
ApproximateQuery Service on Autonomous IoT Cameras
Mengwei Xu∗
Peking University
mwx@pku.edu.cn

Xiwen Zhang
Purdue ECE

zhan2977@purdue.edu

Yunxin Liu
Microsoft Research

yunxin.liu@microsoft.com

Gang Huang
Peking University
hg@pku.edu.cn

Xuanzhe Liu†
Peking University
xzl@pku.edu.cn

Felix Xiaozhu Lin
Purdue ECE

xzl@purdue.edu

ABSTRACT
Elf is a runtime for an energy-constrained camera to continuously
summarize video scenes as approximate object counts. Elf’s nov-
elty centers on planning the camera’s count actions under energy
constraint. (1) Elf explores the rich action space spanned by the
number of sample image frames and the choice of per-frame ob-
ject counters; it unifies errors from both sources into one single
bounded error. (2) To decide count actions at run time, Elf employs
a learning-based planner, jointly optimizing for past and future
videos without delaying result materialization. Tested with more
than 1,000 hours of videos and under realistic energy constraints,
Elf continuously generates object counts within only 11% of the
true counts on average. Alongside the counts, Elf presents narrow
errors shown to be bounded and up to 3.4× smaller than competi-
tive baselines. At a higher level, Elf makes a case for advancing the
geographic frontier of video analytics.

CCS CONCEPTS
• Computer systems organization → Embedded systems; •
Information systems→ Data analytics.

KEYWORDS
Video Analytics; IoT Cameras; Approximate Query
ACM Reference Format:
Mengwei Xu, Xiwen Zhang, Yunxin Liu, Gang Huang, Xuanzhe Liu, and Fe-
lix Xiaozhu Lin. 2020. Approximate Query Service on Autonomous IoT Cam-
eras. In The 18th Annual International Conference on Mobile Systems, Applica-
tions, and Services (MobiSys ’20), June 15–19, 2020, Toronto, ON, Canada.ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3386901.3388948

1 INTRODUCTION
A case for autonomous cameras Today’s IoT cameras and their
analytics mostly target urban and residential areas with ample
resources, notably electricity supply and network bandwidth. Yet,
∗Work performed while visiting Purdue
†Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7954-0/20/06. . . $15.00
https://doi.org/10.1145/3386901.3388948

Win 0

Objective: Min (mean CI width)

Next
horizon

Time

Sample frames

Aggregation

Per-frame counts

(b) A window(a) A horizon

(1) A counter
(2) # of frames

Count action
Win 1 Win 2

Energy budget

[450±40] [600±55] [50±15]

1

3

2

……

Figure 1: The target analytics and its execution. For simplic-
ity, only counts for one object class are shown.

video analytics has rich opportunities in more diverse environments
where cameras are “off grid” and connected with highly constrained
networks. These environments include construction sites, interstate
highways, underdeveloped regions, and farms. There, cameras must
be autonomous. First, they must be energy independent. Lacking
wired power supply, they typically operate on harvested energy, e.g.,
solar or wind [7, 14, 72]. Second, theymust be compute independent.
On low-power wide-area network where bandwidth is low (e.g.,
tens of Kbps [34]) or even intermittent, the cameras must execute
video analytics on device and emit only concise summaries to the
cloud. Section 2 will offer more evidence.
Target query: object counting As an initial effort to support an-
alytics on autonomous cameras, this work focuses on a key query
type: object counting with bounded errors. Inexpensive IoT cameras
produce large videos [19, 20]. To extract insights from video scenes,
a common approach is to summarize a scene with object counts.
This is shown in Figure 1: a summary consists of a stream of object
counts, one count for each video timespan called an aggregation
window. Object counting is already known vital in urban scenarios;
the use cases include counting customers in retailing stores for
better merchandise arrangement [65]; counting audiences in sports
events for avoiding crowd-related disasters [2, 62, 106]. Beyond ur-
ban scenarios, object counting further enables rich analytics: along
interstate highways, cameras estimate traffic from vehicle counts,
cheaper than deploying inductive loop detector [36, 69, 76, 89]; on
a large cattle farm, scattered cameras count cattle and therefore
monitor their distribution, more cost-effective than livestock wear-
ables [5, 13, 47]; in the wilderness, cameras count animals to track
their behaviors [55, 78, 81, 95].
Elf and its operation This paper presents Elf, a runtime for an
autonomous camera to produce error-bounded object counts with
frugal resources, especially limited energy. The counts are anno-
tated with confidence intervals (CIs) as shown in Figure 1. CI is a

ar
X

iv
:1

90
9.

00
84

1v
4

 [
cs

.D
B

]
 5

 M
ay

 2
02

0

https://doi.org/10.1145/3386901.3388948
https://doi.org/10.1145/3386901.3388948

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Mengwei Xu, Xiwen Zhang, Yunxin Liu, Gang Huang, Xuanzhe Liu, and Felix Xiaozhu Lin

common notion in approximate query processing (AQP) [32, 33, 41,
45, 49, 104]. A narrower CI suggests higher confidence in the count,
hence more useful to users.

Elf builds atop periodic energy budgets, an abstraction commonly
provided by existing energy-harvesting OSes [52, 96]. As illustrated
in Figure 1, at fixed time intervals of a horizon (e.g., one day), the
OS replenishes energy budget to be used by Elf in the next horizon.
With given energy budget, Elf periodically wakes up the camera
to capture video frames (1); it runs neural network (NN) object
counters on each captured frame (2); by aggregating per-frame
object counts, Elf materializes a per-window aggregated object
count for each window (3); Elf emits the sequence of aggregated
counts by uploading them to the cloud either in real time or upon
user request.
The central problem: count planning The theme of Elf is to pro-
duce aggregated object counts with high confidence under limited
energy. Elf’s operational objective for a horizon H is to maximize
the overall confidence in all the emitted aggregated counts belong-
ing to H while respecting the energy budget for H . This is shown
in Figure 1(a).

The above theme sets Elf apart from various visual analytics
systems [56, 58, 60, 97, 101, 102, 107]. While prior systems focused
on per-object results (e.g., accurate object labels), Elf takes one
step further: it directly addresses the need for statistical summaries
of videos, optimizing for aggregated counts with narrow errors.
As a result, while prior systems focused on tradeoffs inherent in
vision operators, Elf exploits higher-order tradeoffs between frame
quantities and errors in per-frame counts. Its design thus has two
unique aspects.
(1) Perwindow: characterizing count actions and outcome Of
an aggregation windoww , Elf navigates in a large space of count
actions: it not only chooses the number of sampled frames but also
chooses an NN, i.e., a counter, to count objects on individual frames.
This is shown in Figure 1(b). For the window w , different count
actions lead to disparate confidences in the aggregated count as well
as disparate energy expenditures. There is no silver-bullet action.
Notably, a more energy-expensive counter does not necessarily lead
to higher confidence: while per-frame counts have lower errors, Elf
can afford to process fewer frames, leading to lower confidence in
the aggregated count.

Among all possible count actions forw , which ones should Elf
consider? Our answer is an energy/CI front – all the count actions
that lead to the narrowest CIs at different energy expenditure levels.
To quantify the energy/CI front, Elf integrates as one unified CI
two errors: i) Elf sampling frames rather than processing all possi-
ble frames; ii) per-frame counts being inexact. Prior AQP systems
addressed the former [32, 33, 45] but never the two integrated to
our knowledge. Elf unifies the two errors with novel modeling and
approximation, as will be discussed in Section 5.
(2) Across windows: making joint count decisions on the go
Of a windoww , the energy/CI front reflects the confidence return
from Elf’s energy investment. As we will empirically show, windows
often have different energy/CI fronts. As a result, investing the
same amount of energy on different windows yields disparate CIs
in their respective object counts. As Elf’s objective is to maximize
the overall confidence for a horizon, it must decide heterogeneous

count actions for windows jointly, e.g., to invest more energy on
windows where CI width sees more substantial reduction.

To do so, Elf addresses a dilemma between the needs for global
knowledge and for timely decisions: i) to decide the optimal count
action for a windoww , Elf must compare the energy/CI fronts of
all windows in the horizon; ii) to timely materialize the aggregated
count of w , Elf must decide the count action for w without see-
ing future windows. To this end, Elf predicts the action count for
each upcoming window based on the observation of past windows.
Based on reinforcement learning, Elf mimics what an oracle plan-
ner, which (impractically) knows a horizon’s all past and future
windows, would decide.

Elf runs on off-the-shelf embedded hardware. Our tests on over
1,000-hour real-world videos demonstrate Elf’s efficacy: with the
energy level of a small solar panel, Elf continuously produces ag-
gregated object counts that are only within 11% of the truth counts.
At 95% confidence level, the CI widths are as narrow as 17% on
average. We make the following contributions.
• The design space: We explore object counting on autonomous,
energy-constrained cameras. We identify the central design prob-
lem: characterizing count actions and choosing them at run time.

• The problem formulation: From the large space of count actions,
we formulate an energy/CI front as the viable actions a camera
should consider. To quantify the front, we propose novel techniques
for unifying errors from multiple sources into a single CI.

• The runtime mechanisms: To plan count actions at run time, we
design a novel, learning-based planner, which mimics the decisions
made by an oracle under the same observation of past videos.

• The implementation: We report a prototype Elf. Running on com-
modity hardware and with energy from a small solar panel, Elf
continuously produces video summaries with high confidence.

To our knowledge, Elf is the first software system executing video
object counting under energy constraint. Our experiences make a
case for advancing the geographic frontier of video analytics.

2 BACKGROUND
2.1 Autonomous Cameras
Compute: commodity SoCs Similar to commodity IoT cam-
eras [19, 20], autonomous cameras incorporate embedded applica-
tion processors, e.g., those with Armv7a or MIPS32 cores at a few
GHz and a few GBs of memory. We do not assume special-purpose
hardware for vision [7, 63], as their wide adoption remains to be
seen. The cameras run commodity OSes like Linux [15], which
supports POSIX apps and frameworks, e.g., TensorFlow.
Network In off-grid scenarios we target, low-power wide-area
networks (LPWAN) emerge as the norm [4]. One popular standard
is LoRaWAN [34]: engineered for long-range, low-power commu-
nications, it mandates deeply duty-cycled (<1%) transmissions with
data rate as low as a few Kbps [29]. Such networks motivate cam-
eras to upload concise video summaries only, e.g., object counts
over time windows. By contrast, uploading image frames (720P),
even one in every one minute (inadequate for deriving useful object
counts as our evaluation will show) would consume at least 40 Kbps
per camera [29], unsustainable on LPWAN.

ApproximateQuery Service on Autonomous IoT Cameras MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

Energy source A key parameter of our system is the typical range
of energy budgets. We use as a reference energy source a small
(20cm × 20cm) solar panel backed by a rechargeable energy buffer.
Such an energy harvester costs as low as $30, commonly seen in
embedded prototypes and production [1, 53].

In two ways, we estimate the daily energy budget available from
such an energy source. First, we measure the energy harvested by
our small solar panel in the Midwestern US as 12.6 – 20.5 Wh/day.
Second, we follow the prior studies on solar-powered embedded
systems [53] and their typical parameters: a solar panel rated at 5W,
an energy buffer as a supercapacitor of 60Wh, and solar irradiance of
2490 – 9629 Wh/m2/day (major US cities, according to the National
Solar Radiation Database [10]). The energy available for use is 12.45
– 48.15Wh/day. We conclude to design and evaluate Elf with energy
budgets in the range of 10 – 30 Wh/day.
Energy budgeting At run time, the camera OS allocates an energy
budget prior to each horizon. OS energy budgeting has been well
studied [51, 52, 92, 96] and is orthogonal to this work. In a nutshell,
it sets the horizon length to reflect periodic/temporal energy avail-
ability, e.g., one day; it allocates energy budgets in order to stay
energy neutral given future energy availability (e.g., sunlight in the
next few days). As such, the OS may set different energy budgets for
different horizons. With the OS-level energy budgeting, Elf neither
has to be the only application running on an autonomous camera
nor has to run one query only.

