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Abstract

As future technologies push towards higher clock rates, tra-
ditional scheduling techniques that are based on wake-up and
select from an instruction window fail to scale due to their
circuit complexities. Speculative instruction schedulers can
significantly reduce logic on the critical scheduling path, but
can suffer from instruction misscheduling that can result in
wasted issue opportunities.

Misscheduled instructions can spawn other misscheduled in-
structions, only to be replayed over again and again until cor-
rectly scheduled. These “tornadoes” in the speculative sched-

uler are characterized by extremely low useful scheduling through-

put and a high volume of wasted issue opportunities. The
impact of tornadoes becomes even more severe when using Si-
multaneous Multithreading. Misschedulings from one thread
can occupy a significant portion of the processor issue band-
width, effectively starving other threads.

In this paper, we propose Zephyr, an architecture that in-
hibits the formation of tornadoes. Zephyr makes use of exist-
ing load latency prediction techniques as well as coarse-grain
FIFO queues to buffer instructions before entering schedul-
ing queues. On average, we observe a 23% improvement in
IPC performance, 60% reduction in hazards, 41% reduction
in occupancy, and 48% reduction in the number of replays
compared with a baseline scheduler.

1. INTRODUCTION AND MOTIVATION

The performance of an out-of-order superscalar processor
relies on the discovery and exploitation of instruction-level
parallelism (ILP) and/or thread-level parallelism (TLP). How-
ever, the amount of ILP and TLP that a processor can extract
is constrained by the design of the instruction scheduler and
the size of the issue window. The instruction scheduler and
issue window may prove difficult to scale to future technology
goals due to the impact of wire latency. Circuit-level studies
of dynamic scheduler logic have shown that broadcast logic
dominates performance and power [12, 4], which complicates
the scaling of the issue queue.

A number of prior studies [5, 7, 8, 6] have examined instruc-
tion schedulers that eschew the need for complex wakeup and
selection logic and are able to hide the latency of the schedule-
to-execute window through speculative scheduling. One ex-
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ample of this is Cyclone [5], which relies on a simple mech-
anism to predict the expected issue time of each instruction,
and then delays the issue of the instruction based on this pre-
diction via scheduling queues. However, misschedulings can
occur for the dependents of loads that miss in the first level
data cache. In addition, structural hazards in the switchback
paths, also known as switchback conflicts/hazards, happen
when an instruction wishes to cross from the replay queue to
the main queue but cannot do so if that slot is already occu-
pied. These hazards subsequently cause misschedulings of its
descendants.

Prior work demonstrates that a large fraction of instruc-
tions directly or indirectly depends on load operations [10].
If a load misses, its dependents may be replayed many times
before the load completes. Replayed instructions are likely
to prevent independent instructions from moving through the
switchback queues, further contributing to structural hazards.
Hazards are likely to increase in processors with Simultane-
ous Multithreading (SMT) [15, 16], where overall switchback
queue utilization increases. SMT also results in a greater
number of loads and more contention in shared cache re-
sources, which can lead to more replays. The positive feed-
back loop between replays and structural hazards can degrade
performance dramatically for an SMT processor, as we will
demonstrate in Sections 4 and 5. The feedback loop even-
tually results in many instructions requiring replay, circulat-
ing around the Cyclone queues many times before correctly
scheduling. This has been called the Tornado Effect [2].

One solution might be to apply simple techniques such as
increasing the replay interval, limiting the number of instruc-
tions in the scheduler, or flushing threads on a cache miss [14]
to prevent tornadoes. However, these techniques inevitably
decrease the amount of ILP, and as our experiments show,
degrade performance.

Liu et al. [10] developed techniques to predict the execution
time of load instructions in the early stages of the pipeline in
an effort to scale the size of the instruction window for a con-
ventional instruction scheduler. They use simple FIFOs with
different buffer lengths that buffer instructions based on their
predicted execution time to prevent instructions from entering
the issue window before their operands are ready — effectively
providing out-of-order entry into the issue window. However,
their technique does not include any dynamic adaptation to
mispredicted load latency, and dependents of a misscheduled
load can still clog the issue queue and degrade performance.

