
WatchTower: Fast, Secure Mobile Page Loads MobiSys ’19, June 17–21, 2019, Seoul, South Korea

Supplementary Material For WatchTower

A COOKIES, PROXYING, AND USER PRIVACY
Web sites use cookies to store client-side, per-user metadata like
con�guration preferences. When a browser generates a request for
http://foo.com/someObj, the browser attaches any client-side
cookies that belong to foo.com, using HTTP headers in the request
to transmit the cookie values to the web server. If a cookie value is
marked as Secure [38], the browser will only transmit the value
to foo.com’s HTTPS servers (meaning that requests for foo.com’s
HTTP objects will not include Secure cookie values).

Even non-Secure cookie values may contain sensitive informa-
tion, because cookies are frequently used by web sites to track user
browsing habits [69]. However, if users do not share their cookies
with proxies, those proxies will be unable to fetch customized data
on behalf of the users. Thus, Cumulus and all other proxy systems
have to make a policy decision about which cookies a user will
share with proxies. For example, Flywheel [2] only handles HTTP
tra�c, so Flywheel proxies only see non-Secure cookies. In con-
trast, Opera Mini [56] processes both HTTP and HTTPS tra�c, and
sees all user cookies.

Cumulus de�nes two di�erent policies for handling cookies.
When using the permissive cookie-sharing policy, Cumulus does the
following:
• For HTTP-only proxying, the client-side Cumulus agent sends
all non-Secure HTTP cookies to the remote proxy. This privacy
model is equivalent to that of Flywheel.

• In full dependency resolution mode, Cumulus sends both Secure
and non-Secure cookies to the remote proxy. The resulting pri-
vacy model is similar to that of Opera Mini.

• When performing HTTPS-sharding (§4), Cumulus sends all non-
Secure cookies to the proxy for HTTPS origin foo.com, but only
the Secure cookies that belong to foo.com. This approach never
exposes Secure cookies outside their origin, while still allowing
HTTPS proxying of customized content. The scope of disclosure
for non-Secure cookies is the same as in Flywheel.

As an alternative to the permissive sharing policy, Cumulus also
supports a restricted sharing policy. In this policy, the client-side
Cumulus agent performs no bulk synchronization of cookies with
the proxy. Thus, the only cookies that a proxy can see are the ones
that are embedded in a client’s initial RESOLVE request for top-level
HTML (see Figures 2 and 4). Importantly, neither cookie policy can
break the correctness of the user-visible page load. The reason is that
Cumulus’ client-side caching agent only de�nes a request to hit
in the cache if all of the local browser’s request headers match
the ones that were generated by the remote proxy. So, if a remote
proxy fetched http://foo.com/obj without sending any cookies,
but the request from the user’s browser does include cookies, the
fetch from the user’s browser will not hit in the Cumulus cache,
and the user’s browser will directly fetch the object from foo.com.
All of our evaluation results use the restrictive sharing policy; thus,
our performance numbers represent conservative estimates of a
proxy’s ability to reduce load times.

Figure 16: Distribution of the percentage di�erence in page
load times betweenOperaMini andCumulus running in full
dependency resolution mode.

Figure 17: Distribution of the percent di�erence in page load
times between Flywheel and compression-only Cumulus.

B CALIBRATING CUMULUS
To calibrate the performance of compression-only Cumulus with
respect to Flywheel, we loaded the Alexa US Top 500 pages with
the Chrome browser (version 51). We con�gured the browser to use
either the Cumulus proxy, or the Flywheel proxy. The location of the
Flywheel proxy (as chosen by the Chrome Proxy Plugin [27]) was
northern California; to provide a fair comparison with Cumulus,
we ran the Cumulus proxy on an Amazon EC2 instance in northern
California. We loaded each page �ve times using Cumulus, and �ve
times using Flywheel; we took the average load time using both
systems, and then recorded the percent di�erence in average load
time. Figure 17 shows the CDF of that di�erence, indicating that the
median Cumulus load time is 1.27% faster than the corresponding
Flywheel load time. Thus, we believe that Cumulus in compression-
only mode is competitive with a state-of-the-art compression proxy,
at least with respect to page load time (which is the focus of this
paper).

We also calibrated the performance of Cumulus’ remote depen-
dency resolution with respect to Opera Mini [13, 56], an existing
proxy that performs full dependency resolution. Opera Mini de-
faults to requesting the mobile versions of web pages, so our test
corpus used a set of 20 mobile pages from the Alexa US Top 500.
The client was a desktop browser. In the Cumulus experiments, the
client set its User-agent HTTP header to a value which convinced
web servers to return the mobile versions of pages. The location of
Opera Mini’s proxy was in Virginia, so we ran the Cumulus proxy
on an Amazon EC2 instance in Virginia.



MobiSys ’19, June 17–21, 2019, Seoul, South Korea R. Netravali, A. Sivaraman, J. Mickens, H. Balakrishnan

WatchTower WatchTower Always-On Always-On
Client network HTTP-only HTTPS-sharding HTTP-only HTTPS-sharding
4G LTE Cellular 1.39⇥ 1.54⇥ 1.10⇥ 1.26⇥
Residential WiFi 1.18⇥ 1.41⇥ 1.06⇥ 1.15⇥
Wired Broadband 1.07⇥ 1.19⇥ 1.02⇥ 1.08⇥

Table 5: Median speedups in Speed Index forWatchTower and always-on proxying; the performance baseline is a browser that
never used proxying.

