
NutShell: Scalable Whittled Proxy Execution for Low-Latency
Web over Cellular Networks

Ashiwan Sivakumar
Purdue University

West Lafayette, IN, USA

Chuan Jiang
Purdue University

West Lafayette, IN, USA

Yun Seong Nam
Purdue University

West Lafayette, IN, USA

Shankaranarayanan P.N.
AT&T Labs – Research
Bedminster, NJ, USA

Vijay Gopalakrishnan
AT&T Labs – Research
Bedminster, NJ, USA

Sanjay G Rao
Purdue University

West Lafayette, IN, USA

Subhabrata Sen
AT&T Labs – Research
Bedminster, NJ, USA

Mithuna Thottethodi
Purdue University

West Lafayette, IN, USA

T.N. Vijaykumar
Purdue University

West Lafayette, IN, USA

ABSTRACT
Despite much recent progress, Web page latencies over cellular net-
works remain much higher than those over wired networks. Proxies
that execute Web page JavaScript (JS) and push objects needed by
the client can reduce latency. However, a key concern is the scalabil-
ity of the proxy which must execute JS for many concurrent users.
In this paper, we propose to scale the proxies, focusing on a design
where the proxy’s execution is solely to push the needed objects
and the client completely executes the page as normal. Such redun-
dant execution is a simple, yet effective approach to cutting network
latencies, which dominate page load delays in cellular settings. We
develop whittling, a technique to identify and execute in the proxy
only the JS code necessary to identify and push the objects required
for the client page load, while skipping other code. Whittling is
closely related to program slicing, but with the important distinc-
tion that it is acceptable to approximate the program slice in the
proxy given the client’s complete execution. Experiments with top
Alexa Web pages show NutShell can sustain, on average, 27% more
user requests per second than a proxy performing fully redundant
execution, while preserving, and sometimes enhancing, the latency
benefits.

CCS CONCEPTS
•Networks→Transport protocols;Networkmeasurement;Cloud
computing; • Information systems→ Browsers;

KEYWORDS
Mobile Web, Cloud computing, Proxy-assisted browsing, Program
Slicing, Whittling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiCom ’17, October 16–20, 2017, Snowbird, UT, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4916-1/17/10. . . $15.00
https://doi.org/10.1145/3117811.3117827

1 INTRODUCTION
Web pages have, over the years, evolved from simple and relatively
static pages to ones that are feature rich and customized to indi-
vidual user preferences. This evolution, however, has made them
significantly more complex [17, 33], with most pages comprising of
tens to hundreds of static and dynamic objects (images, cascading
style-sheets (CSS), JavaScript (JS) files, etc.) downloaded from mul-
tiple domains. Consequently, today’s Web page download process
involves many HTTP request-response interactions, each triggered
due to the parsing of, or interpretation of one or more objects on
the page. When network latencies go up, as is typically the case
with cellular networks, the page load times increase significantly
degrading user experience. Users, on the other hand, have come to
expect an interactive experience to the point where studies show
revenue losses due to poor responsiveness [1, 3, 4, 24].

Many recent attempts [27, 44], most notably SPDY [27] which
has shaped the recent HTTP/2 standard [32], has attempted to ad-
dress protocol level limitations with traditional HTTP. HTTP/2 and
SPDY seek to accelerate page loads by allowing for multiple out-
standing requests in parallel on a single connection, and supporting
out-of-order delivery of responses. However, the performance im-
provements of these protocols in the real world are mixed [25, 55].
A key reason is that the objects needed for the page to load cannot
be requested in parallel because of complex dependencies in pages
(Figure 1b). To overcome this limitation, the protocol allows the
server to push objects to the client without waiting for explicit
client requests. However, server push requires explicit identifica-
tion of objects that can be pushed. This constraint is non-trivial
since many Web pages require parsing/executing HTML, CSS and
JS to identify the associated objects.

Recent proposals suggest the use of a powerful, well-connected
proxy that can emulate (part of the) client functionality, includ-
ing JS execution, and push the required objects to the client. The
proxy’s functionality (and hence complexity) can vary depending
on the solution. In one approach [42, 52], the client performs all of
the functions of a traditional client, while proxies perform redun-
dant execution, merely to identify and push objects needed by the
client. In another approach, the proxy generates a “rendered” page
that the client can display with minimal work [6, 11, 56, 62]. Here,
proxy computation is not redundant, and client-side processing is

https://doi.org/10.1145/3117811.3117827

completely [6, 11, 62], or partially [56] eliminated. Results show
that both redundant and non-redundant execution can significantly
reduce page load times. While non-redundant execution promises
additional benefits by reducing or eliminating client-side compute,
it may result in additional latencies on client interactions [51] for
the complete elimination approaches, or additional complexity as-
sociated with migrating execution state mid-flight from the proxy
to the client for the partial elimination approaches.

Regardless of the proxy design choice, their benefits are at the
cost of significant additional computational overheads, a dominant
component of which is JS execution. Deploying such proxies at
carrier-scale to millions of users requires that the computational
overheads of the approach be economized (our measurements indi-
cate a server with 32 cores and 128 GB RAM can support 2000 users,
which translates to $2.5 Million in CAPEX alone for a million users
assuming $5000 per server). Motivated by this scaling challenge,
in this paper we focus on minimizing the proxy computational
overheads in general, and JS execution in particular. We tackle this
challenge in the context of redundant execution, since it is simple,
allows for responsive client interactions and is well-suited for cellu-
lar settings where the network constitutes more than half the client
latency (§2).

We present the design of NutShell, a system to tackle these chal-
lenges. NutShell leverages two key observations. First, the proxy
need not execute all JS code (e.g., UI-related code need not be
executed). Instead, only the subset of code necessary to identify
and fetch the objects to be pushed is executed (see Fig. 2 for a
detailed example). In other words, using terminology used in the
programming language community, only the backward slice of the
code [53, 58] related to URL fetching must be executed. Second,
while static analysis of JS code is a hard, open research problem
(e.g., [26, 34, 48, 54]), proxies can approximate the backward slice
since only the redundant proxy execution is affected. Because the
client performs the actual full execution, the client would directly
fetch any objects not pushed by the proxy, trading off client latency
for computation at the proxy without any correctness problems.

Since statement-level slicing is time-consuming, our approach,
called whittling, works at JS function granularity, turning off en-
tire functions that do not affect the set of fetched objects. Thus,
whittling dynamically learns the slices by turning off function defi-
nitions – i.e. all the invocations of a function, whereas conventional
slicing selectively turns off individual invocations. The approach is
complicated by two issues. First, examining all JS functions would
be time-consuming. Second, owing to inter-function dependencies,
turning off two functions simultaneously may impact object fetch-
ing, although turning them off individually may not. We tackle
the first issue by exploiting the fact that a majority of JS execution
time is spent in a small fraction of heavy functions. We identify the
heavy functions via profiling and examine only those functions. Be-
cause identifying the optimal set of independent functions would be
time-consuming, we tackle the second issue with a greedy approach
of examining functions in the decreasing order of their execution
times, to grow a set of functions that may be turned off together.
Finally, despite the above optimizations, whittling at every page
load would be too slow to be effective. To that end, we exploit the
fact that although objects in a page change, the code is stable over

a period of several hours to allow profitable reuse of the same slice
over several loads of a given page.

Our contributions are:
• presenting the first effort to our knowledge for scaling execution-
based Web proxy designs.

• proposing a dynamic learning scheme, called whittling, to com-
pute approximate backward slices of object fetches at function
granularity; and

• proposing several optimizations to make whittling computation-
ally efficient, practical and effective.
We conducted experiments with 78 pages from the Alexa Top

100 Web-sites. Our key results are:
• NutShell reduces JS computation by 1.33X in the median case, and
up to 4X for some pages. Further, the user requests per second
increases on average by 27% for a range of web page popularity
models, and upto 4X for some pages.

• The scalability benefits can be achieved while preserving, and
even exceeding the latency gains of a redundant execution ap-
proach. By combining redundant execution and whittling, Nut-
Shell achieves speedups in median page load times of 1.5 com-
pared to SPDY and speedups of 20% compared to fully redundant
execution for 15% of the pages.

• Whittling can be computed in an online fashion. Through a lon-
gitudinal study we show that for 92% of the Web pages NutShell’s
whittling remain accurate (i.e., it pushes all the needed objects)
over 3-hour windows. Further, the whittled JS can be reused
across users due to large code overlap.

2 MOTIVATION
The overall client latency comprises compute delay (for parsing
and executing HTML, CSS and JS, and for rendering) and network
delay to fetch the required objects. For mobile devices over cellular
networks, which is our focus, the network component is a dominant
component of the overall latency. To see this, consider Fig. 1a which
shows the reduction in the Onload time for a mobile phone when
moving from a cellular LTE connection to a Wi-Fi connection for
20 top Alexa pages. The Onload time (OLT) is a common measure
of page load latency, and is the time from request initiation until
when the browser triggers an onLoad() event. Fig. 1a shows that the
OLT reduces by more than 50% for 53% of the pages, and by more
than 40% for 82% of the pages. Since the compute activity in both
cases is the same, these percentages directly relate to the network
component of the overall client latency. The network component
may in fact be higher because a portion of the latency with WiFi
could also be attributed to network activity.