2.2 Video Summary via Object Counting
At camera deployment time or run time, a user specifies her analyt-
ics as a continuous query ⟨τ ,α ,K⟩:
• Aggregation window length (τ) defines the temporal granularity,
e.g., 30 mins, at which object counts are aggregated.

• Confidence level (α) specifies the desired probability of the query
answer covering the ground truth count, e.g., 95%. Based on the
desired probability Elf generates confidence interval (CI), a bounded
error widely adopted in analytics systems [32, 33, 41, 45, 49, 104].

• Object classes (K , optional). By default, the camera counts all the
object classes recognizable by modern vision object detectors (e.g.,
80 classes by YOLOv3 trained on COCO [64]). The user may narrow
down the counted classes to a subset C , e.g., cars and humans.

Elf answers a query with a stream of aggregated counts, {[µi, j ±
δi, j]}. In the sequence, each tuple corresponds to one window; µi, j
is the output aggregated count of object class j in window i; δi, j
is the CI width, which covers the true count with α probability.
For example, under α = 95% when Elf emits a count 1000 ± 100,
it indicates that the probability for the true count to fall in (900,
1100) is 95%. A smaller δ indicates higher confidence in the count,
making it more useful. Note that aggregation windows and CI
are well-known concepts used by popular analytics systems [32,
33]. Through further analysis, users may compose object counts
accompanied by CIs into higher-level statistical summaries that
describe trends in long videos, e.g., “there is a 90% probability that
cars crossing this intersection have doubled in the past week”.

Camera User

OS

Online Planner
Energy budgetsVideo

Frames
Counters Aggregation Summary

(as counts)

Query

O
ur

 sy
st

em Per-frame counts

Figure 2: The Elf architecture

2.3 Object Counters on Individual Frames
As described in §1, to derive the object count for a window, Elf first
counts objects on individual frames sampled from that window.
To count per-frame objects, we follow a common approach of exe-
cuting object detectors [18, 38, 48, 100]. The state-of-the-art object
detectors are neural networks (NN). We choose a set of generic,
popular detectors as listed in Table 3. Note that: i) We are aware
of object detectors specialized for particular videos [60] which are
compatible with our design. We motivate and validate our design
with generic, well-known detectors for ease of experiments and
result reproducibility. ii) We are aware of recent work using NN to
emit counts without first detecting objects [59]; we dismiss such an
approach due to its tedious per-video, per-class training and much
lower accuracy than object detectors observed in our experiments.

The wide selection of NN counters offers diverse energy/error
tradeoffs at the frame level. This is crucial, as no single counter can
yield the narrowest CIs for all the windows under a given energy
budget. For instance, YOLOv3, an expensive counter, incurs low error
in per-frame counts; however, with its high energy cost (e.g., ∼50J
per frame on an Arm device, see §6) the system can only afford
processing one frame in every 2 minutes (with a 10Wh/day budget),
which eventually leads to inferior CIs. We will show more evidence
in §3.

3 THE ELF DESIGN
Figure 2 shows the architecture of Elf. A user installs a query to
the camera either at the deployment time or over the air later. Elf
plans its execution in the scope of a horizon H .

3.1 System Operation
Energy expenditure Elf executes the query by respecting the
received energy budget for the horizon H . It spends the energy on
the following activities: (1) Ecap for capturing frames; (2) Ecount
for executing counters on frames; (3) Eaдд for deriving aggregated
counts; (4) Eupload for uploading the aggregated counts. The first
two activities dominate the Elf’s energy consumption (>99.9% as
we measured): in each window (e.g., 30 min), Elf acquires tens of
MB pixels from image sensors and runs several trillions of FLOPs.
Activities (1) (2) hence will be our focus. By comparison, the lat-
ter two consume negligible energy: (3) only incurs hundreds of
arithmetic operations per window and (4) only uploads concise
numerical counts no more than a few hundred bytes per window.

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Mengwei Xu, Xiwen Zhang, Yunxin Liu, Gang Huang, Xuanzhe Liu, and Felix Xiaozhu Lin

Count action For each window belonging to horizon H , Elf
picks the number of frames to sample and an object counter. For
the window, the action determines the confidence in the window’s
aggregated count and energy expenditure (including both Ecap
and Ecount). Note that Elf must run the same counter on all frame
samples from a window in order to integrate per-frame count error
in a tractable way (see §5 for details); from a window, it must draw
frame samples uniformly in time to avoid sampling bias [46].
Objective: overall confidence as mean CI width Operating un-
der the energy budget for H , Elf seeks to maximize the overall
confidence for H . Our implementation defines the overall confi-
dence as reciprocal to the mean of CI widths of the counts from
all the windows in H . Mean CI width is commonly used to char-
acterize the overall confidence in a set of aggregates [33]. Elf is
also compatible with alternative overall confidence metrics, such
as median and minmax of CI widths of all windows in H .

3.2 Count Action & Outcome
We next dive into the relation between the count action and the
outcome. To simplify discussion, we focus on counting for a single
object class (i.e., one aggregated count per window); yet the discus-
sion applies to multiple classes if we consider the mean CI width
over all the counted classes.

For a windoww :
⟨Nw , Cw ⟩︸ ︷︷ ︸

Action

→ < Ew , δw >︸ ︷︷ ︸
Outcome

where Nw is the counter choice andCw is the number of frames
to sample; Ew is the energy spent on the window (including both
Ecap and Ecount) and δw is the CI width for the aggregated count
of the window. For instance, Elf may execute an expensive counter
(e.g., a deeper NN) to produce more exact per-frame counts with
higher per-frame energy; or a cheaper counter (e.g., a shallower
NN) produces less exact counts with lower energy. Note that while
varying sample quantity is widely exploited by prior AQP systems,
varying per-sample errors (in our case, through the counter choice)
is a less explored opportunity as enabled by NNs.
The action/outcomeplot All possibleN×C combinations present
rich actions available to Elf. They are visualized in action/outcome
plots in Figure 3. On one plot, picking one counter (a curve in the
plot) and the number of sample frames (a point on the curvewith the
number annotated), Elf generates an aggregated count with specific
CI width (Y-axis) at energy consumption (X-axis). Along a given
curve, as sample number increases, CI width narrows, according to
sampling theory [46], and energy consumption increases. All such
plots for all windows in H form the basis for Elf to make count
decisions.
How to derive an action/outcome plot? For a specific window
w , the plot is determined by (1) the true object count inw ; (2) the
count variation during the course of w ; (3) the per-frame count
errors of candidate counters. §5 will present quantification details.
The design implications are as follows:
• No counter is silver bullet. For a given window, no single
counter (e.g. themost expensive or the cheapest ones) always results
in the narrowest CI. As exemplified in Figure 3 (left): when the
window’s energy expenditure is low (<0.5 kJ), cheap counters result

100

150

200

250

300

350

0 2 4

C
I W

id
th

39

55

72

88

58

101

321
394

980 1270 1560
519 673 827

Energy Consumption (KJ)

Energy/CI
front

100

150

200

250

300

350

0 2 4

YOLOv3

YOLOv2

ssd-inception-v2

ssd-mobilenet-v227

55

212

399

101

23

980 1270 1560

519 673 827

Energy Consumption (KJ)

174

Count mean = 0.26, Std = 0.51Count mean = 0.12, Std = 0.28

247
394

88
Energy/CI

front

109

Figure 3: A comparison of action/outcome plots for two ex-
ample windows, showing their disparate outcomes and en-
ergy/CI fronts. On each plot: X-axis shows the window’s
system energy expenditure (Ecap and Ecount); Y-axis shows
the CI width of the aggregated count for that window; each
curve corresponds to a counter choice, on which each point
corresponds to an amount of frames to sample (annotated
along curves).

in narrower CIs; as the energy expenditure increases, expensive
counters start to excel. This is because with less energy the CI is
primarily bottlenecked by the inadequacy of sample frames, and
cheap counters allow more sample frames. With abundant energy,
even running more expensive counters Elf can afford adequate
frames; hence, the CI starts bottleneck at the errors in per-frame
counts.

• Operate on the energy/CI front only. On an action/outcome
plot, the bottom-left segments from multiple curves constitute an
energy/CI front as highlighted in Figure 3. The front contains all the
“optimal” count actions that lead to the minimum CI width (Y-axis)
with different amounts of energy spent on the window (X-axis). The
implications are that: i) Elf should always operate on the energy/CI
front, picking a point of count action from the front according to
how much energy it is willing to spend on that window. ii) As Elf
considers spending additional energy on a window, the gradient of
the front indicates prospect of confidence gain, i.e., the rate of CI
width reduction in response to additional energy investment.

• Make joint decisions across windows. The energy/CI fronts
vary across windows, as exemplified by a comparison of Figure 3
(left) and (right). This means the same amount of energy expen-
diture on different windows will result in different CI widths. For
example, increasing the energy from 2.0 kJ to 3.0 kJ would reduce
the CI width by 26 in Figure 3 (right) but only 9 in (left). Intuitively,
windows with higher object counts and higher variations (e.g. video
clips during rush hours) would see higher CI reduction than oth-
erwise (e.g., midnight). Since the objective of Elf is to minimize
the mean CI width across a horizon (§3.1), it shall decide count
actions across windows jointly, resulting in heterogeneous actions
and outcomes. As will be shown in the evaluation, the resultant
energy expenditures across windows could differ by 9x.

ApproximateQuery Service on Autonomous IoT Cameras MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

Putting it together The above observations suggest an energy
planning strategy as follows. Based on energy/CI fronts for indi-
vidual windows, the system iteratively invests energy slices to the
window that sees the highest prospect of confidence gain. For that
invested window, the system picks the optimal counter and frame
count according to the window’s energy/CI front. Intuitively, the
system is inclined to invest more energy on windows with higher
object counts and variations; the system is therefore more likely to
sample more frames and pick more expensive counters – as energy
budget permits – on such windows. This strategy is the basis of the
oracle planner in §4.1.

4 COUNT PLANNING
Challenge To plan count actions towards the objective described
in §3.1, Elf shall address a twist of two needs:
• The need for global knowledge. To optimize for the whole hori-
zon H , Elf shall make joint count decisions across windows (§3.2),
i.e. comparing the energy/CI fronts of all windows, which reflect
their confidence gains from potential energy investment. Yet, not
until the end of H can Elf estimate the fronts of all windows be-
longing to H , as Elf needs to see their respective object counts
and count variation (see §5 for details).
• The need for on-the-go decisions. Deferring count actions to the
end of H (as indicated above) raises two problems. i) Stale results:
Elf will not be able to emit the counts for all windows until the end
of H . As H may span hours or days, doing so prevents users from
observing fresh object counts. ii) Excessive capture: Prior to each
window, Elf must decide the number of frames to capture, which
limits the number of frames Elf can process later. Deciding count
actions at the end of H forces Elf to play safe, capturing excessive
frames for each window. Besides the two, holding captured frames
until the end of H increases camera storage pressure and risk of
privacy breach.

