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Abstract

Enterprises are increasingly deploying large camera networks
for video analytics. Many target applications entail a common
problem template: searching for and tracking an object or ac-
tivity of interest (e.g. a speeding vehicle, a break-in) through a
large camera network in live video. Such cross-camera analyt-
ics is compute and data intensive, with cost growing with the
number of cameras and time. To address this cost challenge,
we present ReXCam, a new system for efficient cross-camera
video analytics. ReXCam exploits spatial and temporal lo-
cality in the dynamics of real camera networks to guide its
inference-time search for a query identity. In an offline profil-
ing phase, ReXCam builds a cross-camera correlation model
that encodes the locality observed in historical traffic patterns.
At inference time, ReXCam applies this model to filter frames
that are not spatially and temporally correlated with the query
identity’s current position. In the cases of occasional missed
detections, ReXCam performs a fast-replay search on recently
filtered video frames, enabling gracefully recovery. Together,
these techniques allow ReXCam to reduce compute workload
by 8.3 on an 8-camera dataset, and by 23x — 38 on a sim-
ulated 130-camera dataset. ReXCam has been implemented
and deployed on a testbed of 5 AWS DeepLens cameras.

1 Introduction

The Internet of Things (IoT) has led to an explosion of data
sources, and applications that rely on real-time inferences
over these data. In parallel, the models making these infer-
ences have improved in accuracy, even surpassing humans for
certain vision tasks, but at increased resource cost. This work
addresses the systems challenges of scaling up IoT applica-
tions to enable live video analytics on a fleet of cameras.
Live video analytics over a fleet of camera feeds embodies
two key trends—rmassive data sources and compute-intensive
inference (e.g., neural nets). On the one hand, enterprises de-
ploy large camera networks for public safety and business
intelligence [11]. For instance, Chicago and London police
access footage from 30,000 and 12,000 cameras to respond
to crimes in real time [4, 5]. On the other hand, many appli-
cations rely crucially on cross-camera video analytics, i.e.,
detecting, associating and tracking queried “identities” in
the live streams as these identities move across the camera
feeds over time (e.g., high-value shoppers in a store [8, 34]
or suspects in a city [46,66]). However, cross-camera analyt-

Figure 1: Spatio-temporal correlations for video inference. The
cameras (on the y-axis) are plotted according to their mutual
distances, e.g., ¢l and c2 are spatially closer than c1 and ¢3. In
searching for a query identity starting at frame ¢ (marked in
dark red), ReXCam eliminates some cameras entirely (spatial
filtering), as well as frames 7 + 2 and 7 + 3 (temporal filtering).
In this example, ReXCam searches first on c1, c2, and ¢3 (but
not c4), finds the target vehicle in c3, and then searches only on
c2 and c4 (but not cl1 and c3). The cameras and the times at
which they are searched are marked in green. The unmarked
portions represent compute savings.

ics applications are computationally more challenging than
“stateless” single-camera vision tasks (such as object detection
in one camera feed) as they entail discovering associations
across frames and across cameras. Their compute cost thus
grows with the number of cameras.

Prior work falls short of addressing this challenge. Work in
computer vision improves accuracy of cross-camera analytics
(e.g., [55,58,70]), but it has largely ignored the prohibitive
compute costs. Recent systems have accelerated analytics
on live videos via frame sampling and/or cascaded filters for
discarding frames [25,28,37,40,63,65]. However, they share
a key drawback that they optimize the execution of analytics
on single video feeds, independent of the other streams. Thus,
the compute cost of cross-camera analytics still grows with
more deployed cameras and longer activity time.

Spatio-temporal correlations: Our main insight is that the
cost of cross-camera analytics can be drastically reduced by
exploiting the physical correlations of objects among the cam-
era streams. We develop ReXCam, a cross-camera analytics
system that leverages inherent spatio-temporal correlations to
aggressively prune the set of camera streams to be processed,
thus decreasing compute costs. In the ideal case, ReXCam
reduces cost to the number of cameras that the queried object



appears in at any point in time and not the total number of
deployed cameras. A key property of cross-camera applica-
tions is that objects of interest appear only in a small number
of cameras at any time, even in large camera deployments.

Spatial correlations indicate geographical association be-

tween cameras — the probability that objects seen in a source
camera will move next to a particular destination camera’s
field of view. Temporal correlations indicate association be-
tween cameras over time — the probability that objects seen
in a source camera will move next to a destination camera’s
view at a particular time. These spatio-temporal correlations
enable ReXCam to guide its cross-camera inference search
toward cameras and frames most likely to contain the query
identity (see Figure 1). ReXCam’s use of spatio-temporal
correlations to cut the cost of cross-camera analytics is funda-
mentally different than the cross-camera correlations used by
recent work (e.g., [37]) that optimizes the resource-accuracy
profiling but not the live video analytics itself, which still
executes on each stream independently.
Challenges: ReXCam, at its core, applies the physical proper-
ties in the IoT world (spatio-temporal correlations across cam-
eras) to high-level Al applications (cross-camera video analyt-
ics). This has led to three main challenges. First, automatically
obtaining spatio-temporal correlations is expensive on unla-
beled video data. Second, applying spatio-temporal correla-
tions to existing single-camera inference modules (e.g., object
trackers) is non-trivial and requires clean abstractions with
the necessary system supports. Finally, any spatio-temporal
profile is bound to have errors that will lead to missing objects,
which need to be detected and rectified efficiently.

To tackle these challenges, ReXCam operates in three dis-
tinct phases. 1) In an offline profiling phase, it constructs
a cross-camera spatio-temporal correlation model from un-
labeled video data, which encodes the locality observed in
historical traffic patterns. This is an expensive one-time op-
eration that requires detecting entities with an offline tracker,
and then converting them into an aggregate profile of cross-
camera correlations. 2) At inference time, ReXCam uses this
spatio-temporal model to filter out cameras that are not cor-
related to the query identity’s current position (camera), and
is thus unlikely to contain its next instance. 3) Occasionally,
this filtering will cause ReXCam to miss query detections.
In these cases, ReXCam performs a fast-replay search on
recently filtered frames (that it stores), uncovers the missed
query instances, and gracefully recovers into its live search.
Evaluation Highlights: We evaluate ReXCam using the well-
studied DukeMTMC video data [55] from the Duke campus.
On this 8-camera dataset, ReXCam saves compute cost by
8.3 x over a correlation-agnostic baseline (~ 90% of the ideal
savings). These savings come at a drop in recall of only 1.6%.
We also use a simulated dataset of 130 cameras in Porto (us-
ing GPS trajectories) [10], and report savings of 23 x —38x.
Interestingly, ReXCam improves precision by 39%, perhaps
because the spatio-temporal pruning acts as a “low pass filter”.

Finally, we have implemented and deployed ReXCam on a
small testbed of 5 AWS DeepLens smart cameras [13].
Contributions: Our work makes three main contributions.
1) We quantify the potential for harnessing spatio-temporal
correlations in cross-camera video analytics.

2) We build a cross-camera video analytics system that learns
and applies spatio-temporal profiles on live videos.