A commonly used technique to reduce the network component
is push (which controls what objects are pushed to the client with-
out explicit requests). A key difficulty with any push technique
is that owing to dependencies inherent in Web pages (Figure 1b),
objects required later in the page load process can be identified
only after the execution of prior objects (e.g., JS). A common ap-
proach then is to push objects whose URLs are embedded in the
root HTML (often referred to as embedding level 1 (or simply L1)
objects [55]). However, the approach is limited by the fact that L1
objects only constitute a subset of all objects. Further, since the
HTML may include objects from multiple domains, in practice not

(a) % reduction in OLT for mobile page loads when mov-
ing from LTE to Wi-Fi.

HTML%

CSS% JS%

PNG% JPG%

JPG%

PNG%

HTML%

(b) Dependency graph of a page load – JS execution may
trigger further object fetches.

Figure 1: Motivation

all L1 objects can be pushed. In an execution-based approach, a
proxy [5, 6, 11, 42, 52, 56, 62] identifies all objects that the client
needs by parsing HTML and CSS, and executing JS. The proxy, with
much faster network connectivity, and secondarily faster compute,
can quickly identify and fetch the objects needed for a client’s page
load, and proactively push all the objects to the client, so the net-
work delay associated with explicit client requests can be avoided
(§6.3 experimentally shows the latency benefits).

An alternative to a proxy-based execution approach is to observe
which objects are fetched across users of a page load, and push
those objects. Given that pages are often personalized, such an
approach can only push content common across users. To evaluate
the potential of this approach, we conducted a user study with 8
real users simultaneously downloading a series of landing pages
from Alexa top 100 (refer §6.4 for further details) and assume only
common objects fetched across downloads of the same page by
the 8 different users are pushed, with all other objects explicitly
pulled by each user. For 29% of the pages, the median % of objects
that must be pulled across user loads exceeds 55%, while for 50% of
the pages, the median % of objects that must be pulled across user
loads is 31%. This indicates that relying on historical observations
of objects across page loads can miss out on latency savings offered
by proxy-based execution since only a subset of objects can be
pushed by the proxy. That said, it may be possible to combine such
an approach with proxy-based execution as we discuss in §8.

Execution based approaches themselves differ based on whether
they eliminate client JS execution. Eliminating client JS execution

Figure 2: Whittling Example

has the advantage of reducing client computation related delays,
but has associated trade-offs that we detail in §7. Regardless of these
differences, a common unaddressed challenge to all these designs
is the computation scaling bottlenecks associated with execution
based approaches. In this paper, we focus on tackling the proxy
computation bottlenecks in the context of redundant execution ap-
proaches [42, 52] which do not eliminate any client-side execution.
Instead, the proxy executes redundantly only for identifying ob-
jects needed by the client. As such, the client execution remains
unchanged except for seeing faster object fetches. We focus on re-
dundant execution given its simplicity and effectiveness in reducing
network delay which dominates cellular client latencies.

Finally, a potential approach to reducing the computation re-
quirements at the proxy is to only perform redundant execution
for a subset of the most popular pages. However, such an approach
can lose out on the latency benefits of redundant execution for a
large number of pages (as we show in §6.1). In contrast, our goal in
this paper is to reduce the proxy computation requirements, while
still preserving the latency benefits of redundant execution for a
larger set of pages.

3 NUTSHELL DESIGN
NutShell seeks to scale proxies based on redundant execution by ad-
dressing their primary computation bottlenecks. Given that browser
functionality such as rendering and display are not replicated at the
proxy, and parsing HTML and CSS is relatively light-weight, the
dominant portion of proxy computation is the execution of JS [12].
NutShell leverages the key insight that since proxy execution is
redundant, it suffices for the proxy to execute only the JS code nec-
essary to fetch objects. NutShell’s central mechanism – whittling –
effectively removes JS code that does not affect the URLs fetched.

To illustrate the opportunity forwhittling, Fig. 2 shows a concrete
example of the JS from an Alexa Top 100 Web page. A top-level
function (left side of Fig. 2) calls two functions (right half of Fig. 2).
One of the functions sets up the UI-related aspects of the page such
as span creation, button creation and addition of event listeners
to handle button clicks. This function does not affect the fetching
of objects. The second function fetches a number of images which
are displayed in the UI panels. The UI-related function (shaded
rectangle with dotted outline in the top-right corner of Fig. 2) can
be whittled at the proxy without affecting the set of fetched objects.
The top-level function and the image fetching functions (clear boxes

with solid outlines in Fig. 2) are in the backward slice of the fetched
objects, and hence must be preserved.

NutShell’s use of whittling is related to the area of program slic-
ing, which has seen much research in the programming languages
and compiler community in the last couple of decades [53, 58]. De-
spite promising advances (e.g., [26, 34, 48, 54]), computing program
slices for JS code using static analysis techniques remains a hard
problem in general. Specifically, JS’s use of dynamic typing and
eval could result in backward slices whose sizes approach the size
of the original program, diminishing their effectiveness in reducing
computation overheads – one of our key goals.

Instead, NutShell employs dynamic learning of backward slices,
which involves comparing URLs fetched before and after state-
ments of code are dropped. Although such an approach has been
explored in other contexts (e.g., finding language-independent pro-
gram slices and for fault isolation) [15, 23, 61], NutShell’s context
presents unique opportunities. Unlike fault isolation where false
negatives (i.e., missing a fault) are unacceptable, in NutShell’s con-
text it is acceptable to approximate the backward slice. Such accept-
ability arises from slicing being performed only on the redundant
NutShell proxy execution. Since the client performs the actual full
execution, any objects not pushed by the NutShell proxy could be
fetched directly by the client, trading off client latency reduction
opportunities for computation savings at the proxy.

We next describe NutShell’s whittling strategy which uses a
dynamic approach, but with the ability to tolerate imperfect (ap-
proximate) slicing.

3.1 Whittling individual functions
NutShell makes the design choice to whittle code at the function
granularity. The choice of function granularity is driven by the
opportunity-overhead trade-off; choosing fine-granularity (e.g.,
statements) may provide the ability to whittle additional code, but
may increase the overhead because each statement may have to be
individually tested. On the other hand, coarse-grained whittling
of entire JS files results in minimal benefits as most files cannot
be whittled if even a single function affects object loading. Fur-
ther, the relatively-few JS files that can be whittled are typically
rarely-executed files that do not result in significant savings even
if whittled. Note that whittling eliminates all dynamic invocations
of the function. This implies that we are conservative in function
whittling; if even one invocation of the function affects URL fetches,
the function will not be whittled.

NutShell uses automated two-version testing to determine if
a function can be safely whittled while ensuring that all objects
needed for page load are fetched. Our mechanism generates two
versions of a page: (i) an unmodified full version ‘F’; and (ii) a partial
version ‘P’ produced by eliding the function under test by rewriting
the function to be an empty function. If both versions identify the
same set of objects for downloading, then the function under test
can be whittled because eliding it does not affect the objects fetched.

Determining the set of objects fetched by the baseline ‘F’ ver-
sion itself poses interesting issues, since multiple interpretations
are possible regarding when a page load is considered complete.
Nominally, one can consider a page load to be complete based on
time bounds (e.g., after 30 seconds). Alternately, recognizing that

objects needed for an initial acceptable rendering of a page are
more critical to user experience than other objects, a page may be
viewed complete based on browser events (e.g., when the browser
onLoad event fires), when all above-the-fold content is loaded [7]
or when content with the highest utility to users is received[18, 35].

NutShell is agnostic about the metric of page load completion;
however, for any chosen metric, an appropriate signature, must be
extracted, which is the subset of objects fetched by the ’F’ version
that serve as a baseline of comparison for the whittling tests. To
be concrete, we use the browser onLoad event to determine page
completion. We run the ‘F’ version many times till onLoad and use
the intersection set of objects fetched in each run as the signature
of the page. Doing so ensures the signature only contains objects
always fetched before onLoad (note that in any given run, additional
URLsmay be fetched incidentally as a consequence of asynchronous
JS). NutShell may be extended in the future to accommodate other
notions of page completeness.

Our two-version test outcome determines whether the function
may be safely whittled (i.e., the signature matches) or not (i.e., there
is a mismatch). Note that even in cases where there is a match, there
may be other side-effects due to function whittling. For example,
whittling a function may give rise to errors because some objects
(which would be defined in the whittled function) are undefined.
Such errors impose some minimal overheads as the errors must be
caught/handled (often with a nominal error message output to the
console). Such errors do not affect our technique as (1) our focus
is solely on whether all the objects in the signature are fetched,
and (2) we fully include the overheads of error handling in our
measurements.

All of NutShell’s two-version testing is performed in a recorded
environment. The first access to the page by the proxy (where all JS
is executed) is recorded, and all testing of JS subsets occurs by replay-
ing the recorded page in a deterministic manner [8, 42, 52]. Doing
so ensures the whittling tests are not impacted by randomization,
and date/time-dependent code which may complicate ascertaining
whether the differences between the F and P versions are because
of whittling or because of variability.

