
Kahawai: High-Quality Mobile Gaming Using GPU Offload

Eduardo Cuervo†, Alec Wolman†, Landon P. Cox‡, Kiron Lebeck∗, Ali Razeen‡,
Stefan Saroiu†, Madanlal Musuvathi†

†Microsoft Research, ‡Duke University, ∗University of Washington

ABSTRACT
This paper presents Kahawai1, a system that provides high-quality
gaming on mobile devices, such as tablets and smartphones, by of-
floading a portion of the GPU computation to server-side infras-
tructure. In contrast with previous thin-client approaches that re-
quire a server-side GPU to render the entire content, Kahawai uses
collaborative rendering to combine the output of a mobile GPU and
a server-side GPU into the displayed output. Compared to a thin
client, collaborative rendering requires significantly less network
bandwidth between the mobile device and the server to achieve the
same visual quality and, unlike a thin client, collaborative render-
ing supports disconnected operation, allowing a user to play offline
– albeit with reduced visual quality.

Kahawai implements two separate techniques for collaborative
rendering: (1) a mobile device can render each frame with reduced
detail while a server sends a stream of per-frame differences to
transform each frame into a high detail version, or (2) a mobile
device can render a subset of the frames while a server provides the
missing frames. Both techniques are compatible with the hardware-
accelerated H.264 video decoders found on most modern mobile
devices. We implemented a Kahawai prototype and integrated it
with the idTech 4 open-source game engine, an advanced engine
used by many commercial games. In our evaluation, we show that
Kahawai can deliver gameplay at an acceptable frame rate, and
achieve high visual quality using as little as one-sixth of the band-
width of the conventional thin-client approach. Furthermore, a 50-
person user study with our prototype shows that Kahawai can de-
liver the same gaming experience as a thin client under excellent
network conditions.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Client/server

Keywords
code offload; GPU; computer games; mobile devices

1Kahawai is the Hawaiian word for stream.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiSys’15, May 18–22, 2015, Florence, Italy.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3494-5/15/05 ...$15.00.
http://dx.doi.org/10.1145/2742647.2742657 .

1. INTRODUCTION
Since the advent of consumer mobile devices equipped with

high resolution touchscreens along with powerful CPUs and GPUs,
gaming has been one of the most popular activities on smartphones
and tablets. Recent studies estimate that 46% of mobile users play
games, and out of the total time spent using their devices, users
play games 49% of the time [15]. As mobile device screens grow
larger and screen resolutions increase, finer graphical detail and ad-
vanced graphical effects are becoming more important for mobile
applications, especially games.

To provide richer visual experiences, mobile devices have seen
rapid improvements in their GPU processing capabilities, but to-
day’s devices cannot duplicate the sophisticated graphical detail
provided by gaming consoles and high-end desktop GPUs. The
primary reason for this performance gap is power consumption. A
high-end desktop GPU may consume 500 Watts of power, whereas
a high-end mobile GPU will consume less than 10 Watts. As a re-
sult, mobile GPUs will lag behind their desktop contemporaries for
the foreseeable future. The battery capacity of mobile devices is
limited and growing slowly, and high power consumption requires
sophisticated and bulky thermal dissipation systems that are incom-
patible with mobile form factors.

Prior research efforts sought to close the performance and energy
gaps between mobile devices and server-side infrastructure through
remote execution and code offload [3, 7, 9, 14]. However, that work
has focused on general purpose workloads running on a mobile de-
vice’s CPU. Although there has been previous work on remote ren-
dering [28, 37], we are unaware of any prior systems that support
GPU offloading from mobile devices to server infrastructure.

Thin-client architectures are another widely explored area of pre-
vious work [24, 35], and commercial systems such as OnLive,
Playstation Now, and Nvidia Shield take a thin-client approach to
mobile gaming. Here, a cloud server with a powerful CPU and
GPU execute the game and render its output. The mobile device
forwards the user’s input to a server, and receives the game’s audio-
visual output encoded as compressed video. Though popular, thin-
client gaming has two drawbacks. First, transmitting game content
that meets gamers’ expectations with regards to screen resolution,
frame rate, and video quality results in high bandwidth require-
ments. This is particularly worrisome for players connecting over
data-capped connections. Second, thin-clients cannot support of-
fline gaming since all game code executes on a remote server.

In this paper, we present Kahawai, a GPU offload system that
overcomes the drawbacks of thin-client gaming. The main tech-
nique used by Kahawai is collaborative rendering. Collaborative
rendering relies on a mobile GPU to generate low-fidelity output,
which when combined with server-side GPU output allows a mo-
bile device to display a high-fidelity result.

The key insight behind collaborative rendering is that while fine-
grained details are prohibitively expensive for mobile GPUs to ren-
der at an acceptable frame rate, these details represent a small por-
tion of the total information encoded within the displayed output.
Thus, collaborative rendering relies on the mobile GPU to render
low-fidelity content containing most of the displayed output, and
relies on the server infrastructure to fill in the details.

Collaborative rendering in Kahawai addresses thin-client gam-
ing’s main shortcomings. First, when the mobile device is con-
nected to a server, Kahawai provides high-quality gaming at signif-
icant network bandwidth savings relative to a thin-client. Second,
disconnected Kahawai clients can play games offline using their
own GPU, albeit with reduced visual quality. To enable collabora-
tive rendering, Kahawai requires careful synchronization between
two instances of the same game: one executing on the mobile de-
vice and the other on the server. To support this, we integrated par-
tial deterministic replay into a popular open-source game engine,
the idTech 4 game engine used by many commercial games.

We have developed two separate collaborative rendering tech-
niques as part of Kahawai, with each targeting a different aspect
of the game stream’s fidelity (i.e., per-frame detail and frame rate).
In our first technique, delta encoding, the mobile device produces
reduced-fidelity output by generating every frame at a lower level
of detail. The server-side GPU concurrently renders two versions of
the game output: a high-fidelity, finely detailed version, and a low-
fidelity version that matches the mobile device’s output. The server
uses these two outputs to calculate delta frames representing the vi-
sual differences between the high-fidelity and low-fidelity frames.
The server then sends a compressed video stream of delta frames
to the client, and the mobile device decompresses the stream and
applies the deltas to the frames that it rendered locally.

In our second technique, client-side I-frame rendering, the mo-
bile device produces reduced-fidelity output by rendering highly
detailed frames at a lower rate. The server renders the missing
frames at a higher rate, and sends the missing frames as compressed
video. The mobile device decodes the video, combines the frames
in the correct order, and displays the results. Both of our tech-
niques are compatible with the hardware-accelerated H.264 video
decoders built in to many of today’s mobile devices.

Our Kahawai prototype is integrated into the idTech 4 game en-
gine, and demonstrates the benefits of collaborative rendering using
a commercial game, Doom 3, built on this engine. We show that
compared with a thin client using H.264, delta encoding provides
far superior visual quality when bandwidth is constrained to less
than 0.5 Mbps. Even more impressive, we show that a thin client
requires six times as much bandwidth as client-side I-frame render-
ing to achieve comparable visual quality. Finally, a 50-person user
study demonstrates that Kahawai delivers a high-quality gaming
experience equivalent to the thin client approach.

2. BACKGROUND
Kahawai relies on concepts and principles from the following

related topics: cloud gaming [39, 25, 26]; game structure and per-
formance [20, 12, 16]; video compression [34]; and image quality
comparisons [38, 22]. In [8], we present extensive background on
the above topics.

Many modern games are built on top of a game engine. These
engines provide a general platform that greatly simplifies game de-
velopment. Engines typically separate game-specific content, such
as artwork, levels, characters, and weapons, from core functionality
such as rendering, physics, sound, and input handling. Some of the
most popular game engines for fast-action games are Unreal [12],
Unity [36], idTech [20], and the MT Framework. We implemented

Kahawai by modifying version 4 of the idTech engine. Fully in-
tegrating Kahawai into an engine requires access to the engine’s
source code, but this does not limit the generality of our approach.
Even without access to source code, we successfully applied col-
laborative rendering to the game Street Fighter 4 [5] by intercepting
calls to the custom Capcom engine on which it runs. When adopt-
ing a particular game engine, game developers typically obtain a
license that includes access to game-engine source code.

In addition to access to the game-engine source code, delta en-
coding also requires a way to generate a high-detail and low-detail
version of each output frame. Desktop PC games commonly pro-
vide a large number of settings that control the performance and
visual quality of the rendered graphics. Game designers provide
these settings so that players with more powerful GPUs can expe-
rience a higher-quality version of the game, while those with less
powerful GPUs can play at an acceptable frame rate. Game settings
control a wide variety of graphical details within the game, includ-
ing lighting, shadows, fog, texture compression, bump mapping,
anti-aliasing, anisotropic filtering, and even the complexity of the
3D models given to the rendering pipeline.

OpenGL [33] and Direct3D [30] are industry standard rendering
APIs for programming modern GPUs. These frameworks describe
how a given 3D scene should be rendered and abstract away the
hardware details of a GPU’s implementation. Hardware manufac-
turers implement support for these APIs in a way that best exploits
the characteristics of their hardware. Each API implementation is
provided as a binary device driver from the GPU manufacturer [4].
Kahawai does not require access to these driver internals.

It is important to note that given the exact same scene descrip-
tion, rendering APIs do not guarantee pixel-exact outputs for dif-
ferent GPUs. In fact, we observe pixel-level differences even for
different GPUs produced by the same manufacturer and using the
same device driver. These differences are usually imperceptible to
the human eye, and in Section 6, we quantify the extent of these
differences. We also demonstrate that these differences have a neg-
ligible effect on the quality of Kahawai’s output.