3) We develop robust error-handling mechanisms to avoid
missed detections by storing and searching on recent videos.

2 Motivation and Background

We explain some example cross-camera video analytics appli-
cations (§2.1), the modules in their analytics pipelines (§2.2),
and then the compute models for video analytics (§2.3).

2.1 Cross-camera analytics applications

Large camera networks are installed in cities (such as London,
Beijing, and Chicago), transport facilities (traffic intersections,
airports), and enterprise campuses (corporate offices, retail
shops) [1,5,12,66]. A common class of applications in these
camera deployments rely on re-identifying and following ob-
Jjects (e.g., people or vehicles) as they move across the views
of the different cameras. The focus is on following select
“objects of interest” that are typically provided by external
entities (such as law enforcement). A key characteristic of
cross-camera applications is that objects of interest occur only
in a small fraction of the cameras at any given time.
1) Public safety. Cross-camera video analytics helps localize
suspects after a security breach. For example, after a reported
incident of a person pulling out a gun inside an office build-
ing, we will want to track that person (whose image can be
obtained from the camera footage) across the cameras in the
building while security personnel are dispatched.
Alternatively, after a major public attack (e.g., in a train),
law enforcement may track the accomplices of the identified
perpetrator, which may be obtained from police databases that
store people frequently associated with the perpetrator [66].
Following these accomplices across the thousands of cameras
in the city allows for effective police apprehension.
2) Vehicle tracking in traffic cameras. In the U.S. and Eu-
rope, AMBER alerts are raised on suspected child abduc-
tions [2]. The license plate and vehicle details are obtained
from investigations, and alerts are broadcast to citizens in the
area [2]. Tracking of the suspect’s vehicle across the thou-
sands of cameras on highways and city streets can keep tabs
on the suspect and victim, even as police intervene [46].
Likewise, when traffic police notice a vehicle speeding or
making a dangerous maneuver, they will note its details and
will be interested in tracking the vehicle as it moves across
the city using cross-camera analytics to assess its behavior.
3) Retail store cameras. Using computer vision to improve
shopping experience is a big thrust among retailers. “Special”
shoppers (e.g., loyal customers, or customers on wheelchairs)
are identified as they enter the store and cross-camera analyt-
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Figure 2: Nlustration of identity re-identification.

ics can be used to track them across the hundreds of cameras
in the store to make sure they are provided timely attention
(e.g., dispatching a store representative) when necessary.

2.2 Video analytics pipelines

Video analytics pipelines for cross-camera applications (in
§2.1) typically consist of a series of modules on the decoded
frames of the video stream: (1) an object detection module,
which extracts and classifies objects of interest in each video
frame (e.g., people, gun), and (2) a re-identification module,
which given a query image (e.g., of a person), returns po-
sitions of co-identical instances of the query in subsequent
frames (if present). Cross-camera analytics pipelines detect
objects in each camera, and track the objects across cameras.
Core to this pipeline is the vision primitive of identity re-
identification [39,50,56]. Given an image of a query identity
g, a re-identification (re-id) algorithm ranks every image in
a gallery G based on its feature distance to g; the lower the
distance the higher the similarity (Figure 2). Typically, fea-
tures are the intermediate representation of a neural network
trained to associate instances of co-identical entities.

Object detection and re-id are the most challenging steps of
cross-camera video analytics — in terms of cost and accuracy
— and our work focuses on improving both of them.

Cost. Tracking in large camera networks is computationally
expensive. Tracking even a single object of interest through
a camera network, after an initial detection, can potentially
require analyzing every subsequent frame in every camera
(without good heuristics for geographic localization). '
Accuracy. Re-id is a non-trivial problem in computer vi-
sion [59, 68], being particularly difficult in crowded scenes
and in large camera networks due to significant differences
in lighting and viewpoint across cameras. Often, re-id mod-
els must rely on weak signals (like clothing), thus making it
difficult among a large gallery of objects in a frame.

Our use of spatio-temporal correlations to prune the video
frames to analyze — i.e., run object detection and re-id — sig-
nificantly cuts down the inference space, thus improving both
cost as well as accuracy. While our focus is on cross-camera
applications, we also show how spatio-temporal correlations
improve the cost of even single-camera applications (§5.4).

'Optimizations using frame sampling in each camera stream [28,40] are
orthogonal to our idea of using spatio-temporal correlations across cameras,
and we will quantify this aspect in our experiments in §8.2.

2.3 Setup and compute model

Consistent with existing deployments [23,29,47], our focus
is on “edge” computation of video analytics. In our setup, all
the cameras are in a high-speed local network with sufficient
bandwidth to an edge compute box (e.g., Azure Data Box
Edge [3]) that is managed by the enterprise (that has deployed
the cameras). For example, cameras in an office building are
analyzed in an edge box located in the same building. Traffic
cameras in a city are analyzed in the local traffic command
center [45]. Videos are streamed to this edge box and the
pipeline modules (§2.2) including object detection and re-id
are run on this edge. Reducing the compute load enables more
video feeds to be processed on the edge box or alternately
reduces the resources to be provisioned.

Our ideas also readily apply to a network of Al cameras
(as we implement and deploy in §7), each of which consist of
compute on-board, accelerators (e.g., GPUs), and storage [13,
53]. Our techniques will enable each camera to be provisioned
with much lower resources, thus lowering their cost.

3 Quantifying spatio-temporal correlations

We analyze the potential of using spatio-temporal correla-
tions for cross-camera video analytics using the DukeMTMC
dataset [55]. We study cross-camera identity tracking that
involves tracking an object of interest, in real time, through
a camera network. In particular, given an instance of a query
identity g (e.g., a person) flagged in camera ¢, at frame f,
we return all subsequent frames, across all cameras, in which
q appears as it moves around. We measure the reduction in
compute, i.e., the number of frames on which object detection
and re-id operations (§2.2) are executed.

3.1 Empirical analysis on cross-camera correlations

We now present an empirical study to quantify the cross-
camera correlations in the DukeMTMC dataset [55], one of
the most popular benchmarks in computer vision person re-id
and tracking [60,67]. This quantification motivates our design
of a video analytics system that leverages such correlations
to improve the performance of cross-camera analytics. The
DukeMTMC dataset contains footage from eight cameras
placed on the Duke University campus (see Figure 3), in an
area with significant pedestrian traffic. The field of views
of the cameras do not mostly intersect, but the cameras are
placed close enough that people frequently appear in multiple
cameras, as is typical in camera deployments. The dataset
contains over 2,700 unique identities across 85 minutes of
footage, recorded at 60 frames per second [55].

3.1.1 Spatial correlation.

Cross-camera movement of individuals (or “traffic”’) demon-
strates a high degree of spatial correlation. Here, “traffic” be-
tween cameras A and B is defined as the set of unique individ-
uals detected in camera A that are next detected in camera B.
(Note that a person that moves from A to B via camera C are



Figure 3: DukeMTMC camera network [55]. Marked regions
show the visual field of view of each camera.
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Figure 4: Spatial correlations in the DukeMTMC dataset [55].