3.2 Whittling across functions
With the above mechanism, we can test any individual function
to determine if it may be whittled. However, directly using the
approach to test all functions has two weaknesses. First, Web pages
often have hundreds of JS functions, many of which are rarely in-
voked. Testing them all increases overheads without commensurate
benefits. Second, there are often dependencies among JS functions
that prevent collective whittling of multiple functions even though
each function may be whittled individually.

To avoid testing all functions, NutShell employs a greedy heuris-
tic by sorting functions in the order of their computational work
(captured by execution time). We measure the work done in each
function by profiling a full JS execution. By testing functions in the
order of computational effort, we maximize the potential savings
from whittling. The greedy order is especially effective because we
observed that on an average 20% of JS functions account for 80% of
JS execution time across all Alexa top 100 pages. Fig. 3a shows the
percentage of functions that account for 80% of JS CPU-time for the

(a) Percentage of functions account-
ing for 80% of total JS execution
time. (b) Walk-through example of NutShell’s Greedy Whittling.

Figure 3: NutShell’s Whittling Method

Alexa Top 100 pages(X-axis). Uniformly, we observe that a small
percentage (9%-38%) is enough to cover 80% of execution time. This
80-20 rule enables us to limit whittling to this percentage.

Handling Dependencies: Consider the following example taken
from an Alexa Top 100 Web page. The JS code contains two func-
tions (say A and B) both of which invoke the jQuery initializer.
The jQuery initializer invocation impacts other URL-fetching code
and hence is needed. The other work in functions A and B are not
relevant for any URL fetch. When doing the basic whittling test,
we find that each function is individually safe to whittle because
jQuery initializer is still invoked in the other function. However,
when both functions are whittled, the jQuery initializer is never
invoked, which affects other parts of the JS code which fetch URLs.

The above example is one of many possible dependencies that
prevent whittling of large collections of functions. Because such
dependencies are hard to analyze, we take an empirical approach.
Specifically, we use the greedy order of function testing to grow a
set of functions that may be turned off together. We describe this
greedy algorithm using an example (Fig. 3b).

Fig. 3b assumes a Web page with the JS functions pre-sorted in
decreasing order of computation effort (f1, f2, f3, and so on). We
start with a two-version test against the full Web page load which
includes execution of all JS (‘F’ version in iteration 1 of Fig. 3b). If the
‘P’ version which whittles f1 results in the same signature as that
of the ‘F’ version, the function f1 is whittled/dropped from future
runs. Subsequent functions are further tested to see if they can be
whittled in conjunction with all the previously-whittled functions.
These secondary tests are an alternative two-version test in which
the F version is the JS codewithout all previous functions that can be
safely whittled (as determined by previous tests) and the P version
which drops the new function that is under test. (For example, in
iteration 2, the ‘F’ version whittles f1 because f1 is known to be safe
to drop from the previous iteration. The ‘P’ version additionally
drops f2 to test if f2 may be safely whittled.) Functions that can
be dropped without impacting the page signature are marked for
whittling; others must remain in the executed JS. In Fig. 3b, f2
cannot be whittled (because of signature mismatch when f2 is
dropped), but f3 can be whittled. This process continues to whittle
the JS code until all functions under consideration for whittling
are tested. NutShell’s greedy approach has the added advantage
that it minimizes the overheads of dynamic learning as the heavier
functions are whittled for a large fraction of tests. As a practical
matter, implementations may choose to filter the set of functions

that are considered based on (a) minimum work threshold, to avoid
examining light functions that do not provide significant benefits,
and (b) numerical limits, to bound the time overheads of whittling.
(In practice, NutShell tests up to 200 of the top functions till we
account for 80% of CPU work.)

NutShell’s greedy heuristic strategy does not allow for backtrack-
ing (e.g., by bringing back a dropped function); the set of dropped
functions starts with the heaviest function that can be whittled and
can only grow by adding other functions that can be whittled with-
out dependency problems. As such, the result may not be optimal.
However, we show later that the greedy heuristic is effective in
practice. More sophisticated techniques to identify collections of
functions that may be simultaneously whittled, which we leave for
future work, can only improve NutShell’s results.

3.3 Amortizing overheads across page loads
The process of dynamically learning the whittled JS depends on
(1) the number of functions, which ranges from the low 10s to 200,
and (2) the time for each per-function two-version test, which is
typically a few seconds because each test is a page load (0.3-4s)
followed by signature comparison (<10 ms). For our evaluation set
of Web pages from Alexa Top 100 (§5), the average learning time is
213 seconds across pages.

The dynamic learning of JS whittling is not done for every page
load. Rather, NutShell performs whittling for the first page load,
and then re-uses the whittled code for all the common JS content
in a new load. §4 discusses how we implement such reuse. In this
section, we present an empirical study showing the feasibility of
such reuse. The study is based on a recording of 25 pages from the
Alexa Top 100 obtained every hour over a 24 hour period using the
approach described in §5.

For each page, we whittled JS based on the version recorded at
time t = 0. We extract the signature (the set of objects needed for
page load) for the t = 24hr recording based on a full execution of
all JS in that recording. We then determine the fraction of objects
in the signature fetched by the whittled JS code using whittling
learnt at t = 0. Fig. 4 shows the corresponding fractions. For all but
2 pages, 99% of the signature or higher can be fetched, indicating
whittling reuse is effective even over a 24 hour period for most
pages.

Note that while the JS is stable the page content is not. Fig. 5
shows the incremental differences in the page signatures at time
t = 0 and t = 24hr for the pages on the Y-axis. Objects that are

Figure 4: Fraction of signature URLs fetched by whittled JS at time
t=24hr using whittling learnt at t=0.

Figure 5: Percentage of new and droppedURLs in the page signature
at t=24hr compared to t=0.

fetched at t = 24hr that were not present at t = 0 are shown on the
positive side. Objects that were fetched at t = 0 that were absent
at t = 24hr are shown on the negative side. Even though there is
significant churn in the Web page content over a period of 24 hours,
executing the same 24-hour-old whittled JS is effective at fetching
the changed content.

In practice, it is acceptable to relearn whittling over more fre-
quent time intervals. For instance, reusing whittled code over a
3-hour window results in under 2% overhead (2% = 213s/(3hr ×
3600secs/hr)), for a learning time of 213s discussed above. Even
for the page which had more frequent changes (rightmost bar in
Fig. 4), changing NutShell’s learning frequency to once every 3
hours results in a larger fraction of objects being fetched.

For pages with dynamically changing JS, NutShellmay lose some
of the CPU savings from whittling (and the resulting throughput
improvement at the proxy) because the functions identified for
whittling may not be present in the changed JS. To evaluate this
concern, we consider the fraction (%) of functions (X-Axis) that can
be whittled based on the t = 0 version, which are still relevant for
whittling at a later time across the pages. For the t = 3hr page load,
for 75% of pages, all functions can be whittled, while for another
15% of pages over 70% of functions can be whittled. Note however
that as Fig. 4 shows, client latency is not affected for most pages
because the proxy fetches and pushes all objects obtained from its
JS execution. Overall, these results show that it is viable to reuse

Figure 6: NutShell proxy architecture.

whittling over a 3-hour window of time while still retaining most
of the benefits.

We close with two comments. First, it is important to consider
reuse across users. We evaluate this further in §6.4. Second, rather
than relearning over fixed time intervals, NutShell may be aug-
mented to re-learn whittling based on feedback from clients – e.g.,
the client may report the fraction of objects needed for page load
that was successfully received from the proxy. A low fraction across
multiple loads is an indication that the slices must be relearnt. We
do not further consider such feedback mechanisms given the ef-
fectiveness of a simple 3-hour reuse window in our evaluations
above.

4 IMPLEMENTATION
Proxy implementation: NutShell involves extending the imple-
mentation of a proxy based on fully redundant execution to support
whittling. Prior fully redundant execution schemes, Cumulus [42]
and Parcel [52], use PhantomJS and Firefox respectively to parse
and evaluate HTML and CSS, and execute JS. A comparison of these
options indicated that PhantomJS has better scaling characteris-
tics as it is a headless browser, which led us to employ PhantomJS
in NutShell. To reduce computational overheads at the proxy, we
disable the rendering and painting functionality which are not es-
sential for identifying and pushing objects. We henceforth refer to
this baseline fully redundant proxy as FullRedEx.

Fig. 6 shows our NutShell proxy architecture, which extends
FullRedEx to support whittling. For each page that has undergone
whittling, NutShell maintains (i) the JS file name; (ii) the MD5 hash
of the file content; and (iii) the actual whittled version of the file.
We implement a separate stub module that intercepts requests sent
by the PhantomJS proxy to the server, as well as responses from
the server to the proxy. When a JS file is fetched, the stub code
intercepts the server response, and computes an MD5 hash of the
fetched object. The index is looked up to see if there is a whittled
JS file with the same hash associated with that main page. If so,
the whittled version of the file is retrieved and forwarded to the
PhantomJS proxy, which executes this version. The stub also pushes
the unwhittled code to the client.