Approach overview Elf addresses both needs above with an on-
line planner. The key idea is to make online decisions by mimicking
what an oracle planner would do. Specifically, the oracle planner
works offline: with full knowledge of a video, it decides what count
actions should have been for windows in the video by considering
the energy/CI front of all the windows jointly. Trained with the
oracle decisions and true object counts from the videos, the online
planner makes decisions that the oracle would make with a similar
observation of recent windows.

4.1 The Oracle Planner (Offline)
The oracle planner works based on impractical assumptions: i) it
knows the energy/CI fronts of all windows and ii) the amount of
captured frames exactly matches the amount needed in processing.
The oracle plans count actions by solving an energy allocation
problem: it iteratively allocates energy slices to the window that
exhibits the highest CI width reduction. More specifically, for a
horizon:
• Initialization: The oracle planner dispatches energy to each ag-
gregation window so that each window has a minimum number
M of frame samples. This is because in statistics, an estimation
from sampling is only regarded meaningful when the sample size

Classification
Agent

Regression
Agent

Counter

Frames

Reward

Oracle Planner
𝜇𝑡
𝜎𝑡…… ……

Observations
(M + N windows)

Compared with
oracle’s decision
for 𝑾𝒕 and run
reward function

𝜇𝑡−4
𝜎𝑡−4

𝜇𝑡−3
𝜎𝑡−3

𝜇𝑡−2
𝜎𝑡−2

𝜇𝑡−1
𝜎𝑡−1

Recent N days Recent M windows

Figure 4: Training RL agents for online count decision. µ and
σ represent the object count and count variation (observa-
tions) for each window.

is sufficiently large. We pickM = 30 by following common practice
in statistics [61]. The oracle picks the cheapest NN counter for
each aggregation window in order to start from the lowest possible
energy consumption.

• Iteration: The oracle repeatedly allocates a small, fixed amount
of energy to individual windows. To pick the next window W
for receiving an energy slice, the oracle examines the energy/CI
fronts of all windows, selectingW to be the one having the highest
gradient | ∂CI∂E | at the current operating point ⟨ energy, CI width ⟩.
By allocating the energy slice, the oracle updates the count action
forW and slidesW ’s operating point along its energy/CI front.

• Terminate: The oracle planner stops when it uses up the energy
budget. At this moment, the NN counters and numbers of frames
for all windows are the final count decisions.

In evaluation, we consider the oracle as the upper bound of the
overall confidence achievable by Elf.

4.2 The Learning-based Planner (Online)
Overview Prior to Elf deployment, we run the oracle planner
offline on sample video footage from the target camera; in our
implementation we use 3-day video footage. Using the video and the
oracle decisions as the training dataset, we train the online planner.
Deployed on the camera, the online planner continuously outputs
count decisions based on the object counts and count variation that
Elf emits recently, including those from recent windows and the
windows at similar times in recent days.
Rationale: Why could an online planner work? An online
planner acts only based on its observation of the past; yet, as we
will demonstrate in §7, it can output decisions closely matching the
oracle that knows both the past and the future. We attribute the
efficacy to the temporal correlation among object counts and count
variations in a video feed, a pervasive video characteristic. For
instance, the car count in 9 AM – 9:30 AM correlates to the counts
from half-hour windows prior to 9 AM of the same day and to the
count from 9 AM – 9:30 AM of prior days. While the correlation is
still not deterministic enough for Elf to directly predict counts as
analytics results, the correlation provides sufficient hints for Elf to
plan count actions and manage energy.

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Mengwei Xu, Xiwen Zhang, Yunxin Liu, Gang Huang, Xuanzhe Liu, and Felix Xiaozhu Lin

Intuitively, the count action picked by oracle for a windowW
primarily depends on the relative significance ofW ’s object count
and variation with regard to those of other windows. Due to the
temporal correlation discussed above, both information is encoded
in the sequence of past object counts and count variations prior to
W . As such, the online planner can use the past sequence to predict
the oracle’s decision forW .
Why reinforcement learning (RL)? Essentially, the online plan-
ner takes sequential actions to optimize a long-term objective (i.e.
mean CI width). This pattern well suits RL, a general framework
for sequential decision making. In RL, an “agent” (e.g., our planner)
interacts with its environment (e.g., the energy budget and all en-
ergy/CI fronts) in discrete time steps to maximize its cumulative
reward. If the environment is fully observable to the agent, the
agent takes an action based on the current environment state at
each time step. The action takes the environment to a new state,
and the agent receives a reward accordingly. If the environment is
only partially observable (e.g., our planner only knows past, but
not future, energy/CI fronts), the agent takes an action based its
observation ot of the environment.

To apply RL, we face the following challenges.
• (C1) Long delay in rewarding. The count actions of all windows
jointly decide the mean CI width for the whole horizon H . Hence,
not until the end of H can Elf evaluate its past count actions and
assign reward/penalty accordingly. This makes RL training difficult.

• (C2) Hard constraint on the accumulative outcome. Of our online
planner, the total energy expenditure across multiple steps (i.e.
windows) should respect a constraint – the energy budget for H .
Yet, the standard RL lacks mechanism to enforce such a constraint
to our knowledge.

We address (C1) to reward the planner in training timely and
frequently – at every time step: rather than reasoning about the
long-term impact of the planner’s decision, we consider how much
the decision deviates from the oracle’s decision. We address (C2)
by making the planner implicitly learn to respect an energy budget,
as we train the planner to follow the decisions made by the oracle
that operates under the same energy budget. To handle the unlikely
events that the planner burns out the budget before a horizon’s end,
we devise a backstop mechanism to be described later.
RL formulation As illustrated in Figure 4, we formulate:
• A time step is an aggregation window.

• The observation vector consists of the object counts and count
variation of the most recent M windows and the same-time win-
dows in the recent N days. Our experiment empirically chooses
M = 4 and N = 1.

• The agents are two that receive the same observation and pick
the number of sample frames and the counter, respectively. We
instantiate the two as a regression agent and a classification agent.
Both agents are NNs with the same multi-layer perceptron (MLP)
architecture. The NNs are small: the input layer has only 10 in-
put units; both NNs have two hidden layers each with 64 hidden
neurons only. Each NN has less than 5K parameters and 55KB in
size.

• The reward/penalty is an agent’s decision deviation from the or-
acle’s decision. For the regression agent, its reward function is:
rt,r eд = −|Nt,aдent − Nt,oracle | where Nt,aдent and Nt,oracle
are the frame amounts from the agent and from the oracle, re-
spectively. For the classification agent, the reward function is:
rt,cls = 1 if (Ct,aдent = Ct,oracle) otherwise 0, where Ct,aдent
and Ct,oracle are the NN counters chosen by the agent and the
oracle planner respectively.

• Respecting energy budgets. To train the RL agents for operating
on a variety of energy budgets that the agents may receive from the
OS at run time, we discretize the target energy budget range into
multiple levels (e.g., 10–30 Wh/day at 5 Wh/day steps) and train a
pair of RL agents for each energy level.

Offline training & cost We follow a standard approach: we use
the Actor-Critic framework [93] and A2C [3], a synchronous, de-
terministic training algorithm as a variant of A3C [71].

Before deploying RL agents in real-world systems, we first run
the oracle planner on a video segment (3 days in our experiment) to
collect training data and train the RL agents offline. Our experience
shows modest training effort in general. For most video scenes
under test (listed in Table 2), we find a 3-day video sufficient for
training. The training overhead primarily comes from: i) running
the oracle planner, including deriving the energy/CI fronts by test-
ing all candidate counters on the videos; ii) training the RL agents.
The former takes a few hours on a commodity GPU workstation
with one Nvidia Quadro 6000 and can be further accelerated by
additional GPUs or TPU; the latter takes as low as tens of minutes
on the same workstation.

After deployment, we expect the trained RL agents to operate
for a long period of time autonomously. Our experiments show
their stable accuracy over our longest video lasting 2 weeks. In
real-world deployment, we expect to only retrain the RL agents in
case of substantial changes in video scene, e.g. due to cameras being
relocated or small scene changes accumulated over time. Users may
initiate retraining based on their knowledge on camera deployment,
or as preventive maintenance. Similar to the initial training, users
would need to retrieve a recent video segment from the camera,
run the oracle over the video on their development machines, and
update the RL agents on the camera.
Online prediction & cost Once trained, the online planner is
deployed as part of Elf on camera. As RL is incapable of guaran-
teeing perfect decisions, what if the planner mispredicts (despite
unlikely)? In particular, burning out energy before a horizon ends
would leave no energy for the remaining windows and therefore no
counts produced for them. To this end, Elf incorporates a backstop
mechanism alongside the planner.

Over the course of a horizon, Elf monitors the energy balance,
e.g., the remainder from the budget. When the balance drops down
to the “bare minimum”, i.e., the amount needed by the remainder
windows to run the cheapest counter with the smallest frame count
needed to be statistically significant (e.g., 30), Elf bypasses the
planner for the remaining windows and follows the minimum count
actions. If the online planner acts conservatively and has not used
up the energy when a horizon ends, Elf returns the unused energy
to the OS.

ApproximateQuery Service on Autonomous IoT Cameras MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

Notation Description
x = x1 ..xn Inexact counts on sampled frames observed by a given NN counter
x̄, S The mean and standard deviation of x
µx A random variable representing themean of inexact per-frame counts

(from the given NN counter) on all frames
µ A random variable representing the mean of exact per-frame counts

on all frames
E′, E′′, θ E′ (or E′′) is the distribution of the deviation between µ and µx

when x̄ is above (or below) a threshold θ , respectively
V ′, V ′′ The distributions of µ , when x̄ is above (or below) θ , respectively
v ′
α , v

′′
α The CI widths for µ with confidence level α , when x̄ is above (or

below) θ , respectively

Table 1: Notations used in Section 5

𝓊x

Observations:
(x1, …, xn)

𝓊

Deviations between
𝓊x and 𝓊

Approx. 𝓊 CI

1

52

3

4

Figure 5: The workflow of deriving the CI

We encourage Elf’s conservative energy expenditures through
tuning reward functions for our RL agents. The rationale is that
we prefer (slight) budget underutilization to early burn out: while
the former only sees minor loss in the overall confidence, the latter
results in significant CI widths for a series of windows.

The planner itself incurs negligible energy overhead. For each
window, it performs around 8K multiply-adds operations. By con-
trast, even the cheapest NN counter in our selection performs 0.8
billion multiply-adds operations per frame. We estimate the plan-
ner’s energy consumption is at least four orders of magnitude
smaller than the per-frame counter.

5 INTEGRATING MULTI-SOURCE ERRORS
The problem Given a set of per-frame counts, Elf needs to derive
an aggregated count accompanied by a single CI – for both plan-
ning (i.e., constructing energy/CI fronts for all windows) and for
materializing aggregated counts.

Table 1 summarizes the notations used below. Our input is a
series of inexact per-frame counts (x = x1...xn) as observed by one
given NN counter (1). Our output is a CI as an estimation for µ,
i.e., the mean of exact per-frame counts on all the frames (5).
Approach overview To model the random variable µ, we first
model a random variable µx , the mean of inexact per-frame counts
on all the frames; we derive µx from x , the observed inexact counts
on sampled frames (2). We then model the deviation between µx
and µ as caused by errors in per-frame counts (3). Eliminating the
deviation from µx , we derive the distribution of µ, from which we
estimate its CI via approximation (4).