Cells display % of outbound traffic (individuals) from each
camera that appears at other cameras. Each row corresponds to
a particular source camera while each column to a destination
camera; each row’s values add up to 100%. The final column
represents traffic that exits the camera network.

excluded from the traffic count of A — B and instead included
in the A — C traffic count.) We find that individuals seen at
a camera ¢, move next to only a small number of ¢,’s peer
cameras. On the 8-camera DukeMTMC dataset, only 1.9 of
7 potential peer cameras, on average, receive even 5% of the

total outbound traffic (or individuals) from a given camera.

Figure 4 shows the full pair-wise spatial correlations.
Exploiting this insight can significantly reduce our compute
workload, at little cost to accuracy, when searching for a query
identity g (e.g., a person), that was first detected in camera
¢4 In comparison to a scheme that searches all n — 1 peers,
a smarter scheme that searches only those camera feeds that
receive at least 5% of the traffic from ¢, reduces our compute
by 3.7x (we search only 1.9 cameras instead of 7, or 3.7 x
fewer frames to run object detection and re-id; see §2.2), while
still capturing 95% of all detections as per our experiments.
An interesting aspect is that geographical proximity is not
necessarily a good spatial filter. Consider camera-5 (Figure
4), out of which a significant fraction of individuals (traffic)
go to cameras 2 and 6 but not to 7 or 8 even though they are
also spatially proximate. Likewise, little traffic moves out of
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Figure 5: Temporal correlations in the DukeMTMC dataset
[55] (for two example destination cameras 2 and 4). Plots dis-
play distribution of inter-camera travel times. Each plot cor-
responds to traffic to the particular destination camera. Each
colored line represents a particular source camera.

camera 8 to cameras 2 and 5 even though these are physically
proximate. Thus, learning these patterns in a data-driven fash-
ion is a more robust approach (as we will quantify in §8.2).
Data-driven learning also allows us to capture asymmetry in
the traffic patterns between cameras, for e.g., over 50% of
traffic from camera-7 move to camera-6 but less than 25% of
traffic moves in the reverse direction from camera-6 to 7.

3.1.2 Temporal correlation.

Cross-camera traffic also demonstrates a high degree of tempo-
ral correlation. As Figure 5 shows, travel times of individuals
between a particular source camera and a destination camera
in the DukeMTMC dataset are highly correlated. This is ex-
plained by the fact that these are static cameras and thus their
pairwise distances are also static. Thus, for a given pair of
cameras, the travel times for people to leave the feed of one
camera and appear in the other camera are likely to be clus-
tered around a mean value. In the DukeMTMC dataset, the
average travel time between all camera pairs is 44.2s, and the
standard deviation is only 10.3s (or only 23% of the mean).

Exploiting temporal correlations, even on its own, has the
potential to provide compute savings. Given the task of lo-
cating a given query identity g, first identified in camera ¢,
in one of the n — 1 possible destination camera streams, we
can simply search each of the n — 1 streams (ignoring spatial
correlations) but only for the time window when the query
identities are most likely to show up. We probabilistically set
the time window to be when at least 98% of the objects appear.
Such an approach has the potential to reduce our compute
load by 7.5x compared to a naive approach that does not use
such a (time) windowed search. This shows the considerable
potential in leveraging the tight distribution of travel times of
individuals between the views of the cameras.

3.2 Potential gains: spatial & temporal correlations

We now put together the gains due to spatial and temporal
filtering combined over a baseline that searches all n — 1 cam-
eras (for a maximum duration). We assume ideal knowledge
about the spatial correlations between the cameras as well
as the temporal characteristics of travel times of individuals
between the views of the cameras. Using the same thresholds
as in §3.1, our analysis shows a potential gain of 9.4 x savings



in the compute cost. This encouraging potential for savings,
even for a 8-camera dataset, motivates us to both learn and ex-
ploit the spatio-temporal correlations for cross-camera video
analytics. As we will show in §8, ReXCam achieves 8.3 x
reduction in compute cost, which is ~ 90% of the potential.
In addition, the filtering of frames to search also improves the
precision of the results from 51% for the baseline approach
to 90% with ReXCam, with little drop in recall.

4 ReXCam Overview

Building upon the strong spatial/temporal correlations across
cameras seen in §3, we develop ReXCam, a resource-efficient
cross-camera analytics system that leverages the correlations
across cameras to reduce computing cost. As depicted in
Figure 6, ReXCam provides two core functions for cross-
camera video analytics applications.

The spatio-temporal model (§5.1) describes the spatial and
temporal correlation between cameras, and can be queried by
applications. At a high level, one can query the model with
two cameras, ¢g and ¢y, and a time window, and it will return
how likely an object leaving c; will appear in c; (i.e., the
spatial correlation) and if it appears in c¢; how likely it will
appear within the time window (i.e., temporal correlation).

The forward and replay analysis (§5.2 and §5.3) perform
real-time inference on live videos (i.e., forward) as well as
inference on history video (i.e., replay). Both capabilities
operate jointly, and replay search is inherently needed for
spatio-temporal pruning: ignoring a camera due to weak spa-
tial/temporal correlation will inevitably introduce false neg-
atives that a baseline of searching all cameras would have
avoided, so ReXCam provides the abstraction of replay search
to allow faster-than-real time search over some history videos
(that were ignored) for error correction.

In §5.2 we demonstrate how cross-camera identity tracking
(tracking an identity across cameras over time from a known
starting point) is performed using spatio-temporal pruning.
We also show the generality of the functionalities of ReXCam
by applying spatio-temporal pruning for cross-camera identity
detection (finding a queried identity, e.g., a lost child, in a large
camera deployment) in §5.4 that is both an important single-
camera application as well as ties to the cross-camera identity
tracking by providing it the starting point for its tracking.

5 Spatio-temporal correlations in ReXCam

‘We now describe ReXCam’s solution for leveraging spatio-
temporal correlations in cross-camera video analytics.

5.1 Defining the spatio-temporal model

ReXCam builds upon the cross-camera correlations in §3.

1) Spatial correlations capture associations between camera
pairs arising from the movement of traffic (individuals) be-
tween the views of the camera streams. The degree of spatial
correlation S between two cameras cs, ¢y is quantified by the
ratio of: (a) the number of individuals leaving the source cam-

ReXCam Applications
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Figure 6: Architecture of ReXCam.

era’s stream for the destination camera, n(cy,cy), to (b) the
total number of entities leaving the source camera:

S(es,cq) = _nles,ca)
Y I’l(Cs, Ci )
When a large fraction of individuals that leave ¢,’s view are
seen next in a camera c¢;, we say that c; is highly correlated
to camera c;. Note that S may be asymmetric (as seen in our
analysis in §3.1.1); camera ¢y may not be highly correlated
with camera c;, even if the converse is true. In cross-camera
identity search, ReXCam exploits spatial correlations by pri-
oritizing cameras that are highly correlated to the last camera
where the queried identity g was spot (called query camera).
2) Temporal correlations capture associations between cam-
era pairs over time. If a large fraction of the traffic leaving
camera cg for camera ¢, arrives within durations #; and f,
then camera c, is said to be highly correlated in the time win-
dow [t1,1;] to camera c,. The degree of temporal correlation
T between two cameras cy,cy during a window [t1,1,] is the
ratio of: (a) individuals reaching ¢, from ¢, within a duration
window [f1,1] to (b) total individuals reaching ¢, from cy:

n(CS,Cd, [tl 7t2])
n(cs,ca)

Indeed, cameras in real-world deployments have substantial
temporal correlation (§3.1.2). In cross-camera identity search,
ReXCam exploits temporal correlations by prioritizing the
time window [t1,f;] in which a destination camera is most
correlated with the query camera.