A natural solution to these challenges might be the addi-
tion of load latency prediction techniques from Liu et al. [10]
to the Cyclone scheduler. Such a solution should decrease the
number of hazards and replays, thereby improving scheduler
performance. However, our experimental results demonstrate
that this naive combination creates even more structural haz-
ards, and degrades processor performance. The additional
structural hazards come from the increased utilization of the



scheduling queues. We will explore this impact on the Tor-
nado Effect in more depth in later sections.

As an alternative, we propose Zephyr, an architecture that
effectively prevents the formation of tornadoes. Zephyr buffers
instructions using coarse-grain FIFO queues. Instructions are
released into the scheduling queues only when they are close
to their scheduled execution time. This way, we keep the
scheduling queue occupancy low to maintain its switchback
efficiency. The switchback queues still provide dynamic adap-
tation to mispredicted instruction latency and selective replay.
Our results show that Zephyr is able to eliminate a substan-
tial amount of structural hazards and replays, improving IPC
significantly.

However, Zephyr does not eliminate replays completely, and
some instructions still enter the scheduler prematurely due to
the underestimation of instruction waiting times. This can be
due to imperfect load latency prediction or structural hazards
such as conflicts for functional units. We further propose to
detect the onset of a tornado early on and limit the number of
instructions in the scheduling queues for a thread on the verge
of forming a tornado. Our results demonstrate that Zephyr
with this kind of preventive scheme further eliminates struc-
tural hazards and replays, thereby improving overall IPC.

Our contributions over prior work include:

e An investigation of the impact of structural hazards and
replays on Cyclone in an SMT environment.

e A quantitative study of the Tornado Effect, character-
ized by low execution core throughput due to a high
volume of misschedulings and structural hazards. This
phenomenon may occur in any generalized speculative
scheduler using selective replay, but we limit our analy-
sis to the Cyclone scheduler.

e An analysis of the limitations of a simple integration of
load latency prediction and Cyclone.

e The Zephyr architecture, which effectively prevents the
formation of tornadoes. Zephyr is an integration of a
load latency predictor, a sorting engine implemented
with different length FIFOs, and a Cyclone-style sched-
uler. Zephyr is able to improve IPC significantly over
both a baseline Cyclone scheduler and a simple integra-
tion of Cyclone with a load latency predictor.

The rest of this paper is organized as follows. In Section 2
we discuss prior work, followed by a description of our ex-
perimental methodology in Section 3. Section 4 describes the
tornado phenomenon observed in the Cyclone scheduler. Sev-
eral simple remedies are introduced in Section 5. Section 6
presents the Zephyr architecture. Concluding remarks follow
in Section 7.

2. RELATED WORK

In this section, we review the most relevant prior work in
the areas of instruction scheduling and latency prediction.

2.1 [Instruction Scheduling

Ernst et al. [5] proposed Cyclone, a broadcast-free dynamic
instruction scheduler with selective replay. The Cyclone sched-
uler relies on a simple one-pass scheduling algorithm to pre-
dict the time when instructions should execute. Once decided,
this schedule is implemented with a timed queue structure.
In the event of an incorrect scheduling, Cyclone is also able
to support efficient selective instruction replay [6]. Execu-
tion time prediction is accomplished with a timing table and
MAX calculation. The timing table is indexed by logical reg-
ister, and returns the expected delay until the logical register

is ready. Instructions use the timing table to estimate when
their input dependencies will be available, and are buffered in
a countdown queue for this expected waiting time.

Instructions are injected into the tail of the Cyclone sched-
uler queue with a prediction of how far the instruction should
progress down the countdown queue before turning around
and heading back towards execution in the main queue. As
mentioned, switching back from the countdown to the main
queue can be a source of conflict and must be resolved. Once
an instruction reaches the head of the main queue, a table of
physical register ready bits is used to determine whether or
not all input operands to the instruction are ready. If any
operand is not ready, the instruction is routed back to the
countdown queue and replays. Cyclone has an optimization
option that allows a replayed instruction to consult the timing
table to reevaluate its waiting time. We use this optimized
version for fair comparison. Cyclone assumes that all loads
hit in first level cache. Cache misses will likely result in miss-
cheduled instructions, creating replays.

