APPx: An Automated App Acceleration Framework for Low
Latency Mobile App

Byungkwon Choi, Jeongmin Kim, Daeyang Cho, Seongmin Kim, Dongsu Han
KAIST

ABSTRACT

Minimizing response time of mobile applications is critical for user
experience. Existing work predominantly focuses on reducing mo-
bile Web latency, whereas users spend more time on native mobile
apps than mobile Web. Similar to Web, mobile apps contain a chain
of dependencies between successive requests. However, unlike Web
acceleration where object dependencies can easily be identified by
parsing Web documents, App acceleration is much more difficult
because the dependency is encoded in the app binary.

Motivated by recent advances in program analysis, this paper
presents a system that utilizes static program analysis to automati-
cally generate acceleration proxies for mobile apps. Our framework
takes Android app binary as input, performs program analysis to
identify resource dependencies, and outputs an acceleration proxy
that performs dynamic prefetching. Our evaluation using a user
study from 30 participants and an in-depth analysis of popular com-
mercial apps shows that an acceleration proxy reduces the median
user-perceived latency by up to 64% (1,471 ms).

CCS CONCEPTS

- Software and its engineering — Cloud computing;

1 INTRODUCTION

Minimizing the response time of mobile apps is becoming increas-
ingly critical as users expect mobile apps to respond quickly [14].
Response times impact the quality of user experience, which in
turn affects the revenue of mobile services. Amazon reports one
second of additional page load latency costs $1.6 billion in sales
each year [10], and for Google, a 250 ms delay in search response
can result in 8 million search losses per day [10].

At the same time, mobile apps are becoming much more popular
than their mobile Web counterparts, dominating user attention
by a factor of six times [15]. However, when it comes to reduc-
ing response times, mobile app acceleration is surprisingly under-
explored in contrast to the large body of work in Web accelera-
tion [39, 49, 52, 56-59, 61, 67, 68, 70, 73, 74].

Existing work on mobile app acceleration predominantly adopts
a client-based approach [32, 46, 75] or focuses on computation
offloading [36, 37, 42, 51, 71]. However, each approach has its own
limitations. The client-based approach inherently suffers from a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CoNEXT ’18, December 4—7, 2018, Heraklion, Greece

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6080-7/18/12...$15.00
https://doi.org/10.1145/3281411.3281416

27

lack of resources on the mobile side, such as low computational
power and a limited budget for cellular data usage. The computation
offloading approach is mostly effective for compute-intensive apps,
such as games and face recognition, but does not offer much benefit
for network-intensive apps [42]. Many of these systems also require
mobile OS or app modifications, which limits the deployment.

Unlike the existing approaches, this paper takes a proxy-based
approach. Similar to the Web page preloading approaches [17, 20,
34, 48] that take advantage of the Web resource dependencies, our
app-acceleration proxy exploits dependency relationships between
network transactions (request-response pairs) and prefetches ap-
propriate responses. This approach effectively reduces the response
time of mobile app and does not require any code changes to mobile
OS or client/server apps.

However, the core challenge is that unlike Web in which de-
pendency information is embedded in Web documents, it is much
more difficult to identify the inter-transaction dependencies in apps
because the dependency information is embedded in the program
itself. In addition, in contrast to Web documents that follow a stan-
dard format (e.g., HTML, CSS, Javascript) and whose source code is
made available, mobile apps use a wide variety of APIs and often
the source code is not available. Thus, identifying the dependen-
cies and generating exact request messages ahead of time is very
challenging.

This paper addresses the problem of automatically developing
an mobile app acceleration framework by understanding the appli-
cation message exchange behaviors. We present the first system,
named APPx, that minimizes human effort in developing mobile
app acceleration proxies. Our framework takes Android app bi-
nary as input and leverages existing protocol analysis framework
to identify message formats of HTTP(S) request/response the app
generates and infer dependencies between HTTP(S) transactions
(request-response pairs). However, the static analysis lacks infor-
mation determined at runtime. In contrast, prefetching HTTP(S)
response requires the exact request message including URI, query
string, header, and body. To overcome the limitation, we combine
dynamic learning to fill in missing information at run-time by
observing the actual traffic in the proxy. The framework then au-
tomatically finds out what and when to prefetch and generates a
proxy that performs dynamic prefetching.

We present a full system implementation of the automated frame-
work and the app-acceleration proxy. We evaluate our framework
using a number of popular commercial apps on Google Play. We
provide microbenchmark page load time improvement of key inter-
actions for each app. To evaluate the system under real workload,
we conduct a user study and capture the app usage of 30 participants.
Our in-depth evaluation shows that the automatically generated
proxy reduces the app response time by up to 62% and delivers 55%
reduction of the response time on average.

https://doi.org/10.1145/3281411.3281416

CoNEXT 18, December 4-7, 2018, Heraklion, Greece

B. Choi et al.

Client (D-Req. Server Client D-Req. Server & Store ® Q
Launch app] GET /api/get-feed S " Launch app GET /api/get-feed I
Trans.@ @-Resp.] Trans. @ @-5959- :‘\ p :L:E:_,*__*,__',
S oome K = Q [{“id” $09¢H), .. By § [{“id”:109cf}, ... i ¥ | . Ratings
e mm OO = e | . \e-mmo
o @-Red ™y T 2 L select item @-Req. POS\T.-:'--ﬁ) Irggoge s
, . GET /image?cid=09cf /product/get (cid09cf Posive Feedback User Ratings
R.etneve-/'\l-‘-““: Retrieve detail | \
[mages i30 images Trans.@ ®-Req. POSTV____
Trans.@ \ o i | /related/get (cid=09cf)
@-Resp. Related items
Q | image/JPEG *—l_Tra’“@ @-Resp. JSON
Render

3250

084

[Start page]

Render ﬂ
start page-

(a) when app is launched

Figure 1: Dependency found in #1 shopping app Wish [4]. Blue-dotted lines show depen-

dency. “Trans.” indicates a transaction.

In summary, we make the following contributions:

e We propose the first system to automatically generate an
app acceleration proxy tailored to target apps.

e We present a design of the acceleration proxy. To produce
accurate request messages ahead of time, we combine static
analysis and dynamic learning.

e Finally, our evaluation with real apps and real user workload
demonstrates the system improves the app response time up
to 64%.

2 APP ACCELERATION SCENARIO

We envision an app-acceleration proxy located between user de-
vices and remote servers and prefetches data based on dependency
relationships between network messages. This approach is promis-
ing in a number of ways. First, the proxy effectively reduces the
load time of static contents (e.g., image, video) as well as that
of dynamically-generated or personalized contents. Second, the
prefetching proxy can also hide latency even when the remote
server itself is slow rather than the network [61]. Finally, it does
not require modifications to client/server apps or mobile OS.
Note, in Web acceleration, such prefetching/preloading is widely
used by proxies to make page load time faster [17, 20, 34, 48]. This
paper demonstrates a similar technique can be used to accelerate
mobile apps. We identify mobile apps contain many complex de-
pendencies in the messages they generate. Using the #1 ranked app
in the shopping category in Google Play US [4], called Wish, as
an example we show message dependencies are commonly found
in mobile apps. Then, we demonstrate how a proxy can accelerate
them. Throughout the paper we use Wish as a working example.

Action 1: loading the start page. When the app starts, a list of
recommended items along with their thumbnail images appears
on the screen as shown in Figure 1(a). For this, the app first issues
a /api/get-feed request to retrieve the item list to be displayed
(Transaction @), and the response contains a list of 30 items and
their ‘id’s. Using the ‘id’s, subsequent requests retrieve a thumb-
nail for each item (Transaction @). As shown in figure, the two
transactions exhibit dependencies.

©)
item detail je—m—— |

(b) when choosing an item

28

-Resp. JSON

Almost Gone!

- - N
Figure 2: Merchant page.

Action 2: selecting an item. When a user selects an item, a
/product/get request is issued (Transaction @) using the item
‘id’ from Transaction @ to retrieve item details, such as shipping
information. At the same time, the app fetches related items using a
/related/get request (Transaction ®) for the item ‘id’. Finally, the
item detail and related items appear on the screen. Transaction @
and @ are dependent to Transaction @ as shown in Figure 1(b).

Action 3: merchant page. One can also visit a merchant page.
When a user clicks on the merchant from the item detail page, the
app issues a chain of transactions which takes multiple round trips.
Using the merchant login name in item details (Transaction @ in
Figure 1(b)), the app first issues a request to retrieve the merchant
information, including its ID and items sold by the seller. The app
then uses the ID to request the merchant ratings, its profile image,
and other items carried by the seller as shown in Figure 2.

Note the examples are common interactions we find in typical
apps, and such dependencies are common in many real-world mo-
bile apps [42]. Through our in-depth evaluation of five top-ranked
commercial Android apps, we identify that there are hundreds of de-
pendencies whose maximum length of the successive dependency
is 15 (§6.1).

Proxy-based app acceleration. We now show how our proxy
reduces the page load time for each of the three cases.

Figure 3(a) shows accelerating app’s start page. When a user
launches Wish, the app issues a /api/get-feed request to retrieve
the item list. When the list arrives at the proxy, it prefetches thumb-
nails by constructing multiple parallel requests using the ‘id’s from
the item list, as shown in Figure 3(a). When the client requests for
thumbnails, the proxy directly serves them, reducing the start page
load time.