Spatio-temporal model Given a source camera cy, the cur-
rent frame index fiu+ (Which serves as a timestamp), and a
destination camera c4, our proposed spatio-temporal model M
outputs true if ¢4 is both spatially and temporally correlated
with ¢ at four, and false otherwise. In our description, the
frame index f.ur serves the role of the timestamp.

The thresholds for being spatially correlated with cg, and
temporally correlated with c; at time f,+ are model param-
eters. As an example, we may first wish to search cameras
receiving at least sqyesh = 5% of traffic from cy, during the
time window containing the first 1 — fyresh = 98% of traffic
from c,. These parameter settings exclude both outlier cam-
eras (cameras receiving less than 5% of the traffic from cy)

T(CS7cda [t17t2]> =
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Figure 7: Spatio-temporal correlations between camera Cq

(where the object was first spotted) and three other cameras.

C1 and C2 have spatial and temporal correlations with Cq (in
different time intervals). C1 is correlated with Cq in the times
[0, 10] but not otherwise; and C2 is correlated with Cq only in
times [10, 20]. C3 is not correlated with Cq.

and outlier frames (frames containing the last 2% of the traffic
from c;). Defining Sresh and fmresh as a percent of traffic (or
individuals) directly translates to precision and recall of the
entities being tracked. M is formally defined as:

1, S(CS7Cd) > Sthresh
and
T(Cmca’a [anfcurr]) < I — tihresh
0, otherwise

M(057cd7fcurr) =

ey

Here fj is the frame index at which the first historical arrival at
cq from ¢ was recorded. The reason of having f; is because
it takes time to travel from c; to ¢4, and cost savings can
be maximized by not searching on frames while objects are
moving between cameras. As a result, our temporal filter
checks if the volume of historical traffic that arrived at ¢,

between [fo, feurr] is less than 1 — fipeesn Of the total traffic.

This ensures that fg, falls in the “dense” part of the travel
time distribution, where we are likely to find g. (Note that
we must check that four > fo. When four < fo, M is false.)
Figure 7 shows an illustration for using M with fy values for
each destination camera. (We construct the model M in §6.)

Search hits and misses: Leveraging the spatio-temporal
model M allows us to explore the subset of the inference
space (camera streams and time windows) that is most likely
to contain ¢g. A “hit” reduces cost, as we avoid searching the
entire space. On the (rare) misses, we go back and find g in the
past video frames over all the camera streams we had filtered
out using M. In §5.3, we will explain how we handle misses
and mitigate the delay it introduces. Maximizing the cost
savings from hits and minimizing the miss-induced delays is
a tradeoff controlled by the parameters S¢resh and #ihresh-

Algorithm 1 Tracking with the spatio-temporal model

: input: video feeds {V,} for camera c,

1
2 sp_corr(cs,cg) —> {true,false}
3: tp_corr(cs,cq, f) — {true,false}
4: for query (g, f4,¢cq) € O do
5: Gfeat = features(q) > extract image features
6: Jeurr = fg+1 > init current frame index
7 M, =] > init query match array
8 phase = 1 > start phase one
9: while (four — fy) < exit_tdo
10: Veorr = filter (sp_corr, tp_corr, ¢g, feur, V)
11: frames = get_frames(Veorr, fourr)
12: gallery = extract_entities(frames)
13: ranked = rank_reid(gfeq, gallery)
14: if ranked[0][dist] < match_thresh then
15: M, = append(M,;, ranked|[0][img])
16: Gfear = update_rep(greqr, ranked[0] [feat])
17: fq = feurr
18: phase = 1 > reset to phase one
19: break
20: Seurr = increment( fourr)
21: if phase = 1 and 7 (cs, ¢g, [f0, feurr]) > 1 — fipresh then
22: Jeurr = fg+1 > reset frame index
23: sp_corr = relax(sp_corr)
24: tp_corr = relax(tp_corr)
25: phase = 2 > start phase two

26: output: matched detections {M,}

5.2 Cross-camera identity tracking

Algorithm | explains our cross-camera identity tracking. In
cross-camera identity tracking, the input consists of a query
image g, last seen in frame f; on camera c,. (If the input does
not contain the frame f;, we can first run the next application,
multi-camera identity detection, to locate it.) The goal is to
flag all subsequent frames, on all cameras, where g appears.
Note that g can appear again on the same camera (¢ = ¢;),
different cameras (c # ¢), or else exit the network altogether.
For each query ¢, we begin by extracting image features gfeat
and initializing an empty array of discovered matches M,,. For
each frame, as explained in §2.2, we: (1) extract individuals
(objects) from each frame using an object detection model,
(2) rank the objects based on their feature similarity distance
to g using a re-id model (Figure 2).

If the top-ranked detection is within a threshold
(match_thresh in Algorithm 1), i.e., a co-identical instance is
found by the re-id model, we add the detection to our array
of matches M, update our query representation qfey; to incor-
porate the features of the new instance of g, update the query
frame index f, to feur, and proceed with tracking g; lines
14-18. We continue searching until the gap between the last
detected instance of g and our current frame index exceeds a
pre-defined exit threshold (defined as exit_t in Algorithm 1).
At this point, we conclude that ¢ must have exited the camera



network, and cease tracking q.

We apply the spatio-temporal model to cross-camera track-
ing as follows (marked in blue in Algorithm 1). The model
M has two filters (lines 2 and 3): (1) spatial_corr(cs,cy),
which given a source camera c¢; and a destination cam-
era ¢4 returns true if ¢; is correlated with ¢g, and (2)
temporal_corr(cs,cy, f), which given a source camera c;,
a destination camera cg4, and a frame index f, returns true if
cq 1s correlated with ¢ at f. At query time, these two func-
tions are passed to the filter function (line 10), which given a
list of video feeds V, returns the subset of cameras (Vo) that
are both spatially and temporally correlated to c¢g at feur.

Applying filter reduces the inference search space, at each
frame step feurr, from all entity detections at foyr On every
camera to all entity detections at fiu Oon correlated cameras.
This allows us to abstain from running object detection and
feature extraction models on non-correlated cameras, and
reduces the size of the re-id gallery in the ranking step. If
filter in Algorithm | were applied to the example in Figure 7,
the set Veorr would be only C1 in in the times [0, 10], only C2
in the times [10, 20], and null set at all other times.