Hu et al. [7] propose WF-Replay (wakeup free replay), a 32-
entry issue queue structure where instructions can be selected
for issue from any queue slot. Each queue slot tracks the pre-
dicted waiting time for an instruction in a counter, decrement-
ing this waiting time each cycle. The instructions “wake up”
and can be selected for issue only when this counter reaches
zero. This is designed to avoid the structural hazards in the
switchback queues of Cyclone. Instructions must be replayed
if their input dependencies are not ready or if they encounter
a structural hazard (like insufficient functional units). As in
Cyclone, a misscheduling in WF-Replay can potentially cause
a chain of further misschedulings. Structural hazards can still
spawn even more misschedulings — if one instruction is delayed
due to functional unit contention, its dependents can wake up
before their inputs are ready. The selection logic is also a po-
tential bottleneck as every queue slot essentially participates
in selection. This may limit the size of the scheduling win-
dow and the amount of load latency that may be tolerated.
The Precheck enhancement [7] checks the ready-bit register
to avoid replays. However, this introduces new complexity
in that ready-bit register update and instructions selection
must complete in one cycle to ensure dependent instructions
are executed back-to-back. The WF-Segment enhancement
reduces this complexity by selecting instructions only from
the segment of 0 waiting time [7]. However, instructions in
the other segments need to migrate to the lower segments at
the appropriate time, provided that there are no hazards. As
in the switchback queues of Cyclone, this instruction migra-
tion can result in an increase in structural hazards, which in
turn can cause more misscheduled instructions.

Lebeck et al. propose moving instructions dependent on
missed loads into a waiting instruction buffer (WIB) to pre-
vent them from clogging the issue queue [9]. Although not
explicitly mentioned, the scheduler needs to speculate the
presence of a load miss, and then migrate chains of depen-
dent instructions into the WIB. It must also speculate when
a load completes, and then migrate these instructions back
into the issue queue to avoid exposing the pipeline stages from
scheduling to execution.

Both WIB and WF-Replay structures are examples of spec-
ulative scheduling mechanisms that can be impacted by miss-
cheduled instructions and structural hazards beyond just con-
tention for functional units (speculatively switching from IQ
to WIB and back in the case of the WIB and switching be-
tween segments in WF-Segment). In this paper, we focus on
Cyclone, which also exhibits misscheduled instructions and
structural hazards (in the switchback queues), but our ap-
proach could easily be generalized to the WIB, WF-Replay,



Rank by Misschedulings

mcf,equake,ammp,gcc,gzip,lucas,sixtrack,art,parser,twolf,galgel,applu,
facerec,vpr,wupwise,apsi,bzip2,mgrid,gap,perl,mesa,crafty,eon,vortex

Rank by Hazards

gee,equake,art, mcf,applu,vpr,twolf,parser,gzip,eon,ammp,sixtrack,galgel,lucas,
wupwise,crafty,perl,gap,facerec,apsi,bzip2,mesa,vortex,mgrid

Average Rank

equake,(mcf,gcc),art,(gzip,ammp),(parser,twolf,applu) sixtrack,(vpr,lucas),galgel,
wupwise,facerec,eon,apsi,(perl,gap),(crafty,bzip2) ,mgrid,mesa,vortex

Table 1: Ranking of benchmarks by the average misscheduled instructions per cycle, and hazards caused by
misscheduled instructions. The highest six (in bold) and the lowerest six (in italics) from the list of average

rank are chosen.

or any other approach that relies on speculative scheduling to
avoid conventional wakeup and selection logic.

Ehrhart and Patel propose a speculative scheduling scheme
by predicting the instruction waiting times using a PC-indexed
history table [3]. However, the waiting time of a static in-
struction varies dynamically. As a corrective measure, an al-
lowance is added to the predicted waiting time. The allowance
is dynamically and progressively adjusted by balancing be-
tween the amount of replays and the amount of wasted issue
opportunities. Decreasing the allowance will lead to under-
estimation of waiting times, which causes scheduling replays,
while increasing the allowance will cause instructions to wait
unnecessarily long, thus wasting issue opportunities. Instruc-
tions replays or wasted issue opportunities are unavoidable
to guide the process of adjustment. More critically, the time
that dependents of loads need to wait varies largely from one
to hundreds of cycles depending on cache behavior. A history
based prediction scheme performs poorly to capture long la-
tencies caused by cache misses. Therefore, replays due to
cache misses will be frequent in such speculative schedulers.