The proxy can accelerate other interactions. Figure 3(b) illus-
trates a timeline of app interaction when the proxy prefetches the
item details and related items to accelerate the item details page
(Figure 1(b)). Due to the prefetch, the app experiences faster page
load. Finally, the proxy can also prefetch a chain of requests when
loading the merchant as shown in Figure 3(c). In this case, the
proxy first uses a merchant name in the item detail to prefetch the

APPx: An Automated App Acceleration Framework

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

Client Proxy Server Client Proxy Server Client Proxy Server
i/get- ani i -Req.) /product/get
Launch (®-Req.) /ap-/get feed Launch (®-Req.) /apllget feed Re::::: (D-Req)/IP uct/g
Trans.@ (@-Resp.) {[(”ld” @cSSf\} {“id”: .. Trans. @ (D-Resp.) {“pd”: {” d”: 'b-c§§:} {“id”: . Trans.D | (@-Resp.){ ”merchant” '7‘S|Ik’-' .}
- ey
(@- Req) /img?cid=0c99f; (@-req) /product/get (‘\cld—.0c99f_.) |
[
Prefetch { . (®- req)/related/get(cld 40c95f) o (@-resp) { “i d”:-eSf; “url”{a. grlp_/g
D e I I e - re- . l‘
Prefetch =
Retrieve (@-resp) JSON{...}| fetch
thumb. e
> Select (@-resp) JSON{ ... }
f item D .
Render- fem Click | =
page Rende.:_ store
Save latency detai Save latency Render Eﬁ
store]
Save latency |

(a) when app is launched

(b) when choosing an item

(c) when clicking on a store profile

Figure 3: Prefetch example for Wish. Blue lines and boxes indicate the dependencies. Red- and gray-dotted lines respectively
indicate prefetched transactions and the original communication between client and server without the proxy. Gray-colored

text indicates an original response without prefetching.

merchant information that contains the merchant ID, and issues
subsequent requests to obtain the ratings and profile image of the
merchant using its ID.

Deployment model. The app acceleration service model is similar
to that of content distribution networks that accelerate dynamic
Web content [6, 7]. We assume app service providers trust the proxy
and the proxy can observe plain-text traffic between the client and
server even when it is encrypted. This assumption is consistent
with that of existing Web acceleration proxies [11, 56, 70, 74] and
TLS/SSL proxies [11, 21]. Following this model, we assume the
proxy provider is a third party, and the app service provider has
contractual relationship and cooperates with the proxy provider
(e.g., assists with proxy configuration) for app acceleration. Note,
the proxy can accelerate multiple target apps. The proxy keeps track
of user contexts (e.g., cookie) and manages prefetched response per
use separately.

3 REQUIREMENTS AND CHALLENGES

Our goal is to automate the development of app acceleration proxies
as much as possible and minimize the human effort. We would like
user to be involved only in proxy configuration. We target mobile
apps that use HTTP(S) as their primary protocol because most
Android apps use HTTP(S) [38, 50, 66] because REST APIs are
extremely popular [22, 27].
The system must satisfy three key requirements:
e R1: It must automatically identify dependencies between
protocol messages.
e R2: The proxy should automatically reconstruct ahead of
time a prefetch request identical to the original one.
o R3: The proxy must not alter the app behavior.
However, building a system that satisfies the requirements is chal-
lenging for a number of reasons.

29

C1: Complex dependencies between transactions. Identifying
prefetch opportunities requires a deep understanding of complex re-
lationships between message exchanges. They are app-specific, and
a manual analysis requires significant human effort. An automated
dependency analysis is promising, but it imposes a fundamental
constraint: the dependency information should be rich enough to
ensure high coverage and accurate enough to ensure correctness
in prefetching. APPx leverages recent advances in static program
analysis and re-purposes it for identifying prefetch opportunities.
In particular, we extend Extractocol [50], a state-of-the-art static
analysis tool that automatically identifies message formats and their
dependencies from mobile apps (§4.1).

C2: Dynamically generated requests. To generate prefetch re-
quests, the proxy needs to reconstruct exact request messages ahead
of time. Although existing static analysis tools [30, 35, 50] provide a
comprehensive characterization of mobile app behaviors including
message formats, it cannot identify values that are determined at
run-time. For example, the proxy cannot determine device-specific
values (e.g., user-agent request header) or the host URI of HTTP
requests that change dynamically until it receives exact values at
run-time from a client or a server. To address the challenge, the
proxy performs dynamic learning at run-time and adapts to its run-
time behavior using the information acquired from static analysis
as the baseline (§4.2).

C3: Controlling side-effect and ensuring correctness. Static
analysis and dynamic learning allow us to construct prefetchable
requests ahead of time. However, messages that have adverse side-
effect (e.g., 1-click purchasing) must not be prefetched. In addition,
prefetched messages might be stale when a response has been
prefetched long ahead of time. It is difficult to resolve such issues
using automated analysis because it is fundamentally linked to
the app semantics. To address this issue, 1) we enable the service
provider to have control on whether to prefetch a request and

CoNEXT 18, December 4-7, 2018, Heraklion, Greece

B. Choi et al.

Android .apk Acceleration Proxy Acceleration Proxy ‘ Mobile edge cloud
' ‘ Prefetching ‘ Resp. | Expiration App (e.g., base .statlons,
Static Program Analysis (§4.1) ' ? check [time estimate] |} —> Service access points, ...)
Gache | | bvnami Provider roxy (45)| o 'y
Network-aware PEIIE 5 —
N g I
static taint analysis Iegrnmg ' l
¢ m (84.2) Client / Server / H
| Signature building | f (Fuzene) 1 Config. Server User
‘ b q vei Message L Initial ¢ {I
. o <
Phase 1: Automatic Generation of Proxy Phase 2: Verification (§4.3) | Phase 3: Configuration | Deployment Model

Figure 4: APPx framework overview and deployment model for acceleration proxy

set expiration times through a fine-grained proxy configuration
(§4.4); and 2) the proxy performs offline verification on prefetch
requests (§4.3). If the proxy generates incorrect requests, retrieves
error message or fail to get response from the server during the
verification, it excludes the signature from the prefetching target
before run-time.

C4: Controlling the cost. A fundamental tradeoff exists between
the response time and bandwidth usage. Unlike mobile prefetching
approaches that use the resources of mobile devices [46], the proxy-
based approach is much less resource constrained. Nevertheless,
a careful policy design is required because cloud platforms [2, 9]
charge the bandwidth usage. Naive prefetching might lead to sig-
nificant bandwidth overhead. To address this issue, 1) we provide a
mechanism to impose a constraint on data usage for prefetching
(§4.4); and 2) our proxy tracks the cache hit-rate and the response
time to prioritize frequently used interactions and a request that
takes a longer time to complete (§5).

4 DESIGN

Figure 4 illustrates an overview of the APPx framework. It goes to
three distinct phases before deployment. The first phase is auto-
matic proxy generation that consists of a static program analysis
module and a proxy that takes the analysis result as input. The static
program analysis module takes an Android binary as input and
extracts message formats for HTTP transactions (request-response
pairs) and infers dependency relationships between the transac-
tions. §4.1 presents how we extend existing static protocol analysis
to overcome the challenges in identifying dependencies for app
acceleration (C1). The proxy then uses the output to create data
structures used for identifying information required for transac-
tions from the actual network traffic the app generates. The proxy
dynamically adapts to run-time conditions, learns run-time val-
ues from actual online interactions between the app and the server,
reconstructs the prefetchable requests, and retrieves the correspond-
ing response from the origin servers ahead of time. §4.2 presents
the details of dynamic learning and message generation (C2).

The second phase performs testing and verification to ensure
the proxy behaves identical to the app and does not alter the app
behavior in terms of the messages the app receives (C3). This is
akin to app and server testing during development. Requests that

30

fail to generate server response or resolve all run-time values are
filtered out in this phase. §4.3 presents the details.

Finally, APPx provides a mechanism to specify the dynamic
prefetching policy of the proxy. APPx configuration allows users to
set the expiry time of prefetched content, forbid prefetching for spe-
cific request(s), or impose data usage limit. The proxy configuration
is designed to minimize human effort in controlling the side-effect
(C3) and cost of prefetching (C4). §4.4 describes the details.

4.1 Static Program Analysis

To automatically extract message formats and dependencies, the
protocol analysis module needs to 1) track all the network-related
objects and their data flow and 2) identify semantics of APIs that
handle the objects. Extractocol [50] combines a network-aware
static taint analysis on objects with a semantic analysis to effectively
provide a characterization of protocol behaviors. Using an Android
app binary (apk) as an input, it automatically constructs signatures
that specify app-specific HTTP transactions and inter-transaction
dependencies. Figure 5 describes signature examples and their de-
pendency relationships Extractocol identifies. Through the program
analysis, Extractocol figures out dependencies between the URI/-
header/body of request messages (e.g., ‘cid’ in Transaction @) and
other messages (e.g., id’ in Transaction @).

Although existing static analysis tools provide a starting point

for protocol analysis, they are not designed for app acceleration.
The key challenge is to ensure high coverage in identifying prefetch
requests and generate accurate prefetch request signatures same
as the original requests for correctness. For example, it should not
miss any sub-fields in the network messages. Otherwise, it cannot
be used for prefetching. To make protocol analysis more accurate,
we extend Extractocol in three ways:
Supporting Android intent. It is well-known that Android has
many implicit call flows [33, 60]. Extractocol covers some implicit
call flows, but does not support Intents that are often used to de-
liver objects across different components in Android. For example,
an activity may pass a message to a service using a put method
with a key (e.g., PutExtra(‘key’, ‘msg’)), and a get method (e.g.,
GetIntent(‘key’)) is used by the service to retrieve the message.