Finally, to provide the appearance of consistent and smooth mo-
tion, most real-time rendering applications like games attempt to
render between 30 and 60 frames per second. In practice it is hard
to define the exact point when a frame rate is high enough to
avoid flicker. However, even at high illumination perceived qual-
ity plateaus around 60 Hz [17].

3. Kahawai ARCHITECTURE
This section provides a high-level overview of the two collabo-

rative rendering techniques we have developed for Kahawai.

3.1 Overview
Kahawai supports collaborative rendering by reducing client-

side output fidelity along two dimensions: under delta encoding the
mobile GPU renders low-detail frames at a high rate, while under
client-side I-Frame rendering the mobile GPU renders high-detail
frames at a low rate.

Figure 1 shows the architecture for delta encoding. The basic
idea is to utilize game settings to generate two versions of the game
output: a high-detail version and a low-detail version. Kahawai ex-
ploits graphical similarities between these two versions to compute
a highly compressed video of the differences.

The mobile device uses its mobile GPU to render a low-detail
stream. The server executes two instances of the game, one for each
level of detail, and generates a delta frame by computing the pixel-
by-pixel visual difference between its high-detail and low-detail
frames. We use partial deterministic replay, described in Section 5,

Hi Detail Lo Detail

Server Game #1

Compressed
Deltas Video

Lo Detail Patch Hi’

H.264
Encoder

=

H.264
Decoder

MobileServer

Delta

Server Game #2

_

Primary Game

+ =

Input & Replay Log

Figure 1: Architecture of Delta Encoding. The server renders both
high-detail and low-detail versions of each frame, calculates the
visual difference into a delta frame, and then encodes an H.264
video of the delta frames. The mobile device decodes the video, and
uses it to patch the low-detail frames rendered by the mobile GPU.
The mobile device sends a log to the server to enable the server-
side game instances to correctly follow the mobile client.

Hi Detail

I-frame
Filter

Hi Detail Hi’

MobileServer

H.264
Encoder

Server Game Primary Game

Input & Replay Log

P-frame Only
Video

I-frame
Merger

H.264
Decoder

Figure 2: Architecture of Client-Side I-Frame Rendering. The
server renders a hi-detail version of each frame, and encodes the
frames as H.264 video. A filter discards the I-Frames from the en-
coded video, then sends the video back to the client. The client uses
the mobile GPU to render I-Frames, and merges them back into the
video stream before invoking the H.264 decoder.

to control concurrent instances of the game running on the server.
The server sends a compressed H.264 video of delta frames to the
client, which decompresses the video and applies each frame from
the received video as a patch to each low-detail frame it renders
with its mobile GPU. The end result is an image stream that almost
perfectly matches the high-detail output rendered on the server.

Figure 2, shows the architecture for our second technique, client-
side I-frame rendering. For this technique, the client generates
high-detail game output at a low frame rate, and the server gen-
erates high-detail game output at a high rate.

Compressed video is composed of three types of frames: Intra-
coded I-frames, Predicted P-frames, and Bi-directional Predicted
B-frames. For our purposes, it is only necessary to understand the
high-level differences between I-Frames and P-frames. In partic-
ular, an I-frame is relatively large and self-contained; an I-frame
encodes all of the visual information needed to display its content.
On the other hand, P-frames are smaller and contain references to
prior frames in the stream. To display a P-frame, a machine must
have the P-frame and any other frames it references.

Under client-side I-frame rendering, the server generates an
H.264 video of its high-detail, high-rate game output, but drops the
I-frames before sending the video to the client. The client receives
the video containing only P-frames, recreates the missing I-frames
by inserting output from its mobile GPU, and then uses its H.264
decoder to display the final, merged output. The end result, as with
delta encoding, is graphical output that almost perfectly matches
the high-detail, full frame-rate version rendered by the server GPU.
It may be possible to combine these two techniques, but we leave
this for future work.

3.2 Requirements
Both collaborative rendering techniques require servers to send

H.264-compliant video to clients. H.264 is the de-facto standard
for compressed mobile video, and nearly all modern mobile de-
vices have dedicated hardware to accelerate H.264-encoding and
-decoding. This hardware improves performance and energy con-
sumption, and frees the mobile CPU and GPU to execute the game
instead of encoding and decoding video.

Hardware-accelerated video decoding does not eliminate the
need to move video through the memory system, but this overhead
is modest compared to the total memory bandwidth of most de-
vices. For example, decoding a 1080p HD video at 60 FPS only re-
quires 400 MB/sec, whereas the memory bus bandwidth on a mod-
ern smartphone such as the iPhone 6 is 9 GB/sec.

Both techniques also require frame-by-frame synchronization.
Specifically, because we run multiple instances of the game, each
rendered object must be in the same position within a given frame
for all executions. Low-detail versions may have missing objects
found in a high-detail version, but the positions of objects common
to both versions must match exactly. We describe in Section 5 how
our implementation supports this requirement.

Delta encoding places two specific requirements on the game it-
self (as opposed to requirements on the game engine). First, the
game must provide configuration settings that allow the mobile de-
vice to render a low-detail version of the game output at an accept-
able frame rate. We view 30 FPS as the minimum acceptable frame
rate, and 60 FPS as the maximum. Second, an H.264 video com-
posed of delta frames must be smaller than an H.264 video of high-
detail output. The size of the difference represents delta-encoding’s
bandwidth savings over standard thin-client gaming.

For client-side I-frame rendering, the mobile device must render
high-detail frames fast enough and without impacting the game’s
responsiveness. For example, consider a mobile device that can
generate four FPS of high-detail frames. Even if the server GPU
is fast enough to generate the missing 56 FPS, the latency of gener-
ating each of those four frames on the client will be about 250 ms
per frame. Studies of fast-action games have shown that users can
tolerate end-to-end latencies on the order of 100 to 200 millisec-
onds [39, 25], and we estimate that a mobile device must generate
at least six FPS of high-detail output for client-side I-frame render-
ing to be worthwhile.

4. COLLABORATIVE RENDERING
In this section, we describe the design details of Kahawai’s two

collaborative rendering techniques and characterize when they are
most effective.

4.1 Delta encoding
Delta encoding relies on adjusting a game’s settings to produce

both high-detail and low-detail versions of the game’s graphics out-
put. The high-detail version should contain all of the game’s visual
effects at their maximum level of detail. The low-detail version
should allow the mobile GPU to reach an acceptable frame rate,
i.e., between 30 and 60 FPS.

The key observation underlying delta encoding is that the high-
detail and the low-detail versions of most games’ output share the
same visual structure. That is, games frequently create high- and
low-quality versions of a scene using the same logical objects (e.g.,
enemies, characters, and other items) in the same positions on the
screen. Figure 3 shows the high- and low-quality versions of a scene
from Street Fighter 4. Such outputs may differ in their level of
detail, texture quality, or polygon count, but they convey most of
the same information. As a result, encoding the difference between

Figure 3: Same visual structure. Lo(Left) and Hi(Right)

Figure 4: Extra objects at high detail. Lo(Left) and Hi(Right)

high- and low-quality versions of a frame frequently requires far
fewer bits than encoding the high-quality frame itself.

Section 3 outlines the basic steps involved in delta encoding.
Delta encoding requires less bandwidth than the conventional thin-
client approach as long as the H.264 stream of delta frames is
smaller than the H.264 stream of high-detail game output. In the
common case, the bandwidth savings of delta encoding will be sig-
nificant, although there are circumstances in which delta encoding
will generate more traffic than a thin-client approach.

It is not obvious that H.264 will effectively compress a video of
delta frames, but we have found that delta frames exhibit the same
strong temporal locality as the original video frames. As long as
this holds, H.264 will deliver high compression ratios for streams
of delta frames.

H.264 also provides lossy compression and is designed to hide
lost information from the human eye. Information loss is a result
of the transformation and quantization (compression) processes in
the encoder, which round individual pixel values to improve com-
pression ratios. These losses introduce two challenges when trans-
mitting a video of delta frames: (1) quantization of the delta values
introduces visible visual artifacts when the delta is patched into
low-detail frames on the mobile device, and (2) the encoded delta
does not provide a pixel-exact representation of the difference be-
tween a high-detail and low-detail frame.

The challenge of visual artifacts is due to the extended value
range that deltas encode. For each pixel, the delta represents the
difference between the high-detail value and the low-detail value.
The difference can be positive or negative, requiring an extra bit to
encode the sign information. Without quantization, one could use
modular arithmetic as a simple workaround. Consider an example:
if the maximum channel value is 255, high = 10, and low = 253,
then delta = -243, which means one could also represent the delta
as +12.

However, quantization on the deltas introduces a problem. Con-
sider another example: suppose high = 2 and low = 253, so that the
delta = 4 with modular arithmetic. During quantization, the delta
could be rounded from 4 to 2. When applying the patch later, low
(253) + delta (2) = 255 which means that high is now 255. Quanti-

Figure 5: Higher entropy at low quality. Lo(Left) and Hi(Right)

zation of this delta value essentially converts a very dark pixel value
into a very bright pixel value, creating a visible artifact.

We solve this problem by applying a solution proposed by
Levoy [28]. Before invoking the H.264 encoder, we apply the trans-
formation in Equation 1.

∆ =
Hi− Lo

2
+ 127 (1)

This has the effect of dropping the least significant bit in favor
of the sign bit. After H.264 decoding, we apply Equation 2 before
applying the patch.

