filter) as a tangent to that curve. When adjusting
the quality parameters, the DDS controller uses this tangent as a
linear approximation to the true behavior. Using this formulation,
the bandwidth usage converges to the bandwidth constraint in time
proportional to the logarithm of the error in this estimation [60].
This adjustment technique provides robustness in the face of shifts
and variations in the system including when there does not exist a
single control model that captures all system dynamics [37].

Second, the optimizer finds the highest quality given the band-
width usage specified by the controller. This optimality is achieved

Server-Driven Video Streaming for Deep Learning Inference SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

by scheduling configurations over multiple segments. As the sys-
tem has a small, constant number of constraints (simply respecting
the bandwidth requirement), an optimal solution can be found in
constant time [49].

3.4 Design rationale and performance analysis
Why driven by server? At first glance, the idea of server-driven
region extraction seems similar to Vigil [80] and EAAR [54], which
also identifie and send only regions likely with objects to the server.
But we argue that the region extraction methods of Vigil and EAAR
spend extra bandwidth on objects that can be detected at low quality,
and they do not generalize to applications like semantic segmenta-
tion. Moreover, both of them do not leverage modern video codec
to save bandwidth. Furthermore, Vigil’s camera-side local model
uses simpler feature extractor than the server-side DNN, and thus
might miss objects when analyzing challenging video content (as
illustrated in Figure 5). As we will show in §5.2, even if Vigil uses a
model (MobileNet-SSD) that runs only 3× faster than the server-
side DNN [20], it still misses about 40%more objects of interest than
DDS and sends over 30% more data; EAAR consumes 4× bandwidth
and still less accurate than DDS. §5.2 will give more analysis.
Analysis of DDS’s network usage: The bandwidth usage of DDS
is governed by two factors: (1) the quality levels of Stream A and
Stream B, and (2) the areas of the feedback regions of Stream B. If
Stream A uses a high quality level, the bandwidth usage will be
dominated by Stream A and the feedback regions selected in Stream
B will be less relevant. But if Stream A uses a very low quality level,
DDS cannot extract meaningful feedback regions from the DNN
output on the low-quality video. (§5.1 gives the detail configurations
of Stream A and B.) The areas of feedback regions have a complex
relationship with the video content. Intuitively, feedback regions
will be smaller when less objects/pixels are associated with small
objects or hard-to-classify boundaries. When feedback regions are
so large that Stream B is almost the same size of the original video,
then DDS will not save much bandwidth.

To use the analysis in §2.4, when the total cost of a video analytics
system is dominated by the network cost (Setting 1), DDS will reach
better cost-accuracy tradeoffs than the baselines, although it will
do poorly when the cost is dominated by the server cost (Setting 2).
Delay analysis of DDS: One concern of DDS is the extra delay
in Stream B. We introduce an optimization in §4.2 to reduce the
average response delay by reporting the objects/pixels that are
already detected in Stream A. This allows DDS to achieve a lower
average response delay than the baselines at similar accuracy (see
Figure 4a), since Stream A has a low response delay and many
objects/pixels will not need Stream B.

4 IMPLEMENTATION
We implement DDS mostly in Python and the code is available and
will be regularly updated in [8].

4.1 DDS Interface
DDS sits between the low-level functions (video codec and DNN
inference) and the high-level applications (e.g., object-detection
queries). It provides “south-bound” APIs and “north-bound” APIs,
both making minimum assumptions about the exact implementa-
tion of the low-level and high-level functions.

The south-bound APIs interact with the video codec and DNN.
Our implementation uses the APIs already exposed by the x264
MPEG video, such as x264_encoder_encode [25]. From DNN, DDS
implements two functions: (1) feedback regions, each with a speci-
fied location; and (2) detection results including the detected pix-
els/bounding boxes each with a specified location and a detection
confidence score.

The north-boundAPIs implement the same analyst-facing (north-
bound) APIs as the DNNs (DDS can simply forward any function
call to DNNs), so the high-level applications (e.g., [51, 58]) do not
need to change and DDS can be deployed transparently from the
analysts’ perspective. The only difference is that DDS runs the DNN
twice on the same video segment, so the two DNN inference results
must be merged into a single result, which is logically similar to
how DNNs internally merge redundant results (e.g., [73]).

4.2 Optimization
Saving bandwidth by leveraging codec: A naive implementa-
tion of Stream B would encode each feedback region as a separate
high-quality image. But we found that the total size of these images
would be much greater than the original video without cropping out
the regions! The reason is that the video codecs (e.g., H.264/H.265),
after decades of optimization, are very effective in exploiting the
spatial redundancies within a frame and the temporal redundancies
between frames to reduce the encoded video size. DDS leverages
such encoding effectiveness. It sets the pixels outside of the feed-
back regions in the high quality image to black (to remove spatial
redundancies), and encodes these images into a video file (to remove
temporal redundancies).
Reducing average delay via early reporting: The cost that DDS
pays to get better performance is the worst-case response delay: the
result of Stream B will wait for two rounds of inference before it can
be returned. We leverage the observation that a substantial fraction
of the DNN output from the low-quality video (Stream A) already
has high confidence and thus can be returned without waiting for
Stream B. While this optimization does not change the bandwidth
consumption or worst-case response delay, it substantially reduces
the delay of many inference results. In object detection, we empiri-
cally found that over 90% of all final detected objects could have
been detected in Stream A. These objects can be returned much
faster than any prior approach, because Stream A uses a quality
level much lower than what other work (e.g., [31, 32, 78]) would
need to achieve the same accuracy. Similarly, in semantic segmenta-
tion, we found that the label of over 93% of all pixels can be returned
by Stream A, without the need of Stream B.
Camera-side heuristics for fault tolerance: When the connec-
tion to the server is poor or the server is disconnected, DDS will
leverage camera-side compute (if available). Like Glimpse [30], DDS
can use a camera-side tracking logic to generate inference results
on new frames based on the results of the previous frames.

5 EVALUATION
The key takeaways of our evaluation are:
• On three vision tasks, DDS achieves same or higher accuracy
than the baselines while using 18-58% less bandwidth (Figure 9)
and 25-65% lower average response delay (Figure 11).