To support Intents, our protocol analysis module constructs an
“Intent map”. An Intent map consists of pairs that have a key name
and the corresponding value. It first finds every put method in

APPx: An Automated App Acceleration Framework

Signature @ (Successor)
URI .*/product/get

Signature D (Predecessor)
URI .*/api/get-feed

Request Response Request Response
Header Header Header Header
Cookie: .* Set-Cookie: .* Cookie: .* Set-Cookie: .*
User-Agent: .* | Content-Type: .* User-Agent: .*
Body Body (JSON) L: Body (JSON)
offset: (0]-1) |{ “data”:{ ide 1 { “data”{
count: (30[1) “products”:[/ _client: .* “contest”: {
_ver: .* { _ver: .* “cache”: .*,
Category: true _incognito: true “info”: .¥,

build: amazon _build: amazon

_cap(]: 2 H credit_id: .*
_cap[]: 4 “can_ship”:, _xsrf: 1
_cap([]: 6 _cap[]: 2
_cap(]: 7 } _cap[]: 4
_cap([]: 8 b _cap[]: 6
< Item List > < Item Detail >

Figure 5: Signature examples of Wish. The blue-colored line
and boxes indicate the dependency relationship between Sig-
nature ® and @.

the program code and performs backward slicing [50] to track the
arguments of each put method. Then, the module tracks every
object in the slice, reconstructs the signature of each object and
repeats them for every put method. This enables identification of
the signature for all the arguments of put methods. We extend
Extractocol to use the Intent map to identify the value of an object
passed through Intents when building HTTP message formats.
This enables us to follow information delivered through and track
message dependencies originating from Intents.

Supporting new programming models. Recent advances in mo-
bile app development ecosystem introduce new programming ab-
stractions. One example is RxAndroid [18], an Android version
of ReactiveX, that forms a recent trend [25, 26]. It provides pro-
gramming APIs to asynchronously handle event-based programs
whose objects are constantly requested/updated, using observable
sequences. Extractocol cannot handle observable sequences prop-
erly because it is unaware of the semantic of RxAndroid’s APIs
(e.g., flatMap(), map(), and defer()). In contrast, APPx’s program
analysis fully supports RxAndroid.

Precise alias and complex heap object analysis. When con-
structing HTTP(S) requests, apps typically use heap objects (HTTP
Request) derived from other heap objects (e.g., URL of request mes-
sage). In commercial apps, the relationship between these heap
objects forms a long chain because an object contains multiple
fields. For example, HT TP Request object may contain a json object
that are derived from a key-value map whose value may come from
an array of options. In addition, heap objects have multiple aliases
that are difficult to track [30]. FlowDroid [30] in particular has an
on-demand backward alias analysis module to resolve all aliases.
However, Extractocol fails to track dependencies when multiple
aliases form a complex relationship. To address this, we leverage
the on-demand backward taint analysis used in FlowDroid. Note,
Extractocol performs backward (forward) taint analysis to identify
program slices that contain request (response) messages from net-
work I/O methods. To track aliases, we apply on-demand backward
analysis when identifying request slices. Similarly, we also apply

31

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

‘ Signature filtering ‘
1

_. Learning unknown values from network _

P N
Collection of £»{ Creation of request instance (if not exist) | 3
request/response pair i i
- i Learning dependency-related fields i
‘ Regex matching ! !
H H
l‘ Filling fields of request instances ,:
Predecessor? A g
Yes
No
Y oo Adaptation to recent condition -----~ N
Successor? Y—i-b{ Creation of request instance (if not exist)
es
No

Exclusion of dependency-related fields

Replacement to current condition
T

\
N,
< T

St‘o p

Figure 6: Flowchart diagram of dynamic learning,.

on-demand forward taint analysis when identifying response slides.
During the bidirectional analysis, we keep track of the relationship
among heap objects in a graph (i.e., which object maps to which
field in a larger object). The on-demand bidirectional taint analysis
combined with heap object analysis identifies more fields and pro-
vides a more complete message signature that allows us to produce
accurate prefetch messages.

4.2 Dynamic Learning

The information static analysis outputs is insufficient and thus can-
not be used directly for prefetching for two major reasons: first,
the regex signature identified by static analysis encompasses all
possible cases. However, the actual manifestation depends on dy-
namic conditions unknown to the proxy a priori. For example, some
request headers or some json fields in the request body may not be
present depending on dynamic conditions due to branch condition
in the code. To tackle this challenge, we design the proxy to adapt
to the most recent condition observed through network messages.
Second, the regex signatures contain wildcard values that must be
resolved at run-time. The key challenge here is to automatically
construct a complete prefetch request by learning the unknown
values from network messages. For this, the proxy constantly learns
these values from network messages and automatically updates its
state.

Figure 6 shows the workflow of how the proxy performs dy-
namic learning to address the issues above. First, the proxy filters
out signatures that do not exhibit dependencies because it is only
interested in prefetchable requests. Next, for each HTTP request-
response pair (HTTP transaction) it receives, it identifies a learning
target which is the signature whose network message format corre-
sponds to the request-response pair. To identify the learning target,
the proxy performs regular expression matching on the URI of the
incoming transaction with that of the signatures. By design, when
a match is found the transaction is part of a dependency chain.
When a field in signature A is derived from (or dependant on) a
field in signature B, we call the former a successor and the latter a
predecessor. For example, as shown in Figure 5, the ‘cid’ field of sig-
nature @ is directly derived from the ‘id’ field of signature ©. Thus,

CoNEXT 18, December 4-7, 2018, Heraklion, Greece

Case 1: When learning target is predecessor

B. Choi et al.

Request instances of Signature @

HTTP request HTTP response

= URI https://wish.com/product/get

POST /api/get-feed HTTP/1.1
Host : wish.com
User-Agent: Mozilla/5.0

HTTP/1.1 200 OK
Set-Cookie: bsid=c38e;
Content-Encoding: gzip

.{.(;iata:...[{id: 556e},{id: 3gf3},{id:vm98}, ...

[~

Request

n Header
d Cookie: e8d5
0 User-Agent: Mozilla/5.0

— -]

Case 2: When learning target is successor

[d Body
cid: 556e

HTTP request

HTTP response

A

_client: android

POST /product/get HTTP/1.1
Host : wish.com:443
User-Agent: Mozilla/5.0
Cookie: e8d5

cid=b4f9&_client=android&_ver=4.13.0&incognito=
true&_buid=amazon&_xsrf=1&_cap[]=2& ...

HTTP/1.1 200 OK
Set-Cookie: bsid=c38e;
Content-Encoding: gzip
Content-Type: application/json

47 _ver:4.13.0
47 _incognito: true
7 _build: amazon
- | eredit—id:-*

p —
€ xsrf:1

Figure 7: Dynamic learning example.

signature @ is a predecessor of signature @, and @ is a successor
of @. The proxy handles the two cases differently.

When the learning target is a predecessor, the proxy learns fields
that are used to construct successor requests. The proxy first cre-
ates a successor instance identical to the corresponding successor
signature, and copies the missing information from the incoming
transactions. Each step of learning makes the request more spe-
cific. Figure 7 illustrates an actual example of how the prefetch
instance evolves over time. The proxy creates a prefetch request
instance from the successor’s signature, learns the ‘id’ field from a
predecessor response, and fills the ‘cid’ field to the request instance.
In this case, there are multiple ‘id’ fields in the response and the
proxy replicates the request instance as many as the number of the
‘id’ fields. Each instance has a different ‘cid’ field according to the
learned value. When the prefetch request is complete and has no
more missing values to learn, the proxy issues the prefetch request.

When the learning target is a successor, the proxy has a chance to
learn from an actual example because it is a (prefetchable) request
instance in itself. In this case, the proxy learns dynamic conditions
from the actual message and mimics the behavior. The learning tar-
get signature usually contains more fields than run-time messages
because it enumerates all possible cases, but inclusion of some fields
are determined by run-time conditions. Figure 8 shows such an ex-
ample where a common request body signature results in multiple
possible instance classes. The proxy remembers all possible instance
classes and selects the most recent one. In addition, it also learns
missing values, such as HTTP header fields (e.g., User-Agent value)
from the instances derived from the same signature. For example, in
Figure 7 (case 2), the proxy adapts the request instance to the most
recent condition observed and replaces the wildcard part in the URI
of the request instance to the host field of the latest instance of the
same signature (‘https://wish.com’). The ‘Cookie’ and ‘User-Agent’
fields in header and ‘_client’ and ‘_ver’ in the request body are
also updated. The ‘credit_id’ field is removed because the incoming
request does not have the field. The proxy completes the request
instance which becomes ready for prefetching.

In summary, using dynamic learning through predecessor and
successor, the proxy builds complete request instances identical to

32

No Yes

credit_id Yes Yes

is null?

credit_id
is null?

Sig@ Sig@ Sig@ Sig@
Body Body Body Body
cid: .* cid: .* cid: .* cid: .*
_build: amazon | |_build: amazon | |_build: amazon | |_build: amazon
credit_id: .* _ver: .* _ver: .*
credit_id: .*

Figure 8: Example request body signatures based on branch
conditions in Wish.

the request that the app originally generates. Finally, some signa-
tures can be a predecessor as well as a successor. For those signa-
tures, the proxy executes both predecessor and successor routines
as illustrated in Figure 6.