Hi = Min(2(∆ − 127) + Lo, 255) (2)

Unfortunately, deltas lose one bit of information as a result of this
technique. However, this information loss is small and comparable
to the loss normally induced by quantization noise in H.264.

The second challenge we faced with delta encoding is that en-
coded deltas do not perfectly capture the difference between high-
detail and low-detail frames. This is primarily due to lossy com-
pression and, to a lesser degree, to subtle pixel differences between
frames generated by different GPU hardware and drivers. Loss due
to compression is inversely proportional to how similar the high
and lo definition frames are. A delta between two relatively similar
frames will result in a smaller distribution of delta values, and will
therefore suffer from less quantization noise than a delta from dis-
similar frames. In our experiments, we have found that when high-
and low-detail frames are sufficiently dissimilar, delta encoding can
require more bandwidth or induce worse output quality than simply
sending an H.264 encoding of the high-detail output.

To see why, consider the scenes in Figures 4 and 5. First, some-
times games introduce extra objects to the high-quality version of
a scene. For example, in Figure 4 the high-quality version of a Lost
Planet 2 scene includes extra clouds, blades of grass, and other
background objects. When this happens, the delta is unlikely to be
much smaller than the original high-quality frame.

Similarly, the high-quality version of a frame may be easier to
compress than a delta due to how a game generates frames of dif-
ferent qualities. Figure 5 shows how Lost Planet 2 uses a more com-
putationally demanding visual effect to generate smoothly waving
water in the high-quality version of a scene, and creates water by
statically applying a high-entropy texture to a surface in the low-
quality version. Because the high-entropy, low-quality scene has
more randomness than the smooth water surface of the high-quality
scene, it is harder to compress. As a result, the delta between the
high- and low-quality versions is also high entropy and does not
compress as well as the original high-quality frame.

These scenes from for Lost Planet 2 show that delta encoding
may not always be effective for all games. However, for games such
as Doom 3 and Street Fighter 4 at any configuration, delta encoding
can be a powerful way to reduce the amount of data sent from a
cloud-gaming server to a client.

4.2 Client-side I-frame rendering
Our second collaborative rendering technique is client-side I-

frame rendering. For this technique, the client uses its mobile GPU
to render high-detail frames at a low rate, and the server renders
high-detail frames at a high rate. The server compresses the high-
detail frames into a video, replaces the I-frames in the video with
empty place-holders, and sends the remaining P-frames to the mo-
bile device. The mobile device then fills in the missing I-frames
with the high-detail frames it renders locally.

The bandwidth savings of this technique compared to a thin-
client is proportional to the rate at which a client can generate
I-frames. This is partially because I-frames are relatively large
and suppressing them saves bandwidth. However, more subtly, the
faster a client can generate I-frames, the smaller server-generated
P-frames become.

The reason P-frames are smaller under client-side I-frame ren-
dering is that as quantization (compression) in H.264 increases,
frames become less similar to their original sources. P-frames
based on compressed reference frames must encode changes in the
current frame as well as make up for loss accumulated over previ-
ously compressed frames.

If the encoder is configured to output a low-bandwidth stream,
frames will be encoded using heavier quantization and will incur
more information loss. This loss accumulates across P-frames until
another I-frame arrives in the sequence. This phenomenon is simi-
lar to temporal error propagation [6], in which frames dropped from
a streaming video affect contiguous frames in the sequence.

In a normal H.264 stream, loss accumulation cannot be solved by
inserting I-frames more frequently. More frequent I-frames would
lead to higher-quality P-frames under the same level of quantiza-
tion, but the encoder would exceed its bandwidth budget because
I-frames are usually much larger than P-frames. However, with Ka-
hawai’s client-side I-frame rendering there is no bandwidth penalty
for increasing the frequency of I-frames in the stream because the
client generates these frames locally. Thus, by increasing the I-
frame rate, Kahawai reduces P-frame loss accumulation.

An additional benefit of client-side I-frame rendering is that
client-rendered I-frames are perfect reference frames because they
are not quantized. Thus, these I-frames are more similar to sub-
sequent frames in the stream than they would be under a normal
H.264 video. This allows an encoder to use fewer bits to generate
P-frames referring to previous client-rendered I-frames at the same
level of quality.

Finally, it is also possible to achieve a desired I-frame rate on the
mobile device, at the expense of a moderate reduction in quality,
by decreasing the game settings used to render high-detail frames.
This allows the mobile device to render I-frames at a higher rate. If
this is not enough to meet the delay and bandwidth constraints of
the game, then we consider the game to be unsuitable for Kahawai’s
client-side I-frame rendering.

5. Kahawai IMPLEMENTATION
To evaluate collaborative rendering, we built two Kahawai proto-

types. One is integrated with the open-source version of the idTech
4 Engine, which is also known as the Doom 3 engine. The idTech
4 engine is implemented in C++ and uses OpenGL for graphics. In
addition to Doom 3, commercial games like Quake 4, Wolfenstein,
Prey, and Brink have also been built on top of the idTech 4 engine.

Our second prototype uses binary interception to implement Ka-
hawai on a closed-source game, Street Fighter 4. Street Fighter 4
is a fighting game with very different gameplay and design than
Doom 3. Street Fighter 4 is built on top of the DirectX based Cap-

com engine that preceded the MT Framework engine used in games
like Resident Evil 5, Devil May Cry 4, and Lost Planet 2.

We implemented deterministic graphical output, codec support,
and full delta encoding for Street Fighter 4, but we were unable to
implement features that required access to source code, such as the
client-side portion of I-frame rendering and handling network dis-
connections. Without access to the game’s source code, we could
not prevent the client from rendering P-frames. Access to the en-
gine’s source would have allowed us to fully implement both col-
laborative rendering techniques and all other features of Kahawai.

In the rest of this section, we focus on three key challenges: (1)
supporting deterministic graphical output, (2) handling input, and
(3) implementing the codec support for our two collaborative ren-
dering techniques.

5.1 Deterministic graphical output
Collaborative rendering requires two concurrently executing

game instances to produce the same graphical output. For delta en-
coding, the client game’s output must match the output of the low-
detail game executing on the server. For client-side I-frame render-
ing, the client game’s I-frames must match the server’s I-frames.
For game output to match, inputs originating on the mobile client
must be deterministically replayed by server-side game instances.

Previous work has proposed combining deterministic replay with
computational offload [14], but implementing replay at too low a
level can cause high overhead, especially on multi-processor ma-
chines. Games are computationally demanding, and slowing down
a game will lead to a poor user experience. On the other hand, en-
tangling replay with a game’s internal logic would be impractical.

Instead, Kahawai takes a middle ground by integrating partial
deterministic replay with the idTech 4 engine and the Capcom En-
gine. The approach relies on the observation that Kahawai does not
need to faithfully recreate all aspects of a game’s execution as long
as replays produce the same graphical output as the original. For ex-
ample, collaborative rendering can work even if a server-side game
instance produces different file writes and thread schedules than
those in the original client execution.

We define the graphical output of a game as the sequence of
OpenGL or DirectX calls it emits. For example, the idTech en-
gine interacts with the OpenGL graphics subsystem within a single
thread, which we call the render thread. At a high-level, the main
loop for the render thread looks like:

while (1) {
SampleInput(); // process input buffered during

// rendering of previous frame
Frame(); // update the game state
UpdateScreen(); // make calls to OpenGL, then

// glFinish() and SwapBuffer()
}

The call to Frame is used to update internal game state, and the
call to UpdateScreen is used to render the new state on the screen.
For example, for objects in motion, the game engine uses calls
to GetSystemTime inside Frame to determine how much time has
elapsed since the last loop iteration. This elapsed time is used to
determine how far to move objects within the scene.

Our goal for partial deterministic replay is to ensure that, for
a particular loop iteration rendering frame N, the sequence of
OpenGL calls (and their parameters) made within UpdateScreen
for frame N is identical across executions. To verify that partial re-
play executes correctly, we run a game multiple times using a spe-
cific input log and a specific configuration of the game settings. We
then use glReadBuffer to grab the rendered output of each frame
for each execution and confirm that there are no pixel differences.
Note that we run these tests on the same GPU and driver.

Interestingly, Street Fighter 4 appears to rely solely on an inter-
nal logical clock. This is evidenced by the fact that the game-play
responsiveness scales proportionally with the frame rate, and that
user actions (e.g., punching and kicking) take a constant number
of frames to execute regardless of frame rate. As a result, Street
Fighter 4 only required intercepting requests for the system time
and the DirectX equivalent of SwapBuffers (Present) using De-
tours [19]. Unlike Street Fighter 4, Doom 3 and the idTech engine
presented more sources of non-deterministic behavior that required
access to the source code to address.

There are three sources of non-determinism that can affect the
visual output of the idTech engine’s rendering thread. The first
source is system time: Kahawai intercepts all calls to GetSystem-
Time from the render and audio threads and ensures that replayed
executions receive the same time values. The second source of non-
determinism is the pseudo random number generator. Interestingly,
we did not need to intercept these calls because correctly replay-
ing keyboard and mouse inputs ensures that random-number gen-
eration is deterministic. The last source of non-determinism is the
game’s music. The rendering thread changes a scene’s illumination
by directly reading data from the sound buffer. For example, when
a game’s music gets louder, lights in a game may become brighter.
Rather than attempting to make the audio thread deterministic, Ka-
hawai includes a configuration flag to tell the engine to use system
time instead of reading from the sound buffer. As far as we can tell,
this change did not impact gameplay in any other way.