We demonstrate the validity of the resultant CIs with experi-
ments on real-world videos (§7.2).
Modeling µx The theory of statistics gives us:

x̄ − µx

S/
√
n

∼ Tn−1 (1)

where x̄ and S are the mean and standard deviation of the observed
inexact counts (x), and Tn−1 is the well-known t-distribution with

n - 1 degrees of freedom [46]. This holds regardless of x ’s actual
distribution, e.g., normal or Poisson, as long as the sample popula-
tion is sufficiently large (e.g., 30 which is also the minimal sampling
number for each aggregation window used by Elf), according to
the central limit theorem [103].
Modeling the deviation between µx and µ The deviation is
because µx incorporates errors in per-frame counts that µ does not
incorporate. We model the deviation with a heuristics: the deviation
has positive correlation with µ. The rationale is that an NN counter
is likely to incur more false positives/negatives on video frames
with more objects. Based on our experiments, when the absolute
value of µ exceeds a threshold θ (as we will empirically determine),
the distribution of deviation E ′ is best modeled as the ratio between
µ and µx (i.e., µ/µx ∼ E ′); when µ is small, the distribution E ′′ is
best modeled as a linear offset between the mean of true counts
and that of observed counts (i.e., µ − µx ∼ E ′′). Notably, E ′ and
E ′′ cannot be unified as one distribution. For instance, a small µ
results in a large ratio; including those outliers in the overall error
distribution results in high distribution variance as observed from
real videos. As Elf cannot directly observe µ at run time, it uses x̄
to estimate if µ exceeds the threshold θ .
Determining the parameters of deviations The means and
standard deviations of E ′ and E ′′ are crucial to modeling µ, which
we obtained through offline profiling: for each camera, profiling
once at the camera’s deployment time, and profiling again if the
video scene changes significantly, e.g., the camera being relocated.
This is based on twofold observation below.
• The distributions of deviation are stable over time, with a given
NN counter and a given video feed. As an example, wemeasured the
distributions with two counters, YOLOv2 and ssd mobilenet-v2 and
video segments from Jackson; we tested two week-long video seg-
ments that are one month apart. The Bhattacharyya coefficient [37]
between the two videos are 0.93 and 0.86 for the two NN counters,
respectively.

• The distributions are independent of the observed object counts
x , as we confirmed with chi-square test [46] on our video datasets.
Given such independence, we can integrate µx and E in order to
estimate the distribution of µ, as shown below.

Note that across different NN counters the above distributions
of deviation (E) are often disparate, even on the same video feed.
This explains why we only use one NN counter in one aggregation
window.
Modeling µ We use V ′ and V ′′ to denote the distributions of µ:

µ =

{
(x̄ + S/

√
n · t) × e ′ ∼ V ′ if x̄ > θ

(x̄ + S/
√
n · t) + e ′′ ∼ V ′′ if x̄ ≤ θ

(2)

where : t ∼ Tn−1, e
′ ∼ E ′, e ′′ ∼ E ′′

Hence, the CI of µ, denoted as v ′
α and v ′′

α , is as follows:

CI =

{
[x̄ × µ(e ′) ±v ′

α] if x̄ > θ

[x̄ + µ(e ′′) ±v ′′
α] if x̄ ≤ θ

(3)

where P(|V ′ − x̄ × µ(e ′)| ≤ v ′
α) = α%

P(|V ′′ − x̄ − µ(e ′′)| ≤ v ′′
α) = α%

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Mengwei Xu, Xiwen Zhang, Yunxin Liu, Gang Huang, Xuanzhe Liu, and Felix Xiaozhu Lin

USB

Raspberry Pi 4 OpenMV M7

Wakeup

Power

Figure 6: Our hardware prototype for testing Elf. The plat-
form consists of two interconnected SoCs for frame captur-
ing and processing, respectively.

Typically, the CI widths are derived through Monte Carlo sim-
ulation [87]: randomly picking the same number of samples from
t-distribution and NN counter’s error distribution (E ′,E ′′) respec-
tively, and combining them as Equation 2. The results are expected
to follow the distribution of µ, from which one gets the CI.
Approximating the distribution of µ The downside of Monte
Carlo simulation is high compute overhead; this is exacerbated by
that Elf must run the simulation repeatedly online for planning, as
x̄ and S can only be observed online. Fortunately, we observe that
each of V ′ and V ′′ is close to a normal distribution with a similar
cumulative distribution function (CDF). Hence, we approximate
the CI width by treating V ′ and V ′′ as normal distributions with
standard deviation σ (µ). Based on Equation 2, we derive σ (µ), the
standard deviation of µ, as below.

σ 2(µ) =
{
(σ 2(ux) + x̄2)(µ2(e ′) + σ 2(e ′)) − x̄2µ2(e ′) if x̄ > θ

σ 2(ux) + σ 2(e ′′) if x̄ ≤ θ

(4)

where : σ 2(ux) =
S2

n
σ (tn−1) =

S2(n − 1)2
n(n − 3)2

As V ′ and V ′′ are approximated as normal distributions, we have
their CI widths as:

v ′
α = zα/2σ (µ) v ′′

α = zα/2σ (µ) (5)

where zα/2 is the Z-score for the given confidence level [46], e.g.,
1.96 when α is 95% and 2.576 when α is 99%.

The approximation above also sheds light on how different fac-
tors affect CI widths. For instance, higher variations (S) in observed
object counts and larger per-frame count errors (σ (e ′) or σ (e ′′))
contribute to σ (µ), resulting in wider CI widths (v ′(α) or v ′′(α)). A
larger amount of samples (n) reduces the CI widths.
Frommean counts to aggregated counts With the above steps
Elf estimates the mean count per frame, e.g., “the average number of
cars on the road at 1FPS is [0.5±0.1]”. To get aggregated counts, Elf
multiplies the mean by the amount of frames, e.g., “the total number
of cars in 30 minutes is [900 ± 180]”. See Section 6 for details.

video: auburn video: hampton

Figure 7: ROI-based object counting

6 IMPLEMENTATION
Heterogeneoushardware decoupling frame capture/process-
ing Commodity IoT cameras are often energy-inefficient at sam-
pling sparse image frames: to capture one frame, the whole camera
wakes up from deep sleep and falls back to sleep afterward, spend-
ing several seconds. We measured that the energy for capturing a
frame is almost the same as the energy for processing the frame
(YOLOv2 on Raspberry Pi 4). While the camera may defer process-
ing images (e.g., until window end) for amortizing the wake-up
energy cost, it cannot defer periodic frame capture.

To make periodic image capture efficient, we build a hardware
prototype with a pair of heterogeneous processors, as shown in
Figure 6. The prototype includes one capture unit, a microcon-
troller running RTOS and capturing frames periodically with rapid
wakeup/suspend; and one processing unit, an application processor
running Linux and waking up only to execute NN counters. Our
evaluation §7.4 validates the necessity of heterogeneity.
NN counters Elf builds on NNPACK-accelerated darknet [11] for
YOLO NNs and TensorFlow [26] for other NNs. It uses OpenCV [12]
for image processing.
ROI-based instance counting To avoid double-counting objects
in adjacent frames, a known computer vision challenge, our imple-
mentation adopts a common heuristics that exploit region of inter-
est (ROI) [18, 38]. Shown in Figure 7, an ROI for a video specifies
an image region as well as t , the maximum time that an interesting
object takes to travel through the region. Accordingly, the object
count within a time period is the total number of objects intersect-
ing with ROI on all the frames sampled over the time period at the
intervals of t . We are aware of enhancements for mitigating double
counting, e.g., by tracking objects across frames [90, 100]. Such
computer vision enhancements are compatible with Elf: they add
per-frame compute cost that is minor compared to object detection
which changes little of our core challenge: the relation between
count actions and outcomes; they are also orthogonal to our core
contributions for producing statistical results with limited energy.

7 EVALUATION
Our evaluation answers the following questions:
§7.2 Can Elf provide useful counts with valid, narrow CIs under
realistic energy constraints?
§7.3 Whether the key designs of Elf are significant?
§7.4 How will new hardware impact Elf’s performance?

ApproximateQuery Service on Autonomous IoT Cameras MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

Video Length GT count description

Jackson [24] 2 weeks 1,386/3,060 An intersection in
Jackson Hole, WY

Auburn [21] 1 week 495/1,908 Toomers Corner in
Auburn, AL

Cross [22] 2 weeks 329/4,412 A three-way cross,
location unknown

Taipei [25] 1 week 1,658/4,284 An intersection in
Taipei

Hampton [23] 1 week 1,267/4,824 An interstate road in
Hamptons, NY

Table 2: Videos for evaluation. GT count: mean/max ground-
truth count of all half-hour windows. Target object: vehicle.

NN Counters Input mAP Energy
YOLOv3 (Golden, GT) [85] 608x608 33.0 1.00
YOLOv2 [84] 416x416 21.6 0.22
faster rcnn inception-v2 [86] 300x300 28.0 0.40
ssd inception-v2 [68] 300x300 24.0 0.08
ssd mobilenet-v2 [88] 300x300 22.0 0.05
ssdlite mobilenet-v2 [88] 300x300 22.0 0.04

Table 3: The NN counters used in this work. mAP: mAP ac-
curacy on COCO dataset [64]. Energy: normalized energy as
measured on RPI 4.

7.1 Methodology
Videos We evaluate Elf on 5 long videos from different cameras
(Table 2). Each video lasts 1-2 weeks; altogether, they constitute
1176 hours and ∼800 GB of data. We intentionally select the videos
to cover diverse scenes, e.g., intersections and highways. Our se-
lection of videos is challenging to error-bounded object counting:
most frames contain few objects in ROIs; aggregated counts typi-
cally have small mean values and high variation. Finding optimal
count strategies for such sparse data is difficult as shown in prior
work [104]. We preprocess the videos by decoding them into 1 FPS
images to accommodate our ROI-based counting (§6). Of each video,
we use the first three days of video to train our RL-based planner,
and the remaining days for testing.

We report the results of counting vehicles. While Elf by design
supports counting multiple object classes (§2.2), to our knowledge,
there are no publicly available videos that last for days while con-
taining diverse object classes, each class with sufficient instances for
meaningful counting. Notably, video benchmarks popular in com-
puter vision research only last seconds or minutes each [17, 100],
inadequate for exercising Elf.

Despite our best effort in finding long benchmark videos, we
acknowledge the limitation in scene diversity of our video datasets.
In the traffic videos we use, object counts are more likely to exhibit
high temporal correlation, matching our rationale of using RL as
discussed in Section 4.2. Beyond traffic videos, we expect such tem-
poral correlation in a variety of video scenes, e.g., cattle monitoring.
Nevertheless, on videos where such temporal correlation is weaker,
e.g. counting rare wild animals, we expect the RL-based planner to

G
ol

de
nN

N
U

ni
N

N
O

ra
cl

e
O

ur
s

G
ol

de
nN

N
U

ni
N

N
O

ra
cl

e
O

ur
s

G
ol

de
nN

N
U

ni
N

N
O

ra
cl

e
O

ur
s

G
ol

de
nN

N
U

ni
N

N
O

ra
cl

e
O

ur
s

G
ol

de
nN

N
U

ni
N

N
O

ra
cl

e
O

ur
s0

20

40

60

80

95
100

C
I C

ov
er

ag
e

P
ro

ba
bi

lit
y

(%
) 92 91 92 92 9395 96 95 94 9496 97 96 95 9595 96 95 94 95

Jackson Hampton Cross Taipei Auburn

Figure 8: Elf produces CIs that cover the true counts at the
target confidence level (95%, the horizontal line).

make more misprediction. For such videos, while Elf’s characteriza-
tion of count actions still holds, it would need additional heuristics
for planning.
Metrics To quantify Elf’s query answers, we report:
• CI coverage probability: the measured chance that CIs produced
by Elf covering the ground truth. The probability is expected to
exceed the desired confidence level specified by users (§2).
• Mean CI width, normalized to the mean counts. For example, for
a list of CIs as {[µi ± δi]}, the mean CI width is (∑δi)/(

∑
µi). A

low value indicates high overall confidence in Elf’s answers.