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, J. Jiang

DDS (ours) AWStream

EAAR
CloudSeg

Glimpse

Vigil

(a) Object detection (Traffic)

DDS (ours) AWStream

EAARCloudSeg

Glimpse

Vigil

(b) Object detection (Dashcam)

DDS (ours)
AWStream

EAAR
CloudSeg

Glimpse

Vigil

(c) Object detection (Drone)

DDS (ours) AWStream

Better
Vigil

Glimpse

(d) Face recognition (Friends)

DDS (ours)
AWStream

BetterCloudseg

(e) Semantic segmentation (Traffic)

DDS (ours) AWStream

BetterCloudseg

(f) Sem. segmentation (Dashcam)

DDS (ours) AWStream

Better
Cloudseg

(g) Semantic segmentation (Drone)

DDS (ours) AWStream

Better

Vigil

Glimpse

(h) Face recognition (TBBT)

Figure 9: The normalized bandwidth consumption v.s. inference accuracy of DDS and several baselines on various video genres and applications.
DDS achieves high accuracy with 55% bandwidth savings on object detection and 42% on semantic segmentation, and 36% on face recognition.
Ellipses show the 1-𝜎 range of results.

Name Vision tasks Total length # videos # objs/IDs

Traffic obj detect / segment 2331s 7 24789
Drone obj detect / segment 163s 13 41678

Dashcam obj detect / segment 5361s 9 24691
Friends face recog 6000s 10 15022
TBBT face recog 6000s 10 12109

Table 1: Summary of our datasets.

• DDS sees evenmore improvements on certain video genres where
objects are small (Figure 12) and on applications where the spe-
cific target objects appear rarely (Figure 13).

• DDS’s gains remain substantial under various bandwidth budgets
(Figure 14) and bandwidth fluctuation (Figure 16).

• DDS poses limited additional compute overhead on both the
camera and the server (Figure 19).

5.1 Methodology
Experiment setup: We build an emulator of video streaming that
can measure the exact analytics accuracy and bandwidth usage. Al-
though existing video analytics platforms might support DDS, we
implement and test DDS and all baselines in our emulator for a fair
comparison. It consists of a client (camera) that encodes/decodes lo-
cally stored videos and a fully functional server that runs any given
DNN and a separate video encoder/decoder. We run DNN inference
on RTX 2080 super and all other computations on Intel Xeon Silver
4100. Unless stated otherwise, we use FasterRCNN-ResNet101 [68]
as the server-side DNN for object detection, InsightFace [14, 34] for
face recognition and FCN-ResNet101 [57] for semantic segmenta-
tion. As we will see in §5.3, different choices of DNNs will not quali-
tatively change the takeaways. When needed, we vary video quality
along the quantization parameter (from {26,28,30,32,34,36,38,40},
we call it QP for short) and the resolution (from scale factors of
{0.8,0.7,0.5}), and DDS uses 36 (QP) as low quality and 26 (QP) as
high quality, with resolution scale set to 0.8 in object detection and
1.0 in semantic segmentation5. We do not consider the network
5We use full resolution in semantic segmentation to keep the same number of labeled
pixels as in the ground truth which assigns each pixel a class label.

cost of AWStream to profile the accuracy-bandwidth relationships
under different QP-resolution combinations. This makes the AW-
Stream bandwidth usage is strictly less than its actual one. In most
graphs, we assume a stable network connection, but in §5.4, we
will test DDS under different network bandwidth and latency and
a few real network traces.
Datasets: To evaluate DDS over various video genres, we compile
five video datasets each representing a real-world scenario (summa-
rized in Table 1 and their links can be found in [4]). These videos
are obtained from two public sources. First, we get videos from
aiskyeye [23], a computer-vision benchmark designed to test DNN
accuracies on drone videos. Nonetheless, DDS and the baselines
can be affected by factors such as fraction of frames with objects
of interest or size of the regions with objects. Therefore, we try to
cover a range of values along these factors (including objects of
various sizes and frames with various number of objects) by adding
YouTube videos as follows. We search keywords (e.g., “highway
traffic video HD”) in private browsing mode (to avoid personal-
ization biases); among the top results, we manually remove the
videos that are irrelevant (e.g., news report that mentions traffic),
and we download the remaining videos in their entirety or the first
10-minutes (if they exceed 10 minutes). The vision tasks are (1) to
detect (or segment) vehicles in traffic and dashcam videos, (2) to
detect humans in drone videos, and (3) to recognize identities in
sitcom videos. Because many of these videos do not have human-
annotated ground truth, for fairness, we use the DNN output on the
full-size original video as the reference result to calculate accuracy.
For instance, in object detection, the accuracy is defined by the
F1 score with respect to the server-side DNN output in highest
resolution (original) with over 30% confidence score.
Baselines: We use five baselines to represent two state-of-the-
art techniques (see §2.3): camera-side heuristics (Glimpse [30],
Vigil [80], EAAR [54]) and adaptive streaming (AWStream [78],
CloudSeg [76]). We made a few minor modifications to ensure
the comparison is fair. First, all baselines and DDS use the same

Server-Driven Video Streaming for Deep Learning Inference SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

DDS
(ours)

AWStream EAAR
CloudSeg

Glimpse

Vigil

(a) Precision on traffic video

DDS (ours) AWStream

EAAR

CloudSeg

Glimpse

Vigil

(b) Recall on traffic video

Figure 10: The normalized bandwidth consumption v.s. precision and
recall of DDS and several baselines on traffic camera.

server-side DNN. Second, although DDS needs nomore camera-side
compute power than encoding, camera-side heuristics baselines
are given sufficient compute resource to run more advanced track-
ing [40] and object detection algorithm [69] than what Glimpse and
Vigil6 originally used, so these baselines’ performance is strictly bet-
ter than their original designs. Third, all DNNs used in baselines and
DDS are pre-trained (i.e., not transfer-learned with samples from
the test dataset); In particular, our implementation of CloudSeg uses
the pre-trained super-resolution model [26] from the website [18].
This ensures the gains are due to the video streaming algorithm,
not due to DNN fine-tuning, and it also helps reproducibility. Fi-
nally, although DDS could lower the frame rate, to ensure that the
accuracies are always calculated on the same set of images, we do
not sample frames and only vary the resolution and QP in DDS.
Performance metrics: We use the definition of accuracy and
average response delay from §2.1. To avoid impact of video content
on bandwidth usage, we report bandwidth usages of DDS and the
baselines after normalizing them against the bandwidth usage of
each original video.
5.2 End-to-end improvements
We start with DDS’s overall performance gains over the baselines
along bandwidth savings, accuracy, and average response delay.
Bandwidth saving: Figure 9 compares the bandwidth-accuracy
tradeoffs of DDS with those of the baselines. In each application,
we use a fixed DDS configuration and normalize the bandwidth
usage against the size of the highest-quality videos (which we use
to derive the ground truth). We also lower the frame rate to 1 FPS
to speed up the experiments and confirm on a randomly sampled
set of videos that the 1 FPS optimization has minimal impact on
DDS’s relative bandwidth savings and accuracy gains. Across three
vision tasks, DDS achieves higher or comparable accuracy than
AWStream but uses 55% less bandwidth in object detection and 42%
in semantic segmentation. Glimpse sometimes uses less bandwidth
but has much lower accuracy. Vigil, Glimpse, CloudSeg and EAAR
consumes more bandwidth than DDS with lower accuracy. Overall,
even if DDS is less accurate or uses more bandwidth, it always has
an overwhelming gain on the other metric.