5.3 Handling pruning errors via replay search

Spatio-temporal pruning may cause a drop in recall: missing
actual occurrences of the query identity ¢, which would be
discovered by a baseline that exhaustively searches all the
frames of all the cameras. When tracking on the spatially
filtered cameras does not discover g after exit_t time (line 22
in Algorithm 1), we will initiate a “second pass” through the
video frames that we skipped; we call this replay search.
Replay subset: We initiate replay search on a broader subset
of cameras and timespans. In particular, we go back to the
last camera that the queried identity was seen, ¢, (i.e., restart
the tracking procedure from feur = f; + 1, line 23, as f, was
the last frame the queried object was seen), and find all the
correlated cameras and time windows that ¢, is correlated
with using the spatio-temporal profile but now with thresholds
Sthresh and tinresh decreased by a factor of 10. If we do discover
an instance of g, we proceed with tracking from that detection,
initiating a new phase one in Algorithm 1. If we still do not,
we search the entire camera network until the exit threshold.

Note that despite relaxing Sihresh and tresh, the cameras
over which we perform replay search will still be only a small
fraction of the overall camera network and for only a small du-
ration in the past. This is because a vast majority of cameras
(in a large deployment) will have never seen traffic (individ-
uals) from ¢,. Implicit to replay search is also the ability to
store videos in the past. However, this only needs to be for
the last few minutes (few 100 MBs even for HD videos).
Replay delay: Searching on videos from the past indicates
that we are lagging behind tracking the identity. Thus, it is
desirable to speed up the search process. ReXCam processes
the historical videos at faster-than-real-time.

a) Skip frame mode — Process the historical videos at lower

frame rate (via frame sampling) and lower resolution (via
frame downsizing) to increase processing rate but potentially
lower accuracy. We use offline profiling [63, 65] to decide the
frame rates and resolution to limit the drop in accuracy.

b) Parallelism mode — Process the historical videos by
parallelizing them across other cameras or edge machines
(depending on the setup; §2.3) that are idle. As explained
above, the broader replay search is likely still only a small
subset of all the videos, so spare resources will be available.

We implement both solutions and investigate their trade-
offs on accuracy and delay in our evaluation (§8.3).

5.4 Multi-camera identity detection

While our focus thus far has been on cross-camera video ana-
lytics, spatio-temporal models can also be applied to reduce
the cost of single-camera analytics, e.g., find a lost baby or
lost car in a mall’s or city’s cameras. This involves running
object detectors independently on each camera stream, and
is expensive for large camera deployments. In this section,
we apply our cross-camera spatio-temporal model (§5.1) to
such single-camera “identity detection”. Not only is it an ap-
plication of wide relevance on its own, it also ties closely with
cross-camera tracking (§5.2) to provide it the starting point of
the query g (which we have been referring to as camera c,).

Identity detection refers to finding a given identity ¢ (e.g.,
an image of a lost baby or suspect) in many camera streams.
The intuition why the spatio-temporal model helps is that if g
is not found in camera C1 and the spatio-temporal model indi-
cates that most objects appearing in camera C2 have recently
appeared in C1, then camera C2 is unlikely to contain g. In
other words, the model allows to prune the cameras and time
windows in which q is unlikely to be found based on when
and where g was not found earlier. At any point of time, we
maintain a probability for each camera to contain an object
that has not been “scanned” (i.e., not found in the camera
feeds we have searched so far). The cameras with high values
of this probability will be prioritized in the search.

Formally, we define P, ,, to be the probability of any un-
scanned object (i.e., an object that did not appear in any cam-
era when it was searched) appearing in camera c in time win-
dow w. Thus, the greater the P. ,, is, the more likely searching
camera ¢ in window w would yield a “hit”. We also define P}
is the probability of the identity entering the whole camera
network at camera ¢ at any point in time. We estimate this
value by looking at the history trace and dividing the num-
ber of objects who appear camera c first by total number of
objects. Then P, o = P} and P.,, with w > 0 can be derived
iteratively by the following equation:

P, =P+ Z Ieio; Py - S(ciye) - T (ciye,w)
wj<w,ci
where I, is a binary flag indicating if camera ¢; was
searched at time window w (Ic,-,w,- =0) or not (Ic,-,w,- =1). The
equation can be intuitively interpreted as following: the proba-
bility of query object ¢ to appear in camera ¢ and time window



w is the sum of the probability of it entering the whole network
at ¢ (i.e., P}) and the probability of ¢ moving from another
camera c; to at time wj, i.e., I, w; * Pe; w; -S(ciye) - T(ci,e,w).
At any point in time, we search the camera ¢ and time
window w whose P, ,, is greater than a threshold 0. If the
identity is found, the search ends. Otherwise, we set I, ,, ;= 0
and update other P, ,,. This is run until we find the queried
identity. §8.5 evaluates our gains with identity detection.

6 Profiling spatio-temporal correlations

A final piece of ReXCam system is the profiling and main-
taining of the spatio-temporal correlations. ReXCam takes an
approach that builds on standard techniques from computer
vision. Before ReXCam is deployed, we first use a multi-
target, multi-camera (MTMC) tracker to label entities in a
dataset of historical video, collected from the same camera
deployment on which the live tracking is executed. Logically,
such a tracker will return for each detected entity instance i
a tuple, (¢, fi,e;), containing the camera identifier ¢;, frame
index f;, and entity identifier e; for the detection, respectively.
Using these, we compute n(cy, ¢y, [t1,12]), the number of
entities leaving any source camera c; for any destination cam-
era ¢4 within a time interval [¢1,7]. These quantities translate
directly to our spatio-temporal model M in Eq. 1 (see §5.1).
However, directly using MTMC trackers to profile spatio-
temporal correlations in the history video is computationally
expensive, neutralizing the savings from the search pruning.
This is because unlike single-target tracking, a MTMC tracker
will track all entities in the dataset. To limit the profiling over-
heads, we explore the trade-off between the robustness of
offline profiling and the accuracy of subsequent single-target
cross-camera tracking using the generated model. In particu-
lar, the profiling cost can be reduced by labeling fewer frames
with the MTMC tracker (e.g., by selecting a lower frame sam-
pling rate or choosing a smaller subset of the data to label).
At first glance, this will likely reduce the search accuracy as
the spatio-temporal correlations is based on a sampled sub-
set of entities. In practice, however, we found that despite
labeling fewer frames for the profiling, our precision and re-
call drops are only mild, and thus our solution of labeling
fewer frames significantly reduces the profiling cost without
impacting accuracy. We empirically show this in §8.4.
Finally, ReXCam needs to cope with potential changes in
the spatio-temporal correlations (e.g., a road work may block
a busy segment, which can reduce the correlation between two
cameras). These ‘changes are relatively infrequent, but when
they do happen, ReXCam can automatically detect them and
initiate re-profiling. In particular, ReXCam tracks the num-
ber of objects that are missed in the normal pruned search
but detected in the subsequent replay search (in an “uncorre-
lated” time interval or camera), and triggers a re-profiling of
the spatio-temporal correlations between the corresponding
cameras when there is a spike in pruning errors. Note that
the error in the spatio-temporal profile during the re-profiling
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Figure 8: ReXCam testbed deployment at AnonCampus with
five AWS DeepLens smart cameras. The red lines show the
walkways in the building, and we learn the spatio-temporal cor-
relation of people traversing the walkways. The controller and
all the cameras exchange “trigger” and ‘“feedback’ messages.

will not affect ReXCam’s inference, but only increase latency
because the replay search handles the errors.