We use an MD5 hash rather than just the file name to (i) ensure
JS content associated with that file name did not change; and (ii) to
maximize the reuse of whittling in cases where the same content
is fetched across runs but with slightly different URLs (a common

scenario in web downloads). In some cases, a JS file may have
undergone minor changes and functions that can be whittled in
the original JS code may still be whittled. As an optimization, the
index stores the list of functions that can be whittled for each JS
file. When the stub code receives a JS file that shares the same
name as an indexed file but with a different hash, it simply whittles
away functions listed in this index. While this involves some online
modifications to the JS file, the overheads of such modifications is
modest.

Like any execution-based proxy [6, 11, 52, 56], NutShellmust em-
ulate the client environment including parameters such as the User-
Agent, screen width and height, viewport settings, and CSS3 media
query parameters like devicePixelRatio [59] since the requested
URLs may depend on these parameters. To achieve this, we use the
pageAPIs [31] (e.g., page.settings.userAgent, and page.viewportSize)
supported by PhantomJS. This is supported bymostmodern browsers
today. The client sends these parameters when it connects to the
proxy and requests the URL. The proxy dynamically creates a page
object, and sets these parameters as object properties. Further, the
proxy tracks the state of the objects (cache and cookies) stored
at the client. This enables us to fetch the right objects and avoid
transferring objects cached at the client. Like any proxy-based ap-
proach [6, 11, 52, 56], we handle HTTPS requests by assuming users
trust the proxy. Such trust may be facilitated by personalized prox-
ies [19]. Alternately, recent proposals [39, 49] that extend HTTPS
to allow middleboxes to read or modify parts of the data could be
adopted as part of NutShell.
Client implementation: We implement the client as a custom-
built browser using Chromium WebView for Android 5.1.1 (render-
ing engine used by popular browsers). The browser accepts URLs
from the user and forwards the request to the main html alone to
the NutShell proxy. Further requests are intercepted and queued at
the client. The webview client waits for responses pushed by the
proxy, and when a response is received, matches it with a queued
request if it exists. The proxy sends a flag to the client once it is
done pushing all the objects required for the initial page load (§3.1).
Upon receiving the flag, the client then contacts the server to obtain
any remaining objects for the page load. We chose to implement a
custom-built browser rather than a standard browser to facilitate
the interception of client requests and to serve responses pushed
by the proxy.

5 EVALUATION METHODOLOGY
Our evaluations compare NutShell with FullRedEx, a proxy that
does fully redundant execution of all JS code (§4). We evaluate the
effectiveness of NutShell in supporting more user requests per sec-
ond by reducing JS computation at the proxy through whittling,
and its ability to preserve the latency benefits of FullRedEx.
Test set: Since web pages change over time, and to minimize the
impacts of variable server load, we used an open source record
and replay tool called web-page-replay(WPR) [8] to emulate real
web server. We recorded entire web pages including all constituent
objects using WPR by downloading from the actual webserver(s).
We then replayed the recording across all our experiments. We
recorded the pages using a phone to ensure that the mobile version
of the page is recorded. Note that many pages do not have separate

Figure 7: Experimental setup tomeasure (A) request throughput im-
provement; and (B) latency savings. For meaningful measurements,
throughput experiments were performed under load, and latency
measurements under a lightly loaded setup.

desktop and mobile pages, but use CSS3 media queries [59] to tailor
the rendering of the page content for different devices. In either case,
the right version of the page for the mobile device is recorded. For
NutShell, we use a commonly used JS formatting tool [2] to ensure
that functions (including anonymous ones) can be unambiguously
identified by their line numbers to facilitate whittling.

We chose the Alexa top 100 US sites [13] for our evaluation.
However, our final evaluation used 78 web pages for two reasons.
First, we conducted a large number of experiments with each of
our web pages, and found that ten pages did not trigger onLoad
in a large fraction of experiments. Given one of our evaluation
metrics depends on the onLoad event, we excluded these pages
from our evaluation. Second, recall that the first step in whittling is
to identify the most computationally intensive JS. While our proxy
implementation is based on PhantomJS (for reasons described in
§4), we are not aware of native profiler support for PhantomJS.
Consequently, we employed the Chrome V8 profiler [10]. Using
Chrome for profiling, and PhantomJS for slice testing and proxy
implementation sometimes resulted in differences in files fetched
and functions executed. Consequently, functions indicated by the
profiler sometimes could not be matched to appropriate functions
in the JS code.

This resulted in two issues: First, for 12 pages, none of the func-
tions identified by the profiling step matched those actually exe-
cuted by phantomJS. We excluded these pages from our analysis.
Second, for all pages, a subset of functions identified by the profiler
step could not be tested for whittling, limiting the amount of com-
putation that can be saved through whittling (see §6.2). Fortunately,
the issues here are not fundamental to our whittling approach. The
availability of native phantomJS profiling support can both expand
the set of pages we can test, as well as potentially improve the
fraction of compute saved for all pages.
Measuring scaling benefits of NutShell: We measure the re-
quest throughput (user requests per second) under load that can
be served by each of NutShell and FullRedEx. Fig. 7(A) shows our
evaluation setup. Since we did not have enough mobile clients to
generate sufficient load for meaningful request throughput mea-
surements, we synthetically generated simultaneous user requests
to saturate the proxy CPU by running many parallel instances of

PhantomJS. The requests from the PhantomJS instances were load
balanced across five WPR servers. We made a pragmatic choice to
use a commodity desktop with Intel i7 CPU @ 3.60GHz and 16 GB
RAM to run the proxies, so that the number of WPR servers needed
to handle the load was small. We accounted for impacts of initial
ramp up and the final ramp down times by running the experiment
for a sufficient duration. We ran this experiment across all the 78
web pages. We tuned the number of instances of PhantomJS and the
number of requests served by each instance for each web page to
ensure that the CPU was saturated for both NutShell and FullRedEx.

Setup for latency comparisons: To capture real-world im-
pacts of cellular networks, our latency comparison experiments are
done using a Google Nexus 5 phone downloading web pages over
a live LTE network. In this experiment, we compared NutShell not
only to FullRedEx, but also to HTTP/1.1 browser (which we refer
to as Baseline) and to SPDY using a proxy [29] (which we refer to
as SPDY). The proxy honored the default SPDY priorities (HTML >
CSS & JS > images) set by our browser (Google Chrome).

We also compare NutShell to an approach that parses only the
main HTML of a web page and pushes all objects embedded in
the main HTML (which we refer to as Push_HTMLEmbed). We
use Push_HTMLEmbed to generalize SPDY’s server push when
configured with the commonly used embedding level 1 policy (§2).
Push_HTMLEmbed provides an upper bound on the latency benefits
of the above SPDY push approach because it also allows for pushing
objects spread across multiple domains whereas a SPDY server can
push objects only in its domain.

Ideally, our proxies would run in the packet core of cellular
networks. Since this was not feasible, we ran an instance of each
proxy on an Internet-facing server in a university campus (see
Fig. 7(B)). To account for the delay from the cellular core to a typical
web server, we emulate a round trip delay of 20ms between our
proxies and the WPR server. To account for the fact that cellular
networks use HTTP proxies [25], we also emulated the same delay
for Baseline at the WPR end. We selected this 20ms delay based on
measurements of delay when fetching the top 100 web pages from
a desktop client in a university campus.

We ensured that only a single user request is served at anytime
with all the schemes. We use a lightly loaded setup since our focus
was on evaluating the impact on latency by reducing JS computation
work at the proxy through whittling. Unlike request throughput
measurements before, latency measurements require light loading
to be meaningful. We expect that, in practice, these schemes would
be provisionedwith sufficient proxy servers to ensure small queuing
delays.

We compared schemes both with respect to their Onload time
(OLT) (§2), and Speed Index [7]. Speed Index is a measure of how
quickly a web page’s content renders on the screen. It works by
calculating the completeness of a page at various points during the
page load. The completeness itself is measured by comparing the
distribution of colors at any instant with the final distribution after
the page load. We capture a video of the page load in each of our
experiments using the Android 5.1 screenrecord utility. Then we
use WebPageTest’s visualmetrics tool [60], to analyze the videos
and generate the Speed Index metric.

Figure 8: Overall increase in user requests per second with NutShell
across page popularity models.

6 RESULTS
6.1 Scaling benefits of NutShell
We begin by presenting the effectiveness of NutShell in support-
ing more user requests per second than FullRedEx (§4), whose
performance is representative of prior fully redundant execution
schemes [42, 52].

Since a proxy would be serving multiple web pages in practice,
the scaling benefits of NutShell depend on a combination of (i) the
popularity of pages; and (ii) the savings with NutShell for each page.
Formally, the overall benefits with NutShell may be computed as:

(
∑
i

fi × (1/Ri f))/(
∑
i

fi × (1/Rin)) (1)

where, fi is the fraction of requests for page i , while Ri f and Rin
are the number of requests per second that can be served for page i
under load with FullRedEx and NutShell respectively. We obtain Ri f
and Rin through experiments with the setup described in Fig. 7(A).

Fig. 8 shows the increase in user requests per second with two
different models for web page popularity (fi). The first model (Alexa
views) uses statistics on the number of requests to each web page
estimated monthly from Alexa traffic data [9]. The second model
(Zipf(α)) uses a Zipf distribution based on the Alexa rank of the
page as suggested by studies on web page popularity [14, 16], where
the number of accesses to a page of rank i is 1/iα . We also study
sensitivity to different values of the exponent α (a larger α increases
the fraction of requests to the most popular page). Fig. 8 shows
that across all models NutShell achieves fairly consistent average
improvement ranging from 27.2% to 27.89%.