We explain this result from two perspectives.
• Precision and recall: Figure 10 corroborates our intuition (§2.5) that
the camera-side heuristics, used by Vigil, Glimpse and EAAR to
select frames/regions, are limited by camera-side compute power

6Our implementation of Vigil does not include the optimization of setting the back-
ground pixels in same RGB color, but in a separate experiment, we find that on the
object detection videos (Table 1), this optimization only reduces Vigil’s bandwidth
usage by 10-20% and leads to similarly low accuracy.

15 30 60 90 120
of frames per segment

0

2

4

6

8

Re
sp

on
se

 d
el

ay
 (s

) DDS streaming
DDS processing
AWStream streaming
AWStream processing

(a) Object detection

15 30 60 90 120
of frames per segment

0
1
2
3
4
5
6
7

Re
sp

on
se

 d
el

ay
 (s

) DDS streaming
DDS processing
AWStream streaming
AWStream processing

(b) Semantic segmentation

Figure 11: Response delay of DDS is consistently lower than AW-
Stream under various lengths of video segment.

and thus tend to either miss objects (as illustrated in Figure 5) and
produce spurious objects (e.g., Vigial and Glimpse), or use too
much bandwidth to achieve decent accuracy (e.g., EAAR). We no-
tice that CloudSeg has a lower recall than AWStream (whereas the
original paper shows otherwise on a different dataset). We spec-
ulate that this is because we use a pre-trained super-resolution
model (in consistent with the implementation of other baselines),
whereas the original paper fine-tunes the super-resolution model
to the dataset. DDS has a higher precision because it uses the out-
put of the server-side DNN model; it achieves high recall because
it re-examines the uncertain regions from the low-quality video.

• Encoding:Glimpse, Vigil, and EAAR all send individual frames sep-
arately, whereas DDS uses a video codec to leverage the temporal
similarities across frames. Moreover, AWStream and CloudSeg do
use video codec, but they do not leverage the non-uniform quality
distribution, and DDS (Stream B) only encodes the difficult-to-
detect regions/pixels at a higher quality.

Response delay: Figure 11 shows the response delay of DDS and
AWStream (the baseline whose accuracy is the closest to DDS)
with the same length of a segment (number of consecutive frames
encoded as a segment before sent to the server). In this experiment,
we use a fixed bandwidth at the bitrate of the highest-quality video,
which we use to derive the ground truth. Note that we exclude the
buffering delay for the camera to accumulate the frames in each
segment (which is the same between AWStream and DDS) as well
as the delay for DDS to concatenate the pixel matrices in Stream A
and Stream B (which can be sped up by standard libraries, such as
openCL). For the same segment length, we see that DDS reduces the
average response delay by about 5-25% compared with AWStream,
despite that DDS needs two iterations per frame. This is because
DDS detects most of the objects in Stream A whereas AWStream
sends a single video stream and spends more time to transmit that
stream through the network. To put it into perspective, popular
video sites use 4-second to 8-second segments [81] (i.e., over 120
frames per segment), a range in which DDS’s gains are considerable.
5.3 Sensitivity to application settings
Impact of video genres: Next, Figure 12 shows the distribution of
per-video bandwidth savings with respect to AWStream (dividing
AWStream’s bandwidth usage by DDS’s when DDS’s accuracy is at
least as high as AWStream) in three datasets. There is substantial
performance variability, even among the videos of the same type.
This is because DDS’s gains depend on the size of objects missed
by the low-quality encoding, which varies with videos (§3.4).

That said, the impact of content on performance gains can be
task-dependent. For instance, in object detection, the dashcam
videos show less improvement than the other two datasets, but

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, J. Jiang

Better

(a) Object detection

Better

(b) Semantic segmentation

Figure 12: Distributions of per-video bandwidth savings in two
datasets. The gains of DDS are video dependent.

Better

Figure 13: Segmentation on only motorcycles achieves 2-4× more
bandwidth savings than segmentation on all classes.

in semantic segmentation, the dashcam videos show the most im-
provement! This contrast highlights the difference between the two
tasks. In object detection, when an object is not confidently classi-
fied, DDS will send an entire bounding box to the server. However,
semantic segmentation typically sends the pixels at the boundary
of objects, whose size is less affected by the size of objects. Since
the dashcam videos have more large objects, they show more gains
from DDS when the task is semantic segmentation.
Impact of the targeted objects: So far we have evaluated DDS
when the target object classes appear frequently in video, but an
advantage of DDS is that it saves more bandwidth when the server-
side DNN only detects particular objects and these objects appear
less frequently. To show it, we change the segmentation task from
detecting all objects to detecting only motorcyles. Figure 13 shows
the DDS’s bandwidth savings (when achieving same or higher ac-
curacy than AWStream) on three traffic videos in which motorcyles
do appear but only in a small fraction of frames, and compare the
bandwidth savings with those when the task is over all classes.
DDS’s gains are more significant when only motorcyles are the
target objects, and the gains are higher when the motorcyles take a
smaller fraction of pixels and frames (e.g., Video 2).
Impact of DNN architecture: Last but not least, we test different
DNN architectures on a randomly-selected traffic video (5-minute
long). We find that DDS achieves substantial bandwidth savings
under different server-side DNN models: FasterRCNN-ResNet101
(44%) and FasterRCNN-ResNet50 [20] (54%) has the same architec-
ture but different feature extractors, while Yolo [66] (51%) uses a
different architecture and feature extractor (§3.2). This implies that
the benefit of DDS is agnostic to the server-side DNN architecture.
We leave a full examination of different DNN architectures (e.g.,
MaskRCNN [39]) to future work.