2.2 Latency Prediction

Liu et al. [10] proposed an instruction sorting engine guided
by latency prediction. Their pre-scheduler attempts to deliver
instructions to a conventional issue queue in the order of their
execution, preventing dependents of long latency instruction
from entering the issue queue and clogging it. Their sched-
uler consists of three major components: a latency prediction
component, a sorting structure consisting of a few FIFOs with
varied lengths, and a Pre-issue buffer where instructions are
buffered before entering the issue queue.

Liu et al. [10] use a hybrid approach to predict memory
access latency in early stages of the pipeline via several struc-
tures. The Latency History Table (LHT) is a last value pre-
dictor indexed by instruction PC and returns the latency ex-
perienced by the last instance of a given load. When the LHT
is unable to predict load latency confidently, Cache Latency
Propagation (CLP) is used. CLP identifies cache misses, and
propagates the completion time of cache misses to any aliasing
load via a structure that stores the Status of In-flight Loads
(SILO). An address predictor is used to generate load ad-
dresses for the CLP structures. This predicted load address
is used to index a miss detection engine [11] which returns
definite miss or maybe hit for that load address. The SILO is
accessed in parallel with the miss detection engine and returns
the latency of in-flight loads.

Once an instruction’s latency is predicted, it is classified
and inserted into one of the FIFO queues, based on its pre-
dicted latency. Instructions leave the sorting queues to a Pre-
issue Buffer (PIB) where they are then delivered to the issue
queue in the sorted order.

3. METHODOLOGY

The simulator used in this study was derived from the Sim-
pleScalar/Alpha 3.0 tool set [1], a suite of functional and tim-
ing simulation tools for the Alpha AXP ISA. We have made
significant modifications to SimpleScalar to model Simultane-

ous Multithreading (SMT) as in [16]. The applications were
compiled with full optimization on a DEC C V5.9-008 and
Compaq C++ V6.2-024 on Digital Unix V4.0. We simulate
at least 100 million instructions for each thread after fast-
forwarding an application-specific number of instructions ac-
cording to Sherwood et al. [13]. The processor configuration
used for most simulations is shown in Table 3.

ammp.gcc
Strong | art.parser
ammp.art.gzip.equake
bzip2.gap

Weak | crafty.mgrid
bzip2.crafty.mesa.vortex
ammp.bzip2

gce.gap

art.crafty

Mix parser.mgrid
ammp.gzip.bzip2.mesa
art.equake. crafty.vortex

Table 2: Applications grouped by strong tornado ef-
fects, weak tornado effects, and the mixes.

The benchmarks in this study are taken from the SPEC
2000 suite. As shown in Table 1, we rank the benchmarks
by the number of misschedulings per issued instruction and
the number of hazards caused by misscheduled instructions.
The overall ranking is obtained by sorting the average of the
two rankings — benchmarks with the same overall ranking are
grouped in parentheses. Benchmarks with more missched-
uled instructions and hazards suffer from stronger tornadoes.
We select six benchmarks with strong tornadoes to form the
“strong” group. Although mcf has dramatic tornadoes due
to very frequent cache misses, we exclude it to make our re-
sults more representative as it receives a very large speedup
(over 200%) from our approach. We select six benchmarks
with weak tornadoes to form the “weak” group. These two
groups, shown in Table 2, form the multithreaded workloads
presented in this paper. Three multithreaded runs are formed
exclusively from the strong group, three are formed from the
weak group, and six are formed from a mix of the strong and
weak groups.

4. THE TORNADO EFFECT

In this section, we examine the impact of the Tornado Ef-
fect on a speculatively scheduled SMT processor. We will
consider the Cyclone scheduler as our representative specula-
tive scheduler.

The Cyclone timing table [5] is indexed by logical register
and thread number. It returns the expected ready time of
a particular logical register. Our Cyclone scheduler uses a
switchback queue length of 100 — all threads share a common
switchback queue. Our experiments demonstrate that there is
no benefit from further lengthening or shortening the queues,
even with latency prediction. We use ICOUNT [16] for thread



| Parameters | Value
Issue Width 8
ROBs 256 entries
LSQs 128 entries
Queue Cyclone: 100, PIB: 64,
Length FIFOs: 1,5,10,20, or 150