To further understand these benefits, Fig. 9 shows the increase in
user requests per second achieved by NutShell over full JS execution
(Y-axis) for individual pages (X-axis), sorted by the access frequency
of the page. While NutShell provides benefits for most pages (with
a 12% improvement for the median page), the benefits exceed 34%
for 25% of the pages, and is as high as 100-300% for a few pages.

Further investigation shows the benefits with NutShell are most
pronounced for pages with (i) significant JS computation, and (ii)
where whittling can achieve significant reduction in such com-
putation. For example, for www.facebook.com, the JS compute is
significant, and whittling reduces JS computation by a factor of
2, which translates to an increase in user requests per second by

Figure 9: Increase in user requests per second with NutShell for each
web page.

Figure 10: Percentage JS compute contributed by all the functions
tested by NutShell, split as fraction that can and can not be whittled.

a factor of 1.43 compared to FullRedEx. NutShell achieves these
benefits while still pushing all objects in the signature (§3).

A potential alternative to NutShell that can provide equivalent
scaling benefits, is to only perform JS execution for a subset of the
most popular pages. However, this approach gives up latency sav-
ings associated with proxy execution for other pages. Specifically,
an analysis of Alexa web page popularities [9] indicates that the
top 23 pages account for 73% of accesses of the top 100, and the top
112 pages account for 73% of accesses of the top 1000 pages. This
suggests that to achieve the same 27% computation reduction that
NutShell provides, the selective execution approach can only per-
form JS execution, and hence provide the associated latency benefits
for 23 (112) pages. In contrast, NutShell can provide latency benefits
for 100 (1000) pages for the same computation requirements.

6.2 Effectiveness of whittling
Fig. 10 shows the percentage of JS computation (Y-axis) that can
be whittled for each page. Each bar corresponds to a page (sorted
by page frequency). The lower dark and upper unshaded portions
respectively correspond to the fraction of JS compute that can and
cannot be whittled based on whether the associated functions were
necessary for object fetches. Note that the numbers do not add
up to 100% – the remainder corresponds to functions that were
not tested by NutShell for reasons described in the next paragraph.
For the left most page, the lower and upper portions are 56% and
4% respectively. NutShell saves more than 25% of the overall JS
computation for half the pages and as much as 50-75% for 15% of
the pages (thereby incurring 2X-4X lower JS computation times).

While the benefits are already substantial, these reported savings
are conservative because they are based only on functions we were
able to test. There are two factors that limit tested functions: (i) only
heaviest functions that account for 80% of compute and at most 200
functions are tested for any page (§3); and (ii) mismatches between
the browsers used for the profiling and whittling steps implied
functions identified by the profiler could not be tested for whittling
(§5). The first factor was relatively minor – for 85% of the pages,
functions accounting for 80% of compute could be tested, while for
all pages, functions accounting for at least 62% of compute could be
tested. The second factor while more significant is not fundamental
to our approach, and can be handled in the future through better
profiler support (§5). Despite this factor, NutShell is still able to
achieve significant savings already. For half the pages, NutShell can
whittle over 50% of compute corresponding to the tested functions.
Further, we find the overall increase in user reqs. per second by
NutShell goes up to 40% if we only consider pages where functions
corresponding to at most 20% of JS compute cannot be tested due
to the second factor.

Finally, we have also considered JS computation that cannot
be whittled, and investigated the extent to which dependencies
required the function to be retained, though individual function
testing indicated the function could be whittled. Overall, we find
that savings lost due to function dependencies is not significant –
NutShell loses JS computation savings of under 10% for 90% of the
pages and at most 25% across all pages. Overall our results indicate
that whittling is effective in eliminating significant fraction of the
JS computation at the proxy without impacting objects fetched.

6.3 Impact of NutShell on client latency
We next present results comparing the latency of NutShell, with
FullRedEx as well as other schemes – Baseline, SPDY and
Push_HTMLEmbed (setup shown in Fig. 7(B)). To minimize the
impact of LTE network variability, we conduct multiple rounds
of experiments, with each round involving running latency exper-
iments with all the schemes back-to-back. For each scheme, we
summarize results by the median OLT and Speed Index metrices
(§5) across the runs.

Fig. 11 shows NutShell’s speedup over each of these schemes
(ratio of median OLT with a scheme to median OLT with NutShell).
Fig. 12 shows the absolute reduction in median OLT with NutShell
We make several points. First, NutShell provides a speedup of 1.7
over Baseline and a speedup of more than 1.5 over SPDY for half

Figure 11: Speedup in median client OLT with NutShell
compared to other schemes.

Figure 12: Reduction inmedian client OLTwithNutShell
compared to other schemes.

Figure 13: Median Speed Index with Push_HTMLEmbed and
NutShell. Each dot corresponds to a page.

the pages, and latency reductions of more than 2 seconds for 45%
of the pages compared to both schemes. Further analysis shows

the benefits over SPDY are more pronounced for pages with deeper
dependency graphs while the benefits are more limited for pages
with more shallow dependency graphs. This makes sense since
with SPDY the task of identifying object dependencies is still with
the client.

Second, NutShell provides a speedup of 1.24 over
Push_HTMLEmbed for the median page but the speedups exceed
1.5 for more than 15% of the pages. In absolute terms, this translates
to latency reductions of over 1 second for 25% of the pages, with
some pages seeing reductions of 6 seconds. These benefits may be
attributed to NutShell pushing all objects as opposed to a subset.

Finally, whileNutShell and FullRedEx perform comparably for the
majority of pages, NutShell achieves speedups higher than 1.2 for
15% of the pages, and absolute latency reductions of over 1 second
for 10% of the pages. The differences arise since NutShell lowers
the OLT at the proxy since less JS computation is needed, which in
turn results in objects being pushed to the client earlier. Observe
that NutShell performs slightly worse for 34% of the pages, but only
10% of the pages see median OLT higher by 200ms , and no page
sees median OLT higher than 515ms . Likewise, NutShell achieves
latency benefits of under 500ms for 45% of the pages. We attribute
these minor performance differences to LTE network variability.

While the results above are based on the OLT metric, we found
trends generally consistent with the Speed Index metric. For exam-
ple, Fig. 13 shows a scatter plot, with each point corresponding to
a page, and the X-axis and Y-Axis representing the median Speed
Index across the runs with Push_HTMLEmbed and NutShell respec-
tively. A majority of points lie below the y=x line indicating Nut-
Shell achieves a smaller Speed Index (lower values represent better
performance), and a faster visual page load from a user perspective.

Likewise, comparing NutShell and FullRedEx, the Speed Index
metric results are generally consistent with OLT (not shown). Nut-
Shell achieves a lower Speed Index for 65% of the pages, while the
Speed Index is smaller with FullRedEx for 35% of the pages, with the
differences relatively small. Further, for most pages where NutShell
achieves significantly lower OLT than FullRedEx, the Speed Index
is lower as well. An exception is www.reddit.com, where NutShell
achieves lower OLT but a higher Speed Index. Further analysis
shows that page contains images that are shown above-the-fold,
yet fetched after onLoad. Since our current NutShell implementa-
tion derives a signature based on objects needed for a page load
event (as discussed in §3.1), NutShell whittles away a function re-
sponsible to fetch one of the images. Consequently, this object is
not pushed by the NutShell proxy, and must be fetched directly by
the client from the server. This issue is not inherent to whittling
itself – for instance, if a signature were based on above-the-fold
content, then, NutShell would retain necessary code, and ensure all
necessary objects are pushed. Interestingly, for a few pages, notably
www.ups.com, we found that the same phenomenon led NutShell to
whittle code that fetched an asynchronous JS object and not push
that object. In this case, NutShell performed better in both OLT and
Speed Index by avoiding compute delays associated with the JS,
since the object did not impact above-the-fold content.

Overall, these results show that beyond the primary benefit of
achieving higher throughput compared to FullRedEx, NutShell can
not only match the latency benefits but provide substantial latency
improvements for some pages.

Figure 14: JavaScript code overlap across users.

6.4 Re-using whittling across users
§3.3 has shown the feasibility of reusing whittling across page loads.
In this section, we study the feasibility of reusing whittling across
users by analyzing common JS content among users. To this end,
we conduct a user study with 14 landing pages from the Alexa top
100 pages. Each of these pages were downloaded simultaneously
by 8 real users, all using the Chrome browser, but with diverse
browsing profile. Further, the users corresponded to 4 different
<OS,location,devicetype> settings, where the OS was Linux or Win-
dows, location was within Purdue University, or external, and the
devicetype was either a desktop or a laptop. Choosing one user as
a baseline, we compare the JS files of all other users to this baseline
classifying them into three categories: (i) files whose MD5 hashes
match the MD5 hash of a JS file of the baseline user; (ii) files that
share the same file name as the baseline user, but with a different
MD5 hash; and (iii) files for which neither the MD5 hash nor file
name match any JS file for the baseline user. As discussed in §4,
NutShell can obtain full benefits with whittling for class (i) files, and
a significant fraction of the benefits for class (ii) files. We repeat
the analysis choosing different users as the baseline resulting in 56
user session data points for each of the 14 pages.