5.4 Sensitivity to network settings
Accuracy vs. available bandwidth: We then vary the available
bandwidth and compareDDSwithAWStream,which is performance-
wise the closest baseline. Figure 14 shows that given different avail-
able bandwidth, DDS can adapt its configurations to cope with

(a) Object detection (b) Semantic segmentation

Figure 14: DDS outperforms AWStream (the closest baseline) in
accuracy under various bandwidth consumption budgets.

375 400 450 500
Bandwidth (kbps)

0

1

2

3

St
re

am
in

g
de

la
y

(s
)

DDS
AWStream

(a) Bandwidth vs. streaming delay

10 45 60 90 120
Network latency (ms)

0

1

2

3

St
re

am
in

g
de

la
y

(s
)

DDS
AWStream

(b) Latency vs. streaming delay

Figure 15: The response delay of AWStream, camera-only approach
and DDS with respect to different network bandwidth and network
latency. DDS is more sensitive to network latency.

them while achieving higher accuracy. We notice that the accuracy
of semantic segmentation is lower than that of object detection
(i.e., the segmentation model is more sensitive to quality degrada-
tion). We speculate that this is because the segmentation accuracy
is highly sensitive to the pixels around the object edges, which tend
to be modified with slight quality degradation (this effect seems
more pronounced when small objects are close to each other).
Impact of network bandwidth and latency: Figure 15a shows
the impact of varying network bandwidth (while keeping the net-
work latency at 10ms) on the streaming delay of DDS and AW-
Stream. We ensure that the accuracy of DDS is always higher than
the accuracy of AWStream. We use Linux netem to vary the net-
work bandwidth and latency. We see that DDS has lower streaming
delay (i.e., less time is spent on the network) than AWStream. This
is because DDS sends less data over the network than AWStream
and many objects/pixels need only one iteration to be detected and
classified. Similarly, Figure 15b shows the impact of network latency
(while keeping the bandwidth at 500kbps) on the streaming delay of
DDS and AWStream. We see that when latency is over a threshold
(∼90ms in this experiment), DDS has higher streaming delay than
AWStream. This is because for those objects detected in Stream B,
they experience two iterations, which makes the streaming delay
of DDS more sensitive to long network latency than AWStream.
Impact of bandwidth variance: Figure 16 compares DDS with
AWStream under an increasing bandwidth variance. We use syn-
thetic network bandwidth traces to evaluate the impact of band-
width variance in a controlled manner. The available bandwidth of
this trace is drawn from a normal distribution of 900 ·𝑁 (1, 𝜎2)Kbps
while we increase 𝜎 from 0.1 to 0.9. We observe that DDS maintains
a higher accuracy than AWStream. Although DDS and AWStream
use the same bandwidth estimator (average of the last two seg-
ments), DDS uses the available bandwidth more efficiently because
DDS’s feedback control system continually adapts the model con-
figuration parameters to bandwidth. Thus, DDS adaptively selects
the best possible configuration parameters at each time instant.

Server-Driven Video Streaming for Deep Learning Inference SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

(a) Accuracy (b) Network delay

Figure 16: DDS can handle bandwidth variance and maintain a
sizeable gain over the baseline of AWStream even under substantial
bandwidth fluctuation.

(a) Network trace 1 (b) Network trace 2

Figure 17: Impact of available bandwidth on performance under
re-scaled real network trace.

Even when the variance in available bandwidth is high (𝜎 > 0.7),
DDS maintains a relatively low response delay while AWStream’s
delay increases.
Under real network traces: Next, Figure 17 evaluates DDS against
AWStream on two real network traces [1]. Since the available band-
width in the traces on average exceeds the bandwidth needed to
stream the original video, we stress-test DDS by scaling the available
bandwidth by a constant factor to mimic settings where multiple
cameras share the bottleneck bandwidth (TCP-induced variances
are ignored). In particular, we scale the average bandwidth of trace
to 1,100kbps and 600kbps, while retaining the relative bandwidth
variance in the trace. We can see DDS consistently achieves higher
accuracy under different mean available bandwidth.
Impact of parameter settings: Figure 18 shows the impact of key
parameters of DDS on its accuracy/bandwidth tradeoffs: the QP in
Stream A (“low QP”), the QP in Stream B (“high QP”), the objectness
threshold, and the number of feedback regions (i.e., the 𝑘 introduced
in §3.2). We vary one parameter at a time and test them on the
same set of traffic videos. The figures show that by varying these
parameters, we can flexibly trade accuracy for bandwidth usage.
Overall, their effect roughly falls on the same Pareto boundary,
so there may not be significant difference between the choices of
parameters to vary when coping with bandwidth fluctuation.
5.5 System microbenchmarks
Camera-side and server-side overheads: Figure 19 compares
the systems overheads of DDS with the baselines. We benchmark
their performance on our server, with one RTX 2080 Super and
one 16-core Intel Xeon Silver 4100. We scale the CPU and GPU
usage by normalizing their runtime (e.g., 2x runtime on the same
number of fully used CPUs will be translated to 2xmore CPU usage).
Figure 19 shows that compared to AWStream (when the profiling
cost is excluded), DDS has 2x more overheads at both client-side

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275
Normalized bandwidth consumption

0.65
0.70
0.75
0.80
0.85

Ac
cu

ra
cy

objectness thresh.
low QP
high QP

(a) Object detection

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
Normalized bandwidth consumption

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

of feedback regions
low QP

(b) Semantic segmentation

Figure 18: Sensitivity analysis of DDS’s parameters. By varying these
parameters, DDS can flexibly adapt itself to reach desirable accuracy
for a given bandwidth constraint.

0

50

100

150

GP
U

us
ag

e
(%

)

AWStream profile
AWStream w/o profile
DDS
Glimpse
Vigil

(a) Server GPU

0

200

400

600

800

CP
U

us
ag

e
(%

)

DDS
AWStream w/o profile
AWStream profile

(b) Server CPU

0

200

400

600

800

1000

CP
U

us
ag

e
(%

)

AWStream
DDS
Glimpse
Vigil

(c) Client CPU

Figure 19: Compared to prior solutions, DDS has low additional
systems overhead on both client and server.