• Mean error, defined as (∑ |µi − дi |)/(
∑
дi) where дi is the true

count. This metric shows by how much Elf’s approximate counts
deviate from the ground truth.

Energy we report the whole-camera energy measured from the
hardware prototype.
NN counters and ground truth counts Table 3 lists the NN
counters used in experiments and their respective energy consump-
tions. Following prior work [56, 60, 101], we treat as the ground
truth the counts returned by the most expensive NN, named the
“golden” NN counter (YOLOv3).
Alternative designs We compare Elf to the following designs:
• GoldenNN runs the golden NN counter with the same amount of
sample frames in all windows.
• UniNN runs one single NN counter with the same amount of frames
in all windows. To make this design competitive, we set its NN
counter to be the one with the best average performance over all
test horizons of a given video. Unlike GoldenNN, the counter of UniNN
may be different on separate videos. The design uses our technique
(§5) to provide CIs.
• Oracle uses the oracle planner descried in §4.1, representing the
best attainable performance. Note that Oracle is built atop imprac-
tical assumptions and delays materializing aggregated counts.
System parameters We set our parameters as typically used
in prior systems: we use 30 minutes as the aggregation window
length [94], 24 hours as a horizon [96], and 95% as the default con-
fidence level [32, 70]. As discussed in §2.1, the typical harvested
energy from a small solar panel is 10Wh – 30Wh, which we use in
experiments.

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Mengwei Xu, Xiwen Zhang, Yunxin Liu, Gang Huang, Xuanzhe Liu, and Felix Xiaozhu Lin

G
ol

de
nN

N

U
ni

N
N

O
ur

s

10

30

50

M
ea

n
C

I W
id

th
 (%

)

57.8
31.6

20.5

G
ol

de
nN

N

U
ni

N
N

O
ur

s

10

30

50

M
ea

n
C

I W
id

th
 (%

)

91.4 54.3

27.1

G
ol

de
nN

N

U
ni

N
N

O
ur

s

10

30

50

M
ea

n
C

I W
id

th
 (%

)

54.4
32.9

23.1

G
ol

de
nN

N

U
ni

N
N

O
ur

s

10

30

50

M
ea

n
C

I W
id

th
 (%

)

56.5
33.7

17.2

G
ol

de
nN

N

U
ni

N
N

O
ur

s

10

30

50

M
ea

n
C

I W
id

th
 (%

)

104.3 51.5
30.2

G
ol

de
nN

N

U
ni

N
N

O
ur

s

10

30

50

M
ea

n
C

I W
id

th
 (%

)

40.2

20.1 16.2
G

ol
de

nN
N

U
ni

N
N

O
ur

s

10

30

50

M
ea

n
C

I W
id

th
 (%

)
71.6

28.1 25.1

G
ol

de
nN

N

U
ni

N
N

O
ur

s

10

30

50

M
ea

n
C

I W
id

th
 (%

)

37.6
25.1 18.9

G
ol

de
nN

N

U
ni

N
N

O
ur

s

10

30

50

M
ea

n
C

I W
id

th
 (%

)

38.6

18.3 15.2

G
ol

de
nN

N

U
ni

N
N

O
ur

s

10

30

50

M
ea

n
C

I W
id

th
 (%

)

72.3

29.2 25.9

G
ol

de
nN

N

U
ni

N
N

O
ur

s

10

30

50

M
ea

n
C

I W
id

th
 (%

)

32.4
15.2 13.9

(a) Jackson

G
ol

de
nN

N

U
ni

N
N

O
ur

s

10

30

50

M
ea

n
C

I W
id

th
 (%

)

59.3

22.8 21.3

(b) Cross

G
ol

de
nN

N

U
ni

N
N

O
ur

s

10

30

50
M

ea
n

C
I W

id
th

 (%
)

31.6
19.7 16.8

(c) Taipei

G
ol

de
nN

N

U
ni

N
N

O
ur

s

10

30

50

M
ea

n
C

I W
id

th
 (%

)

31.7
16.2 14.4

(d) Hampton

G
ol

de
nN

N

U
ni

N
N

O
ur

s

10

30

50

M
ea

n
C

I W
id

th
 (%

)

57.8

25.9 23.9

(e) Auburn

Figure 9: With given energy budgets (1st/2nd/3rd rows: 10Wh/20Wh/30Wh per day) and videos (columns), Elf provides nar-
rower CIs (Y-axis) than GoldenNN and UniNN, and very close to Oracle (the horizontal line).

7.2 End-to-End Performance
Elf provides valid CIs Our experiments show that the CIs cover
the ground truth count at the target coverage probability, which
validates our technique for integrating errors (§5). Figure 8 shows
the CI coverage probability, suggesting that Elf has met the speci-
fied confidence level (95%). The results are averaged over multiple
experiment setups, i.e., energy budgets and CI width targets, as
described in §7.3.

Figure 8 also shows the CI coverage by the alternative designs.
Employing our error integration technique, Oracle and UniNN also
meet the target confidence level. GoldenNN results in noticeably
lower coverage probability below the target. The reason is that,
when running GoldenNN under energy constraint, the system can
only afford processing a small number of frames (< 30) using the
golden, expensive counter. Such a small sample is insufficient for
deriving statistically meaningful aggregates.
Elf emits useful countswith limited energy. Elf produces small
mean errors and mean CI widths. On one hand, the aggregated
counts emitted by Elf are within 14.8%, 12.4%, and 11.1% of the
ground truth with an energy budget of 10 Wh/day, 20 Wh/day, and
30 Wh/day, respectively. On the other hand, as shown in Figure 9,
Elf presents mean CI widths of 22.1%, 19.3%, and 17.3%, respec-
tively. Such results are on a par with state-of-the-art video counting
approaches and analytics systems [31, 66, 79, 108]

7.3 Validation of Key Designs
7.3.1 Exploiting diverse NN counters. Elf significantly outperforms
using one counter only. As shown in Figure 9, compared to GoldenNN,

Elf’s mean CI widths are smaller by 66.6%, 59.8%, and 56.2% (note:
not percentage points) on average with an energy budget of 10Wh/-
day, 20Wh/day, and 30Wh/day, respectively. On some videos, e.g.,
Auburn, Elf’s CI is up to 3.4× smaller.

Diving deeper, we find that while the golden NN counter pro-
duces more exact counts per frame, the system can only sample less
than 30 frames per aggregation window. By contrast, Elf is able to
pick moderately less accurate counters while sampling 5×–9×more
frames. The large sample quantities outweigh the modest increase
in per sample errors and result in overall higher confidence.

7.3.2 Heterogeneous count actions across windows. Elf consistently
outperforms UniNN, a static count action optimized for all windows
in a video. As shown in Figure 9, compared to UniNN, Elf’s mean CI
widths are smaller by 41.1%, 16.6%, and 9.7% on average with an
energy budget of 10Wh/day, 20Wh/day, and 30Wh/day, respectively.

The advantages of Elf are twofold. First, UniNN only uses one
single NN counter that performs best throughout an entire video.
By contrast, Elf utilizes the energy/CI front to select the proper NN
counter for each individual aggregation window. We observe that:
within one horizon, Elf switches among 2 – 5 different NN coun-
ters across windows; across different horizon, videos, and energy
budgets, Elf’s counter choices are even more diverse. Accordingly,
Elf picks a wide range of sample quantities across windows, e.g.,
up to 5× difference (30–160 frames) with 10Wh/day energy budget.
Second, with a static count action UniNN allocates the same energy
on each window. However, as video characteristics are disparate
across time, the return of the same amount of energy varies substan-
tially across different aggregation windows as shown in §3.2 and

ApproximateQuery Service on Autonomous IoT Cameras MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

(a) Jackson

(b) Cross

(c) Taipei

Figure 10: The amount of per-window frames by Elf’s
learning-based planner as compared to the oracle planner.

Figure 3. By comparison, Elf identifies such disparity and adjusts
energy accordingly (§4). As we measured, the difference in energy
allocations across windows can be up to 7×.

7.3.3 Imitating the oracle planner. The confidence in Elf’s results
is close to that of Oracle, showing the efficacy of our learning
approach. As shown in Figure 9, compared to Oracle, Elf’s mean CI
widths are only wider by 7.2%, 4.4%, and 4.1% on average with an
energy budget of 10/20/30 Wh/day, respectively. Note that Oracle
is impractical and cannot deliver timely results as Elf does.

Zooming in, we find Elf’s planner predicts the oracle’s decisions
with good accuracy, as exemplified by the videos in Figure 10. First,
the amount of per-window frame by Elf is within 15.5% of the
amount by the oracle. Second, Elf picks the same counters (out
of six counter options) as the oracle does in 56%–92% of all the
windows (mean/median=76%/78%, not shown in Figure 10). We
further examine when our planner deviates noticeably from the
oracle, finding out that these are the windows i) showing irregular
variations in object counts or ii) where the oracle picks a rarely
used NN counter. In the former situation, temporal correlation in
object counts is weaker, rendering RL less effective; in the latter
situation, as our planner does not see such rarely used NNs enough
during training, it is less likely to pick them at run time. Note that

0

5

10

15

20

25

30

RPI	4 Intel	NCS2 Jetson	Nano Edge	TPU

M
ea
n
CI

W
id
th

(%
)

ours higher	E_cap lower	E_cap

Figure 11: Elf on different hardware (video: Jackson, energy
budget: 10Wh/day). Higher Ecap indicates using less efficient
hardware to capture, while lower Ecap indicates using an ul-
tra low-power capture hardware.

i) even when our planner deviates from the oracle, the planner’s
decision is often the second optimal, incurring minor efficiency loss;
ii) the deviation in resource planning does not affect Elf’s statistical
guarantee for analytics results.

Elf’s planner strictly respects energy budgets allocated to it.
Recall that we tune our RL for conservative energy expenditures
in order to minimize occurrences of early energy burn out before
the end of a horizon, as described in Section 4.2. Thanks to such a
design, Elf has energy leftover at the ends of 64.6% of the horizons;
on average the fraction of unused energy is as small as 9.5%, which
will be returned to the OS. Elf’s per-window energy expenditures
are within that of the oracle planner as low as 8.2% on average.

7.4 The Impact of Hardware
In the current Elf prototype, we choose commodity hardware (RPI4)
that is popular for low monetary cost and programming ease. Next
we evaluate how Elf behaves with different hardware.
Compute hardware Elf is relevant with accelerators that run
NNs with higher energy efficiency; the extra efficiency may further
expand the applicability of Elf.