Fig. 14 shows a CDF of the % of JS that falls under the 3 classes
across all users sessions and all pages. More than 80% of JS files
have the same content across users (right-most curve) for half of the
user sessions allowing full reuse of whittling. Further, the middle
curve shows that for half of the user sessions, less than 18% of JS
files belong to class (iii), where whittling cannot be reused. Overall,
these results indicate significant common JS code across users and
the potential for significant reuse of whittling across users.

6.5 Redundantly pushed data
With any redundant execution approach [42, 52] including NutShell,
there may be differences in the URLs requested by the proxy and
the client (a) if the proxy does not emulate the client (§4) faithfully,
or (b) if the web page uses functions like Math.random() in JS to
generate a different URL in each run. In particular, the proxy may
push objects whose URLs are not requested by the client, thereby
resulting in wasted bandwidth. We measure the wasted data (WD)
as the percentage of bytes pushed by the proxy which are unused by

Table 1: Implications of proxy execution architecture choice

No Non- Redundant
Execution Redundant

Prioritization
√ √ √

Compression
√ √ √

Push Subset All All
Reduce Client JS × √ ×
Complexity Low High Low
Scalability None Compute Compute
bottleneck

the client. We report averageWD across all pages weighted by the
popularity of the pages (refer to §6.1). The weighted averageWD is
18.4% with FullRedEx, and 18.3% with NutShell for the ’Alexa views’
model (§6.1), with similar results for other models. Further investi-
gation shows a key factor impacting the results is that PhantomJS
currently does not support several HTML5 features (e.g. srcset at-
tribute). This resulted in the proxy sometimes requesting different
URLs than the mobile client even though we emulated the mobile
user environment as described in §4. We believe thatWD would be
lower as support for these features is implemented in PhantomJS, or
with an alternate browser choice for the proxy implementation. To
confirm this, we repeated the above measurements using a desktop
PhantomJS client and our results show that the weighted average
WD is modest with both FullRedEx and NutShell (8% and 7%) re-
spectively. NutShell sees slightly lowerWD than FullRedEx because
the proxy only executes the code required to fetch the signature
(§3.1), which sometimes excludes URLs that vary in back-to-back
runs.

7 RELATEDWORK
Existing approaches to improving web page load can be classified
along two dimensions: (a) proxy based execution and (b) optimiza-
tions such as content push, prioritization (controlling the order in
which objects are sent) [18, 35, 41], and object compression [12, 50].
We discuss these below.
Non-redundant execution: As Table 1 shows, proxy execution
based approaches themselvesmay be classified into (i) non-redundant
execution; and (ii) redundant execution. Non-redundant proxy-
based execution can reduce the compute delay at the client. Some
implementations [6, 11, 62] eliminate all client side execution by
getting the proxy to render the page and pushing the rendered page
to the client. Though these approaches can reduce initial page load
times, eliminating client execution incurs latency on user inter-
actions (e.g., mouse hover, clicks) since the JS processing of these
interactions must be done in the cloud [51].

A more recent approach [56] involves partial-elimination of
client-side JS code. Here, the proxy executes JS in a web page to
a point and then migrates state to the client. The client continues
the process from that point. Since the migrated state can become
large, these approaches re-execute part (idempotent operations) of
the CSS and JS code at the client. The migration of execution mid-
flight from the proxy to the client makes partial elimination fairly
complex. It is further complicated by issues such as modifications
to the underlying JavaScript engine, browser consistency at the
proxy and client, and not supporting widely-used JS constructs

such as eval [43] prior to page load. A recent emulation-based
study [40] posits that mobile web latencies are compute-bound.
Our measurements on real LTE networks with mobile clients show
that the network is a significant component of latency (see Fig. 1a).
Consequently, the benefit of reduced compute delay while adding
network delay may be relatively small in latency-dominated cellular
networks.
Content Push: The benefits of server push over basic SPDY are
well known [55]. Klotski [18] does a limited form of push where
only static objects (invariant across users and multiple runs) are
pushed, with other objects pulled by the client. Recent works [30,
37] augment server push to ensure that the server does not push
objects already in the client’s cache. In contrast, we seek to solve the
harder problem of identifying all the objects relevant to the client
(including personalized content), and push those objects. With
NutShell, we improve the scaling of redundant execution proxies
to fully derive the advantages of push. Wang et al. [57] show the
benefits of pre-loading resources of a page through speculative
prefetching - we derive similar benefits through proxy-based push.
Compression, transformation and prioritization: Several pop-
ular browsers [5, 6, 12] reduce the size of data transferred by in-
cluding support for data transformation and compression in the
cloud. However, compression by itself does not always lower laten-
cies [12, 50, 51]. Klotski [18] reprioritizes content so that critical
content is delivered early by using a dependency structure of ob-
jects and user preferences. Incorporating user preferences may not
be easy in practice. Polaris [41] proposes dynamic re-prioritization
of object fetches by tracking fine-grained dependencies in Web
pages. For best results with Polaris, the page has to be served from
a single server. WebGaze [35] employs user gaze tracking to au-
tomatically identify critical content. Requiring users to submit to
gaze tracking may not be easy in practice, and it is unclear how the
approach will extend to highly personalized pages where users see
varying content. That said, NutShell is complementary to all these
above approaches, and all the mechanisms above may be readily
combined with NutShell.
Other related work: Beyond web pages, researchers [20, 21, 36,
38, 45–47] have investigated offloading code of generic applications
(e.g., compute intensive face recognition applications) to the cloud,
primarily to reduce computation time and save device energy. In
contrast, we explore redundant execution for networking-intensive
Web download. Tango [28] replicates execution at the client and the
cloud, and allows either replica to lead the execution depending on
which is faster during different phases of the application. Because
either replica may affect user-visible content, Tango is unable to
leverage approximation or to execute only a subset of JS code, which
are the two key optimizations that NutShell employs. NutShell’s
two-version testing has similarities to A/B testing. However, while
A/B testing is typically used to measure the impact of user-visible
changes on user behavior [22]. NutShell’s approach is an internal
method to determine if a function can be whittled; end users see a
single unmodified view of the Web page.

8 CONCLUSION
In this paper, we have presented NutShell, a proxy design that can
simultaneously (i) achieve low latency over cellular networks by

pushing all objects needed for a page load through redundant execu-
tion; and (ii) scale to support more simultaneous users by reducing
JS computation overheads at the proxy. NutShell achieves the above
through whittling – a novel technique to dynamically identify and
execute only a portion of the JS code necessary to identify and push
objects required for a page load. Whittling exploits the fact that
approximation is acceptable at the proxy, given the client executes
the full JS code. Experiments with 78 popular Alexa web sites reveal
that NutShell sustains 27% higher user requests per second on aver-
age than FullRedEx. Further, by combining redundant execution and
whittling, NutShell achieves speedups in median page load times of
1.5 compared to SPDY, and speedups of 20% compared to FullRedEx
for 15% of the pages.

In the future, we plan to investigate ways to achieve more scaling
for NutShell while keeping latency penalties small. A potential
direction is to tune our whittling technique to eliminate functions
only responsible for fetching a small number of objects. Another
interesting direction is to analyze the extent of personalization in a
page, and employ redundant execution for more personalized pages,
and push objects based on historical accesses for less personalized
pages. Finally, we also hope to further validate NutShell through
real-world deployments.

9 ACKNOWLEDGMENTS
We thank our shepherd Matt Welsh and the anonymous review-
ers for their constructive feedback and comments. This work was
supported by the National Science Foundation (NSF) Award CNS-
1618921. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of NSF.

REFERENCES
[1] 2008. The Psychology of Web Performance. (2008). http://www.

websiteoptimization.com/speed/tweak/psychology-web-performance.
[2] 2009. JavaScript beautifier. (2009). http://jsbeautifier.org.
[3] 2009. Latency - it costs you. http://highscalability.com/latency-everywhere-and-

it-costs-you-sales-how-crush-it. (2009).
[4] 2009. Slow pages lose users. http://radar.oreilly.com/2009/06/

bing-and-google-agree-slow-pag.html. (2009).
[5] 2011. Amazon Silk Split Browser Architecture. (2011). https://s3.amazonaws.

com/awsdocs/AmazonSilk/latest/silk-dg.pdf.
[6] 2011. Opera Mini Architecture and JavaScript. (2011). http://dev.opera.com/

articles/view/opera-mini-and-javascript/.
[7] 2012. Google Speed-index. https://sites.google.com/a/webpagetest.org/docs/

using-webpagetest/metrics/speed-index. (2012).
[8] 2014. Record and play back web pages with simulated network conditions. (Oct

2014). https://github.com/chromium/web-page-replay/.
[9] 2015. Alexa Traffic Data. (2015). http://www.rank2traffic.com.
[10] 2015. Chrome devtools JavaScript CPU profiler. (2015). https://tinyurl.com/

yb8uxpxl.
[11] 2017. SkyFire - Cloud based Mobile Optimization Browser (Now Opera). (2017).

http://www.skyfire.com/operator-solutions/whitepapers.
[12] Victor Agababov, Michael Buettner, Victor Chudnovsky, Mark Cogan, Ben Green-

stein, Shane McDaniel, Michael Piatek, Colin Scott, Matt Welsh, and Bolian
Yin. 2015. Flywheel: Google’s Data Compression Proxy for the Mobile Web. In
Proceedings of the 12th USENIX Conference on Networked Systems Design and
Implementation (NSDI’15). USENIX Association, Berkeley, CA, USA, 367–380.
http://dl.acm.org/citation.cfm?id=2789770.2789796

[13] Alexa. 2017. (2017). Available at http://www.alexa.com/topsites.
[14] Virgílio Almeida, Azer Bestavros, Mark Crovella, and Adriana de Oliveira. 1996.