Finally, our current Kahawai prototype handles mid-game dis-
connections from the server by falling back to low-detail rendering
using only the mobile GPU. When the network allows the mobile
device to reconnect to the server, we leverage the idTech 4 game
engine’s support for game-state checkpoint and restore (many other
modern game engines also support game checkpoint and restore).
The idTech save game mechanism allows players to persist the cur-
rent game state and to resume at a later time. When the client re-
connects, it performs the following steps: (1) it executes until the
game can be saved; (2) it pauses execution; (3) it sends the saved
state to the server; and (4) it resumes execution after the server con-
firms it has finished restoring the game state. From that point on,
offloaded execution behaves normally with the client and server
synchronized. In the future, we plan to implement a background
restore mechanism that does not pause game play.

5.2 Input handling
The key challenge for handling game inputs can be seen by look-

ing at the rendering loop shown in the previous section. The thread
executing this loop sequentially processes buffered inputs, updates
the game state, and renders the scene. While the loop is execut-
ing the Frame and UpdateScreen calls for frame N, the system is
buffering input events for frame N+1. To keep the client and server
games in sync, Kahawai must ensure that when the client processes
an input event at frame N, the server must also process that event
at the exact same frame number N. To accomplish this, the client’s
render thread timestamps inputs with the appropriate frame num-
ber before sending them to the server, and the server pauses until it
receives inputs for its next frame.

A naive approach to input handling in Kahawai would leave the
input sampling as part of the rendering loop, but this creates per-
formance problems. Suppose the one-way delay from a client to a
server is 20ms. After the client finishes rendering frame N, it must
send all buffered inputs for frame N+1 to the server. The server can-
not render the next frame N+1 until at least 20ms after the client has
finished rendering frame N and sampled the input for frame N+1.
As a result, the game’s frame rate becomes inversely proportional

I0

D0

L0

D1

S1

L0 R0 R1 L2 R2 L3 R3 L4 R4 L5

E2 E3 E4

I2 I3 I4

D2

E0

I1

Server

Client

E1

R0 L1 R1 L2 R2 L3 R3 L4

L0

S0

Master

Slave

L1 R5 L6

E0

D0

L0

D1

S0 S1

L0 R0

L1 L2 L3 L4

L1 R1 L2
R2 L3 R3 L4 R4 L5 R5

L5

E2 E3 E4

D2

E5E0

Server

Client

E1

R0

I0 I2 I3 I4 I5I1

Pipeline dependency
Network transferR0 R1 L2 R2 L3 R3 L4 R4 L5L1 R5 L6

Figure 6: Pipeline overview and network dependencies for both
Delta (left) and I-frame (right). The subscripts indicate the frame
number. Green arrows indicate local pipeline dependencies, and
purple arrows show network pipeline dependencies.

to the network latency between the client and server, which is un-
acceptable for game play.

Kahawai solves this problem with pipelining by decoupling in-
put processing from the main game loop. In fact many of Ka-
hawai’s tasks are run asynchronously in a pipelined fashion. This
pipeline allows Kahawai to asynchronously process and display
frames rather than waiting on the network to make progress. The
next section describes the Kahawai input and output pipelines in
greater detail.

5.2.1 Pipeline summary
Kahawai executes tasks in parallel whenever possible to reduce

their impact on frame rate and input-to-display latency (i.e., the
time from when a user generates an input to when the result of
the input appears on the screen). Figure 6 shows the pipeline for
both collaborative rendering techniques. The main tasks of render-
ing, encoding, decoding, and showing form the stages of a pipeline.
Each stage executes in a different thread and depends on the out-
put of the previous stage. Parallelism emerges from overlapping the
stages operating on data from different frames. In Kahawai we have
the following asynchronous stages:

• Input (I): In this brief stage, Kahawai queries the keyboard,
mouse, and joystick for user input, and queues the results.

• Logic (L): In this stage the CPU executes the game logic us-
ing a set of inputs obtained from the input queue, and updates
the game state.

• Render (R): In this stage the GPU generates frames using the
updated game state. In addition Kahawai captures the ren-
dered output to memory. Client-side I-frame rendering skips
the render stage for P-frames on the client.

• Decode (D): This stage transforms an H.264 stream into de-
coded frames. For delta encoding, the decode stage also re-
quires the incoming delta to be decoded and then applied to
the rendered frames.

• Encode (E): For delta encoding, this stage is only performed
on the server. For client-side I-frame rendering, the client en-
codes a locally rendered I-frame by packing the full I-frame
into a lossless (I-PCM) H.264 frame through a very cheap
transformation.

• Show (S): In the client, this stage presents the game content
to the user at the desired frame rate.

The cost of each individual stage is highly variable, depending on
the logical (e.g. physics) and graphical (e.g. polygon count) com-
plexity of the frame being processed.

5.2.2 Input sampling interval
In a pipelined implementation of Kahawai, sampling the input

is the first stage. Figuring out the correct sample rate is critical
to overall game performance. If Kahawai samples inputs too of-
ten, input-to-display latency will increase and gameplay will suf-
fer. This is because the sampled inputs are placed on a queue, and
the thread that executes the logic and render stages dequeues an
entry when it has finished its work on the previous frame. If the in-
puts are being generated faster than the rate of the bottleneck stage
in the pipeline, then the length of the input queue will grow and
so will the input-to-display latency. If Kahawai samples too infre-
quently, pipeline throughput will suffer. This is because when the
input queue is empty, the logic and render thread will block waiting
for the input sampling thread to enqueue a new sampled input.

To ensure that Kahawai samples inputs correctly, we designed
an adaptive clocking mechanism that determines how often the in-
put thread samples buffered inputs. Adaptive clocking is needed
because network delay and the time to complete each stage in the
pipeline are highly variable.

Client-side I-frame creates another complication. Here, the set
of stages that make up the pipeline varies depending on the frame
type. For each I-frame, there are additional Render and Encode
stages on the client that are not required for P-frames. In particu-
lar, for I-frames the Render stage will often be the bottleneck stage
of the pipeline. Thus, Kahawai must compute the average pipeline
performance over a sequence of frames that includes at least one
I-frame and the set of dependent P-frames that follow it.

In a pipelined and multi-threaded system with predictable per-
formance, system throughput should be inversely proportional to
the time to complete the slowest stage in the pipeline. Our goal for
the adaptive clock is to estimate this value over a time window to
improve user experience. We found that in practice too short of a
time window leads to burstiness that creates jittery gameplay, and
too long of a window artificially limits system throughput. Our cur-
rent implementation uses a window of 50 frames for Delta, and 10
frames for I-frame.

There are three additional complexities that affect our calculation
of the adaptive clock. First, part of the time executing the Logic
pipeline stage is spent blocking waiting for input from the input
queue. Any time spent blocking waiting for input must be sub-
tracted from our estimate of the cost of the Logic stage. Second, we
must adjust the clock to compensate for the one-way network delay
between the client and server. This affects the system throughput –
if input is not sampled early enough, the server will block waiting
for input and that will in turn cause the client stages that depend on
server output to be delayed. Finally, to compensate for inaccurate
timing measurements, we monitor the length of queued inputs, and
slow the adaptive clock if the number of queued inputs exceeds a
constant threshold.

5.3 Codec support
Both collaborative rendering techniques require capturing GPU

output on a frame-by-frame basis. Once we have captured frames
from the GPU or received frames over the network, we send them to
our collaborative video codec. For delta encoding, two simultane-
ous instances on the server intercept frames, and share the frames
through memory mapped files. The server computes a delta from
the two frames, transforms it as described in Section 4.1, and then
encodes it using x264 [40] as our H.264 encoder. On the mobile

client side, we use ffmpeg [13] as our H.264 decoder, apply the
correction as described in Section 4.1 and then apply patches to
captured frames from the mobile GPU.

We experimented with the Intel QuickSync [21] hardware H.264
decoder on our tablet, and found that even though it reduced CPU
load, it also imposed a substantial latency penalty over using a soft-
ware decoder. We use software for H.264 encoding as well, due to
the lack of flexibility of the hardware encoding APIs to produce
streams like those needed by I-frame rendering in which every nth
frame is lossless. We expect these APIs will improve over time as
real-time hardware encoding and decoding becomes more perva-
sive. The use of software encoding and decoding limited the reso-
lutions we could support to 720p, hardware support should easily
allow full HD (1080p).

For client-side I-frame rendering, we configure x264 to generate
I-frames at predictable intervals. We then filter the encoded video to
discard the I-frames, while sending the compressed P-frames along
with placeholders for the missing I-frames. On the mobile side, we
use frame capture to extract the locally rendered I-frames and insert
them into the video stream, and finally we send the video to ffmpeg
for decoding.

In total we only had to modify 70 lines out of the 600K lines of
the idTech 4 engine to enable the functionality of Kahawai. The rest
of the Kahawai implementation is in a separate module that we link
with the game engine. These modifications introduce determinism,
allow the engine to skip the rendering of P-frames, and add mid-
game disconnection support. Because these changes are done only
to the engine, and not to the actual Doom 3 game, then any other
game that runs on idTech 4, such as the upcoming Quadrilateral
Cowboy, will work with Kahawai without further modification.

To support Street Fighter 4, where we did not have source code,
we created a Detours hook and linked it to the original game bi-
nary and our Kahawai module. Implementing this hook required
450 lines of code. It ensures determinism and intercepts the Di-
rectX rendering call Present.

6. EVALUATION
To evaluate Kahawai, we explore the following questions:

• How does collaborative rendering affect users’ gaming expe-
rience compared to a thin-client approach?