Cache Block Size
Shared L1 Cache
Shared L2 Cache
Memory Latency
Integer FUs 8 ALU, 2 L.d/St, 2 Mult/Div
FP FUs 2 FP Add, 1 FP Mult/Div
Integer FU Latency | 1/5/25 add/mult/div (pipelined)
FP FU Latency 2/10/30 add/mult/div

(all but div pipelined)

Private 4k BBTB, 8k gshare

20, additional 2

for latency prediction

L1: 32B, L2: 64B

16KB, 4-way, 2-cycle lat.
512KB, 2-way, 12-cycle lat
164 cycles

Branch Pred.
Branch Penalty

Table 3: Processor Parameters.

selection, where priority to enter the Cyclone queue is given
to the thread with the least number of instructions in the
Cyclone queues. Hu et. al. [7] simulated Cyclone with an
instruction placement strategy that places instructions into
paths with different forwarding lengths based on predicted
latency. This avoids instructions congregating in rows 0 and
1 of the queues. In our implementation, a round-robin place-
ment strategy is used and it effectively avoids this problem.

Cyclone [5] as described in Section 2 assumes that all loads
hit in the first level cache, and schedules their dependent in-
structions based on this assumption. However, loads that miss
in the cache and their dependents account for a large fraction
of all instructions [10]. Ignoring long latency memory accesses
can result in a large number of replays and structural hazards.
The situation becomes worse in a simultaneously multithread-
ing processor where switchback queue utilization is higher and
misschedulings on one thread can waste issue bandwidth for
other threads. Moreover, an increase in replays increases the
probability of switching conflicts. The benchmarks gap and
gce can help to illustrate this. When run alone, gap and
gece see an average of 2 replays per issued instruction. Ta-
ble 4 presents statistics on hazards, replays, and occupancy
for Cyclone. As we can see, when they run together on a
2-threaded SMT with Cyclone, around 5 replays per issued
instruction are seen. Similarly, gap sees 2 switchback hazards
per cycle on average — gcc sees 3 on average. But when run
together, they see around 9 hazards on average each cycle.

One misscheduled instruction can directly cause instruc-
tions dependent on that instruction to be misscheduled. Fur-
thermore, replays can create collisions — hazards in the switch-
back queues of Cyclone (stalling the progress of other instruc-
tions), thereby causing even more misschedulings — even on
independent instructions. This positive feedback loop can re-
sult in the formation of a tornado [2]. A tornado is character-
ized by a period of low useful throughput and a high volume
of replays, when instructions that are in the process of se-
lectively replaying circulate through the Cyclone queues over
and over again until they are correctly scheduled or squashed
from a branch misprediction.

Figure 1 shows a snapshot from the execution of applica-
tions gcc and gap, running together on a 2-threaded SMT pro-
cessor with Cyclone (processor configuration is as described
in section 3). Statistics are collected and averaged over 10-
cycle intervals (shown along the x-axis). On the left side, we
show the composition of the issue width for each 10-cycle in-
terval. For the 8-issue processor we consider, this figure shows

the amount of time the issue bandwidth is used for correctly
scheduled instructions from gcc, correctly scheduled instruc-
tions from gap, incorrectly scheduled instructions from gcc,
incorrectly scheduled instructions from gap, and when the is-
sue slots are idle. Instructions that have their input operands
ready at issue are allowed to continue to the execution engine
and are classified as correctly scheduled instructions. If an in-
struction has been incorrectly scheduled (i.e. it issues before
its input operands are ready), it is replayed to the countdown
queues. The right side shows the average Cyclone queue oc-
cupancy broken down into the component contributed by gcc
and gap, the presence of cache misses, and the average num-
ber of hazards in the switchback queues. The two occupancies
statistics are cumulative (i.e. the height of the greater occu-
pancy line is the occupancy of the Cyclone queue for both gcc
and gap) and are shown on the primary y-axis. The number
of hazards uses the secondary y-axis.

The cache miss experienced by gcc causes a chain of miss-
cheduled instructions that occupy the instruction bandwidth
of the processor from interval 5 to interval 15. This period
is characterized by relatively high queue occupancy by the
thread that spawned the tornado (gcc) and a large number
of hazards. After interval 15, gap is able to get some of the
issue bandwidth and issue correctly scheduled instructions.
Before interval 15, gap had instructions that could have is-
sued, but were not even able to get into the Cyclone queues
due to the dramatic number of replays. The Cyclone occu-
pancy of gcc eventually drains as the instructions that made
up the tornado are scheduled correctly after the cache miss is
satisfied. However, the lapse in incorrectly scheduled instruc-
tions is shortlived before another cache miss starts another
tornado.