4.3 Testing and Verification

APPx performs testing and verification to ensure correctness be-
fore its deployment. This phase uses Ul-fuzzing tools [23, 45] to
generate random streams of user events, at the client side, such as
touches or gestures as well as number of system-level events. Using
the tools, the app generates and transmits actual requests to remote
server through the proxy. The proxy performs the reconstruction
of requests and prefetching. If the proxy retrieves an error message
or fails to get any responses from remote servers, this phase finally
logs the response state and the corresponding dependency rela-
tionship and updates the configurations to disable prefetching for
the particular transactions. Note, this phase also collects and logs
an estimate of the expiration time for each prefetch request. For
this, the proxy periodically prefetches and checks the difference
between the new one and old one. The prefetch period is getting
increased until the new one is different with the old one. The proxy
logs the period.

This phase ensures the proxy does not reconstruct the abnormal
requests that cause an error message or timeout. However, this

APPx: An Automated App Acceleration Framework

Probability 0.5 Signature {
hash: 3853be;
uri: .*/product/get;
expiration_time: 1 day;
prefetch: true;

Signature {
hash: ar93ba;
uri: .*/api/get-feed;
expiration_time: none; probability: 0.8;
prefetch: false; add_header: “proxy”,“prefetch”;
} condition: “price” gt “1000”;
}

(continue on the right) (the rest omitted)

Figure 9: Example configuration

phase cannot identify an exact expiry date that an app service
provider wants or which requests must not be prefetched. To ensure
the proxy delivers fresh data and is consistent with the app usage
semantics, a careful configuration is required.

4.4 Configuration

Our framework provides a mechanism for enforcing fine-grained
policies on proxy’s prefetching behavior. Unlike automatic analysis
and prefetching, implementing a policy requires understanding of
the app usage and service semantics. This may require assistance
from the app service provider, similar to Web configuration (e.g.,
expiration time, server push, and proxy preload configurations).
Specifically, APPx provides three types of configuration: (1) setting
an expiry time of prefetched responses; (2) probabilistic prefetching;
and (3) setting a field-specific prefetching policy.

When a response has been prefetched long ahead of time, it
may become stale. For example, the number of comments and
purchasers in a shopping app change over time. Our configuration
supports expiration time for each response. Because setting an
expiration time for each request might be tedious, we provide a
default expiration time by estimating it from the logs in the testing
and verification phase.

We also support probabilistic prefetching to control proxy behav-
ior and manage data usage. Some prefetchable requests are always
generated without user intervention, and prefetching them does not
incur additional bandwidth overhead. However, some require user
action (e.g., click) and prefetching them does not provide benefit un-
less the user actually performs the action. Some even have adverse
side-effects (e.g., clicking on a “like” button or purchasing an item).
The configuration allows one to selectively disable prefetching or
limit prefetching unpopular actions/items.

Finally, the configuration allows one to specify field-specific
policies, which can be used in multiple contexts. It can be used to
attach a custom indicator when building a request message. For
example, one can add a prefetch indicator in the HTTP header that
enables the server to distinguish whether the request is from an
actual client or from the proxy. This can be used to precisely handle
statistics (e.g., view counts on an item) at the server side. Note,
FireFox similarly adds a “X-moz:prefetch’ header when performing
link prefetching [12]. In addition, the configuration allows one to
specify field-specific conditions for prefetching, which enables fine-
grained proxy control. This, for example, can be used to deliver
better service (i.e. aggressive prefetching) to premium customers
as many shopping apps have tiered customer programs.

33

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

| «
Load sig. & config. Forward request
 —

to server
Receive request
from client ‘

.

Get response
from server

No 4 Send response
to client
Yes
Not
expired? No
Yes
|

‘ Send prefetched response to client ‘

‘ Dynamic learning

Response
prefetched?

Ready to

Finished?

Yes

Prefetching

Figure 10: Flowchart diagram of the prefetching proxy.

Example. Figure 9 shows an example configuration. A default ini-
tial configuration is automatically generated in the testing and veri-
fication phase, which can be later customized. We currently support
seven fields: ‘hash’, ‘uri’, ‘expiration_time’, ‘prefetch’, ‘probability’,
‘add_header’, and ‘condition’. The ‘hash’ is a hash of the signature,
internally used by APPx to distinguish each signature. The ‘uri’ field
provides readability for service providers who modify the configura-
tion. The ‘expiration_time’ specifies when the prefetched response
expires. The proxy only prefetches when ‘prefetch’ field is ‘true’.
The proxy prefetches the response according to the ‘probability’
specified. A service provider can also define the probability globally.
The proxy adds HTTP header fields specified by ‘add_header’ to
prefetching requests. Each policy can have multiple ‘add_header’
fields. Finally, the proxy performs prefetching only when a prede-
cessor satisfies the ‘condition’ field. In this example, prefetching
for .x/product/get is triggered only when the “price” field of the
predecessor is greater than “1000” dollars.

4.5 Proxy in Operation

Figure 10 summarizes the workflow of the prefetching proxy. The
proxy loads its configuration and the signatures generated from
the program analysis. When a client request arrives at the proxy, it
first checks whether the corresponding response has already been
prefetched. If the request is identical to that of prefetched trans-
actions, including URI, query string, header, and body of request,
the proxy sends the prefetched response message to the client on
behalf of the origin server unless the response has already been
expired. Otherwise, the proxy forwards the request to the origin
server. Note the proxy does not break the app behavior even if a
prefetched request is different from the original client request, be-
cause the proxy sends the response only when the prefetch request
is identical to the client’s request.

For prefetching, the proxy performs dynamic learning as de-
scribed in §4.2. It learns the most recent condition of network
messages and run-time fields, continuously updating its state. A
prefetch request becomes ready for prefetching when all dynamic
values have been resolved. Next, the proxy sends the prefetch re-
quests to the origin server following the prefetching frequency
specified in the configuration and caches the response.

CoNEXT 18, December 4-7, 2018, Heraklion, Greece

App Category Main Interaction
Wish Shopping Loads an item detail
Geek Shopping Loads an item detail
DoorDash Food delivery Loads a restaurant info.
Purple Ocean Psychic reading Loads an advisor page
Postmates Food delivery Loads a restaurant info.

Table 1: Description of apps and main interactions.

A Transactions of RTT to
PP Main Interaction Origin Server

Wish Product fletail 165 ms

Product image 16 ms

Product detail 165ms

Geek .
Product image 6 ms
Menu 145 ms
DoorDash

oorbas Restaurant schedule 145 ms
Advisor information 230 ms

Purple Ocean Profile image 15 ms

Video still image 15 ms

Postmates Restaurant menu & info 5 ms

Table 2: Transactions of main interaction and RTT to origin
servers.

5 IMPLEMENTATION

We develop our proxy based on mitmproxy [13], an open source
man-in-the-middle proxy. We modify the program slicing module,
dependency analysis module, and the semantic model of Extracto-
col to implement our static analysis module. We extend 2.4K lines of
code over mitmproxy and 8.4K lines of code over Extractocol to im-
plement APPx. The proxy uses multi-threading. We assign different
worker threads to handle dynamic learning and prefetching for effi-
ciency. The request instances reconstructed through dynamic learn-
ing are stored in a queue, and a prefetching thread de-queues each
instance to issue the request. The prefetching thread determines
whether to issue a request according to the frequency specified in
the configuration. The proxy stores the responses in a hashmap
with the corresponding request as the key. Finally, prefetched re-
sponses are not shared across users, and the prototype distinguishes
users by IP address.

Prefetching priority. Multiple prefetch request can be outstand-
ing at any moment. To minimize the overall response time, our
proxy uses priority scheduling. We prioritize request that takes
longer to complete and signatures that generate higher hit rates.
Because prefetched responses are not always used and some are
used more frequently than others, the hit-rate based weight as-
signment results in more efficient resource use. For this, the proxy
maintains a running average of response time between the proxy
and the server for each signature. Then, we use the linear combina-
tion of the two as the priority.

34

B. Choi et al.

6 EVALUATION

Methodology: To evaluate our framework, we use five popular
commercial apps available in Google Play, each of which ranked
within the top five in shopping, food delivery, and psychic reading
app categories [3]. Table 1 shows the description of each app. We
exclude apps that use public-key pinning because we cannot de-
crypt network messages they generate using the man-in-the-middle.
For actual deployment, APPx requires app provider’s support and
visibility over plain-text traffic, as described in §2.

For each app, we select a representative user interaction, shown
in Table 1 that reflects the main usage of the app (e.g., browsing
items on Wish) as the prefetching target and configure the proxy as
such. Throughout the evaluation, we focus on the main interaction
because it reflects the key functionality of the app to accelerate. In
particular, by using Frida [8] we measure the time between the user
input that triggers the main interaction and when the app displays
the final output. We use this “response time” as our key metric and
refer to it as the user-perceived latency.

We conduct an IRB-approved user study with 30 participants
to evaluate the prefetching proxy under a more realistic workload
that reflects how users use the app. We record the user event traces
(e.g., click and scrolling) using Appetizer [5] while each user freely
uses each app for three minutes. The trace is 450 minutes long in
total. To drive our proxy against the workload, we replay the event
traces on a Google Nexus 6 smartphone, while all traffic passes
through the proxy and goes to our own server that acts identical to
the original one based on pre-recorded traces from the user study.

We evaluate APPx by answering three key questions:
o Is the framework effective in identifying prefetch opportuni-
ties for mobile apps?
e How much does the prefetching proxy reduce response time
of mobile app?
e Does APPx effectively control the trade-off between latency
reduction and data usage overhead?

6.1 Message Dependency Analysis

To demonstrate the effectiveness of APPx in identifying prefetch
opportunities, we compare the result of APPx with that of automatic
fuzzing and our user study trace. APPx takes 41 hours to extract the
signatures for the all apps. The time depends on the app code size;
larger apps take more time (up to 9 hours) than others. For automatic
fuzzing, we use a Ul automation tool, called Monkey [23], provided
by Android Studio. We use Monkey to generate an arbitrary stream
of user events, such as click or scrolling, at a 500 msec interval for a
duration of an hour. We then collect the network trace that the apps
generate. Finally, we identify the unique signatures of automatic
fuzzing and our user study trace by regex-matching the URI of the
signatures identified by APPx with that of the traces.