• How does the bandwidth, input-to-output latency, and visual
quality of the collaborative rendering approach compare to a
thin-client approach?

• How do variations in GPU and driver impact image quality?

To answer the first question, we conducted a user study with 50
participants and our Kahawai prototype. To answer the next two
questions, we measured the performance of our Kahawai prototype
under trace-driven, emulated gameplay.

6.1 User study
To better understand how collaborative rendering affects users’

gaming experience, we conducted a user study in which 50 partic-
ipants were asked to play a small portion of Doom 3 under one of
seven system configurations: unmodified Doom 3, thin client (un-
der low and high network latency), delta encoding (under low and
high network latency), and client-side I-frame rendering (under low
and high network latency). In our results, we refer to the configu-
ration where participants played unmodified Doom on a PC with
a high-end GPU as the thick-client configuration, or “thick”. The
study was performed between December 1st and 3rd, 2014 in an
office inside Microsoft’s building 112 in Redmond, Washington.

6.1.1 Study design
We asked each participant to complete a portion of the Doom

3 “Central Processing” level. Players begin in a hallway with one
monster, continue through a lava-filled room, and end in a room full
of monsters. Prior to playing the game, players were given detailed
instructions about their goals and the game controls. Each player
began the task with full armor and health, as well as a fully loaded
plasma gun and a flashlight. All other weapons were disabled.

Participants controlled their on-screen avatars via keyboard and
mouse inputs. For example, players could change their avatar’s
view, make their avatar move, and shoot their avatar’s gun. The
game screen displayed an avatar’s armor, health, stamina, clip-
ammunition, and reserve-ammunition levels. After each kill we dis-
played the number of monsters killed and the number remaining.

Each participant’s goal was to kill all 12 monsters, and after com-
pleting the task we recorded their remaining health, armor, ammu-
nition, and how long they played. The game stopped as soon as a
player has killed all 12 monsters. If a player died before they com-
pleted the task, we recorded how many monsters they killed and
how long they survived. Players lost health primarily due to attacks
by monsters.

Note that players who fell into the lava died instantly, but we al-
lowed them to restart the game once. We included only their post-
fall data in our results. Only three of our 50 participants fell into the
lava, and interestingly all were self-described gaming experts who
often play first-person-shooter (FPS) games. One of these players
even brought their own mouse to the study. These participants ad-
mitted that because of over-confidence they initially skipped our
instructions and rushed straight into the lava.

The tablet used by participants in our thin-client, delta, and I-
frame configurations was a Microsoft Surface Pro 3 with a dual
core Intel i5-4300U CPU, 8GB of RAM, and 256GB of SSD stor-
age connected by a LAN to a Dell XPS 8700 PC with a quad-core
3.2Ghz Intel i7-4770 CPU, 24GB of RAM, and an Nvidia GTX
780 Ti GPU. Thick-client participants played directly on the PC.
Both machines were plugged into identical Dell 24-inch monitors
with external mice and keyboards. This prevented participants from
knowing which device they were using. For all configurations the
game resolution was set to 720p (1280 x 720).

For low-latency configurations, we used an unmodified LAN
with approximately 2 ms of round-trip latency between the tablet
and server, which corresponds to a typical round-trip time (RTT)
over a home LAN. For high-latency configurations, we introduced
a 70 ms RTT which corresponds real-world observations over an
LTE connection [18].

We asked all participants to complete two surveys (pre-study
and post-study). The pre-study survey contained a consent form,
asked for basic demographic information, and assessed their inter-
est in and use of technology and gaming. Participants were asked
to rate their gaming expertise on a scale of one (“Novice”) to
three (“Beginner”) to four (“Competent”) to five (“Proficient”) to
seven (“Expert”). We used these expertise ratings to create similar
player pools for each of our seven system configurations. This sur-
vey also asked participants to select their level of agreement with
five statements on a scale from one (“Strongly disagree”) to seven
(“Strongly agree”), including “I consider myself a gamer.” and “I
often play first-person shooter games (e.g., Halo).” The pre-study
survey also included the following three questions: “Please list any
games that you play regularly.”, “Please list your all-time favorite
games (if any).”, “Have you ever played Doom 3?”.

Participants completed the post-study survey after completing
the game. This survey was designed to gauge participants’ qual-
itative evaluation of their game-play experience. It consisted of

1	

2	

3	

4	

5	

6	

7	

Exper.se	 Gamer	 FPS	

Su
rv
ey
	 re

sp
on

se
	

Pre-‐study	 survey	 results	

Figure 7: Results from the pre-study survey in which participants
rated themselves on gaming expertise and their agreement with
statements “I consider myself a gamer” and “I often play first-
person-shooter (FPS) games”. For “Expertise”, the max and 75th
percentile responses were both seven, and the 50th and 25th per-
centile responses were five. For “Gamer”, the max, 75th, and 50th
percentile responses were all seven.

four statements, and participants were asked to rate their level of
agreement with those statements on a scale from one (“Strongly
disagree”) to seven (“Strongly agree”). In particular, we wanted to
know whether the game was fun (i.e., “The level of Doom 3 I just
played was fun.”), was easy, looked good, and ran smoothly.

6.1.2 Recruitment and training
After receiving study approval from the Microsoft Research

Global Privacy Manager, we recruited potential participants
through several gaming-related and general-purpose mailing lists
(e.g., Microsoft Computer Gamers, MS Fighting Gamers, MSR
Redmond, and Mexicans in Redmond). Our solicitation instructed
employees to complete the pre-study survey and promised a $5
meal card as an incentive for participation.

We recruited 67 employees who completed the pre-study survey.
We did not tell participants about our research or which system
configuration they were assigned. After cancellations, we ended up
with 50 of the selected respondents who participated in the study in
early December of 2014.

From the pre-study survey, our 50 participants spend an average
of two hours per day playing video games, 10 hours per day on a
PC, and three hours per day using a smartphone or tablet. 38 par-
ticipants frequently played games on their PC, and the most com-
monly owned gaming consoles were the Xbox 360 (owned by 30
participants) and the Xbox One (owned by 27 participants).

Figure 7 shows box plots summarizing answers to three of our
pre-study survey questions. For all box plots in the user study, the
top and bottom edges of each dark-gray box represent the 75th
and 50th percentile responses, whereas the top and bottom edges
of each light-gray box represent the 50th and 25th percentile re-
sponses. The top and bottom whiskers extend to the max and min
responses. Nearly 40% of our participants rated themselves as a
gaming “Expert” (i.e., seven, the highest possible response), though
the median expertise rating was “Proficient” (i.e., five). Over 50%
of participants strongly agreed with the statement that they were a
gamer, and over 25% strongly agreed with the statement that they
often played FPS games. Overall, the pre-study survey results in-
dicate that our participant pool was both enthusiastic about and fa-
miliar with computer games, which was not surprising given the

1	

2	

3	

4	

5	

6	

7	

Delta	 low	 Delta	 high	 Iframe	 low	 Iframe	 high	 Thick	 Thin	 low	 Thin	 high	

A
gr
ee
m
en

t	
Post-‐study:	 looked	 good	

1	

2	

3	

4	

5	

6	

7	

Delta	 low	 Delta	 high	 Iframe	 low	 Iframe	 high	 Thick	 Thin	 low	 Thin	 high	

A
gr
ee
m
en

t	

Post-‐study:	 ran	 smoothly	

Figure 8: Results from the post-study survey rating participants agreement with statements that the game looked good and ran smoothly. A
one rating corresponds to strong disagreement and seven corresponds to strong agreement. For “thick”, all thick-client participants strongly
agreed that the game ran smoothly.

email lists we used to recruit participants. Finally, only five of the
50 participants were female.

6.1.3 Results and analysis
Of the 50 participants, eight played under the I-frame configura-

tion with low latency, while every other configuration had seven
players. As mentioned previously, we used the expertise ratings
from our pre-study survey to create player groups for each of our
seven system configurations that were as similar as possible. De-
spite our efforts, we could not create groups with identical expertise
profiles. However, the delta (high latency), I-frame (low latency),
thick-client, thin-client (low latency), and thin-client (high latency)
groups all had a median expertise of “Proficient.” The delta (low la-
tency) group had a median expertise of “Expert,” and I-frame (high
latency) group had a median expertise of “Competent.”

Our hypothesis at the onset of the study was that collaborative
rendering (i.e., delta and I-frame) would provide the equivalent of
a thin-client gaming experience under the same network latency.
We also suspected that network latency would degrade the gam-
ing experiences experience (i.e., that thick client with zero network
latency would provide the best experience and that offloading sys-
tems under high latency would provide the worst). We measured
gaming experience qualitatively using post-study survey responses
and quantitatively using players’ game performances.

Perceived quality
Figure 8 shows the results of our post-study surveys, broken down
by system configuration. There was strong agreement across all
system configurations that Doom 3 “looked good.” Not surpris-
ingly, participants who played the thick-client configuration had the
highest median response with seven. I-frame with low latency had
a median response of 6.5, and all other configurations had median
responses of six. These responses indicate that collaborative ren-
dering delivers a gaming experience that users find to look as good
as a thin-client approach.

There was more variation in participants’ responses to how
smoothly the game ran. Thick client, I-frame under low latency, and
thin client under low latency all had median responses of seven. Re-
sponses for both I-frame and thin client under high latency dropped
to six. Delta players provided a median response of six under low
latency and a median response of five under high latency. Over-
all, higher latency appears to have led to worse perceived smooth-
ness. However, both collaborative rendering configurations pro-
vided comparable smoothness to thin client: I-frame performed on
par with thin client, and delta performed only slightly worse.