Figure 20: DDS can handle server disconnection (or server failure)
gracefully by falling back to client-side logic

CPU (the CPU usage may exceed 100% since it may leverage more
than one CPU cores), server-side CPU and server-side GPU. This
is because DDS invokes extra encoding, decoding and inference
costs in Stream B. However, the profiling cost of AWStream is
a substantial server-side CPU and GPU costs. We estimate it by
profiling 30 configurations (compared to 216 claimed in [78]) over
a 10-second video every 4 minutes (which is much less often than
profiling a 30-second video every 2 minutes as used in [78]), the
server-side CPU and GPU costs of AWStream have already become
higher than DDS. That said, we acknowledge that if AWStream
updates the profile less frequently (e.g., every tens of minutes),
its GPU usage could be lower than DDS, but that might cause its
profile to be out of date and less accurate. On the server side, both
Vigil and Glimpse incur minimal CPU overheads (since they do not
need to decode the video) and much less GPU overheads than DDS
and AWStream (since their camera-side logics reduce the need for
server-side inference).
Fault tolerance: We stress test DDS with temporary server-side
disconnection. By default, the camera runs DDS protocol, and it also
has a local object tracking algorithm as a backup. Figure 20 shows
the time-series of response delay and accuracy. First, DDSmaintains
a desirable accuracy, but at 𝑡 = 5 second, the server is disconnected.
We see that DDS waits for a short time (until server times out at
𝑡 = 5.5) and falls back to tracking the last detection results from
the server DNN. This allows for a graceful degradation in accuracy,
rather than crashing or delaying the inference indefinitely. Between
the server disconnection and the timeout, the segments will be
placed in a queue, and when the local inference begins, the queue

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, J. Jiang

0

2000

4000

6000

8000

Ba
nd

wi
dt

h
 C

on
su

m
pt

io
n

(K
bp

s) Seperate regions
Black-bkgd frames
Black-bkgd video

(a) Reducing bandwidth usage by
smarter encoding

0.0

0.5

1.0

1.5

2.0

Re
sp

on
se

 d
el

ay
 (s

) DDS w/o early reporting
DDS w/ early reporting
AWStream

(b) Reducing response delay by early
reporting

Figure 21: System refinements to (a) reduce Stream B bandwidth and
(b) reduce response delay (both of them are introduced in §4.2).

will be gradually cleaned up. When the server is back online (at
𝑡 = 13), the camera will be notified with at most a segment-worth
of delay (0.5 second), and begin to use the regular DDS protocol
to resume video analytics. Meanwhile the camera will continue to
send a liveness probe every video segment.
Performance optimization: Figure 21 examines two performance
refinements. First, figure 21(a) shows that (1) putting the proposed
regions on a black background frame yields about 2× bandwidth
savings over encoding each region separately; and (2) compressing
these frames in an mp4-format leads to another 10× bandwidth
savings. Second, figure 21(b) shows that returning the first-iteration
output (i.e., the high-confidence results in Stream A before Stream
B starts), we reduce the average response delay by about ∼ 40%.

6 RELATEDWORK
We discuss the most closely related work in three categories.
Video analytics systems: The need to scale video analytics has
sparked much systems research: DNN sharing (e.g., [42, 44]), re-
source allocation (e.g., [52, 79]), vision model cascades (e.g., [48, 71]),
efficient execution frameworks (e.g., [51, 58, 64]), as well as cam-
era/edge/cloud collaboration (e.g., [30, 32, 54, 63, 72, 76, 78, 80],
see §2.3 for a detailed discussion) or multi-camera collaboration
(e.g., [43, 45]). The most related work to DDS is AWStream [78]
which shares with DDS the ethos of using a server DNN-generated
profile. The key distinction is that such feedback is not real-time
video content, so it cannot zoom in on specific regions on the cur-
rent frames. Vigil [80] sends cropped regions, but it is bottlenecked
by the camera computing power (See §2.3). DDS shares the concept
of server-driven streaming with its own preliminary design [63]
and the partially server-driven solutions [30, 54]. But it is the first
solution that achieves high accuracy (by correcting objects mis-
labeled and missed by the low-quality video or the camera-side
model) in multiple vision tasks and DNN models, and fully utilizes
the video streaming codec to minimize bandwidth usage.
Vision applications: Computer vision and deep learning have a
substantial body of research (e.g., [34, 47, 56, 65, 67, 68, 77]). Recent
works on video object detection show it is inefficient to apply object
detection DNN frame by frame; instead it should be augmented
by tracking [41] (similar to §4.2) or by a temporal model such as
LSTM [53, 55]. This work complements DDS by designing new,
server-side deep learning models. DDS’s distinctive advantage is
that it explicitly optimizes the bandwidth/accuracy tradeoffs in a
way that is largely agnostic to the server-side DNN.
Internet video encoding/streaming: Recent innovations in video
encoding have provided better compression gains (e.g., [33]). The

closest efforts to DDS are scalable video coding [62] and region-
of-interest (ROI) encoding [59]. However, these approaches opti-
mize human-perceived quality. Scalable video coding can utilize
the bandwidth more efficiently than traditional encoding methods,
but it still compresses video uniformly in its entirety. ROI encod-
ing requires the viewer to specify the region of interest, and a
recent proposal [54] uses the region-proposal network (RPN) to
generate ROI regions. Much work on adaptive bitrate streaming
(e.g., [35, 46, 50, 70]) has focused on adapting the bitrate of pre-
coded video chunks to bandwidth fluctuation, but less on adapting
encoding to the dynamic video content as DDS does.

7 LIMITATIONS AND DISCUSSION
Strict server-side resource budget: In some sense, DDS reduces
bandwidth usage at the expense of relying on server-side DNN to
run inference more than once per frame. Similar tradeoffs can be
found in AWStream, which triggers costly reprofiling periodically,
and CloudSeg, which enforces an upfront super-resolution model
customization process. All these techniques may not be directly
applicable where server resources have strict budgets or GPU cost
is proportional to its usage (e.g., cloud instances).
Implication to privacy: Privacy is an emerging concern in video
analytics [75]. While DDS does not explicitly preserve privacy, it
is amenable to privacy-preserving techniques. Since DDS does not
send out full resolution video, it could be repurposed to denature
videos before sending only a part of the video to the server.
Edge AI accelerators: Though DDS makes minimal assumption
on camera’s local computation capacity, it benefits from the trend
of more accelerators being added on edge devices, by using camera-
side heuristics as described in §4.2. We also envision DDS running
alongside the camera local analytics to share the workload and pro-
vide higher inference accuracy with minimal bandwidth overheads.