Table 3 shows the result. APPx identifies much more unique sig-
natures than those of auto fuzzing and user study trace. However,
Ul-fuzzing is fundamentally lacking in providing a wide cover-
age [50] because some requests are not triggered by user events
(e.g., push notification). It is difficult to navigate through all the
cases without forcing a server to trigger those requests. We also
compare prefetchable signatures of APPx, Ul-fuzzing and user study

APPx: An Automated App Acceleration Framework

of Unique # of Dependency
App Signatures Identified Relationships
Total Prefetchable Total Max len.
(APPx / Auto UI fuzzing / User study)
Wish 120/ 47/ 16 33/8/7 794/78/49 12/5/5
Geek 118/51/31 45/11/13 388/39/31 10/4/4
DoorDash 63/29/21 31/10/10 160/30/36 7/3/5
Purple Ocean 109 /25/ 10 37/4/4 72/4/6 4/2/2
Postmates 83/18/14 35/6/8 272/10/16 15/2/3

Table 3: Signatures and dependency relationships identified
for commercial apps.

-‘ ltid" ”id” -> uidn
inlist| | in store in menu

< Store list > < Store menu > < Menudetail > < Suggestion >

Figure 11: Dependency case study in DoorDash (Successive
dependency)

Product detail
(URI) ¢ “id” ,‘ | “id” > “product_id”
“merchant_name” - wan s I~
“ ” id” - “product_id
-> “geury
Other image Merchant Ratings Group buying

Figure 12: Dependency case study in Wish (Multiple rela-
tionships on a single transaction)

trace. A prefetchable signature is a successor, which means that
some fields of the signature is originated from its predecessor re-
quests. The static analysis of APPx collects the unique signatures
up to 4x compared to Ul-fuzzing and up to 9x more prefetchable
signatures, respectively.

APPx identifies many opportunities for prefetching. APPx dis-
covers the dependency relationships up to 794 and the maximum
length of a successive dependency chain up to 16, which outper-
forms those of Ul-fuzzing. This implies it is very difficult for human
to manually recognize the relationships in mobile apps. We describe
a few of examples. Figure 11 shows dependencies from DoorDash.
A restaurant id from the “Store list” is used to look up the “Store
menu”. The id field of “Store menu” is used to get “Menu detail”,
whose id is, in turn, used in the loading the “Suggestion” page.
APPx recognize such a successive dependency chain. Figure 11
shows another example from Wish. In this case, a single trans-
action is a predecessor of multiple transactions. The id field of
“Product details” response is used to load three different pages, and
the merchant_name field from the same response is used to load the

35

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

‘ O Network delay O Processing delay ‘

>3

c 2.5

i}

L2 1.7 1.8

(54 l)

2 (47%1) (5% (62:6) (535

‘0 1 0.9

[S)

o e

QL, 0 0.5

3 Orig APPx| Orig APPx| Orig APPx| Orig APPx| Orig APPx
Wish Geek DoorDash Purple |Postmates

Ocean

Figure 13: User-perceived latency of main interactions when
communicating with origin server. “Orig” and “APPx” in-
dicate the case that does not prefetch and the case that
prefetches, respectively.

O Network delay O Processing delay

g 10 86 (17%))
o
g 8 .
o 6 5 1 (11
18°o . bl
e 43 (17 (16/u ‘36/)
2 4 [1.6]
3 54
= 2 . 4.3
g 23 1 5 29 33
5 0
3 Orig APPx| Orig APPx| Orig APPx| Orig APPx| Orig APPx
Wish Geek DoorDash | Purple |Postmates
Ocean

Figure 14: User-perceived latency of app launch when com-
municating with origin server. “Orig” and “APPx” indicate
the case that does not prefetch and the case that prefetches,
respectively.

merchant page. We find that there exists a combination of above
two types of the relationships in mobile apps and APPx discovers
such complex relationships, which presents many prefetching op-
portunities. APPx allows the proxy provider and app providers to
choose from these options which ones to prefetch based on their
service preference and business perspective.

6.2 Proxy Evaluation

Proxy evaluation with origin servers: To evaluate the perfor-
mance of the prefetching proxy, we measure the user-perceived
latency of the main interaction and app launch with and without
prefetching. For the app launch delay, we measure the difference
between the time to execute an app and the time to display all
contents on the screen. Each app is running on a Google Nexus 6
smartphone and communicates with their origin servers through
the proxy. The phone is wired to the local network to eliminate
the latency and bandwidth variance that might be caused from a
wireless connection. We set the round-trip-time of 55 ms and the
bandwidth of 25 Mbps between the client and proxy, which reflect
the average 4G latency and bandwidth [1]. This represents the case
where the proxy is located in close proximity to a mobile client.
Table 2 shows the latency between the proxy and the origin servers

CoNEXT 18, December 4-7, 2018, Heraklion, Greece

B. Choi et al.

W Original

W APPx

3.3

= N w

o

User-perceived latency (s)

50ms 100ms 150ms| 50ms 100ms 150ms| 50ms

Wish Geek

100ms 150ms

DoorDash

50ms 100ms 150ms| 50ms 100ms 150ms

Purple Ocean Postmates

Figure 15: 90%-tile latency for app’s main interaction using user traces while varying RTT between proxy and server

for each app. Finally, the proxy prefetches content in advance for
the main interaction.

Figure 13 and Figure 14 show the user-perceived latency of the
main interaction and app launch for each app, respectively. We
measure the average latency of 10 runs. The results show APPx
reduces the user-perceived latency of the main interaction by 47-
62% and the app launch by 11-36% across apps. The figures further
break down the user-perceived latency into the network and pro-
cessing delay. The processing delay includes the time to perform
some initial processing, such as sensor data acquisition and radio
wake-up, and the time to render responses from remote servers to
the screen [66]. We calculate the processing delay by subtracting
the network delay from the user-perceived latency. APPx reduces
the network delay and the speedup factor ranges from 2.5 to 8.7x
for the main interaction and from 1.2 to 2.9x for the app launch.
Purple Ocean benefits the most in terms of network delay because
their servers are located far away (see Table 2). Wish and Geek
have a longer network delay than the others even with prefetching
because the size of their product images is much greater (~ 315KB)
than the other’s transactions (~ 14KB). For the app launch, the
benefits are less than that of the main interaction because most
of the apps do multiple requests in serial when launching and the
requests usually arrive at the proxy while the proxy prefetches the
corresponding responses.

Evaluation based on workload from user study: We measure
the performance of APPx using user-event traces (e.g., click and
scrolling) collected from the user study. This reflects the actual
usage. We replay the trace in real time to reflect the user “think time”.
We measure the user-perceived latency of the main interaction.
Each app communicates with our own server that acts identical to
the original ones. To emulate a realistic experimental environment,
we set the RTT of 55 ms and the bandwidth of 25 Mbps between the
client and proxy and vary the RTT between the proxy and server
from 50 to 150 msec. This effectively varies the proxy location
between the client and server. We also measure data usage of the
proxy to quantify the overhead of APPx. To this end, we measure
the size of responses transmitted between the proxy and server and
normalize it to the size of the environment that does not prefetch.
Finally, we set the bandwidth of 25 Mbps between the proxy and
server.

36

Figure 15 shows the 90%-tile user-perceived latency for the main
interaction. APPx significantly reduces the latency across all ap-
plications. The latency reduction ranges from 14 to 64%. Figure 16
shows the cumulative distribution function of latency for the app’s
main interaction and the normalized data usage. Across all applica-
tions and environments, the prefetching proxy reduces the median
latency between 17% (252 ms) to 64% (1,471 ms). The improvement
is more dramatic when the proxy is located closer to the client.

APPx dramatically reduces latency for Wish and Geek because
the size of their product images is much greater than the others.
For Purple Ocean, the proxy effectively reduces the latency in abso-
lute terms (252 to 906 ms), but because its processing delay is large
(= 0.8 sec) the relative reduction appears small. The proxy uses 1.08
to 4.17x more data to perform prefetching across the apps. Note, the
mobile device itself does not use any more data. For the shopping
app Wish and Geek, the proxy prefetches a relatively large amount
of data because participants in the user study usually glance over
many items and the proxy prefetches their product image whose
size is large. In Postmates, the data usage overhead is small (8%)
because the size of restaurant image is much greater (168 KB on
average) than that of restaurant menu and info (7 KB on average)
that the proxy prefetches. The ratio of data actually used by app
among all prefetched transactions ranges from 1 to 5% across the
apps. It is attributed to the fact that the apps load a list of contents
and the proxy prefetches all the contents in the list and users typi-
cally consume part of them. The traces from the user study include
all interactions without any modification. Users typically have to
carry out some interactions before reaching the main interaction.
For example, Postmates loads multiple restaurant images whose
traffic volume is sizable upon the app launch. User then selects a
few of them from the list of restaurants, which represents the app’s
main interaction. As a result, the data usage of the proxy is between
1.08x and 4.17x compared to the original data consumption without
prefetching.