S. DEALING WITH TORNADOES

In this section, we explore a number of techniques to combat
the Tornado Effect on speculative schedulers.

5.1 Reducing Replay Frequency

One approach to reduce the formation of tornadoes is to
replay instructions less frequently. A natural choice is a re-
play interval of 12 cycles — the L2 cache latency. This effec-
tively coarsens the granularity of replays. Since misscheduled
instructions replay every 12 cycles, it is possible for an in-
struction to wait for a longer time than required by true data
dependence latency.

However, our experiments show an average 4% degradation
in performance when using this approach. Figure 2 demon-
strates the performance of this longer replay interval, Re-
play12. While a few application combinations like art . parser,
ammp.art.gzip.equake, art.equake.crafty.vortex see im-
provement, most of the benchmarks perform worse with a
longer interval. The benchmarks art, ammp, and equake have
L2 cache miss rates of over 25%. This approach helps such
applications to reduce hazards, switchback queue occupancy,
and replays. In addition, these applications have longer aver-
age load latencies, and are therefore able to tolerate waiting a
few extra cycles to speculatively issue a misscheduled instruc-
tion. Longer average load latencies mean significantly more
replays and longer tornadoes - and therefore a coarser gran-
ularity can prove highly effective here. However, it degrades
the performance of most of the other applications, as these
do not have such long average load latencies. The impact of
waiting an unnecessarily longer amount of time outweighs any
benefit from reduced replays.

We also explored a replay interval of 6 cycles, and observed
a similar degradation in performance.
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Figure 2: The Performance of Different Techniques to Combat Tornadoes on the Original Cyclone Scheduler.

5.2 Limiting Threads to Prevent Tornadoes

Once a tornado develops, it exhibits symptoms like exces-
sive replays and a high volume of switchback hazards in the
scheduling queues. One solution would be to detect tornadoes
in their early stages and take preventive measures to avoid the
full onset of the tornado.

We have developed effective algorithms to detect tornadoes
in the context of the Cyclone scheduler. Although we have
considered a number of different policies for dealing with tor-
nadoes, the most effective approach we have found is the Slid-
ing Window scheme. In this approach, we set a per-thread
window size (WIN) which caps the total number of instruc-
tions from a given thread that are allowed in the Cyclone
queues. This limit can be increased or decreased for each
thread to control tornado formation.

The Sliding Window can be easily implemented as a part
of the ICOUNT policy. To adequately guide this mechanism,
we need to know when a thread is likely to spawn a tor-
nado (WIN should be decreased) or when a thread is too
severely restricted, potentially impairing ILP ( WIN should
be increased). The former condition will be referred to as
overflow and the latter condition will be referred to as under-
flow. We will determine whether a thread is in underflow or
overflow by considering how many replays are required in a
given period of time. Too many replays means that the thread
may be forming a tornado — too few replays means that the
thread may be too constrained and is not being aggressive
enough in speculative scheduling.

We define two thresholds: the overflow threshold (OF:n),
which determines when a thread is likely to form a tornado,
and the underflow threshold (UFyp ), which determines when
a thread is probably too severely restricted. To ensure that
WIN does not oscillate wildly, we require that a thread ex-
ceeds OFyp, for more than Decry, consecutive cycles before
decrementing WIN. Similarly, a thread must not replay more
than UFyy, for Incry, consecutive cycles for WIN to be incre-
mented.

Our implementation of this algorithm uses three counters,
an Increment_Flag, and a Decrement_Flag per thread. The
first counter (R_Counter) counts the number of replays per
cycle. It resets every cycle. The second counter (OF_Counter)

counts the number of consecutive cycles a thread remains in
overflow. The OF_Counter resets whenever the thread is not
in overflow. The third counter (UF_Counter) counts the num-
ber of consecutive cycles in underflow. The UF_Counter resets
whenever the thread is not in underflow.