Player performance
We were also interested in metrics that measured how collaborative
rendering affects participants ability to play the game. Even if col-
laborative rendering is visually equivalent to a thin-client approach,
it should not make games harder to play. To see if system configura-
tion had any noticeable impact on game difficulty, we looked at the
time players took to complete their task and their health at the end
of the game. Figure 9 shows these results for each configuration.

The median completion time for all configurations was between
58 seconds (I-frame with low latency) and 78 seconds (delta with
low latency). For I-frame and thin client, lower latency led to faster
completion times. Completion times for both delta configurations
were higher than the low-latency I-frame and thin-client config-
urations. However, overall there is no obvious difference between
the completion times on collaborative-rendering configurations and
thin-client configurations. Our intuition is that while latency did
have a small effect in performance, the actual rendering technique
did not. Instead the performance variations were likely caused by
individual skills variations among people reporting the same level
of expertise, lack of custom input device / keyboard configuration,
time of day and luck among others. This can explains why ’thick’,
our baseline, did not get the lowest completion times.

The median health for all configurations was between 78 (thin
client with high latency) and 42 (I-frame with high latency). For
final health, there appears to be little correlation between health
and latency. For delta and thin client, median health suffered when
latency was lower, whereas for I-frame, median health improved
when latency was lower. Furthermore, thick client had a worse me-
dian health (56) than all offloading configurations except I-frame
with high latency. Similar to completion time, other factors ap-
pear to have influenced health other than latency and overall, sys-
tem configuration did not appear to have any obvious impact on a
player’s final health.

In summary, our user study indicates that collaborative rendering
does not make the game harder to play than a thin-client approach.

Public Deployment. We deployed Kahawai publicly at MobiSys
2014 demo session [10]. Around thirty participants played the sys-
tem. The response was positive.

6.2 Trace-driven experiments
Our user study indicates that collaborative rendering provides the

same gaming experience as a thin-client approach. In this section,
we use trace-driven inputs to our Kahawai prototype to character-
ize the bandwidth consumption, input-to-display latency, and visual

0	

20	

40	

60	

80	

100	

120	

140	

Delta	 low	 Delta	 high	 Iframe	 low	 Iframe	 high	 Thick	 Thin	 low	 Thin	 high	

Se
co
nd

s	
Task-‐comple?on	 ?me	

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	
100	

Delta	 low	 Delta	 high	 Iframe	 low	 Iframe	 high	 Thick	 Thin	 low	 Thin	 high	

Pe
rc
en

ta
ge
	

Final	 health	

Figure 9: We recorded the time each participant took to complete a portion of Doom 3 and their health levels after they completed the task.

Mean Opinion Score SSIM Score SSIM (dB) Score
1 (Bad) 0 to .5 0 to 3
2 (Poor) .5 to .86 3 to 8.53
3 (Fair) .86 to .9 8.53 to 10
4 (Good) .9 to .97 10 to 15.22
5 (Excellent, Identical) .98 to 1 Above 15.23

Table 1: Comparison between mean opinion scores and values in
the SSIM scale.

quality of the collaborative rendering approach, and we use those
same metrics to compare directly with a thin client approach.

6.2.1 Methodology
We used the same client and server in our user study and trace-

driven experiments. For consistent output in our video quality ex-
periments, we generated Doom 3 sequences using idTech 4’s demo
recording feature. For our client-side I-frame experiments, our mo-
bile client generates I-frames at 12 FPS.

To assess Kahawai’s image quality. we use structural similarity
(SSIM) [38] to measure image quality. SSIM allows us to deter-
mine how similar a frame generated by Kahawai is to the high-
est quality version of that frame. Unlike other image quality met-
rics like peak signal-to-noise ratio (PSNR) and mean-squared er-
ror (MSE), SSIM was designed to model the human eye’s percep-
tion [23]. A raw SSIM score of greater than 0.9 indicates a strong
level of similarity between two images, matching a PSNR of above
50 according to Hore [1]. An SSIM score of one indicates no dif-
ference between two images. Table 1 shows the SSIM scale ranges.

The workload we use to evaluate our Kahawai prototype con-
sists of three different scenes in the Doom 3 game. We use the
“Demo1” script, consisting of a player moving through a dimly lit
environment (Demo1), a script of a player moving slowly through
a brightly lit and subtly textured environment (light room), and a
battle scene against the final boss featuring varied lighting condi-
tions and a complex composition (CyberDemon). We chose these
scenes to expose Kahawai to a range of graphical content. Each
scene contains 500 frames at 720p. We used the pre-recorded demo
sequences to test video quality, and we played emulating those se-
quences to test the performance and input latency of our prototype.

For our Doom 3 experiments, we compare three approaches to
mobile gaming: delta-encoding (Delta), client-side I-frame render-
ing (I-Frame), H.264 streaming (Thin-client), and running the game
locally in the server (Thick-client).

We configure the idTech 4 game engine using two graphics con-
figurations. For our high-detail settings, we used the “Ultra” quality

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000

0 5 10 15 20

B
it

ra
te

 (
K

b
p

s)

Qualiy (SSIM dB)

Bitrate vs Quality (Demo1)

Delta

Thin-client

I-Frame

Figure 10: Bitrate vs quality for the Demo1 scene.

preset, and for our low quality settings we use a modified version
of the “Low” quality preset, with bump mapping disabled. X264,
our H.264 video encoder, can be configured using a wide range of
parameters. We choose a single typical configuration for our exper-
iments, based on the medium preset and the zero latency tune. For
our latency and performance evaluation we used the faster preset to
compensate for the current lack of low latency hardware encoding
support and added 4x multisampling to the highest definition set-
tings to stress the client’s hardware. Our client can render locally an
average of 15 FPS under this configuration, making it unplayable.

We only encoded video without audio and compared the size of
the video streams alone. As we mentioned in Section 5, for Delta
and I-Frame we don’t need to send the audio stream. The client
handles sound locally. In a real world deployment, adding sound
would require 128 Kbps or more for thin client on top of the bitrate
used for the video stream.

6.2.2 Doom 3 experiments
Given this setup, we sought to answer the following questions:

• For each of Kahawai’s collaborative-rendering techniques,
how do the bandwidth requirements and visual quality com-
pare to a thin-client approach?

• For delta encoding, how does increasing the client GPU
power, as represented by improving the quality of rendering,
affect the bandwidth requirements?

• For client-side I-Frame rendering, how does increasing the
client GPU power, as represented by increasing the FPS of
I-frames, affect the bandwidth requirements?

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20

B
it

ra
te

 (
K

b
p

s)

Qualiy (SSIM dB)

Bitrate vs Quality (Light room)

Delta

Thin-client

I-Frame

Figure 11: Bitrate vs quality for the light room scene.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20

B
it

ra
te

 (
K

b
p

s)

Qualiy (SSIM dB)

Bitrate vs Quality (Cyberdemon)

Delta

Thin-client

I-Frame

Figure 12: Bitrate vs quality for the CyberDemon scene.

• Can Kahawai’s collaborative-rendering techniques provide
full framerate while keeping latency similar to that of the
thin-client approach.

To answer these questions, we play each of our scenes using
three approaches (deltas, I-frames, and thin-client) while varying
the H.264 constant rate-factor (CRF). Specifying a particular CRF
value sets the target quality for a video stream, which the encoder
tries to achieve using the lowest possible bitrate (i.e., the required
bandwidth). Lower CRF values correlate with higher target quality,
and higher CRF values correlate with lower target quality. For our
experiments, we use CRF values of 20 (highest target quality), 25,
30 (middle high target quality), 35 (middle low) and 40 (lowest tar-
get quality). We use the SSIM (dB) logarithmic scale to measure
the actual quality of each frame by comparing the frame the client
displays with the lossless original frame that the server generates.
See Table 1 for a summary of how to interpret SSIM (dB) scores.

To achieve a target quality, the encoder reduces the required
bandwidth by opportunistically dropping information from fast-
moving frames. The idea is that when frames change quickly, losing
information will be less noticeable to the human eye. The higher
the CRF, the more aggressively the encoder will drop information.
Thus, CRF impacts both the measured quality of each frame (i.e.,
SSIM) and the size of the video stream (i.e, required bandwidth).
This motivates our choice to use multiple CRF values when evalu-
ating each technique.

Figures 10, 11 and 12 show our bitrate and SSIM results for each
technique in the demo1, light room and CyberDemon scenes, re-

0

2

4

6

8

10

12

14

16

18

20

0 2,000 4,000 6,000 8,000

Q
u

al
it

y
(

SS
IM

(d
B

)
)

Bitrate (Kbps)

Quality vs Bitrate (Delta Demo1)

Client @ Low

Client @ Med

Figure 13: Quality versus Bitrate for different quality fidelities.

0

2

4

6

8

10

12

14

16

18

20

0 2,000 4,000 6,000 8,000 10,000

Q
u

al
it

y
(

SS
IM

 (
d

B
)

)

Bitrate (Kbps)

Quality vs Bitrate (I-Frame Demo1)

6 Iframes/s

12 I-Frames/s

Figure 14: Quality versus Bitrate for different temporal fidelities.

spectively. Each line represents a different technique, and each data
point on each line represents a different CRF value (from right to
left, the points correspond to CRF values of 20, 25, 30, 35 and 40).
It is important to notice that using a higher CRF does not mean that
any stream encoded with it will have a lower bitrate, it just means
that the compression factor is higher. For example, in Figure 12,
the bitrate of the Delta stream with a CRF of 20 is lower than the
bitrate for the thin-client with a CRF of 25.