6.3 Time and Data Usage Trade-off

APPx allows the proxy operator to configure the prefetch proba-
bility to control the tradeoff between latency reduction and data
usage. As we configure the proxy to prefetch less aggressively, the
proxy and server use less bandwidth at the cost of less improvement
in average response time. Our fine-grained configuration allows

APPx: An Automated App Acceleration Framework

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

=== QOriginal e APPx Data Usage
2z ,, _50ms 1o .100ms 1o 150ms g %6 417
5= rd : : = -
. ! ¢ 5 2
Wish 2] ’ P g3>3
Eg 0° a3% 4 03 S sty 00 7 6%y 5 & .
38 5, ~7 (621ms) _ 4 (1078ms) o, _ 4 (1471ms) =z 70
’ ' ’ Original ~ APPx
0 1000 2000 0 1000 2000 3000 0 2000 4000
Lz o 50ms o 100ms o 150ms 3 $6
= = . r . r . r =
Geek 38 ’ ’ , s 3,) 3.15
E8 05 “—138%4 05 —sa%y 05 | %y §&
o= 9 /) (524ms) o _ » (1003ms) 4, _ " (1516ms) 2°0
’ ' ’ Original ~ APPx
0 1000 2000 0 1000 2000 3000 0 1000 2000 3000
L2 10 - 50ms 10 ~100ms 10 150ms § % 6
2= 1. . - . — &
DoorDash = & ’/ ! ! g3 1 1.74
Ego 05 71 719wy 00 T 7 37%4 05 r 4%y 5 £
o < 0.0 [,° (165ms) 0.0 " (428ms) 0.0 .t (551ms) z°0
’ ' ’ Original APPx
0 1000 0 1000 0 1000
Lz 50ms 100ms 150ms -
2 £ . . _ e
Purple 83 1o 10] Lo s £ ?/1‘96
Ocean 28 05 | 05 | 0.5 —! £ >3 225
Eo ¥ 117% 4 _ 37% ?43%) £ 8 1
3 ., J 1 (252ms) _+~ (681ms) _ ¥ (906ms) 230 -
0 1000 2000 0 1000 2000 0 1000 2000 3000 Original ~ APPx
Lz, _50ms 10 . 100ms 10 150ms T &6
s = : ’ ' s f__U]
Postmates = ® >3
2 g 0.5 1 27%4, 0.5 50%1, g g 1 1.08
S5 f (224ms) 4(613ms) z © O
O 2 00 - 0.0 - -
' ' Original ~ APPx
0 500 1000 0 500 1000 1500 0 500 1000 1500
Latency (ms) Latency (ms) Latency (ms)

Figure 16: Cumulative distribution function of the user-perceived latency and data usage.

the operator to set prefetching probabilities for individual requests.
We believe that APPx can perform prefetching more effectively by
making the proxy to collect and use fine-grained popularity of each
request or item. This can also be used to enable service differen-
tiation across users (e.g., based on customer tiers in a shopping
app).

Figure 17 shows the trade-off between the median latency and
the data usage overhead of Wish, as we change the probability of
prefetching. The result shows that the proxy provides a knob to
adjust the tradeoff between latency and bandwidth. As we prefetch
more aggressively, the latency decreases half (from 1,881 to 947 ms)
when the data usage increases 2.1 times. We also observe that
the median latency dramatically decreases when we prefetch the
majority of transactions.

7 RELATED WORK

Mobile app acceleration: Several studies [42, 44, 46, 75] address
the problem of reducing response time of mobile apps. PALOMA [75]
is a concurrent work to ours that shares similar ideas. Similar to
APPx, PALOMA uses static program analysis to identify prefetch-
ing opportunities. Unlike APPx, it instruments the mobile app to
interact with a proxy-agent on the mobile device and communi-
cate with remote servers. However, PALOMA does not handle the

37

case when the exact format of request message is determined at
run-time. It requires that an exact request message be identified
during static analysis, which limits the applicability. We show that
many requests are determined dynamically depending on the dy-
namic control flow of the program (e.g., ‘credit_id’ field in Figure 7).
APPx overcomes the limitation of PALOMA by combining static
analysis and dynamic learning and observing the actual traffic at
runtime. Looxy [44] performs caching and prefetching in a local
proxy that communicates with a client device through a WiFi con-
nection. Looxy prefetches using only the full URLs of HT TP request
contained in the response. In our observations, however, many of
dependency relationships between network transactions of the mo-
bile app are found in the parts of HTTP request (e.g., ‘cid’ field in
Figure 7). Looxy does not handle that dependency relationships. By
using static program analysis and dynamic learning, APPx identifies
the dependency relationships and reconstructs request messages to
prefetch. IMP [46] allows prefetching on mobile side and provides
APIs that hide the complexity of the prefetching decision. However,
app developer must manually instruct what to prefetch by modify-
ing the app. Tango [42] replicates app execution on a cloud server
that has greater computational power and broader network band-
width than mobile device. Replicating the entire execution without
understanding the app behavior requires running a Dalvik virtual

CoNEXT 18, December 4-7, 2018, Heraklion, Greece

— - 1881
é 2000 . — Without prefetching
>
g 1500 7(10X) \\\
(7] *,
= 1085
— 947
S 1000 | D S 871 792 784
g (1.7x) L D -
g (2.1X) (3.2)()
S 500 | (3.7x) (4.2x)
e
@
w)
0

o)

0% 25% 50% 75% 90% 100%

Probability of prefetching

Figure 17: Trade-off between latency and data usage of Wish.
The numbers in parentheses indicate the normalized data
usage.

machine, which consumes more resource than running a proxy.
APPx replicates only the app’s protocol behavior in the proxy. This
is much lighter-weight than running the entire app on top of a VM
in the cloud. In fact, our approach can support multiple apps using
the same proxy. EBC [32] reduces app launch delays by schedul-
ing app prefetches upon screen unlock. EBC determines when and
for which apps prefetches should be triggered through estimating
the app usage probabilities and their traffic volume. We believe
that one can effectively reduce the response time of mobile app by
combining EBC and APPx.

EdgeReduce [62] and Procrastinator [65] focus on reducing data
usage of mobile apps, at the cost of increased response time. In
contrast, APPx reduces the response time at the expense of using
more bandwidth at the proxy. According to our own private con-
versations with several mobile service providers, they are willing to
make this tradeoff because latency reduction is far more important
to their bottom line.

Mobile code offloading: Many studies [36, 37, 40, 41, 43, 51, 54,
71] have proposed different code-offloading strategies to improve
the responsiveness of mobile apps and save the energy consump-
tion of mobile devices. Maui [37] accelerates mobile apps and saves
energy by allowing developers to selectively offload methods to
cloud servers by adding annotations on the code. Thinkair [51] and
Cloudlets [71] make automated offloading decisions by performing
static and dynamic analysis of mobile apps. Note that these ap-
proaches often require modifications on client or server application.
They are mainly beneficial to compute-intensive mobile apps. In
contrast, we focus on accelerating message exchanges and it mainly
benefits network-intensive interactive, latency-critical apps.

Server push: HTTP/2.0 and SPDY allow a server to push embedded
objects before they are requested. This reduces the page load time
for Web content. This requires both server and client support. The
benefit is also limited to Web content and Web apps, and they do
not benefit mobile apps.

Web acceleration: Web acceleration is used to reduce the latency
of web pages and server load, and data usage [16, 19, 47, 49, 56,
74]. SPDY [19] combines multiple techniques, such as compres-
sion, multiplexing, and prioritization, to reduce the Web latency.
mod_pagespeed is an open-source Apache module that rewrites
web pages to load faster [16]. It performs image optimization,

38

B. Choi et al.

compression, resizing, static web file minification, and caching.
WProf [72] is a Web profiling tool that analyzes the dependency
between Web objects and their load times. It shows that SPDY and
mod_pagespeed significantly reduce the size of downloads, but they
are not always effective in reducing page load time because they
do not always affect the critical path. Klotski [56] prioritizes the
content most relevant to a user’s preferences. But it must analyze
dependencies between web objects within a page, before they es-
tablish a prioritization plan. Unlike Klotski, Shadian [74] performs
speeding up web page loads without any knowledge of web objects.
Finally, NutShell [70] tackles scalability challenges in JavaScript
execution for proxy-based Web acceleration. NutShell’s proxy only
executes the part of JavaScript code necessary to identify and fetch
Web objects rather than executing the entire code. This is similar
in spirit to APPx that only mimics app’s network behavior instead
of replicating the entire app execution [42].

TCP-level acceleration: TCP acceleration is a considerably well
explored area. There has been a number of studies [29, 31, 53,
55, 63, 64, 69] to reduce service access times by performing TCP
acceleration. They split long connections into multiple shorter con-
nections [53, 55], optimize the establishment of TCP connection and
slow start phases [29, 64], and/or adopt proxy-based approach [31,
63, 69] to improve TCP performance. Another approach [16, 24, 28]
performs caching and/or compression to reduce transmission time
and network bandwidth. We believe that our approach can be com-
bined with the general transport-level approaches to accelerate
mobile apps.

8 CONCLUSION

This paper presents a novel approach for mobile app acceleration.
Leveraging recent advances in static program analysis, it automat-
ically discovers opportunities for prefetching. In particular, the
framework takes the app binary as input and combines static and
dynamic analysis to generate prefetch requests that look identical
to the original request. It allows service providers to easily gener-
ate app specific proxies and configure them to fit their policy. Our
evaluation results show that app-specific acceleration proxies gen-
erated from our framework dramatically reduce the response times
of apps, enhancing the quality of user experience for mobile apps
and services. Furthermore, we show that the framework allows us
to balance the tradeoff between the latency reduction and proxy
bandwidth usage through policy specification. We believe that our
framework will be particularly useful in accelerating various mobile
apps in lightly multiplexed environments, such as the mobile edge
cloud.