8 CONCLUSION
Video streaming has been a driving application of networking re-
search. This work argues that the emerging AI applications inspire a
paradigm shift away from the traditional source-driven approach to
video streaming. We have developed a concrete DNN-driven design,
called DDS, that exploits opportunities unique to deep learning ap-
plications: (1) unlike user QoE, video inference accuracy depends
less on pixels than on what is in the video, and (2) deep learning
models offers extra information that helps us decide how video
should be encoded/streamed. We believe that the development of
such video streaming protocols will significantly impact not only
video analytics, but also the future analytics stack of many dis-
tributed AI applications.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd Paolo Costa.
In this project, Junchen Jiang and Kuntai Du are supported by NSF
(CNS-1901466). Junchen Jiang is also supported by Google Faculty
Research Award. Moreover, Ahsan Pervaiz and Henry Hoffmann
are supported by NSF (CCF-1439156, CNS-1526304, CCF-1823032,
CNS-1764039), ARO (W911NF1920321), DOE (DESC0014195 0003),
and DARPA BRASS program.

Server-Driven Video Streaming for Deep Learning Inference SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

REFERENCES
[1] 4g/lte bandwidth logs. http://users.ugent.be/~jvdrhoof/dataset-4g/.
[2] Are we ready for ai-powered security cameras? https://thenewstack.io/

are-we-ready-for-ai-powered-security-cameras/.
[3] At&t unlimited data plans with talk & text. https://www.att.com/plans/

unlimited-data-plans/. (Accessed on 06/15/2020).
[4] Benchmarking videos used in dds. https://github.com/KuntaiDu/dds.
[5] Can 30,000 cameras help solve chicago’s crime problem? https://www.nytimes.

com/2018/05/26/us/chicago-police-surveillance.html.
[6] Cloud-based video analytics as a service of 2018. https://www.asmag.com/

showpost/27143.aspx.
[7] Dashjs. https://github.com/Dash-Industry-Forum/dash.js.
[8] Dds: Machine-centric video streaming. https://github.com/KuntaiDu/dds.
[9] Faster r-cnn on jetson tx2. https://jkjung-avt.github.io/faster-rcnn/. Accessed:

7/3/2020.
[10] Fastest wireless network in 2020: We tested 8 carriers to crown a winner | tom’s

guide. https://www.tomsguide.com/us/best-mobile-network,review-2942.html.
(Accessed on 06/15/2020).

[11] Gpus pricing | compute engine documentation | google cloud. https://cloud.
google.com/compute/gpus-pricing. (Accessed on 06/21/2020).

[12] How ai based video analytics is benefiting retail industry. https://www.
lanner-america.com/blog/ai-based-video-analytics-benefiting-retail-industry/.

[13] Hp r0w29a tesla t4 graphic card - 1 gpus - 16 gb. https://www.amazon.com/
HP-R0W29A-Tesla-Graphic-Card/dp/B07PGY6QPT/. Accessed: 2020-1-29.

[14] Insightface: 2d and 3d face analysis project. https://github.com/deepinsight/
insightface.

[15] Jetson tx2. https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/jetson-tx2/. Accessed: 7/3/2020.

[16] Nvidia deep learning inference technical overview, table “jetson tx2 (maxq mode)”
at row resnet50 batch size 128. http://www.nextplatform.com/wp-content/
uploads/2018/01/inference-technical-overview-1.pdf. Accessed: 7/3/2020.

[17] Nvidia tesla deep learning product performance (table “t4 inference per-
formance” at row resnet50 batch size 128). https://developer.nvidia.com/
deep-learning-performance-training-inference. Accessed: 7/3/2020.

[18] Official implementation of efficient cascading residual network for sr. https:
//github.com/nmhkahn/CARN-pytorch.

[19] Smraza raspberry pi 4 camera module 5 megapixels 1080p. https://www.amazon.
com/Smraza-Raspberry-Megapixels-Adjustable-Fish-Eye/dp/B07L2SY756/. Ac-
cessed: 2020-1-29.

[20] Tensorflow detection model zoo. https://github.com/tensorflow/models/blob/
master/research/object_detection/g3doc/detection_model_zoo.md.

[21] Video meets the internet of things. https://www.mckinsey.com/industries/
high-tech/our-insights/video-meets-the-internet-of-things.

[22] Video surveillance: How technology and the cloud is disrupting the market. https:
//cdn.ihs.com/www/pdf/IHS-Markit-Technology-Video-surveillance.pdf.

[23] Vision meets drones: A challenge. http://www.aiskyeye.com/.
[24] Wi-fi vs. cellular: Which is better for iot? https://www.verypossible.com/blog/

wi-fi-vs-cellular-which-is-better-for-iot.
[25] x264 open source video lan. https://www.videolan.org/developers/x264.html.
[26] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast, accurate, and light-

weight super-resolution with cascading residual network. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 252–268, 2018.

[27] Ganesh Ananthanarayanan, Victor Bahl, Peter Bodik, Krishna Chintalapudi,
Matthai Philipose, Lenin Ravindranath Sivalingam, and Sudipta Sinha. Real-time
video analytics - the killer app for edge computing. IEEE Computer, October 2017.

[28] S. Barati, F. A. Bartha, S. Biswas, R. Cartwright, A. Duracz, D. Fussell, H. Hoffmann,
C. Imes, J. Miller, N. Mishra, Arvind, D. Nguyen, K. V. Palem, Y. Pei, K. Pingali,
R. Sai, A. Wright, Y. Yang, and S. Zhang. Proteus: Language and runtime support
for self-adaptive software development. IEEE Software, 36(2):73–82, March 2019.

[29] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander
Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers.
arXiv preprint arXiv:2005.12872, 2020.

[30] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari
Balakrishnan. Glimpse: Continuous, real-time object recognition on mobile
devices. In Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems, pages 155–168. ACM, 2015.

[31] Ting-Wu Chin, Ruizhou Ding, and Diana Marculescu. Adascale: Towards real-
time video object detection using adaptive scaling. arXiv preprint arXiv:1902.02910,
2019.

[32] Sandeep P Chinchali, Eyal Cidon, Evgenya Pergament, Tianshu Chu, and Sachin
Katti. Neural networks meet physical networks: Distributed inference between
edge devices and the cloud. In Proceedings of the 17th ACM Workshop on Hot
Topics in Networks, pages 50–56. ACM, 2018.

[33] High Efficiency Video Coding and ITUT Rec. H. 265 and iso, 2013.
[34] Jiankang Deng, Jia Guo, Xue Niannan, and Stefanos Zafeiriou. Arcface: Additive

angular margin loss for deep face recognition. In CVPR, 2019.