7 System Implementation & Deployment

We implement ReXCam with 1.5K line of Python code over
AWS DeepLens smart cameras [13]. Each DeepLens camera
runs Ubuntu OS-16.04 LTS, and is equipped with an Intel
Gen9 GPU and Intel Atom Processor CPU, 8GB RAM, and
16GB built-in storage. Our testbed includes five such cameras
connected to each other via Wi-Fi and deployed on Anon-
Campus (Figure 8). In our testbed, video analytics modules
(object detection, re-id) run on DeepLens’s on-chip GPU and
CPU. The testbed of smart cameras contrasts the alternate
model for video analytics using nearby edge boxes (§2.3).
We use a laptop (connected to the same Wi-Fi network as
the cameras) to run the ReXCam controller. The ReXCam
controller is responsible for profiling (§6) and maintaining
the spatio-temporal model of correlations among cameras.
The connectivity between the controller and the cameras is
only to exchange “control messages” and not video data. We
implement two main control inferences (Figure 8):

1. A trigger message from the controller to a camera trig-
gers the camera to start (or stop) searching for a specified
query identity in its video within a specified time interval.
The trigger message can also be used to initiate search
in history videos for replay search (§5.3).

2. A feedback message from a camera to the controller no-
tifies the controller on an interesting incident (e.g., the
specified identity has just been detected, or left the cam-
era’s view) in real-time. A feedback follows an activation
message and is sent as soon as the incident occurs.

Fault tolerance: The cameras broadcast a heartbeat every few
seconds to the controller to handle instances of cameras fail-
ing. The ReXCam controller can be replicated for resilience.
The only persistent state held by the ReXCam controller is
the model of spatio-temporal correlations, which is backed up,
and is updated only at coarse timescales. The spatio-temporal



Figure 9: Example snapshots from AnonCampus (left) and
DukeMTMC [55] (right) cameras.

pruning algorithm (Algorithm 1) is also stateless, and trig-
gered by feedback messages from the cameras.

8 Evaluation

Our evaluation of ReXCam shows the following highlights.
1) ReXCam’s compute savings on the 8-camera
DukeMTMC dataset is 8.3 x (which is ~ 90% of the poten-
tial; §3). ReXCam also improves precision from 51% to 90%.
On the larger simulated dataset of 130 cameras from Porto,
our savings grow with the number of cameras. (§8.2, §8.3)
2) Deployment on the 5-camera testbed with AWS
DeepLens cameras leads to 3.4 x savings in compute. (§8.2)
3) ReXCam’s optimizes to keep the profiling costs small
without impacting the precision and recall. (§8.4)
We evaluate ReXCam for single-camera analytics in §8.5.

8.1 Methodology

A. Datasets — We evaluate ReXCam on three datasets.

1) AnonCampus dataset (§7) consists of 35 minutes of 1080p
video recorded at 24 frames per second, captured by five
DeepLens cameras deployed in a school building (see Figure
8). The dataset is manually labeled with person identities.

2) DukeMTMC dataset is a video surveillance dataset with
footage from eight cameras installed on the Duke University
campus (see Figure 3). The data consists of 85 minutes of
1080p video from each camera recorded at 60 frames per sec-
ond. In all, the footage contains over 2,700 unique identities
and over 4 million person detections (all labeled).

Figure 9 shows snapshots from eight different cameras
(four each) from the AnonCampus and DukeMTMC datasets.
3) Porto dataset is generated from 1,710,671 trajectories ob-
tained from 442 taxis running in the city of Porto, Portugal
between Jan. 2013 and June 2014 [10]. Each trajectory con-
tains timestamps and GPS coordinates sampled every 15 sec-
onds. To emulate cross-camera tracking, we manually pin
130 cameras at intersections of the city (we get the cameras’
coordinates from Google Maps) and set each camera’s field-
of-view to be a square area centered at the camera with length
I = 100m. We assume the accuracy of object detection and
re-id equal to the values reported in DukeMTMC-reID [7] for
objects in the camera’s view. The main objective is to measure
ReXCam’s gains in a large city-wide setting of cameras.

B. Models — For our re-id model, we use an open-
source, ResNet-50-based implementation of person re-id [6],
trained in PyTorch on a subset of the Duke dataset called

DukeMTMC-reID [7]. We then implement our tracking (Al-
gorithms 1), which applies this model iteratively at inference
time to discover all instances of a query identity in the Duke
dataset. Since DeepLens uses the cIDNN and Intel GPUs, we
leverage person-reidentification-retail-0076 from the Open-
VINO model zoo [32] for re-id in the AnonCampus dataset.

To build our spatio-temporal model on unlabeled video
data (simulating real deployment conditions), we apply an
offline multi-target multi-camera (MTMC) tracker [9] (§6)
to label every person detection in a subset of the dataset (i.e.,
profile set with 16352 frames). We implement a profiler to
extract spatial and temporal correlations from these labels.

C. Workload — We run a set of 100 tracking queries, {g;},
drawn from the test query partition of the DukeMTMC-reID
dataset [7] (20 from the AnonCampus dataset, and 100 from
the Porto dataset). Each tracking query consists of multiple
iterations. Each iteration involves searching for the next in-
stance, q!, of the query identity in the dataset, starting with the
initial instance q?. A tracking query terminates when no more
instances can be found. Experiments on the DukeMTMC
dataset were conducted on AWS EC2 p2.xlarge instances
(contains one Nvidia Tesla K80 GPU).

D. Metrics — We report the following four metrics which
are computed over the entire query set. (i) Compute cost
— Number of video frames processed, aggregated over all
queries {g;}. (ii) Recall (%) — Ratio of query instances re-
trieved to all query instances in dataset, q{ . (iii) Precision (%)
— Ratio of query instances retrieved to all retrieved instances,
rl.] . (iv) Delay (sec.) — Lag between position of tracker and
current video frame, in seconds, at the end of a tracking query.
This will be O for a query if no replay search was performed.
Compute cost, recall, and precision are reported in aggrega-
tion. Delay is reported as an average value per query.

E. Compared Schemes — To evaluate our spatio-
temporal filtering, we compare against two schemes:

1) Baseline (all) - Searches for query identity ¢ in all the
cameras at every frame step. Uses state-of-the-art re-id model
[6]. no spatio-temporal filtering is utilized.

2) Baseline (GP) - Searches for query identity g only in the
cameras that are in geographical proximity to the query cam-
era at every frame step. Uses state-of-the-art re-id model [6].
For DukeMTMC dataset, we manually set pairs of neighbor-
ing cameras using Figure 3 while for Porto dataset, we set
geographical proximity threshold to 4/ (where [ = 100m).