ACKNOWLEDGEMENT

We thank our shepherd Matteo Varvello and anonymous reviewers
for their valuable feedback. This work is supported by Institute
for Information & communications Technology Promotion (II'TP)
funded by the Korea government (MSIT) [2018-0-00693]; and In-
stitute of Civil Military Technology Cooperation Center (ICMTC)
funded by the Korea government (MOTIE & DAPA) [18-CM-SW-
09].

APPx: An Automated App Acceleration Framework

REFERENCES

=

[10]

[En—
[OR=

[13]
[14

[15]

[16

[17]
[18

[19]

[20]
[21

[22
[23]

[24]

[25]

™
&S

[27

[28]

[29]

[30

[31

[32]

[33]

[34]

4G and 3G mobile broadband speeds research. https://www.ofcom.org.uk/
about-ofcom/latest/media/media-releases/2014/3g-4g-bb-speeds.

Amazon CloudFront Pricing. https://aws.amazon.com/ko/cloudfront/pricing/.
App Annie App Store Statistics. https://www.appannie.com/apps/google-play/
matrix/?country=US. [accessed 13-Mar-2018].

App Annie Google Play Statistics. https://www.appannie.com/apps/google-play/
top-chart/?country=US&category=30&device=&date=2018-06-09&feed=All&
rank_sorting_type=rank&page_number=0&page_size=100&table_selections=.
[accessed 09-Jun-2018].

AppetizerIO - Mobile DevOps Platform. https://www.appetizer.io/en/index.html.
Dynamic site acceleration via Azure CDN. https://docs.microsoft.com/en-us/
azure/cdn/cdn-dynamic-site-acceleration.

Dynamic Site Accelerator | Akamai. https://www.akamai.com/us/en/products/
web-performance/dynamic-site-accelerator.jsp.

Frida - A Dynamic Instrumentation Framework. https://www.frida.re/docs/
home/.

Google Cloud Platform Pricing. https://cloud.google.com/cdn/pricing.
How One Second Could Cost Amazon $1.6 Billion In Sales.
//www.fastcompany.com/1825005/how-one-second- could-cost-amazon-
16-billion-sales.

Keyless SSL | Cloudflare. https://www.cloudflare.com/ssl/keyless-ssl/.
Link prefetching FAQ - HTTP | MDN. https://developer.mozilla.org/en-US/docs/
Web/HTTP/Link_prefetching_FAQ.

Mitmproxy. https://mitmproxy.org.

Mobile App Acceleration - A Neumob White Paper. https://www.neumob.com/
wp-content/uploads/2016/05/Neumob-Understanding-and-Improving-Mobile-
App-Acceleration.pdf.

Mobile App Usage Increases In 2014, As Mobile Web Surfing Declines.
https://techcrunch.com/2014/04/01/mobile-app-usage-increases-in-2014-as-
mobile-web-surfing-declines/.

Modepage - Aphache Module for Rewriting Web Pages to Reduce Latency and
Bandwidth. http://modpagespeed.com.

Preloading Web Search Top Hits in Safari. https://support.apple.com/kb/PH21448.
RxAndroid: Reactive Extensions for Android. https://github.com/ReactiveX/
RxAndroid.

SPDY - An Experiment with Protocols for the Web. Its Goal is to Reduce the
Latency of Web Pages. http://dev.chromium.org/spdy.

Speed Up Google Chrome. https://support.google.com/chrome/answer/1385029.
SSL Proxy Overview - Juniper Networks. https://www.juniper.net/
documentation/en_US/junos/topics/concept/ssl-proxy-overview.html.

The Rise of REST APL https://blog.restcase.com/the-rise-of-rest-api/.
Ul/Application Exerciser Monkey. https://developer.android.com/studio/test/
monkey.

http:

WebP: A new image format for the Web. https://developers.google.com/speed/
webp/.

Why is RxJava gaining 50 much popularity in
the Android world? https://www.quora.com/

Why-is-RxJava-gaining-so-much-popularity-in-the- Android-world.

Why is RxJava so popular with Android Developers? https://www.youtube.com/
watch?v=TjaLKduVMéw.

Why REST is So Popular. https://www.serviceobjects.com/resources/
articles-whitepapers/why-rest-popular.

V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan, B. Greenstein, S. McDaniel,
M. Piatek, C. Scott, M. Welsh, and B. Yin. Flywheel: Google’s Data Compression
Proxy for the Mobile Web. In Proceedings of 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 367-380, 2015.

M. Al-Fares, K. Elmeleegy, B. Reed, and I. Gashinsky. Overclocking the Yahoo!:
CDN for Faster Web Page Loads. In Proceedings of the 2011 ACM SIGCOMM
conference on Internet measurement conference (IMC), pages 569-584. ACM, 2011.
S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,
and P. McDaniel. Flowdroid: Precise Context, Flow, Field, Object-sensitive and
Lifecycle-aware Taint Analysis for Android Apps. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI),
June 2014.

H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz. Improving TCP/IP Perfor-
mance over Wireless Networks. In Proceedings of the 1st annual international
conference on Mobile computing and networking (MobiCom), pages 2-11. ACM,
1995.

P. Baumann and S. Santini. Every Byte Counts: Selective Prefetching for Mobile
Applications. ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
(IMWUT), 1(2):6, 2017.

Y. Cao, Y. Fratantonio, M. Egele, A. Bianchi, C. Kruegel, G. Vigna, and Y. Chen.
EdgeMiner: Automatically Detecting Implicit Control Flow Transitions through
the Android Framework. In Proceedings of the Network and Distributed System

Security Symposium (NDSS), 2015.
X. Chen and X. Zhang. A Popularity-based Prediction Model for Web Prefetching.

Computer, 36(3):63-70, 2003.

39

[35

[36]

(37]

[39

[40

[41

[43]

[44]

[45]

=
&

(47]

[48

[49

[50]

[51

[52]

(53

[54]

[57]

(58]

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing Inter-Application

Communication in Android. In Proceedings of the 9th international conference on
Mobile systems, applications, and services (MobiSys), pages 239-252. ACM, 2011.

B.-G. Chun, S. IThm, P. Maniatis, M. Naik, and A. Patti. Clonecloud: Elastic

Execution between Mobile Device and Cloud. In Proceedings of the European
Conference on Computer Systems (EuroSys), pages 301-314. ACM, 2011.

E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra,
and P. Bahl. MAUI: Making Smartphones Last Longer with Code Offload. In

Proceedings of the 8th international conference on Mobile systems, applications, and
services (MobiSys), pages 49-62. ACM, 2010.

S.Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song. NetworkProfiler: Towards

automatic fingerprinting of Android apps. In Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM), volume 13, pages 809-817,
2013.

A. Datta, K. Dutta, H. Thomas, D. VanderMeer, Suresha, and K. Ramamritham.
Proxy-based Acceleration of Dynamically Generated Content on the World Wide

Web: An Approach and Implementation. In Proceedings of ACM Special Interest
Group on Management of Data (SIGMOD), pages 97-108, 2002.

H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya. Mobile Code Of-
floading: from Concept to Practice and Beyond. IEEE Communications Magazine,
53(3):80-88, 2015.

H. Flores and S. Srirama. Adaptive Code Offloading for Mobile Cloud Applications:
Exploiting Fuzzy Sets and Evidence-based Learning. In Proceeding of the fourth
ACM workshop on Mobile cloud computing and services (MCS), pages 9-16. ACM,
2013.

M. S. Gordon, D. K. Hong, P. M. Chen, J. Flinn, S. Mahlke, and Z. M. Mao. Ac-
celerating Mobile Applications through Flip-flop Replication. In Proceedings of
the 13th Annual International Conference on Mobile Systems, Applications, and
Services (MobiSys), pages 137-150. ACM, 2015.

M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen. COMET:
Code Offload by Migrating Execution Transparently. In Proceedings of 10th
USENIX Symposium on Operating Systems Design and Implementation (OSDI),
pages 93-106, 2012.

Y. Guo, M. Liu, and X. Chen. Looxy: Web Access Optimization for Mobile

Applications with a Local Proxy. In Proceedings of Vehicular Technology Conference
(VTC) Spring, pages 1-5. IEEE, 2017.

S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan. PUMA: Programmable

Ul-automation for Large-scale Dynamic Analysis of Mobile Apps. In Proceedings
of the 12th annual international conference on Mobile systems, applications, and
services (MobiSys), pages 204-217. ACM, 2014.

B. D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin, and D. Watson. Informed
Mobile Prefetching. In Proceedings of the 10th international conference on Mobile
systems, applications, and services (MobiSys), pages 155-168. ACM, 2012.

M. B. Jamshed Vesuna, Colin Scott and M. Piatek. Caching Doesn’t Improve

Mobile Web Performance (Much). In Proceedings of the USENIX Annual Technical
Conference (ATC), April 2016.

Z. Jiang and L. Kleinrock. Web Prefetching in a Mobile Environment. IEEE
Personal Communications, 5(5):25-34, 1998.

C. Kelton, J. Ryoo, A. Balasubramanian, and S. R. Das. Improving User Per-
ceived Page Load Times Using Gaze. In Proceedings of the USENIX Conference on
Networked Systems Design and Implementation (NSDI), pages 545-559, 2017.

J. Kim, H. Choi, H. Namkung, W. Choi, B. Choi, H. Hong, Y. Kim, J. Lee, and
D. Han. Enabling Automatic Protocol Behavior Analysis for Android Applications.
In Proceedings of the 12th International on Conference on emerging Networking
EXperiments and Technologies (CONEXT), pages 281-295. ACM, 2016.