[35] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Ganjam,
Jibin Zhan, and Hui Zhang. Understanding the impact of video quality on user
engagement. In ACM SIGCOMM Computer Communication Review, volume 41,
pages 362–373. ACM, 2011.

[36] John Emmons, Sadjad Fouladi, Ganesh Ananthanarayanan, Shivaram Venkatara-
man, Silvio Savarese, and Keith Winstein. Cracking open the dnn black-box:
Video analytics with dnns across the camera-cloud boundary. In Proceedings of
the 2019 Workshop on Hot Topics in Video Analytics and Intelligent Edges, pages
27–32, 2019.

[37] Antonio Filieri, Henry Hoffmann, and Martina Maggio. Automated design of
self-adaptive software with control-theoretical formal guarantees. In Proceedings
of the 36th International Conference on Software Engineering, ICSE 2014, pages
299–310, New York, NY, USA, 2014. ACM.

[38] Shilpa George, Junjue Wang, Mihir Bala, Thomas Eiszler, Padmanabhan Pillai,
and Mahadev Satyanarayanan. Towards drone-sourced live video analytics for
the construction industry. In Proceedings of the 20th International Workshop on
Mobile Computing Systems and Applications, pages 3–8. ACM, 2019.

[39] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision, pages
2961–2969, 2017.

[40] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. High-speed
tracking with kernelized correlation filters. IEEE transactions on pattern analysis
and machine intelligence, 37(3):583–596, 2014.

[41] Congrui Hetang, Hongwei Qin, Shaohui Liu, and Junjie Yan. Impression network
for video object detection. https://arxiv.org/pdf/1712.05896.pdf, Dec 2017.

[42] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodik, Leana Golubchik,
Minlan Yu, Paramvir Bahl, and Matthai Philipose. Videoedge: Processing camera
streams using hierarchical clusters. In 2018 IEEE/ACM Symposium on Edge
Computing (SEC), pages 115–131. IEEE, 2018.

[43] Samvit Jain, Ganesh Ananthanarayanan, Junchen Jiang, Yuanchao Shu, and
Joseph E. Gonzalez. Scaling Video Analytics Systems to Large Camera Deploy-
ments. In ACM HotMobile, 2019.

[44] Angela H Jiang, Daniel L-K Wong, Christopher Canel, Lilia Tang, Ishan Misra,
Michael Kaminsky, Michael A Kozuch, Padmanabhan Pillai, David G Andersen,
and Gregory R Ganger. Mainstream: Dynamic stem-sharing for multi-tenant
video processing. In 2018 USENIX Annual Technical Conference (USENIX ATC 18),
pages 29–42, 2018.

[45] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and Ion
Stoica. Chameleon: scalable adaptation of video analytics. In Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communication, pages
253–266. ACM, 2018.

[46] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving fairness, efficiency, and sta-
bility in http-based adaptive video streaming with festive. IEEE/ACM Transactions
on Networking (ToN), 22(1):326–340, 2014.

[47] Kinjal A Joshi and Darshak G Thakore. A survey on moving object detection and
tracking in video surveillance system. International Journal of Soft Computing
and Engineering, 2(3):44–48, 2012.

[48] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia.
Noscope: optimizing neural network queries over video at scale. Proceedings of
the VLDB Endowment, 10(11):1586–1597, 2017.

[49] D. H. K. Kim, C. Imes, and H. Hoffmann. Racing and pacing to idle: Theoretical
and empirical analysis of energy optimization heuristics. In ICCPS, 2015.

[50] S Shunmuga Krishnan and Ramesh K Sitaraman. Video stream quality impacts
viewer behavior: inferring causality using quasi-experimental designs. IEEE/ACM
Transactions on Networking, 21(6):2001–2014, 2013.

[51] Sanjay Krishnan, Adam Dziedzic, and Aaron J Elmore. Deeplens: Towards a
visual data management system. arXiv preprint arXiv:1812.07607, 2018.

[52] Robert LiKamWa and Lin Zhong. Starfish: Efficient concurrency support for
computer vision applications. In Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services, pages 213–226. ACM,
2015.

[53] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift module for efficient video
understanding. In Proceedings of the IEEE International Conference on Computer
Vision, pages 7083–7093, 2019.

[54] Luyang Liu, Hongyu Li, and Marco Gruteser. Edge assisted real-time object de-
tection for mobile augmented reality. In The 25th Annual International Conference
on Mobile Computing and Networking, pages 1–16, 2019.

[55] Mason Liu and Menglong Zhu. Mobile video object detection with temporally-
aware feature maps. https://arxiv.org/pdf/1711.06368.pdf, Mar 2018.

[56] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song.
Sphereface: Deep hypersphere embedding for face recognition. In CVPR, pages
6738–6746, 2017.

[57] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-
works for semantic segmentation. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 3431–3440, 2015.

[58] Yao Lu, Aakanksha Chowdhery, and Srikanth Kandula. Optasia: A relational
platform for efficient large-scale video analytics. In Proceedings of the Seventh
ACM Symposium on Cloud Computing, pages 57–70. ACM, 2016.