Our results are impressive, especially for client-side I-frame ren-
dering. For the Demo1 scene, client-side I-frame rendering can
achieve a high video quality, averaging a good SSIM (dB) score of
11.894 using under 900 Kbps (CRF of 40), and an excellent score
of 16.593 using only 4 Mbps. In comparison, the thin client ap-
proach needs almost three times the bandwidth (around 6 Mbps
more) to achieve a similar, but lower score of 15.88 SSIM (dB).
Similarly, the CyberDemon scene shows that client-side I-frame
rendering can achieve similar quality to the thin-client approach us-
ing less than one-fifth of the bandwidth, looking at the data points
for a CRF of 30 client-side I-frame rendering versus a CRF of 20
for the thin-client. Finally, the light room scene behaves similarly
to the other two scenes, but shows even higher savings due to the
strong temporal locality present in the slow moving scene. Here,
client-side I-frame rendering achieves similar quality (14.67) using
slightly over one-sixth of the bandwidth used by thin-client (14.98).

Delta encoding thrives at the lower end of the bitrate spectrum,
providing much better quality than the thin-client approach when
bandwidth is constrained. For example, it can be seen in Demo1
that we can achieve good video quality (SSIM of 10.31) using only

Scene Metric AMD 6450 Intel HD 3000 Nvidia 8200 H.264 CRF=25

High Detail % of changed pixels / stdev 34.1 4.9 32.9 4.6 0.2 0.2 91.2 2.7
SSIM (dB) / stdev 26.0 2.2 25.8 2.3 47.0 4.7 12.6 1.6

Low Detail % of changed pixels / stdev 40.3 4.6 38.0 4.2 0.1 0.1 92.2 2.8
SSIM (dB) / stdev 27.3 0.5 27.7 0.5 47.0 5.1 16.0 1.8

Table 2: Pixel and Quality Differences Between GPU Types.

590 Kbps. Similarly, in the other two scenes, still produces good
quality video for less than 1 Mbps.

It is important to notice that as the bitrate increases, the sav-
ings that delta encoding provides over thin-client decrease. For a
very high bitrate, thin-client should actually outperform delta en-
coding, due to the information that is lost during delta encoding
(Section 4.1). However, because the purpose of delta encoding is to
work at low bitrates, this should not be cause for concern.

We show the impact of the client’s output fidelity in the result-
ing bitrate. For delta encoding, the client’s fidelity is measured as
how much detail can the client include in its "‘low"’ quality set-
ting. Figure 13 shows a comparison using delta encoding on the
Demo1 scene. One line shows the client rendering the game us-
ing our modified low settings Delta-Low, while the other shows the
client rendering the game using the built-in medium settings. Our
results show that generating a delta from two scenes that are more
similar to each other will result in more compressible deltas. In this
scenario, delta encoding can achieve an excellent video quality (an
average SSIM (dB) of 15.986) using as little as 528 Kbps, placing
it slightly above the operating range of widely adopted high-quality
music streaming services.

Increasing the client’s temporal fidelity (the number of I-frames
rendered per second), when using client-side I-frame rendering also
reduces the required bitrate. Figure 14 shows a comparison using
client-side I-frame rendering on the demo1 scene. One line shows
the client rendering at 12 I-frames per second, as we use in all our
other experiments, while the other line shows the client rendering
only 6 I-frames per second. In this scenario, I-Frame with a client
rendering 12 FPS settings can achieve an excellent SSIM (dB) of
16.59 using only 4 Mbps while it takes almost 9 Mbps to do it with
a client rendering at 6 FPS.

6.3 GPU and driver variation
Rendering APIs such as OpenGL do not guarantee pixel-exact

outputs even when the input scene descriptions are identical. In
Table 2, we characterize the extent of this effect in terms of both
the pixel differences and the image quality as measured by SSIM
(dB). For this experiment, we render a scene on our server using the
Nvidia GTX 580 GPU. We then compare the rendered scene on a
frame-by-frame basis with the same scene rendered on three other
GPUs: the AMD 6450, the Intel HD3000, and the Nvidia 8200
GTS. We perform this experiment twice: once using the scene ren-
dered at high detail, and again using the scene rendered at low de-
tail. We also compare the original scene with an H.264 compressed
version using a CRF of 25.

Table 2 shows the results of this experiment. We see that the ab-
solute percentage of pixels that are different is quite large: GPUs
from other manufacturers show pixel differences of 33% to 40%,
whereas a different GPU model from the same manufacturer shows
very small pixel differences of .11% to .22%. Even across manu-
facturers, where the absolute percentage of changed pixels is large,
the impact of those pixel differences on image quality is extremely
small. We see that the SSIM (dB) values for the GPU from the
same manufacturer are above 45, and for GPUs from different man-
ufacturers are still above 25. Comparing these results to the effects

of H.264 compression on image quality, we see that the impact of
GPU and driver variation on image quality appears to be substan-
tially less than the effects of H.264 compression on image quality.

6.4 Latency and performance tests
A major concern with offloading rendering to a server is the im-

pact on latency and throughput, and most importantly how that af-
fects gameplay. The key measure for throughput is FPS, and for
latency is the time from when a user performs an input to when the
effect of that input becomes visible. To determine whether Kahawai
provides good frame rates with modest latency overhead above ei-
ther the network RTT (for delta encoding) or the time to render a
high quality I-frame (for client-side I-frame), we perform the fol-
lowing experiment.

We run Doom 3 interactively in four different scenes. These
scenes correspond to the same three scripted scenes we used in
our trace-driven evaluation, plus the scene we used for our user
study. We play each scene for a total of 60 seconds. For through-
put, we measure the average framerate across each scene as well
as the standard deviation. To characterize latency, we measure the
time elapsed between when Kahawai samples an input event and
when Kahawai shows the frame reflecting the effect of that input
event. For latency we also report the mean and the standard devia-
tion. The results are shown in Figures 15, 16, 17 and 18.

First, these figures show that Kahawai performs well over a low-
latency network connection, as shown by the blue bars in Figure 15
through Figure 18. These results are consistent with our user study,
in which players rated low-latency configurations higher. The av-
erage framerates for delta-encoding are just above 40 FPS, and
for I-frame they exceed 80 FPS. Figure 16 and Figure 18 show
that I-frame’s latency and throughput vary more than than delta-
encoding’s. This is not surprising since the work needed to pro-
cess P-frames on the client is much less than the time to process
I-frames. Figure 17 and Figure 18 show that the additional latency
imposed by delta-encoding is higher than that imposed by I-frame,
but that both are modest when the underlying network RTT is low.

The higher latency for delta-encoding is caused by our imple-
mentation, but is not fundamental. Delta-encoding requires the
client GPU to capture each rendered frame, and perform RGB to
YUV color conversion on it. We need the image in YUV format
for input to the delta-patching algorithm described in Section 4.1.
We implement RGB to YUV in OpenCL on the tablet GPU, but the
Intel OpenCL runtime has a bug that causes us to perform an extra
GPU to GPU memory copy for each frame. In addition, we have
not yet implemented delta-patching in OpenCL on the GPU. This
change would eliminate the additional memory copy from GPU to
host memory and back.

Finally, Figure 17 and Figure 18 show that when the network
RTT is high, the input-to-display latency exceeds 100ms. These
latency values are high enough that users can perceive a loss in
quality. This is consistent with players’ rating the visual quality
and smoothness of the thick client as better than any of the offload-
ing systems in our user study. However, our user study also found
that players perceived the visual quality and smoothness of collab-
orative rendering to be equivalent to a thin client. Figure 9 shows

0

20

40

60

80

100

120

Light Demo1 Cyber
demon

Central

Fr
am

es
 p

er
 s

ec
o

n
d

2 ms

70 ms

Figure 15: Delta throughput

0

20

40

60

80

100

120

Light Demo1 Cyber
demon

Central

Fr
am

es
 p

er
 s

ec
o

n
d

2 ms
70 ms

Figure 16: I-Frame throughput

0

20

40

60

80

100

120

140

Light Demo1 Cyber
demon

Central

La
te

n
cy

 (
m

s)

2 ms
70 ms

Figure 17: Delta latency

0

20

40

60

80

100

120

140

Light Demo1 Cyber
demon

Central

La
te

n
cy

 (
m

s)

2 ms

70 ms

Figure 18: I-Frame latency

that collaborative rendering also did not impact players’ game per-
formance during our user study. Nonetheless, these results suggest
that Kahawai will perform best when offloading over a LAN or to
a server within a nearby CDN.

7. RELATED WORK
Adjusting data fidelity to match the quality of a mobile client’s

connectivity is a well-studied technique in mobile computing. For
example, in Odyssey [32] depending on the network conditions,
a mobile client can specify the fidelity at which a server should
send it data items. Narayanan et al.[31] previously observed that
different fidelities of the same 3D rendering expose the same visual
structure, allowing a low fidelity rendering to be useful enough un-
der resource constraints. Collaborative rendering also relies on low-
fidelity data representations to reduce network usage, but combines
locally-computed low-fidelity data with information from a server
to give mobile clients access to high-fidelity data.

Overcoming the resource constraints of mobile devices by par-
titioning programs between a device and more powerful server in-
frastructure is also a well-studied area. Chroma [3] allows program-
mers to specify program partitions and conditions under which to
adopt those partitions. CloneCloud [7] and MAUI [9] leverage fea-
tures of managed-language runtimes to automatically partition a
program depending on runtime prediction of the partition’s energy
and performance benefits. Unfortunately, both of these systems are
designed for general-purpose CPU workloads and are inappropriate
for applications like fast-action games that heavily rely on a GPU.