We test three accelerators: Intel NCS2 [8] ($80), Jetson Nano [9]
($100), and Edge TPU [6] ($150).With the results shown in Figure 11,
our observations are two. First, compared to RPI4, more efficient
accelerators reduce the mean CI width noticeably (by 22.1%–33.1%),
primarily because Elf affords processing more frames per window.
Second, even a cutting-edge accelerator (e.g., TPU) cannot reduce
the CI width to near zero. The error mainly comes from frame
sampling, showing the efficiency of the accelerator has not reached
a level where Elf can afford processing every frame. This suggests
our core design – count action planning – to be relevant in the near
future. Third, to yield similar CI widths, the accelerators need a
much smaller energy budget, hence more modest energy sources.
For instance, with an Edge TPU, Elf can operate on a solar panel
16.1× smaller while producing the aggregated counts with same
confidence. Such miniaturization simplifies deployment of cameras
and may suit them to low solar irradiance, or indoor environments.
Image capture hardware Efficient image capture as in our pro-
totype (Figure 11) matters. When Elf performs image capture with
the less efficient Cortex-A72, we measured the per-frame energy
for capture is almost 10× compared to our prototype which uses

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Mengwei Xu, Xiwen Zhang, Yunxin Liu, Gang Huang, Xuanzhe Liu, and Felix Xiaozhu Lin

Cortex-M7 for capture. With less energy available for frame pro-
cessing, Elf resorts to cheaper counters or fewer frames to sample,
leading to much wider CIs (an increase of 35.6% – 59.0%) as shown
in Figure 11 (“higher Ecap ”).

Efficient capture will be increasingly important as more efficient
compute hardware emerges. We consider ultra low-power capture
hardware [40] that reduces capture energy by 10× and estimate its
impact as shown in Figure 11 (“lower Ecap ”). Compared to Cortex-
M7 used in our prototype, the ultra low-power capture reduces the
mean CI width across all compute hardware options, with more
significant reduction when accelerators in use: in the latter cases,
image capture will contribute a higher fraction of system energy,
or even become the bottleneck of the system energy.

8 RELATEDWORK
Object counting is a key video query. It has been extensively
studied in the computer vision literature and shown to enable other
scientific investigations [2, 16, 36, 55, 62, 69, 76, 78, 81, 95, 106].
Energy harvesting systems A variety of systems, ranging from
tiny embedded devices to datacenters, operate on harvested en-
ergy [43, 44, 50–52, 92, 96]. Elf shares their motivation and may
further build atop some of their mechanisms, e.g., energy budget.
Nevertheless, these prior systems never directly address approxi-
mate visual analytics as Elf does.

Battery-free cameras take a radical approach toward miniatur-
ization [7, 73–75, 77]. With frugal energy available on device, these
cameras are often restricted to occasionally sending out captured
images or running lightweight compute such as background sub-
traction. By contrast, Elf targets battery-powered cameras (§2); with
orders of magnitude more energy, these cameras can run richer
analytics built on more capable NNs. Elf therefore explores a new
design space disparate from that of battery-free cameras.
Specialized hardware Systems like XNOR.ai AI Camera [7] and
RedEye [63] embrace hardware specialized for NN or vision. The
gained efficiency may shift some design parameters of Elf, e.g.,
operating on smaller solar panels or smaller capacitors as discussed
in Section 7.4. These systems, however, do not eliminate the need
for approximate analytics, as vision algorithms are still racing to
higher accuracy at higher compute expense.
Optimizing video analyticsMany systems have been proposed
for video analytics, being real-time [39, 57, 58, 67, 83, 97–99, 105,
107] or retrospective [56, 60, 82, 101, 102]. In most of these systems,
compute depends on edge/cloud infrastructures, as opposed to
running solely on device which is needed by autonomous cameras.
Most, if not all, prior systems focus on per-objects results instead
of statistical summaries of videos, as discussed in Section 1.

Background subtraction is a common technique for skipping
similar frames without full-fledged processing [56, 60]. It monitors
if adjacent frames captured at higher frame rate (e.g., 1FPS) contain
mostly the same pixels. Elf can barely use background subtrac-
tion for skipping any frames: Elf samples frames sparsely in time
(e.g., one per minute); therefore, adjacent frames often differ on
substantial pixels.
Answering query with approximation and sampling Approx-
imate query processing (AQP) [49] speeds up queries over large
data. Typical AQP approaches include online aggregation (OLA) [32,

45, 54, 80] and offline synopses generation [28, 30, 42]. Besides,
many sampling strategies [27, 35, 42, 91, 104] have been proposed
to improve performance. AQP systems often answer queries with
approximation and bounded error as Elf does. However, they are
mostly designed for relational data but not videos; they do not run
inaccurate operators (e.g., NNs) on data. They do not face many
challenges as Elf does, such as integrating multiple errors and op-
erating under energy budget.

9 CONCLUSIONS
Elf is an analytics system to answer object counting queries on
autonomous cameras. Elf combines inaccurate NNs and sampling
technique for video queries. It contributes a novel mechanism to
make on-the-fly count decisions within and across multiple time
windows. It takes a novel approach to integrating errors from dif-
ferent sources. Tested on large videos, Elf provides good estimation
of object counts with bounded, narrow errors.

ACKNOWLEDGMENT
We thank the anonymous reviewers and our shepherd, Dr. Aakanksha
Chowdhery, for their valuable feedback. The authors affiliated with
Peking University were supported by the National Key R&D Pro-
gram of China under the grant number 2018YFB1004800, the Na-
tional Natural Science Foundation of China under grant number
61725201, the R&D projects in key areas of Guangdong Province un-
der grant number 2020B010164002, the Beijing Outstanding Young
Scientist Program under grant number BJJWZYJH01201910001004,
and partially supported by the Key Laboratory of Intelligent Pas-
senger Service of Civil Aviation. The authors thank NVIDIA for
GPU donation.

REFERENCES
[1] 2017. 50% of Traffic Lights to Run on Solar Energy this Year. https://

thecostaricanews.com/50-traffic-lights-run-solar-energy-year/.
[2] 2017. FirstWorkshop onVideoAnalytics in Public Safety. https://www.nist.gov/

sites/default/files/documents/2017/01/19/ir8164.pdf.
[3] 2017. OpenAI Baselines: ACKTR & A2C. https://openai.com/blog/baselines-

acktr-a2c/.
[4] 2018. Low Power Wide Area Network Market Size. https:

//www.gminsights.com/industry-analysis/low-power-wide-area-network-
lpwan-market.

[5] 2019. digitalanimal’s cattle tracking system.
https://digitanimal.com/cattle/?lang=en.

[6] 2019. Edge TPU. https://cloud.google.com/edge-tpu/.
[7] 2019. The first ever battery-free AI technology. https://www.xnor.ai/solar-

powered-ai.
[8] 2019. Intel Neural Compute Stick 2. https://software.intel.com/en-us/neural-

compute-stick.
[9] 2019. Jetson Nano Developer Kit. https://developer.nvidia.com/embedded/

jetson-nano-developer-kit.
[10] 2019. National Solar Radiation Database. https://nsrdb.nrel.gov/.
[11] 2019. NNPACK-accelerated Darknet. https://github.com/digitalbrain79/darknet-

nnpack.
[12] 2019. OpenCV 3.3. https://opencv.org/opencv-3-3/.
[13] 2019. Postscapes’ cattle tracking system. https://www.postscapes.com/cattle-

tracking-systems/.
[14] 2019. Solar Powered Security Camera Buyer’s Guide. https://reolink.com/solar-

powered-security-cameras-buying-guide/.
[15] 2019. A Tale of Reversing an Embedded System. https://www.defcon.org/

images/defcon-21/dc-21-presentations/Manning-Lanier/DEFCON-21-
Manning-Lanier-GoPro-or-GTFO-Updated.pdf.

[16] 2019. Traffic Video Analytics - a case report. https://www.microsoft.com/en-
us/research/publication/traffic-video-analytics-case-study-report/.

[17] 2019. US Highway 101 Dataset. https://www.fhwa.dot.gov/publications/
research/operations/07030/index.cfm.

https://thecostaricanews.com/50-traffic-lights-run-solar-energy-year/
https://thecostaricanews.com/50-traffic-lights-run-solar-energy-year/
https://www.nist.gov/sites/default/files/documents/2017/01/19/ir_8164.pdf
https://www.nist.gov/sites/default/files/documents/2017/01/19/ir_8164.pdf
https://openai.com/blog/baselines-acktr-a2c/
https://openai.com/blog/baselines-acktr-a2c/
https://www.gminsights.com/industry-analysis/low-power-wide-area-network-lpwan-market
https://www.gminsights.com/industry-analysis/low-power-wide-area-network-lpwan-market
https://www.gminsights.com/industry-analysis/low-power-wide-area-network-lpwan-market
https://cloud.google.com/edge-tpu/
https://www.xnor.ai/solar-powered-ai
https://www.xnor.ai/solar-powered-ai
https://software.intel.com/en-us/neural-compute-stick
https://software.intel.com/en-us/neural-compute-stick
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://nsrdb.nrel.gov/
https://github.com/digitalbrain79/darknet-nnpack
https://github.com/digitalbrain79/darknet-nnpack
https://opencv.org/opencv-3-3/
https://reolink.com/solar-powered-security-cameras-buying-guide/
https://reolink.com/solar-powered-security-cameras-buying-guide/
https://www.defcon.org/images/defcon-21/dc-21-presentations/Manning-Lanier/DEFCON-21-Manning-Lanier-GoPro-or-GTFO-Updated.pdf
https://www.defcon.org/images/defcon-21/dc-21-presentations/Manning-Lanier/DEFCON-21-Manning-Lanier-GoPro-or-GTFO-Updated.pdf
https://www.defcon.org/images/defcon-21/dc-21-presentations/Manning-Lanier/DEFCON-21-Manning-Lanier-GoPro-or-GTFO-Updated.pdf
https://www.microsoft.com/en-us/research/publication/traffic-video-analytics-case-study-report/
https://www.microsoft.com/en-us/research/publication/traffic-video-analytics-case-study-report/
https://www.fhwa.dot.gov/publications/research/operations/07030/index.cfm
https://www.fhwa.dot.gov/publications/research/operations/07030/index.cfm

ApproximateQuery Service on Autonomous IoT Cameras MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

[18] 2019. Vehicle prediction using tensorflow object counting API. https://
github.com/ahmetozlu/vehiclecountingtensorflow.

[19] 2019. Wyze Camera v2 1080p. https://www.wyze.com/product/wyze-cam-v2/.
[20] 2019. YI Home Camera. https://www.amazon.com/YI-Security-Surveillance-

Monitor-Android/dp/B01CW4AR9K.
[21] 2019. Youtube live streaming: Auburn. https://www.youtube.com/watch?v=

hMYIc5ZPJL4.
[22] 2019. Youtube live streaming: Cross. https://www.youtube.com/watch?v=

049ltZb9JP8.
[23] 2019. Youtube live streaming: Hampton. https://www.youtube.com/watch?v=

y3NOhpkoR-w.
[24] 2019. Youtube live streaming: Jackson Town. https://www.youtube.com/

watch?v=1EiC9bvVGnk.
[25] 2019. Youtube live streaming: Taipei. https://www.youtube.com/watch?v=

1y5dcfnv-Ss.
[26] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Ma-
chine Learning. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). USENIX Association, Savannah, GA, 265–283. https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

[27] SwarupAcharya, Phillip BGibbons, and Viswanath Poosala. 2000. Congressional
samples for approximate answering of group-by queries. In Acm Sigmod Record,
Vol. 29. ACM, 487–498.

[28] Swarup Acharya, Phillip B Gibbons, Viswanath Poosala, and Sridhar Ra-
maswamy. 1999. The Aqua approximate query answering system. In ACM
Sigmod Record, Vol. 28. ACM, 574–576.

[29] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui,
and T. Watteyne. 2017. Understanding the Limits of LoRaWAN. IEEE
Communications Magazine 55, 9 (Sep. 2017), 34–40. https://doi.org/10.1109/
MCOM.2017.1600613

[30] Pankaj K Agarwal, Graham Cormode, Zengfeng Huang, Jeff M Phillips, Zhewei
Wei, and Ke Yi. 2013. Mergeable summaries. ACM Transactions on Database
Systems (TODS) 38, 4 (2013), 26.