http://users.ugent.be/~jvdrhoof/dataset-4g/
https://thenewstack.io/are-we-ready-for-ai-powered-security-cameras/
https://thenewstack.io/are-we-ready-for-ai-powered-security-cameras/
https://www.att.com/plans/unlimited-data-plans/
https://www.att.com/plans/unlimited-data-plans/
https://github.com/KuntaiDu/dds
https://www.nytimes.com/2018/05/26/us/chicago-police-surveillance.html
https://www.nytimes.com/2018/05/26/us/chicago-police-surveillance.html
https://www.asmag.com/showpost/27143.aspx
https://www.asmag.com/showpost/27143.aspx
https://github.com/Dash-Industry-Forum/dash.js
https://github.com/KuntaiDu/dds
https://jkjung-avt.github.io/faster-rcnn/
https://www.tomsguide.com/us/best-mobile-network,review-2942.html
https://cloud.google.com/compute/gpus-pricing
https://cloud.google.com/compute/gpus-pricing
https://www.lanner-america.com/blog/ai-based-video-analytics-benefiting-retail-industry/
https://www.lanner-america.com/blog/ai-based-video-analytics-benefiting-retail-industry/
https://www.amazon.com/HP-R0W29A-Tesla-Graphic-Card/dp/B07PGY6QPT/
https://www.amazon.com/HP-R0W29A-Tesla-Graphic-Card/dp/B07PGY6QPT/
https://github.com/deepinsight/insightface
https://github.com/deepinsight/insightface
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
http://www.nextplatform.com/wp-content/uploads/2018/01/inference-technical-overview-1.pdf
http://www.nextplatform.com/wp-content/uploads/2018/01/inference-technical-overview-1.pdf
https://developer.nvidia.com/deep-learning-performance-training-inference
https://developer.nvidia.com/deep-learning-performance-training-inference
https://github.com/nmhkahn/CARN-pytorch
https://github.com/nmhkahn/CARN-pytorch
https://www.amazon.com/Smraza-Raspberry-Megapixels-Adjustable-Fish-Eye/dp/B07L2SY756/
https://www.amazon.com/Smraza-Raspberry-Megapixels-Adjustable-Fish-Eye/dp/B07L2SY756/
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://www.mckinsey.com/industries/high-tech/our-insights/video-meets-the-internet-of-things
https://www.mckinsey.com/industries/high-tech/our-insights/video-meets-the-internet-of-things
https://cdn.ihs.com/www/pdf/IHS-Markit-Technology-Video-surveillance.pdf
https://cdn.ihs.com/www/pdf/IHS-Markit-Technology-Video-surveillance.pdf
http://www.aiskyeye.com/
https://www.verypossible.com/blog/wi-fi-vs-cellular-which-is-better-for-iot
https://www.verypossible.com/blog/wi-fi-vs-cellular-which-is-better-for-iot
https://www.videolan.org/developers/x264.html
https://arxiv.org/pdf/1712.05896.pdf
https://arxiv.org/pdf/1711.06368.pdf

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, J. Jiang

[59] Marwa Meddeb. Region-of-interest-based video coding for video conference appli-
cations. PhD thesis, Telecom ParisTech, 2016.

[60] Nikita Mishra, Connor Imes, John D. Lafferty, and Henry Hoffmann. CALOREE:
learning control for predictable latency and low energy. In ASPLOS, 2018.

[61] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual
attention. In Advances in neural information processing systems, pages 2204–2212,
2014.

[62] J-R Ohm. Advances in scalable video coding. Proceedings of the IEEE, 93(1):42–56,
2005.

[63] Chrisma Pakha, Aakanksha Chowdhery, and Junchen Jiang. Reinventing video
streaming for distributed vision analytics. In 10th USENIXWorkshop on Hot Topics
in Cloud Computing (HotCloud 18), Boston, MA, July 2018. USENIX Association.

[64] Alex Poms, Will Crichton, Pat Hanrahan, and Kayvon Fatahalian. Scanner:
Efficient video analysis at scale. ACM Transactions on Graphics (TOG), 37(4):1–13,
2018.

[65] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In CVPR, pages 779–788, 2016.

[66] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 7263–7271,
2017.

[67] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[68] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards
real-time object detection with region proposal networks. IEEE Trans. Pattern
Anal. Mach. Intell., 39(6):1137–1149, 2017.

[69] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
4510–4520, 2018.

[70] Michael Seufert, Sebastian Egger, Martin Slanina, Thomas Zinner, Tobias Hossfeld,
and Phuoc Tran-Gia. A survey on quality of experience of http adaptive streaming.
IEEE Communications Surveys & Tutorials, 17(1):469–492, 2015.

[71] Haichen Shen, Seungyeop Han, Matthai Philipose, and Arvind Krishnamurthy.
Fast video classification via adaptive cascading of deep models. arXiv preprint,

2017.
[72] Surat Teerapittayanon, Bradley McDanel, and HT Kung. Distributed deep neural

networks over the cloud, the edge and end devices. In Distributed Computing
Systems (ICDCS), 2017 IEEE 37th International Conference on, pages 328–339. IEEE,
2017.

[73] Jilin Tu, Ana Del Amo, Yi Xu, Li Guari, Mingching Chang, and Thomas Sebas-
tian. A fuzzy bounding box merging technique for moving object detection. In
2012 Annual Meeting of the North American Fuzzy Information Processing Society
(NAFIPS), pages 1–6. IEEE, 2012.

[74] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in neural information processing systems, pages 5998–6008, 2017.

[75] Han Wang, Yuan Hong, Yu Kong, and Jaideep Vaidya. Publishing video data with
indistinguishable objects. In Proceedings of the 22nd International Conference on
Extending Database Technology (EDBT), 2020.

[76] Yiding Wang, Weiyan Wang, Junxue Zhang, Junchen Jiang, and Kai Chen. Bridg-
ing the edge-cloud barrier for real-time advanced vision analytics. In 11th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 19), 2019.

[77] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A survey. Acm
computing surveys (CSUR), 38(4):13, 2006.

[78] Ben Zhang, Xin Jin, Sylvia Ratnasamy, John Wawrzynek, and Edward A Lee.
Awstream: Adaptive wide-area streaming analytics. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication, pages
236–252. ACM, 2018.

[79] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,
Paramvir Bahl, and Michael J Freedman. Live video analytics at scale with
approximation and delay-tolerance. In NSDI, volume 9, page 1, 2017.

[80] Tan Zhang, Aakanksha Chowdhery, Paramvir Victor Bahl, Kyle Jamieson, and
Suman Banerjee. The design and implementation of a wireless video surveillance
system. In Proceedings of the 21st Annual International Conference on Mobile
Computing and Networking, pages 426–438. ACM, 2015.

[81] Tong Zhang, Fengyuan Ren, Wenxue Cheng, Xiaohui Luo, Ran Shu, and Xi-
aolan Liu. Modeling and analyzing the influence of chunk size variation on
bitrate adaptation in dash. In IEEE INFOCOM 2017-IEEE Conference on Computer
Communications, pages 1–9. IEEE, 2017.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Video streaming for video analytics
	2.2 Design space of video analytics systems
	2.3 Potential room for improvement
	2.4 Preliminary comparison of existing solutions
	2.5 Sources of the limitations

	3 DNN-Driven Video Streaming
	3.1 Overall workflow
	3.2 Feedback regions
	3.3 Handling bandwidth variation
	3.4 Design rationale and performance analysis

	4 Implementation
	4.1 DDS Interface
	4.2 Optimization

	5 Evaluation
	5.1 Methodology
	5.2 End-to-end improvements
	5.3 Sensitivity to application settings
	5.4 Sensitivity to network settings
	5.5 System microbenchmarks

	6 Related work
	7 Limitations and discussion
	8 Conclusion
	Acknowledgments
	References