Thin-client computing is an extreme form of code offload in
which all of a program’s computation runs on a remote server [35,

24]. This approach has been embraced by companies like OnLive,
Playstation Now, and Nvidia Shield as a way to deliver high-fidelity
gaming experiences on mobile devices. Collaborative rendering has
two advantages over thin-client gaming: (1) it offers substantial
bandwidth savings, and (2) it allows mobile clients to use their own
GPU to provide low-fidelity game play when a device is poorly
connected or completely disconnected.

We have also worked on Outatime [27], a cloud-gaming system
designed to address another important problem: network latency.
Outatime produces speculative frames of possible outcomes and
delivers them to the client ahead of time. Outatime predicts in-
puts and compensates for misprediction errors in the client through
a graphics technique called view interpolation. While Kahawai
greatly reduces the bandwidth required for cloud gaming by moder-
ately increasing input latency, Outatime masks a substantial amount
of network latency at the cost of extra bandwidth consumption.
In the future, we may integrate the two system into a single low-
bandwidth, latency-resilient cloud-gaming system.

Delta-encoding’s use of synchronized, duplicate processes is
similar to techniques developed for primary/backup fault toler-
ance[2] and deterministic replay [11, 14]. However, the work that
most closely resembles delta-encoding is that of Levoy[28]. In
Polygon-assisted compression of images, Levoy proposed selec-
tively disabling detail and effects that are complex to render in
clients and sending them as compressed deltas. Delta encoding
takes a similar approach, and we have borrowed some of this
work’s calculations. The primary difference between our work and
Levoy’s is our efficient use of H.264. In particular, delta-encoding

is well suited to H.264 because of the temporal locality among delta
frames exhibited by fast-action games.

Mann’s work on Selective Pixel Transmission[29] also tries to
reduce network communication by extrapolating frames through
locally rendered, textureless models and frequent reference frame
deltas. A high frequency of the reference frame deltas is neces-
sary to limit the temporal error propagation caused by extrapolat-
ing frames from the basic model. Furthermore, in order to obtain a
better balance between bandwidth and image quality, only a subset
of the pixels in the delta are transmitted.

This approach resembles some of the techniques used in client-
side I-frame rendering. However, instead of extrapolating frames,
we constantly transfer progressive differences between each refer-
ence frame. We use the deltas to make up for limitations in the
mobile GPU instead of limiting the amount of error. The high fre-
quency of I-frames in our approach is used to reduce the size of the
P-frames rather than to sync the images in the server and client.

8. CONCLUSIONS
This paper presents Kahawai, an approach to GPU offload for

mobile games that relies on collaborative rendering. To implement
collaborative rendering, a mobile device renders low-fidelity graph-
ics output and combines it with high-fidelity information sent by
the server to create a high-fidelity result. In Kahawai, we have de-
veloped two collaborative rendering techniques: delta encoding and
client-side I-frame rendering.

Experiments with our Kahawai prototype demonstrate its poten-
tial to provide high visual quality with modest bandwidth require-
ments. We show that with access to the source code of only the
game engine and with minimal changes, we can enable Kahawai for
any game. Furthermore, we show that even without any access to
source code, it is possible to enable Kahawai for some games. We
show that our delta encoding technique, when compared with an
H.264 thin client, provides much better visual quality when band-
width is low – less than 0.6 Mbps. Even more impressive, we show
that an H.264 thin client requires up to six times as much bandwidth
as client-side I-frame rendering to achieve high visual quality. Fi-
nally, a 50-person user study with our Kahawai prototype demon-
strates that collaborative rendering provides the same user experi-
ence as a thin client.

9. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers and our shep-

herd, Mahadev Satyanarayanan, for their insightful feedback as
well as our colleague Dinei Florencio for sharing his expertise on
video compression. This work was partially funded by the National
Science Foundation under award CNS-0747283.

10. REFERENCES
[1] H. Alain and D. Ziou. Image quality metrics: PSNR vs.

SSIM. In Proc. of ICPR, 2010.
[2] P. A. Alsberg and J. D. Day. A Principle for Resilient

Sharing of Distributed Resources. In Proc. of ICSE, 1976.
[3] R. K. Balan, D. Gergle, M. Satyanarayanan, and J. Herbsleb.

Simplifying Cyber Foraging for Mobile Devices. In Proc. of
MobiSys, 2007.

[4] H. Bao. Real-time Graphics Rendering Engine. Most, pages
1–6, 2011.

[5] Capcom. Street Fighter IV, 2004.
http://www.streetfighter.com/us/usfiv.

[6] L. Cheng, A. Bhushan, R. Pajarola, and M. El Zarki.
Real-time 3D Graphics Streaming using MPEG-4. In
BroadWISE, July 2004.

[7] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.
CloneCloud: Elastic Execution between Mobile Device and
Cloud. In Proc. of EuroSys, 2011.

[8] E. Cuervo. Enhancing Mobile Devices through Code Offload.
PhD thesis, Duke University, 2012.

[9] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. MAUI: Making
Smartphones Last Longer with Code Offload. In Proc. of
MobiSys, 2010.

[10] E. Cuervo, A. Wolman, L. Cox, S. Saroiu, M. Musuvathi,
and A. Razeen. Demo: Kahawai: High-Quality Mobile
Gaming Using GPU. MobiSys, 2014.

[11] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen. ReVirt: Enabling Intrusion Analysis through
Virtual-Machine Logging and Replay. In Proc. of OSDI,
2002.

[12] Epic Games. Unreal game engine.
http://unrealengine.com/.

[13] Ffmpeg. http://ffmpeg.org/.
[14] J. Flinn and Z. M. Mao. Can deterministic replay be an

enabling tool for mobile computing? In Proc. of HotMobile,
2011.

[15] Flurry. http://blog.flurry.com/, Jan 2012.
[16] J. Gregory. Game Engine Architecture, Second Edition. A K

Peters, 2014.
[17] S. Hecht. Intermittent stimulation by light. The Journal of

general physiology, 1935:965–977, 1936.
[18] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and

O. Spatscheck. A Close Examination of Performance and
Power Characteristics of 4G LTE Networks. In Proc. of
MobiSys, 2012.

[19] G. Hunt and D. Brubacher. Detours: Binary Interception of
Win32 Functions. In Proc. of the 3rd USENIX Windows NT
Symposium, July 1999.

[20] IDSoftware. Doom 3 source, 2011.
https://github.com/TTimo/doom3.gpl.

[21] Intel QuickSync. http://www.intel.com/content/
www/us/en/architecture-and-technology/
quick-sync-video/quick-sync-video-
general.html.

[22] ITU-T Recommendation J.247. Objective Perceptual
Multimedia Video Quality Measurement in the Presence of a
Full Reference. ITU-T, Aug. 2008.

[23] Z. Kotevski and P. Mitrevski. Experimental Comparison of
PSNR and SSIM Metrics for Video Quality Estimation. In
ICT Innovations 2009, pages 357–366. Springer, 2010.

[24] A. Lai and J. Nieh. Limits of Wide-Area Thin-Client
Computing. In Proc. of SIGMETRICS, 2002.

[25] R. Leadbetter. Console Gaming: The Lag Factor, Sept. 2009.
http://www.eurogamer.net.

[26] R. Leadbetter. OnLive Latency: The Reckoning, July 2010.
http://www.eurogamer.net/articles
/digitalfoundry-onlive-lag-analysis.

[27] K. Lee, D. Chu, E. Cuervo, Y. Degtyarev, S. Grizan, J. Kopf,
A. Wolman, and J. Flinn. Outatime: Using Speculation to
Enable Low-Latency Continuous Interaction for Mobile
Cloud Gaming. In Proc. of MobiSys, 2015.

[28] M. Levoy. Polygon-assisted JPEG and MPEG compression
of synthetic images. Proc. of SIGGRAPH, 1995.

[29] Y. Mann and D. Cohen-Or. Selective Pixel Transmission for
Navigating in Remote Virtual Environments. Computer
Graphics Forum, 16(3), Sept. 1997.

[30] Microsoft. DirectX Developer Center, 2012.
http://msdn.microsoft.com/en-us/directx.

[31] D. Narayanan and M. Satyanarayanan. Predictive Resource
Management for Wearable Computing. In Proc. of MobiSys,
2003.

[32] B. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,
J. Flinn, and K. R. Walker. Agile Application-Aware
Adaptation for Mobility. In Proc. of SOSP, 1997.

[33] OpenGL. OpenGL - The Industry Standard for High
Performance Graphics. http://www.opengl.org/.

[34] I. Richardson. The H.264 Advanced Video Compression
Standard. John Wiley & Sons, 2010.

[35] N. Tolia, D. G. Andersen, and M. Satyanarayanan.
Quantifying Interactive User Experience on Thin Clients.
IEEE Computer, 39(3), Mar. 2006.

[36] Unity. Unity 3D Engine 5. http://unity3d.com/5.
[37] VirtualGL. http://www.virtualgl.org/.
[38] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.

Image Quality Assessment: From Error Visibility to
Structural Similarity. IEEE Transactions on Image
Processing, 13(4):600–612, 2004.

[39] M. West. Measuring Responsiveness in Video Games, July
2008. http://www.gamasutra.com.

[40] x264. http://www.videolan.org/
developers/x264.html.