[31] Sameer Agarwal, Henry Milner, Ariel Kleiner, Ameet Talwalkar, Michael Jor-
dan, Samuel Madden, Barzan Mozafari, and Ion Stoica. 2014. Knowing when
you’re wrong: building fast and reliable approximate query processing sys-
tems. In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. ACM, 481–492.

[32] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Mad-
den, and Ion Stoica. 2013. BlinkDB: Queries with Bounded Errors and Bounded
Response Times on Very Large Data. In Proceedings of the 8th ACM European
Conference on Computer Systems (Prague, Czech Republic) (EuroSys ’13).
ACM, New York, NY, USA, 29–42. https://doi.org/10.1145/2465351.2465355

[33] Nitin Agrawal and Ashish Vulimiri. 2017. Low-Latency Analytics on Colossal
Data Streams with SummaryStore. In Proceedings of the 26th Symposium on
Operating Systems Principles (Shanghai, China) (SOSP ’17). ACM, New York,
NY, USA, 647–664. https://doi.org/10.1145/3132747.3132758

[34] Aloÿs Augustin, Jiazi Yi, Thomas Clausen, and William Townsley. 2016. A study
of LoRa: Long range & low power networks for the internet of things. Sensors
16, 9 (2016), 1466.

[35] Brian Babcock, Surajit Chaudhuri, and Gautam Das. 2003. Dynamic sample
selection for approximate query processing. In Proceedings of the 2003 ACM
SIGMOD international conference on Management of data. ACM, 539–550.

[36] David Beymer, Philip McLauchlan, Benjamin Coifman, and Jitendra Malik.
1997. A real-time computer vision system for measuring traffic parameters.
In Proceedings of IEEE conference on computer vision and pattern recognition.
IEEE, 495–501.

[37] Anil Bhattacharyya. 1943. On a measure of divergence between two statistical
populations defined by their probability distributions. Bull. Calcutta Math. Soc.
35 (1943), 99–109.

[38] Debojit Biswas, Hongbo Su, Chengyi Wang, Jason Blankenship, and Aleksandar
Stevanovic. 2017. An automatic car counting system using OverFeat framework.
Sensors 17, 7 (2017), 1535.

[39] Christopher Canel, Thomas Kim, Giulio Zhou, Conglong Li, Hyeontaek Lim,
David G. Andersen, Michael Kaminsky, and Subramanya R. Dulloor. 2019. Scal-
ing Video Analytics on Constrained Edge Nodes. In Proceedings of the 2nd
SysML Conference (Palo Alto, California, USA). 12.

[40] Ismail Cevik, Xiwei Huang, Hao Yu, Mei Yan, and Suat Ay. 2015. An ultra-
low power CMOS image sensor with on-chip energy harvesting and power
management capability. Sensors 15, 3 (2015), 5531–5554.

[41] Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastogi, and Kyuseok Shim.
2001. Approximate query processing using wavelets. The VLDB Journal—The
International Journal on Very Large Data Bases 10, 2-3 (2001), 199–223.

[42] Surajit Chaudhuri, GautamDas, and Vivek Narasayya. 2007. Optimized stratified
sampling for approximate query processing. ACM Transactions on Database
Systems (TODS) 32, 2 (2007), 9.

[43] Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P Sample. 2016. An
energy-interference-free hardware-software debugger for intermittent energy-
harvesting systems. ACM SIGPLAN Notices 51, 4 (2016), 577–589.

[44] Alexei Colin, Emily Ruppel, and Brandon Lucia. 2018. A reconfigurable
energy storage architecture for energy-harvesting devices. In Proceedings
of the Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems. 767–781.

[45] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled Elmele-
egy, and Russell Sears. 2010. MapReduce Online. In Proceedings of the 7th
USENIX Conference on Networked Systems Design and Implementation (San
Jose, California) (NSDI’10). USENIX Association, Berkeley, CA, USA, 21–21.
http://dl.acm.org/citation.cfm?id=1855711.1855732

[46] Wilfrid J Dixon and Frank J Massey Jr. 1951. Introduction to statistical analysis.
(1951).

[47] Maroto-Molina Francisco, Navarro-García Jorge, Príncipe-Aguirre Karen,
Gómez-Maqueda Ignacio, Guerrero-Ginel Jose, Garrido-Varo Ana, and Pérez-
Marín Dolores. 2019. A Low-Cost IoT-Based System to Monitor the Location of
a Whole Herd. Sensors (2019). https://doi.org/10.3390/s19102298

[48] Takashi Furuya and Camillo J Taylor. 2014.
Road intersection monitoring from video with large perspective deformation.
Ph.D. Dissertation. University of Pennsylvania.

[49] Minos N Garofalakis and Phillip B Gibbons. 2001. Approximate Query Process-
ing: Taming the TeraBytes.. In VLDB. 343–352.

[50] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. 2019. Intelligence
beyond the edge: Inference on intermittent embedded systems. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 199–213.

[51] Ínigo Goiri, William Katsak, Kien Le, Thu D Nguyen, and Ricardo Bianchini.
2014. Designing and managing data centers powered by renewable energy.
IEEE Micro 34, 3 (2014), 8–16.

[52] Íñigo Goiri, Kien Le, Thu D Nguyen, Jordi Guitart, Jordi Torres, and Ricardo
Bianchini. 2012. GreenHadoop: leveraging green energy in data-processing
frameworks. In Proceedings of the 7th ACM european conference on Computer
Systems. ACM, 57–70.

[53] Moeen Hassanalieragh, Tolga Soyata, Andrew Nadeau, and Gaurav Sharma.
2016. UR-SolarCap: An Open Source Intelligent Auto-Wakeup Solar Energy
Harvesting System for Supercapacitor-Based Energy Buffering. IEEE Access 4
(2016), 542–557.

[54] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. 1997. Online Aggre-
gation. In Proceedings of the 1997 ACM SIGMOD International Conference on
Management of Data (Tucson, Arizona, USA) (SIGMOD ’97). ACM, New York,
NY, USA, 171–182. https://doi.org/10.1145/253260.253291

[55] Jarrod C Hodgson, Shane M Baylis, Rowan Mott, Ashley Herrod, and Rohan H
Clarke. 2016. Precision wildlife monitoring using unmanned aerial vehicles.
Scientific reports 6 (2016), 22574.

[56] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram Venkataraman,
Paramvir Bahl, Matthai Philipose, Phillip B. Gibbons, and Onur Mutlu. 2018.
Focus: Querying Large Video Datasets with Low Latency and Low Cost. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
18). USENIX Association, Carlsbad, CA. https://www.usenix.org/conference/
osdi18/presentation/hsieh

[57] Samvit Jain, Junchen Jiang, Yuanchao Shu, Ganesh Ananthanarayanan, and
Joseph Gonzalez. 2018. ReXCam: Resource-Efficient, Cross-Camera Video An-
alytics at Enterprise Scale. CoRR abs/1811.01268 (2018). arXiv:1811.01268
http://arxiv.org/abs/1811.01268

[58] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and
Ion Stoica. 2018. Chameleon: Scalable Adaptation of Video Analytics. In
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication (Budapest, Hungary) (SIGCOMM ’18). ACM, New York, NY,
USA, 253–266. https://doi.org/10.1145/3230543.3230574

[59] Daniel Kang, Peter Bailis, and Matei Zaharia. 2018. BlazeIt: Fast Exploratory
Video Queries using Neural Networks. arXiv preprint arXiv:1805.01046 (2018).

[60] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia.
2017. NoScope: Optimizing Neural Network Queries over Video at Scale.
Proc. VLDB Endow. 10, 11 (Aug. 2017), 1586–1597. https://doi.org/10.14778/
3137628.3137664

[61] Sitanshu Sekhar Kar and Archana Ramalingam. 2013. Is 30 the magic number?
Issues in sample size estimation. National Journal of Community Medicine 4, 1
(2013), 175–179.

[62] P Karpagavalli and AV Ramprasad. 2013. Estimating the density of the people
and counting the number of people in a crowd environment for human safety. In
2013 International Conference on Communication and Signal Processing. IEEE,
663–667.

https://github.com/ahmetozlu/vehicle_counting_tensorflow
https://github.com/ahmetozlu/vehicle_counting_tensorflow
https://www.wyze.com/product/wyze-cam-v2/
https://www.amazon.com/YI-Security-Surveillance-Monitor-Android/dp/B01CW4AR9K
https://www.amazon.com/YI-Security-Surveillance-Monitor-Android/dp/B01CW4AR9K
https://www.youtube.com/watch?v=hMYIc5ZPJL4
https://www.youtube.com/watch?v=hMYIc5ZPJL4
https://www.youtube.com/watch?v=049ltZb9JP8
https://www.youtube.com/watch?v=049ltZb9JP8
https://www.youtube.com/watch?v=y3NOhpkoR-w
https://www.youtube.com/watch?v=y3NOhpkoR-w
https://www.youtube.com/watch?v=1EiC9bvVGnk
https://www.youtube.com/watch?v=1EiC9bvVGnk
https://www.youtube.com/watch?v=1y5dcfnv-Ss
https://www.youtube.com/watch?v=1y5dcfnv-Ss
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1109/MCOM.2017.1600613
https://doi.org/10.1109/MCOM.2017.1600613
https://doi.org/10.1145/2465351.2465355
https://doi.org/10.1145/3132747.3132758
http://dl.acm.org/citation.cfm?id=1855711.1855732
https://doi.org/10.3390/s19102298
https://doi.org/10.1145/253260.253291
https://www.usenix.org/conference/osdi18/presentation/hsieh
https://www.usenix.org/conference/osdi18/presentation/hsieh
https://arxiv.org/abs/1811.01268
http://arxiv.org/abs/1811.01268
https://doi.org/10.1145/3230543.3230574
https://doi.org/10.14778/3137628.3137664
https://doi.org/10.14778/3137628.3137664

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Mengwei Xu, Xiwen Zhang, Yunxin Liu, Gang Huang, Xuanzhe Liu, and Felix Xiaozhu Lin

[63] Robert LiKamWa, Yunhui Hou, Julian Gao, Mia Polansky, and Lin Zhong. 2016.
RedEye: analog ConvNet image sensor architecture for continuousmobile vision.
ACM SIGARCH Computer Architecture News 44, 3 (2016), 255–266.

[64] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740–
755.

[65] Alan J Lipton, Peter L Venetianer, Niels Haering, Paul C Brewer, Weihong Yin,
Zhong Zhang, Li Yu, Yongtong Hu, Gary WMyers, Andrew J Chosak, et al. 2015.
Video analytics for retail business process monitoring. US Patent 9,158,975.

[66] Fei Liu, Zhiyuan Zeng, and Rong Jiang. 2017. A video-based real-time adaptive
vehicle-counting system for urban roads. PloS one 12, 11 (2017), e0186098.

[67] Peng Liu, Bozhao Qi, and Suman Banerjee. 2018. EdgeEye: An Edge Ser-
vice Framework for Real-time Intelligent Video Analytics. In Proceedings of
the 1st International Workshop on Edge Systems, Analytics and Networking
(Munich, Germany) (EdgeSys’18). ACM, New York, NY, USA, 1–6. https:
//doi.org/10.1145/3213344.3213345

[68] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. 2016. Ssd: Single shot multibox detector.
In European conference on computer vision. Springer, 21–37.