Characterizing Reference Locality in the WWW. In Proceedings of the Fourth
International Conference on on Parallel and Distributed Information Systems (DIS
’96). IEEE Computer Society, Washington, DC, USA, 92–107. http://dl.acm.org/
citation.cfm?id=382006.383200

http://www.websiteoptimization.com/speed/tweak/psychology-web-performance
http://www.websiteoptimization.com/speed/tweak/psychology-web-performance
http://jsbeautifier.org
http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html
http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html
https://s3.amazonaws.com/awsdocs/AmazonSilk/latest/silk-dg.pdf
https://s3.amazonaws.com/awsdocs/AmazonSilk/latest/silk-dg.pdf
http://dev.opera.com/articles/view/opera-mini-and-javascript/
http://dev.opera.com/articles/view/opera-mini-and-javascript/
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://github.com/chromium/web-page-replay/
http://www.rank2traffic.com
https://tinyurl.com/yb8uxpxl
https://tinyurl.com/yb8uxpxl
http://www.skyfire.com/operator-solutions/whitepapers
http://dl.acm.org/citation.cfm?id=2789770.2789796
http://www.alexa.com/topsites
http://dl.acm.org/citation.cfm?id=382006.383200
http://dl.acm.org/citation.cfm?id=382006.383200

[15] David Binkley, Nicolas Gold, Mark Harman, Syed Islam, Jens Krinke, and Shin Yoo.
2014. ORBS: Language-independent Program Slicing. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE 2014). ACM, New York, NY, USA, 109–120. https://doi.org/10.1145/2635868.
2635893

[16] L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker. 1999. Web caching and Zipf-
like distributions: evidence and implications. In INFOCOM ’99. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies. Proceedings.
IEEE, Vol. 1. 126–134 vol.1. https://doi.org/10.1109/INFCOM.1999.749260

[17] Michael Butkiewicz, Harsha V Madhyastha, and Vyas Sekar. 2011. Understanding
website complexity: measurements, metrics, and implications. In Proceedings of
the 2011 ACM SIGCOMM conference on Internet measurement conference. ACM,
313–328.

[18] Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V. Madhyastha, and Vyas
Sekar. 2015. Klotski: Reprioritizing Web Content to Improve User Experience on
Mobile Devices. In 12th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 15). USENIXAssociation, Oakland, CA, 439–453. https://www.
usenix.org/conference/nsdi15/technical-sessions/presentation/butkiewicz

[19] Ramón Cáceres, Landon Cox, Harold Lim, Amre Shakimov, and Alexander
Varshavsky. 2009. Virtual Individual Servers As Privacy-preserving Proxies
for Mobile Devices. In Proceedings of the 1st ACM Workshop on Networking,
Systems, and Applications for Mobile Handhelds (MobiHeld ’09). 37–42. https:
//doi.org/10.1145/1592606.1592616

[20] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin
Patti. 2011. CloneCloud: Elastic Execution Between Mobile Device and Cloud. In
Proceedings of the Sixth Conference on Computer Systems (EuroSys ’11). 301–314.
https://doi.org/10.1145/1966445.1966473

[21] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. 2010. MAUI: Making Smartphones
Last Longer with Code Offload. In Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services (MobiSys ’10). 49–62. https://doi.
org/10.1145/1814433.1814441

[22] Pete Koomen Dan Siroker. 2013. A/B Testing: The Most Powerful Way to Turn
Clicks Into Customers. Wiley.

[23] Richard A. DeMillo, Hsin Pan, and Eugene H. Spafford. 1996. Critical Slicing for
Software Fault Localization. In Proceedings of the 1996 ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’96). ACM, New York, NY,
USA, 121–134. https://doi.org/10.1145/229000.226310

[24] KIT EATON. 2012. How One Second Could Cost Amazon 1.6 Bil-
lion In Sales. (2012). https://www.fastcompany.com/1825005/
how-one-second-could-cost-amazon-16-billion-sales.

[25] Jeffrey Erman, Vijay Gopalakrishnan, Rittwik Jana, and K. K. Ramakrishnan. 2013.
Towards a SPDY’Ier Mobile Web?. In Proceedings of the Ninth ACM Conference
on Emerging Networking Experiments and Technologies (CoNEXT ’13). 303–314.
https://doi.org/10.1145/2535372.2535399

[26] Stephen J. Fink and Julian Dolby. 2012. WALA-The T. J. Watson Libraries for
Analysis. (2012). http://wala.sourceforge.net/.

[27] Google. 2009. Whitepaper – SPDY: An experimental protocol for a faster web.
(Dec 2009). http://www.chromium.org/spdy/spdy-whitepaper.

[28] Mark S. Gordon, David Ke Hong, Peter M. Chen, Jason Flinn, Scott Mahlke, and
Zhuoqing Morley Mao. 2015. Accelerating Mobile Applications Through Flip-
Flop Replication. In Proceedings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services (MobiSys ’15). ACM, New York, NY,
USA, 137–150. https://doi.org/10.1145/2742647.2742649

[29] Ilya Grigorik. 2013. Node SPDY proxy. (2013). https://github.com/igrigorik/
node-spdyproxy.

[30] Bo Han, Shuai Hao, and Feng Qian. 2015. MetaPush: Cellular-Friendly Server
Push For HTTP/2. In Proceedings of the 5th Workshop on All Things Cellular:
Operations, Applications and Challenges (AllThingsCellular ’15). ACM, New York,
NY, USA, 57–62. https://doi.org/10.1145/2785971.2785972

[31] Ariya Hidayat. 2010. PhantomJS APIs. (2010). http://phantomjs.org/api/
[32] IETF. 2015. Hypertext Transfer Protocol Version 2. (June 2015). https://tools.ietf.

org/html/rfc7540.
[33] Sunghwan Ihm and Vivek S Pai. 2011. Towards understanding modern web traffic.

In Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement
conference. ACM, 295–312.

[34] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons,
John Sarracino, BenWiedermann, and Ben Hardekopf. 2014. JSAI: A Static Analy-
sis Platform for JavaScript. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2014). ACM, New York,
NY, USA, 121–132. https://doi.org/10.1145/2635868.2635904

[35] Conor Kelton, Jihoon Ryoo, Aruna Balasubramanian, and Samir R. Das. 2017.
Improving User Perceived Page Load Times Using Gaze. In 14th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 17). https:
//www.usenix.org/conference/nsdi17/technical-sessions/presentation/ryoo

[36] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri E. Bal. 2010. Cuckoo:
A Computation Offloading Framework for Smartphones.. In MobiCASE (Lecture

Notes of the Institute for Computer Sciences, Social Informatics and Telecommunica-
tions Engineering), Martin L. Gris and Guang Yang 0001 (Eds.), Vol. 76. Springer,
59–79. https://doi.org/10.1007/978-3-642-29336-8_4

[37] Junaid Khalid, Sharad Agarwal, Aditya Akella, and Jitendra Padhye. 2054. Im-
proving the performance of SPDY for mobile devices (POSTER). In Proceedings of
the 16th Workshop on Mobile Computing Systems and Applications (HotMobile ’15).
ACM, New York, NY, USA.

[38] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen Zhang.
2012. ThinkAir: Dynamic resource allocation and parallel execution in the
cloud for mobile code offloading. In INFOCOM, 2012 Proceedings IEEE. 945–953.
https://doi.org/10.1109/INFCOM.2012.6195845

[39] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy Blackburn,
Diego R. López, Konstantina Papagiannaki, Pablo Rodriguez Rodriguez, and
Peter Steenkiste. 2015. Multi-Context TLS (mcTLS): Enabling Secure In-Network
Functionality in TLS. In Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication (SIGCOMM ’15). ACM, New York, NY, USA, 199–
212. https://doi.org/10.1145/2785956.2787482

[40] Javad Nejati and Aruna Balasubramanian. 2016. An In-depth Study of Mobile
Browser Performance. In Proceedings of the 25th International Conference onWorld
Wide Web (WWW ’16). International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva, Switzerland, 1305–1315. https:
//doi.org/10.1145/2872427.2883014

[41] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. 2016.
Polaris: Faster Page Loads Using Fine-grained Dependency Tracking. In 13th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 16).
Santa Clara, CA. https://www.usenix.org/conference/nsdi16/technical-sessions/
presentation/netravali

[42] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Win-
stein, James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate Record-
and-Replay for HTTP. In 2015 USENIX Annual Technical Conference (USENIX
ATC 15). 417–429. https://www.usenix.org/conference/atc15/technical-session/
presentation/netravali

[43] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. 2011. The
Eval That Men Do: A Large-scale Study of the Use of Eval in Javascript Ap-
plications. In Proceedings of the 25th European Conference on Object-oriented
Programming (ECOOP’11). Springer-Verlag, Berlin, Heidelberg, 52–78. http:
//dl.acm.org/citation.cfm?id=2032497.2032503

[44] Jim Roskind. 2013. QUIC: Design Document and Specification Rationale. (Dec
2013). http://goo.gl/p2mbcf.