3) ReXCam - Searches for query identity g only on cameras
that are currently spatio-temporally correlated with ¢, (as per
Algorithm 1). The same person re-id model is used as in the
baseline [6]. We consider various versions of Equation 1, cor-
responding to different spatio-temporal filters. Each version
is coded as Ss-Tz, where s indicates the spatial filtering thresh-
old and ¢ indicates the temporal filtering threshold. Higher
values of s and ¢ indicate more aggressive filtering (no ¢ value
indicates no temporal filtering and helps measure the gains
of spatial filtering alone). For instance, S5-T2 filters cameras



Cost (1000s of frames)
100

Recall (%) Precision (%)

80 80
80 72 72

64 64

1 2 3 4 5 6 1 2 3 4 5 6

S30

1 2 3 4 5 6

Baseline S10 s S10-T1 = S30-T1 (%) = S30-T5

Figure 10: Results for all-camera baseline (tan) vs. five versions
of ReXCam (blues) on the AnonCampus dataset. We argue S30-
T1 (*) offers the best trade-off on all metrics.
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Figure 11: Results for all-camera baseline (orange), geo-
proximity baseline (tan) vs. five versions of ReXCam (blues) on
the DukeMTMC dataset. We argue S5-T2 (*) offers the best
trade-off on all metrics.

that receive <5% of the traffic from query camera c,. In ad-
dition, its filter frames outside the time window containing
the first 98 % of traffic from c,.

8.2 Spatio-temporal filtering gains

Figure 10, Figure 11 and Figure 12 compare the perfor-
mance of the baseline and various ReXCam versions on three
datasets, respectively. We find that ReXCam significantly out-
performs both baselines, by (1) reducing compute cost and
(2) improving precision, while maintaining comparable re-
call. It is noteworthy that the best thresholds for ReXCam is
dependent on the dataset. ReXCam versions S30-T1, S5-T2,
S1-T1 offer the best trade-off between compute cost, recall,
precision, and delay in the three datasets, and in general have
to be tuned. We term these schemes ReXCam-O(ptimal).

1) Compute cost — Baseline (all) is by far the most
compute-intensive, processing 98,760 frames for 20
queries and 45,638/85,890 frames for 100 queries on the
DukeMTMC/Porto dataset, respectively. Baseline (GP) saves
the cost quite a bit but its performance fluctuates on different
settings due to the discrepancy between spatial correlation
and geographical proximity (as also pointed out in §3.1.1).
Each successive version of ReXCam achieves lower compute
cost than its predecessor. For instance, in Figure 11, the most
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Figure 12: Results for all-camera baseline (orange), geo-
proximity baseline (tan) vs. four versions of ReXCam (blues)
on the Porto dataset (130 cameras).

aggressive version of ReXCam, S10-T10, processes only
3,513 frames, and achieves 13X lower compute cost on 8
cameras than the all-camera baseline. Similarly, a maximal
value of 3.6 x compute savings can be achieved in Figure 10.
In comparison, ReXCam-O processes 28,680/5,500/3,776
frames, which translates to 3.4 x/8.3x/23x lower cost than
the all-camera baseline in the five-camera (AnonCampus),
eight-camera (DukeMTMC), and 130-camera (Porto) dataset.
2) Recall (%) — Compared with both baselines, recall of the
ReXCam versions declines slightly when spatial/temporal fil-
tering is introduced. In Figure 11, for example, baseline (all)
achieves recall of 81.3%. Both spatial-only schemes achieve
79.3% recall. ReXCam-O achieves 79.7%, a 1.6% drop from
the baseline. Similar patterns are observed in Figure 10 and
Figure 12. The reason why recall becomes lower in the Anon-
Campus deployment is because of the increased instances of
occlusions in indoor environments (see Figure 9). Note that
in Figure 12, recall drops significantly from baseline (all) to
baseline (GP), as a number of relevant cameras are mistakenly
excluded by geographical proximity-based pruning.
3) Precision (%) — Baseline (all) achieves precision of 50.4%,
51.1% and 49.6% on three datasets, respectively. All versions
of ReXCam improve on this, but ReXCam-O in particular
achieves 71.7%/90.4%/85.8% precision, which is a gain of
21.3%/39.3%/36.2% over the baseline. Compared with base-
line (GP), precision gain from ReXCam-O remains as high as
33.5%/15.6% on the DukeMTMC and Porto dataset. Higher
precision is a key benefit of spatio-temporal filtering for cross-
camera video analytics. By searching fewer irrelevant cam-
eras, and fewer irrelevant frames, ReXCam is less likely to
declare matches that do not actually match the query.
4) Delay (sec.) — Here we report total cumulative lag (lag in
the absence of replay search (§5.3)), averaged over all queries.
We do not report the delay from the AnonCampus deployment
since among all 20 queries, only one needed replay search.
For both DukeMTMC and Porto results, we find that delay
increases with more spatial or temporal pruning. This is ex-
pected as there are more instances of misses. ReXCam-QO, in
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Figure 13: Cost savings vs. number of cameras (Porto dataset).
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Figure 14: Results for all-camera baseline vs. ReXCam S5-T2
on the DukeMTMC dataset with frame skipping.

particular, incurs moderate delay — less delay than S5-T1 and
S5-T10 but more delay than spatial-only filtering.

Given this analysis, ReXCam-O offers a favorable trade-
off between the four metrics — achieving nearly the low-
est compute cost (3.4x/8.3x/23 x lower), nearly the highest
precision (21.3%/39.3%/36.2% higher), competitive recall
(2.2%/1.6%/6.5% lower), and moderate lag (=~3.2s), when
compared to the locality-agnostic, all-camera baseline. Next,
we analyze the impact of two key factors on ReXCam.

Large-scale camera data: The key objective of using the
trajectories from the Porto dataset was to experiment on ReX-
Cam’s gains at scale (§8.1); unfortunately there are no video
datasets available for hundreds of cameras. Figure 13 shows
cost savings and precision of ReXCam/Baseline (all) with in-
creasing number of cameras. Cost savings steadily grows with
increasing number of cameras, achieving up to 38 x lower cost
than baseline (all) in ReXCam S12-T12 for 130 cameras. We
believe this is an encouraging result for ReXCam’s value for
large camera deployments. All through, ReXCam maintains
a 34.5% gain on precision with little impact on recall.

Frame skipping: Frame sampling is a key technique in
prior work [28, 37, 65] to make single-camera analytics
cheaper. Such techniques are orthogonal to ReXCam'’s spatio-
temporal pruning for cross-camera analytics, and we quantify
our point. Figure 14 measures the impact of frame skipping—
uniformly skip one in 3 frames, and one in 4 frames—on both
baseline (all) and ReXCam. As shown in the figure, ReXCam
maintains a much lower compute cost in both skipping cases.
Specifically, the cost savings are 8.6 x and 8.4 x, which is in
the same ballpark as without frame skipping of 8.3, thus
showing the orthogonality of frame skipping to ReXCam.
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Figure 15: Replay search. Schemes compared: baseline,
ReXCam-O (normal replay search), ReXCam-O (2x skip),
ReXCam-O (2x fast-forward). Scheme 2x skip outperforms
2x fast-forward on both compute cost and delay.