[69] Xu Liu, Zilei Wang, Jiashi Feng, and Hongsheng Xi. 2016. Highway vehicle
counting in compressed domain. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 3016–3024.

[70] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez, Carlos Maltzahn, Ryan
Stutsman, and Robert Ricci. 2018. Taming performance variability. In 13th
{USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 18). 409–425.

[71] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.
2016. Asynchronous Methods for Deep Reinforcement Learning. In
Proceedings of The 33rd International Conference on Machine Learning
(Proceedings of Machine Learning Research), Maria Florina Balcan and Kil-
ian Q. Weinberger (Eds.), Vol. 48. PMLR, New York, New York, USA, 1928–1937.
http://proceedings.mlr.press/v48/mniha16.html

[72] Habibzadeh Mohamadhadi, Moeen Hassanalieragh, Akihiro Ishikawa, Tolga
Soyata, and Gaurav Sharma. 2017. Hybrid Solar-Wind Energy Harvesting for
EmbeddedApplications: Supercapacitor-Based SystemArchitectures andDesign
Tradeoffs. IEEE Circuits & Systems Magazine 17, 4 (2017), 29–63.

[73] Saman Naderiparizi, Mehrdad Hessar, Vamsi Talla, Shyamnath Gollakota, and
Joshua R Smith. 2018. Towards battery-free {HD} video streaming. In 15th
{USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 18). 233–247.

[74] Saman Naderiparizi, Aaron N Parks, Zerina Kapetanovic, Benjamin Ransford,
and Joshua R Smith. 2015. WISPCam: A battery-free RFID camera. In 2015 IEEE
International Conference on RFID (RFID). IEEE, 166–173.

[75] Saman Naderiparizi, Yi Zhao, James Youngquist, Alanson P Sample, and Joshua R
Smith. 2015. Self-localizing battery-free cameras. In Proceedings of the 2015
ACM International Joint Conference on Pervasive and Ubiquitous Computing.
ACM, 445–449.

[76] Milind Naphade, David C Anastasiu, Anuj Sharma, Vamsi Jagrlamudi, Hy-
eran Jeon, Kaikai Liu, Ming-Ching Chang, Siwei Lyu, and Zeyu Gao. 2017.
The nvidia ai city challenge. In 2017 IEEE SmartWorld, Ubiquitous Intelligence
& Computing, Advanced & Trusted Computed, Scalable Computing &
Communications, Cloud & Big Data Computing, Internet of People and Smart
City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE,
1–6.

[77] Shree K Nayar, Daniel C Sims, and Mikhail Fridberg. 2015. Towards self-
powered cameras. In 2015 IEEE International Conference on Computational
Photography (ICCP). IEEE, 1–10.

[78] Mohammad Sadegh Norouzzadeh, Anh Nguyen, Margaret Kosmala, Alexandra
Swanson, Meredith S Palmer, Craig Packer, and Jeff Clune. 2018. Automatically
identifying, counting, and describing wild animals in camera-trap images with
deep learning. Proceedings of the National Academy of Sciences 115, 25 (2018),
E5716–E5725.

[79] Min-hwan Oh, Peder A Olsen, and Karthikeyan Natesan Ramamurthy. 2019.
Crowd counting with decomposed uncertainty. arXiv preprint arXiv:1903.07427
(2019).

[80] Niketan Pansare, Vinayak R Borkar, Chris Jermaine, and Tyson Condie. 2011.
Online aggregation for large mapreduce jobs. Proc. VLDB Endow 4, 11 (2011),
1135–1145.

[81] Jason Remington Parham, Jonathan Crall, Charles Stewart, Tanya Berger-Wolf,
and Daniel Rubenstein. 2017. Animal population censusing at scale with citi-
zen science and photographic identification. In 2017 AAAI Spring Symposium
Series.

[82] Alex Poms, Will Crichton, Pat Hanrahan, and Kayvon Fatahalian. 2018. Scanner:
Efficient Video Analysis at Scale. ACM Trans. Graph. 37, 4, Article 138 (July
2018), 13 pages. https://doi.org/10.1145/3197517.3201394

[83] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen. 2018. DeepDecision: A Mobile
Deep Learning Framework for Edge Video Analytics. In IEEE INFOCOM 2018 -
IEEE Conference on Computer Communications. 1421–1429. https://doi.org/
10.1109/INFOCOM.2018.8485905

[84] Joseph Redmon and Ali Farhadi. 2017. YOLO9000: better, faster, stronger.
In Proceedings of the IEEE conference on computer vision and pattern
recognition. 7263–7271.

[85] Joseph Redmon and Ali Farhadi. 2018. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767 (2018).

[86] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. In Advances
in neural information processing systems. 91–99.

[87] Reuven Y Rubinstein and Dirk P Kroese. 2016. Simulation and the Monte Carlo
method. Vol. 10. John Wiley & Sons.

[88] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottle-
necks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 4510–4520.

[89] S. Sheik Mohammed Ali, B. George, L. Vanajakshi, and J. Venkatraman. 2012.
A Multiple Inductive Loop Vehicle Detection System for Heterogeneous and
Lane-Less Traffic. IEEE Transactions on Instrumentation and Measurement 61,
5 (May 2012), 1353–1360. https://doi.org/10.1109/TIM.2011.2175037

[90] Honghui Shi. 2018. Geometry-aware traffic flow analysis by detection and track-
ing. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops. 116–120.

[91] Lefteris Sidirourgos, PA Boncz, ML Kersten, et al. 2011. Sciborq: Scientific data
management with bounds on runtime and quality. (2011).

[92] Rahul Singh, David Irwin, Prashant Shenoy, and Kadangode K Ramakrish-
nan. 2013. Yank: Enabling green data centers to pull the plug. In Presented
as part of the 10th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 13). 143–155.

[93] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour.
1999. Policy Gradient Methods for Reinforcement Learning with Function
Approximation. In Proceedings of the 12th International Conference on Neural
Information Processing Systems (Denver, CO) (NIPS’99). MIT Press, Cambridge,
MA, USA, 1057–1063. http://dl.acm.org/citation.cfm?id=3009657.3009806

[94] Madjid Tavana and Srikanta Patnaik. 2018. Recent Developments in Data
Science and Business Analytics. Springer.

[95] Jan C van Gemert, Camiel R Verschoor, Pascal Mettes, Kitso Epema, Lian Pin Koh,
and SergeWich. 2014. Nature conservation drones for automatic localization and
counting of animals. In European Conference on Computer Vision. Springer,
255–270.

[96] Deepak Vasisht, Zerina Kapetanovic, Jongho Won, Xinxin Jin, Ranveer Chandra,
Sudipta Sinha, Ashish Kapoor, Madhusudhan Sudarshan, and Sean Stratman.
2017. Farmbeats: An iot platform for data-driven agriculture. In 14th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 17).
515–529.

[97] Chengcheng Wan, Muhammad Santriaji, Eri Rogers, Henry Hoffmann, Michael
Maire, and Shan Lu. 2019. ALERT: Accurate Anytime Learning for Energy and
Timeliness. arXiv preprint arXiv:1911.00119 (2019).

[98] JunjueWang, Brandon Amos, AnupamDas, Padmanabhan Pillai, Norman Sadeh,
and Mahadev Satyanarayanan. 2017. A Scalable and Privacy-Aware IoT Service
for Live Video Analytics. In Proceedings of the 8th ACMonMultimedia Systems
Conference (Taipei, Taiwan) (MMSys’17). ACM, New York, NY, USA, 38–49.
https://doi.org/10.1145/3083187.3083192

[99] Junjue Wang, Ziqiang Feng, Zhuo Chen, Shilpa George, Mihir Bala, Padmanab-
han Pillai, Shao-Wen Yang, and Mahadev Satyanarayanan. 2018. Bandwidth-
Efficient Live Video Analytics for Drones Via Edge Computing. In 2018
IEEE/ACM Symposium on Edge Computing, SEC 2018, Seattle, WA, USA,
October 25-27, 2018. 159–173. https://doi.org/10.1109/SEC.2018.00019

[100] Peter Wei, Haocong Shi, Jiaying Yang, Jingyi Qian, Yinan Ji, and Xiaofan Jiang.
2019. City-scale vehicle tracking and traffic flow estimation using low frame-rate
traffic cameras. In Proceedings of the 2019 ACM International Joint Conference
on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM
International Symposium on Wearable Computers. ACM, 602–610.

[101] Mengwei Xu, Tiantu Xu, Yunxin Liu, Xuanzhe Liu, Gang Huang, and Felix Xi-
aozhu Lin. 2019. Supporting Video Queries on Zero-Streaming Cameras. arXiv
preprint arXiv:1904.12342 (2019).

[102] Tiantu Xu, Luis Materon Botelho, and Felix Xiaozhu Lin. 2019. VStore: A Data
Store for Analytics on Large Videos. In Proceedings of the Fourteenth EuroSys
Conference 2019 (Dresden, Germany) (EuroSys ’19). ACM, New York, NY, USA,
Article 16, 17 pages. https://doi.org/10.1145/3302424.3303971

[103] Taro Yamane. 1973. Statistics: An introductory analysis. (1973).
[104] Ying Yan, Liang Jeff Chen, and Zheng Zhang. 2014. Error-bounded sampling for

analytics on big sparse data. Proceedings of the VLDB Endowment 7, 13 (2014),
1508–1519.

https://doi.org/10.1145/3213344.3213345
https://doi.org/10.1145/3213344.3213345
http://proceedings.mlr.press/v48/mniha16.html
https://doi.org/10.1145/3197517.3201394
https://doi.org/10.1109/INFOCOM.2018.8485905
https://doi.org/10.1109/INFOCOM.2018.8485905
https://doi.org/10.1109/TIM.2011.2175037
http://dl.acm.org/citation.cfm?id=3009657.3009806
https://doi.org/10.1145/3083187.3083192
https://doi.org/10.1109/SEC.2018.00019
https://doi.org/10.1145/3302424.3303971

ApproximateQuery Service on Autonomous IoT Cameras MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

[105] S. Yi, Z. Hao, Q. Zhang, Q. Zhang,W. Shi, and Q. Li. 2017. LAVEA: Latency-Aware
Video Analytics on Edge Computing Platform. In 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS). 2573–2574. https:
//doi.org/10.1109/ICDCS.2017.182

[106] B Yogameena and C Nagananthini. 2017. Computer vision based crowd disaster
avoidance system: A survey. International journal of disaster risk reduction 22
(2017), 95–129.

[107] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,
Paramvir Bahl, and Michael J. Freedman. 2017. Live Video Analytics at Scale

with Approximation and Delay-Tolerance. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). USENIX Associ-
ation, Boston, MA, 377–392. https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/zhang

[108] Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao, and Yi Ma. 2016.
Single-image crowd counting via multi-column convolutional neural net-
work. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 589–597.

https://doi.org/10.1109/ICDCS.2017.182
https://doi.org/10.1109/ICDCS.2017.182
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang

	Abstract
	1 Introduction
	2 Background
	2.1 Autonomous Cameras
	2.2 Video Summary via Object Counting
	2.3 Object Counters on Individual Frames

	3 The Elf Design
	3.1 System Operation
	3.2 Count Action & Outcome

	4 Count Planning
	4.1 The Oracle Planner (Offline)
	4.2 The Learning-based Planner (Online)

	5 Integrating Multi-Source Errors
	6 Implementation
	7 Evaluation
	7.1 Methodology
	7.2 End-to-End Performance
	7.3 Validation of Key Designs
	7.4 The Impact of Hardware

	8 Related Work
	9 Conclusions
	References