[45] Aki Saarinen, Matti Siekkinen, Yu Xiao, Jukka K. Nurminen, Matti Kemppainen,
and Pan Hui. 2012. Can Offloading Save Energy for Popular Apps?. In Proceedings
of the Seventh ACM International Workshop on Mobility in the Evolving Internet
Architecture (MobiArch ’12). 3–10. https://doi.org/10.1145/2348676.2348680

[46] Aki Saarinen, Matti Siekkinen, Yu Xiao, Jukka K. Nurminen, Matti Kemppainen,
and Pan Hui. 2012. SmartDiet: Offloading Popular Apps to Save Energy (POSTER).
In Proceedings of the 2012 ACM Conference of the Special Interest Group on
Data Communications (SIGCOMM ’12). 297–298. https://doi.org/10.1145/2342356.
2342418

[47] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Cáceres, and Nigel Davies. 2011.
The Case for VM-based Cloudlets in Mobile Computing. Pervasive Computing,
IEEE PP, 99 (2011), 1–1. https://doi.org/10.1109/MPRV.2009.64

[48] Max Schaefer, Manu Sridharan, and Julian Dolby. 2014. Analyzing JavaScript
and the Web with WALA. (2014). http://wala.sourceforge.net/files/
WALAJavaScriptTutorial.pdf.

[49] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. 2015. Blind-
Box: Deep Packet Inspection over Encrypted Traffic. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication (SIGCOMM
’15). ACM, New York, NY, USA, 213–226. https://doi.org/10.1145/2785956.2787502

[50] Shailendra Singh, Harsha V.Madhyastha, Srikanth V. Krishnamurthy, and Ramesh
Govindan. 2015. FlexiWeb: Network-Aware Compaction for Accelerating Mobile
Web Transfers. In Proceedings of the 21st Annual International Conference on
Mobile Computing and Networking (MobiCom ’15). ACM, New York, NY, USA,
604–616. https://doi.org/10.1145/2789168.2790128

[51] Ashiwan Sivakumar, Vijay Gopalakrishnan, Seungjoon Lee, Sanjay Rao, Sub-
habrata Sen, and Oliver Spatscheck. 2014. Cloud is Not a Silver Bullet: A Case
Study of Cloud-based Mobile Browsing. In Proceedings of the 15th Workshop on
Mobile Computing Systems and Applications (HotMobile ’14). ACM, New York, NY,
USA, Article 21, 6 pages. https://doi.org/10.1145/2565585.2565601

[52] Ashiwan Sivakumar, Shankaranarayanan P N, Vijay Gopalakrishnan, Seungjoon
Lee, Sanjay Rao, Subhabrata Sen, and Oliver Spatscheck. 2014. PARCEL: Proxy
Assisted BRowsing in Cellular networks for Energy and Latency reduction. In
Proceedings of the Tenth ACM Conference on Emerging Networking Experiments
and Technologies (CoNEXT ’14).

[53] Frank Tip. 1995. A Survey of Program Slicing Techniques. Journal of Programming
Languages 3 (1995), 121–189.

[54] Qi Wang, Jingyu Zhou, Yuting Chen, Yizhou Zhang, and Jianjun Zhao. 2013.
Extracting URLs from JavaScript via Program Analysis. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2013). ACM,

https://doi.org/10.1145/2635868.2635893
https://doi.org/10.1145/2635868.2635893
https://doi.org/10.1109/INFCOM.1999.749260
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/butkiewicz
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/butkiewicz
https://doi.org/10.1145/1592606.1592616
https://doi.org/10.1145/1592606.1592616
https://doi.org/10.1145/1966445.1966473
https://doi.org/10.1145/1814433.1814441
https://doi.org/10.1145/1814433.1814441
https://doi.org/10.1145/229000.226310
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://doi.org/10.1145/2535372.2535399
http://wala.sourceforge.net/
http://www.chromium.org/spdy/spdy-whitepaper
https://doi.org/10.1145/2742647.2742649
https://github.com/igrigorik/node-spdyproxy
https://github.com/igrigorik/node-spdyproxy
https://doi.org/10.1145/2785971.2785972
http://phantomjs.org/api/
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540
https://doi.org/10.1145/2635868.2635904
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/ryoo
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/ryoo
https://doi.org/10.1007/978-3-642-29336-8_4
https://doi.org/10.1109/INFCOM.2012.6195845
https://doi.org/10.1145/2785956.2787482
https://doi.org/10.1145/2872427.2883014
https://doi.org/10.1145/2872427.2883014
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/netravali
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/netravali
https://www.usenix.org/conference/atc15/technical-session/presentation/netravali
https://www.usenix.org/conference/atc15/technical-session/presentation/netravali
http://dl.acm.org/citation.cfm?id=2032497.2032503
http://dl.acm.org/citation.cfm?id=2032497.2032503
http://goo.gl/p2mbcf
https://doi.org/10.1145/2348676.2348680
https://doi.org/10.1145/2342356.2342418
https://doi.org/10.1145/2342356.2342418
https://doi.org/10.1109/MPRV.2009.64
http://wala.sourceforge.net/files/WALAJavaScriptTutorial.pdf
http://wala.sourceforge.net/files/WALAJavaScriptTutorial.pdf
https://doi.org/10.1145/2785956.2787502
https://doi.org/10.1145/2789168.2790128
https://doi.org/10.1145/2565585.2565601

New York, NY, USA, 627–630. https://doi.org/10.1145/2491411.2494583
[55] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David

Wetherall. 2014. How Speedy is SPDY?. In Proceedings of the 11th USENIX Con-
ference on Networked Systems Design and Implementation (NSDI’14). 387–399.
http://dl.acm.org/citation.cfm?id=2616448.2616484

[56] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. 2016. Speeding
up Web Page Loads with Shandian. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16). USENIX Association, Santa Clara,
CA, 109–122. https://www.usenix.org/conference/nsdi16/technical-sessions/
presentation/wang

[57] Zhen Wang, Felix Xiaozhu Lin, Lin Zhong, and Mansoor Chishtie. 2012. How Far
Can Client-only Solutions Go for Mobile Browser Speed?. In Proceedings of the
21st International Conference on World Wide Web (WWW ’12). ACM, New York,
NY, USA, 31–40. https://doi.org/10.1145/2187836.2187842

[58] Mark Weiser. 1981. Program Slicing. In Proceedings of the 5th International
Conference on Software Engineering (ICSE ’81). IEEE Press, Piscataway, NJ, USA,
439–449. http://dl.acm.org/citation.cfm?id=800078.802557

[59] W3C working group. 2012. Media Queries : W3C. (2012). https://www.w3.org/
TR/css3-mediaqueries/

[60] W3C working group. 2014. WPO-Foundation/visualmetrics. (2014). https:
//github.com/WPO-Foundation/visualmetrics

[61] Andreas Zeller. 2002. Isolating Cause-effect Chains from Computer Programs.
In Proceedings of the 10th ACM SIGSOFT Symposium on Foundations of Software
Engineering (SIGSOFT ’02/FSE-10). ACM, New York, NY, USA, 1–10. https://doi.
org/10.1145/587051.587053

[62] Bo Zhao, Byung Chul Tak, and Guohong Cao. 2011. Reducing the Delay and
Power Consumption of Web Browsing on Smartphones in 3G Networks. In
Proceedings of the 2011 31st International Conference on Distributed Computing
Systems (ICDCS ’11). 413–422. https://doi.org/10.1109/ICDCS.2011.54

https://doi.org/10.1145/2491411.2494583
http://dl.acm.org/citation.cfm?id=2616448.2616484
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/wang
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/wang
https://doi.org/10.1145/2187836.2187842
http://dl.acm.org/citation.cfm?id=800078.802557
https://www.w3.org/TR/css3-mediaqueries/
https://www.w3.org/TR/css3-mediaqueries/
https://github.com/WPO-Foundation/visualmetrics
https://github.com/WPO-Foundation/visualmetrics
https://doi.org/10.1145/587051.587053
https://doi.org/10.1145/587051.587053
https://doi.org/10.1109/ICDCS.2011.54

	Abstract
	1 Introduction
	2 Motivation
	3 NutShell Design
	3.1 Whittling individual functions
	3.2 Whittling across functions
	3.3 Amortizing overheads across page loads

	4 Implementation
	5 Evaluation Methodology
	6 Results
	6.1 Scaling benefits of NutShell
	6.2 Effectiveness of whittling
	6.3 Impact of NutShell on client latency
	6.4 Re-using whittling across users
	6.5 Redundantly pushed data

	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References