S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang. Thinkair: Dynamic Re-
source Allocation and Parallel Execution in the Cloud for Mobile Code Offloading.
In Proceedings of the IEEE International Conference on Computer Communications
(INFOCOM), pages 945-953. IEEE, 2012.

T. M. Kroeger, D. D. Long, J. C. Mogul, et al. Exploring the Bounds of Web

Latency Reduction from Caching and Prefetching. In Proceedings of the USENIX
Symposium on Internet Technologies and Systems (USITS), pages 13-22, 1997.

S. Ladiwala, R. Ramaswamy, and T. Wolf. Transparent TCP Acceleration. Com-
puter Communications, 32(4):691-702, 2009.

C.-K. Lin and H. Kung. Mobile App Acceleration via Fine-Grain Offloading to the

Cloud. In Proceedings of the USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud), 2014.

Y. Liu, Y. Gu, H. Zhang, W. Gong, and D. Towsley. Application Level Relay for
High-bandwidth Data Transport. GridNets, 2004.

Z.w. Michael Butkiewicz, Daimeng Wang, H. V.Madhyastha, and V. Sekar. KLOT-
SKI: Reprioritizing Web Content to Improve User Experience on Mobile Devices.
In Proceedings of the USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI), May 2015.

J. Mickens, J. Elson, J. Howell, and J. Lorch. Crom: Faster Web Browsing Using

Speculative Execution. In Proceedings of USENIX Conference on Networked Systems
Design and Implementation (NSDI). USENIX Association, 2010.

R. Netravali and J. Mickens. Prophecy: Accelerating Mobile Page Loads Using

Final-state Write Logs. In Proceedings of USENIX Symposium on Networked

https://www.ofcom.org.uk/about-ofcom/latest/media/media-releases/2014/3g-4g-bb-speeds
https://www.ofcom.org.uk/about-ofcom/latest/media/media-releases/2014/3g-4g-bb-speeds
https://aws.amazon.com/ko/cloudfront/pricing/
https://www.appannie.com/apps/google-play/matrix/?country=US
https://www.appannie.com/apps/google-play/matrix/?country=US
https://www.appannie.com/apps/google-play/top-chart/?country=US&category=30&device=&date=2018-06-09&feed=All&rank_sorting_type=rank&page_number=0&page_size=100&table_selections=
https://www.appannie.com/apps/google-play/top-chart/?country=US&category=30&device=&date=2018-06-09&feed=All&rank_sorting_type=rank&page_number=0&page_size=100&table_selections=
https://www.appannie.com/apps/google-play/top-chart/?country=US&category=30&device=&date=2018-06-09&feed=All&rank_sorting_type=rank&page_number=0&page_size=100&table_selections=
https://www.appetizer.io/en/index.html
https://docs.microsoft.com/en-us/azure/cdn/cdn-dynamic-site-acceleration
https://docs.microsoft.com/en-us/azure/cdn/cdn-dynamic-site-acceleration
https://www.akamai.com/us/en/products/web-performance/dynamic-site-accelerator.jsp
https://www.akamai.com/us/en/products/web-performance/dynamic-site-accelerator.jsp
https://www.frida.re/docs/home/
https://www.frida.re/docs/home/
https://cloud.google.com/cdn/pricing
http://www.fastcompany.com/1825005/how-one-second-could
http://www.fastcompany.com/1825005/how-one-second-could
https://www.cloudflare.com/ssl/keyless-ssl/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Link_prefetching_FAQ
https://developer.mozilla.org/en-US/docs/Web/HTTP/Link_prefetching_FAQ
https://mitmproxy.org
https://www.neumob.com/wp-content/uploads/2016/05/Neumob
https://www.neumob.com/wp-content/uploads/2016/05/Neumob
https://techcrunch.com/2014/04/01/mobile-app-usage
http://modpagespeed.com
https://support.apple.com/kb/PH21448
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
http://dev.chromium.org/spdy
https://support.google.com/chrome/answer/1385029
https://www.juniper.net/documentation/en_US/junos/topics/concept/ssl-proxy-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/ssl-proxy-overview.html
https://blog.restcase.com/the-rise-of-rest-api/
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://developers.google.com/speed/webp/
https://developers.google.com/speed/webp/
https://www.quora.com/Why-is-RxJava-gaining-so-much-popularity-in-the-Android-world
https://www.quora.com/Why-is-RxJava-gaining-so-much-popularity-in-the-Android-world
https://www.youtube.com/watch?v=TjaLKduVM6w
https://www.youtube.com/watch?v=TjaLKduVM6w
https://www.serviceobjects.com/resources/articles-whitepapers/why-rest-popular
https://www.serviceobjects.com/resources/articles-whitepapers/why-rest-popular

CoNEXT 18, December 4-7, 2018, Heraklion, Greece

Systems Design and Implementation (NSDI), 2018.

R. Netravali and J. Mickens. Remote-Control Caching: Proxy-based URL Rewrit-
ing to Decrease Mobile Browsing Bandwidth. In Proceedings of International
Workshop on Mobile Computing Systems & Applications (HotMobile), pages 63-68,
2018.

D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. Le Traon.
Effective Inter-component Communication Mapping in Android with Epicc: An
Essential Step Towards Holistic Security Analysis. In Proceedings of USENIX
Security Symposium, 2013.

V. N. Padmanabhan and J. C. Mogul. Using Predictive Prefetching to Improve
World Wide Web Latency. SIGCOMM Computer Communication Review (CCR),
26(3):22-36, July 1996.

A. Pamboris and P. Pietzuch. Edge Reduce: Eliminating Mobile Network Traffic
Using Application-Specific Edge Proxies. In Proceedings of the ACM International
Conference on Mobile Software Engineering and Systems (MOBILESoft), pages
72-82. IEEE, 2015.

A. Pathak, Y. A. Wang, C. Huang, A. Greenberg, Y. C. Hu, R. Kern, J. Li, and K. W.
Ross. Measuring and Evaluating TCP Splitting for Cloud Services. In Proceedings
of International Conference on Passive and Active Network Measurement (PAM),
pages 41-50. Springer, 2010.

S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B. Raghavan. TCP Fast Open. In
Proceedings of the Seventh COnference on emerging Networking EXperiments and
Technologies (CONEXT), page 21. ACM, 2011.

L. Ravindranath, S. Agarwal, J. Padhye, and C. Riederer. Procrastinator: pacing
mobile apps’ usage of the network. In Proceedings of the 12th annual international
conference on Mobile systems, applications, and services (MobiSys), pages 232-244.
ACM, 2014.

L. Ravindranath, J. Padhye, R. Mahajan, and H. Balakrishnan. Timecard: Control-
ling user-perceived delays in server-based mobile applications. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP),
pages 85-100. ACM, 2013.

[67]

(68

[69]

[71

[72]

[73

[75

B. Choi et al.

V. Ruamviboonsuk, R. Netravali, M. Uluyol, and H. V. Madhyastha. Vroom:
Accelerating the Mobile Web with Server-Aided Dependency Resolution. In
Proceedings of ACM Special Interest Group on Data Communication (SIGCOMM),
pages 390-403, 2017.

S. Singh, H. V. Madhyastha, S. V. Krishnamurthy, and R. Govindan. FlexiWeb:
Network-Aware Compaction for Accelerating Mobile Web Transfers. In Pro-
ceedings of the 21st Annual International Conference on Mobile Computing and
Networking (MobiCom), pages 604-616, 2015.

G. Siracusano, R. Bifulco, S. Kuenzer, S. Salsano, N. B. Melazzi, and F. Huici.
On-the-Fly TCP Acceleration with Miniproxy. arXiv preprint arXiv:1605.06285,
2016.

A. Sivakumar, C. Jiang, Y. S. Nam, S. Puzhavakath Narayanan, V. Gopalakrishnan,
S. G. Rao, S. Sen, M. Thottethodi, and T. N. Vijaykumar. NutShell: Scalable
Whittled Proxy Execution for Low-Latency Web over Cellular Networks. In
Proceedings of the 23rd Annual International Conference on Mobile Computing and
Networking (MobiCom), pages 448461, 2017.

T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt. Cloudlets: Bringing the
Cloud to the Mobile User. In Proceedings of the third ACM workshop on Mobile
cloud computing and services (MCS), pages 29-36. ACM, 2012.

X.S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall. Demystify-
ing Page Load Performance with WProf. In Proceedings of the USENIX Conference
on Networked Systems Design and Implementation (NSDI), pages 473-485, 2013.
Z.Wang, F. X. Lin, L. Zhong, and M. Chishtie. How Far Can Client-only Solutions
Go for Mobile Browser Speed? In Proceedings of the 21st International Conference
on World Wide Web (WWW), pages 31-40, 2012.

A. K. Xiao Sophia Wang and D. Wetherall. Speeding up Web Page Loads with
Shandian. In Proceedings of the 13th USENIX Conference on Networked Systems
Design and Implementation (NSDI), March 2016.

Y. Zhao, M. S. Laser, Y. Lyu, and N. Medvidovic. Leveraging Program Analysis
to Reduce User-Perceived Latency in Mobile Applications. In Proceedings of
International Conference on Software Engineering (ICSE), 2018.

	Abstract
	1 Introduction
	2 App Acceleration Scenario
	3 Requirements and Challenges
	4 Design
	4.1 Static Program Analysis
	4.2 Dynamic Learning
	4.3 Testing and Verification
	4.4 Configuration
	4.5 Proxy in Operation

	5 Implementation
	6 Evaluation
	6.1 Message Dependency Analysis
	6.2 Proxy Evaluation
	6.3 Time and Data Usage Trade-off

	7 Related Work
	8 Conclusion
	References