Figure 18: For a last-mile RTT of 50 ms, speedup is mostly
insensitive to last-mile bandwidth. These experiments used
full dependency resolution, but the trends are similar for
HTTP-only and HTTPS-sharding.

Figure 16 compares load times using Opera Mini and Cumulus
running full RDR. Cumulus exhibited similar performance to Opera
Mini, providing a median load time that was 5.3% faster. Thus, we
believe that Cumulus is representative of state-of-the-art proxies
that perform remote dependency resolution.

C REMOTE DEPENDENCY RESOLUTION AND
LAST-MILE BANDWIDTH

In this section, we provide a simple but illustrative demonstration of
how the e�ectiveness of remote dependency resolution is generally
insensitive to link bandwidth. These results, when combined with
those from Section 5.1, validate prior research which indicates that
page loads are much more sensitive to latency than bandwidth [2,
8, 42, 68].

Using Mahimahi, we created an emulated network in which:
• the proxy had an in�nite bandwidth, zero latency link to origin
servers,

• RTTclient�prox� and RTTclient�or i�in were �xed at 50 ms, and
• last-mile bandwidth was set to 1, 5, 12, or 25 Mbits/s.
Figure 18 shows that, across all 500 pages in our test corpus,
speedups from full dependency resolution were largely insensi-
tive to last-mile bandwidth. Since most web objects are small [24],
an object’s bandwidth-induced transfer delay is generally dwarfed
by its latency-induced delay. For example, consider the Google page
(which was 63 KB in size) and the TMZ page (which was 6.9 MB
in size). Proxy speedups for the Google page varied less than 1.7%
across all link rates. In contrast, for the TMZ page, the speedup
was 1.64⇥ at 1 Mbit/s, but 1.88⇥ at 5 Mbit/s and above. For a larger
page like TMZ, the bene�ts from remote dependency resolution
initially increase as bandwidth increases (and latency becomes a
more dominant factor in overall fetch costs). However, the bene�ts
eventually plateau as non-parallelizable fetch latencies dominate
the overall page load time.

Figure 19: Speedups for WatchTower and always-on proxy-
ingwithwarmbrowser caches on a cellular network.We saw
similar trends for the other networks.

Figure 20: Speedups for WatchTower and always-on proxy-
ing with a cellular network. In contrast to Figure 11(a), per-
formance is de�ned using Speed Index [29] instead of the
traditional page load time de�nition.

D EVALUATINGWATCHTOWERWITH
WARM BROWSER CACHES

Warm caches reduce the number of object fetches that a proxy can
optimize. To determine whether Watchtower provides bene�ts in
these situations, we reran the caching experiment from Section 4,
comparingWatchtower and an always-on proxy to the performance
baseline of a browser that never used a proxy. Watchtower em-
ployed the same analytic models from Section 6.1, associating each
cached object with an estimated fetch latency of 0 ms.

Figure 19 shows that Watchtower still provides signi�cant bene-
�ts if caches are warm. For the HTTP-only scheme, an always-on
proxy slows 51.4% of page loads; for Watchtower, only 1.8% of page
loads su�er. For HTTPS-sharding, an always-on approach hurts
30.8% of loads; Watchtower reduces that number to 1.7%. For both
HTTPS-sharding and HTTP-only,Watchtower reduces median load
times by roughly 40%.



WatchTower: Fast, Secure Mobile Page Loads MobiSys ’19, June 17–21, 2019, Seoul, South Korea

E EVALUATINGWATCHTOWER ON SPEED
INDEX

The traditional de�nition for “page load time” states that a page is
not loaded until a browser has fetched all of the external resources
(e.g., images and JavaScript �les) that are referenced by the page’s
top-level HTML. In contrast, a page’s Speed Index [29] represents
the time that a browser needs to completely render the pixels in the
initial view of the page. By focusing on the visual progression of
“above-the-fold” content, Speed Index tries to capture the subjective
preference of a human who favors a quickly-rendering page, even if
some of the JavaScript or below-the-fold content is not immediately
ready. Speed Index cannot represent the fact that a fully-rendered
page is not truly ready until JavaScript event handlers have been
registered, and JavaScript timers have started to implement anima-
tions. Thus, Speed Index is not strictly better than the traditional

PLT metric. Nevertheless, Speed Index provides a useful second
perspective for understanding page loads.

Table 5 shows that, across all three test networks, WatchTower
provides signi�cant reductions in Speed Index compared to an
Always-On proxying system. Figure 20 illustrates those savings for
the cellular network scenario, where median speedups for always-
on proxying were 1.10⇥ and 1.26⇥ for HTTP-only and HTTPS-
sharding resolution, respectively.WithWatchTower, speedupswere
1.39⇥ and 1.54⇥. In terms of raw savings, this equated to removing
428–562 milliseconds of load time relative to the always-on model.

These savings, while practically useful, are less than the savings
that WatchTower provides for the traditional de�nition of page load
time. This discrepancy is expected, since WatchTower’s algorithms
(§6.1) speci�cally target the traditional load time metric, not Speed
Index. Modifying WatchTower’s algorithms to target Speed Index
is an important area for future research.