8.3 Replay search

In this section, we evaluate the effectiveness in reducing lag
in replay search using the two proposed schemes from §5.3:
Skip frame mode - Employ a 5 frame sampling rate to increase
throughput on historical frames, at the price of lower accuracy
(via missed detections). (2x skip)

Parallelism mode - Employ a 2x frame processing rate to
increase throughput, at the price of increased compute cost
(via increased resource usage). (2x ff)

Both schemes are applied to ReXCam-QO, and compared
to (a) the all-camera baseline and (b) ReXCam-O with the
default real-time replay search, which incurs 2.6s of delay.

As Figure 15 shows, both 2x skip and 2x ff achieve delay
reductions, decreasing final cumulative lag to 1.8s and 1.3s,
respectively. The reason why 2x skip doesn’t halve the delay
is due to the skipped query instances during the first round of
replay search where sgresh and tgnresh decreased by a factor of
10. Also, delay reductions from 2x skip and 2x ff come with
different tradeoffs. 2x skip reduces recall by 1.2% to 78.0%,
but increases precision from 90.37% to 90.87% and increase
compute cost savings from 8.30x to 8.68x better than the
baseline (by processing fewer historical frames). 2x ff does
not impact recall and precision, but reduces compute cost
savings from 8.30x to only 8.27x better than the baseline.

8.4 Profiling cost vs. tracking accuracy

Profiling cost increases with the number of frames that must
be processed by the MTMC tracker (§6). We investigate the
trade-off between profiling cost and subsequent tracking ac-
curacy. Specifically, we test whether we can build a precise
spatio-temporal model on smaller subsets of the training data
obtained by uniformly sampling the frames. We apply a sam-
pling rate of 8, 6x,4x,2x,and 1 x (using X in 8 frames) in
the profile partition of the Duke dataset (§8.1) for profiling,
which translates to correspondingly lower profiling costs.

As Figure 16 shows, recall of ReXCam during live track-
ing reaches the maximum of 80.1% with 6x sampling, i.e.,
when half of the frames are labeled for offline profiling to
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Figure 16: Offline profiling cost vs. online recall. Profile inter-
vals compared (in minutes of data used per camera): 49.4 min.
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obtain the spatio-temporal model. Interestingly, on either side
of this, the recall falls. On the left side, the drop is caused by
insufficient amount of profiling data. On the right side, the
small drop is because extra data results in a spatial-temporal
model being overfit to the profile partition. This experiment
indicates that spatial-temporal model can be built on a rea-
sonably small set of training data (i.e., 37.1 min). However,
the exact amount of data to train the spatial-temporal model
varies among datasets, and thus should be chosen carefully.
Precision remains stable (~90%) in Figure 16 when more
than 4K (i.e., 2x sampling) frames are used for training.

If we combine the profiling cost with the cost of the live
video analytics, we see that ReXCam would need to run only
34 live tracking queries to break-even with locality-agnostic
tracking (calculations omitted). This represents a small frac-
tion of the expected annual workload in large video analytics
operations [65, 66] that track many hundreds of thousands of
queries. Hence ReXCam'’s profiling costs are small and will
not dent the gains, leaving it to remain sizable.

8.5 Identity detection

Lastly, we evaluate ReXCam’s spatio-temporal pruning on
identity detection, the single-camera application described in
§5.4. As Figure 17 shows, ReXCam achieves as high as 7.6 x
cost reduction with 8 = 0.95 on the 8-camera DukeMTMC
dataset (0 is the likelihood threshold for searching a camera’s
stream). Similar to trends in cross-camera tracking, the gain
on precision far outweighs the drop on recall. In fact, for
0 = 0.75, recall does not drop at all while precision improves
by 28% even as cost savings stay at 6.6x. This experiment
shows the generality of applying ReXCam for both cross-
camera as well as single-camera applications.

9 Related Work

Video Analytics Systems. A sizable body of work on video
analytics has emerged recently [28, 40,46, 65]. Chameleon
exploits correlations in camera content (e.g., velocity of ob-
jects) to amortize profiling costs, but not the cost of the video
analytics itself [37]. These works leave three problems unex-
plored, each of which ReXCam addresses. First, they focus on
single-frame tasks (e.g., object detection and classification),
which are stateless. In contrast, surveillance applications, like
the real-time tracking we focus on, involve multi-frame track-
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Figure 17: Identity detection. All-camera baseline (tan) vs.
three versions of ReXCam (blues) on the DukeMTMC dataset.

ing, where future questions depend on past inference results.
Second, they study single camera analytics. Thus, they do not
explore the complexities involved in cross-camera inference
on live video (e.g., occlusions) that define applications such
as person re-id. Third, in contrast to classification tasks, many
security applications search for new object instances (e.g., a
suspicious person) where the training data is skewed toward
negative examples. Our use of correlations, i.e., movement
across cameras, however, yields substantial accuracy gains.

Efficient Machine Learning. Improving ML models using
model compression [26,42], compact architectures [31,44],
knowledge distillation [14,24,27], and model specialization
[28,40] is orthogonal to ReXCam, which would gain from
any efficiency improvement of the models (e.g., for re-id).

Unlike systems that tradeoff model resources and accuracy
[19-21,25,30,36,43,49,66], ReXCam entails a new approach:
instead of running cheaper models, we run inference on /ess
data by using spatio-temporal correlations.

Computer Vision. Techniques for person re-id and multi-
target, multi-camera (MTMC) tracking make the following
contributions: (1) new datasets [55,59, 60, 69], (2) new neural
network architectures [54, 59, 60, 69], or (3) new training
schemes [57,60,69,70]. However, past computer vision work
do not address the inference cost of re-id and MTMC tracking
[16,17,35,41,48], nor does it study online tracking (iterated
re-id), a key application of interest in camera systems.

Visual Data Management. Image and video databases ex-
plore the use of classical computer vision techniques to index
video efficiently [15,18,22,51,52]. Cross-camera inference
with CNNs on live video entails substantially different chal-
lenges than the target domain of these works.

Mobility Modeling. Mobility modeling and prediction has
long been a topic of interest in mobile computing. Studies
have shown promising results in generating human/vehicle
mobility models from call detail records [33,64], wireless sig-
nals [62], social media [38], and transactions in transportation
systems [61, 64]. While none of these works apply mobility
models to video analytics, ReXCam could benefit from their
techniques on building accurate spatial-temporal models.



10 Conclusions

Cross-camera analytics is a computationally expensive func-
tionality that underpins a range of real-world video analytics
applications, from suspect tracking to intelligent retail stores.
We presented ReXCam, a system that leverages a learned
model of cross-camera correlations to drastically reduce the
size of the inference time search space, thus reducing the cost
of cross-camera video analytics. ReXCam directs its search
towards the camera streams that likely contain the identity
being tracked, while gracefully recovering from (rare) misses
using a replay search on historical videos. Our results are
promising: ReXCam reduces compute workload by 8.3 on
the 8-camera DukeMTMC dataset, and improve inference
precision by 39%. On a simulated dataset of 130 cameras, its
gains grow with the number of cameras. We have deployed a
five camera testbed on campus, which we plan to expand for
further experiments.
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