If OF_Counter >= Decry,, the Decrement_Flag is turned
on. Similarly, the Increment_Flag is turned on if UF_Counter
>= Incry,. When either flag is triggered, the triggering counter
(OF_Counter or UF_Counter) resets. Both flags are reset ev-
ery cycle, after being tested to see if WIN will change in a
given cycle. We performed extensive experiments to tune
these parameters (results not shown). Our data demonstrates
that in an 8-way cyclone scheduler, the following parameters
can detect tornadoes effectively: OF., = 6, UFy, = 2, Decry,
= 10, Incryp, = 5.

WIN is reduced upon the detection of tornado symptoms
(i.e. if the Decrement_Flag is on), is increased when instruc-
tions are smoothly scheduled (i.e. if the Increment_Flagis on),
and not changed if neither flag is set. Initially WIN is set to
“unlimited”, which does not cap the number of instructions at
all. Upon detection of a potential tornado (Decrement_Flag),
WIN is set to 24. When Decrement_Flag is set, this value is
decremented by 4, and when Increment_Flag is set, this value
is incremented by 4. Incrementing beyond 24 sets WIN to
“unlimited”. WIN cannot be decreased below 4. To maintain
fairness, WIN is reset to “unlimited” every 10,000 cycles.

Overall, we observe only a slight performance improvement
of 1%. As shown in Figure 2, gcc.gap sees the most speedup
(16%), while the remaining benchmarks see less than 6% im-
provement, some even performing worse than baseline cy-
clone. Unfortunately, this approach can significantly limit
the amount of ILP that can be exploited from many appli-
cations. When Cyclone is operating smoothly, and there are
no tornado effects, high occupancy in the cyclone queues can
be extremely constructive, allowing the processor to see a
larger window of issuable instructions. The benchmark mix
of gcc.gap suffers from a dramatic number of tornadoes, and
therefore is able to see benefit from this approach.

5.3 Exploiting TLP
Prior work [14] has demonstrated that overall throughput



can be improved in an SMT architecture with conventional
issue queue by stalling or flushing a thread when that thread
suffers an L2 cache miss. The intuition here is that the thread
is consuming resources that could be used for other threads
while waiting for the long latency operation. The authors
propose several mechanisms to detect an L2 miss (detection
mechanism) and two ways of acting on a thread once it is pre-
dicted to have an L2 miss (action mechanism). The detection
mechanism that presents the best results is to predict a miss
every time a load spends more cycles in the cache hierarchy
than needed to see a hit in the L2 cache, including possi-
ble resource conflicts (15 cycles in the simulated architecture
of [14]). Two action mechanisms provide good results. The
first is STALL, which consists of fetch-stalling the offending
thread. The second, FLUSH, flushes the instructions after the
load that missed in the L2 cache, and then stalls the offending
thread until the load is resolved. As a result, the offending
thread temporarily does not compete for resources, and what
is more important, the resources used by the offending thread
are freed, giving the other threads full access to them.

We apply the same approach to Cyclone. In this paper, an
ideal version of FLUSH is considered. We detect an L2 cache
miss ideally by probing the cache structures after selection by
ICOUNT. This should give FLUSH the best performance po-
tential by avoiding any wasted issue bandwidth when an L2
miss will occur. The thread is restarted once the load instruc-
tion that missed goes to writeback. However, this approach
gives an average 15% slowdown as shown in Figure 2. Only
application mix ammp.bzip2 has a noticeable speedup of 9%.
This is because the L2 miss rate of ammp is very high and few
independent instructions closely follow an L2 cache miss in
program order. The program bzip2 has few L2 misses but
has very rich ILP. When instructions from ammp are flushed
due to a L2 miss, bzip2 is able to improve by utilizing more
of the available issue width.

However, a program may have a significant amount of ILP
that can be exploited even after a level 2 miss is encountered,
art being a notable example. In addition, other threads that
are NOT flushed may have little ILP to exploit the scheduling
resources emptied by the flushed thread. FLUSH does poorly
on such applications. The typical examples are art.parser,
mgrid.crafty and parser.mgrid. We observe that art and
mgrid have relatively higher L2 miss rates. The programs
crafty and parser have few cache misses, however, unlike
bzip2, they benefit little from increased scheduling resources
due to the lack of ILP. Consequently, these applications ob-
serve over a 30% slowdown.

5.4 Cyclone+: Cyclone Extended with Load
Latency Prediction

As shown in the previous sections, conservatively guessing
an L1 cache hit for the latency of loads that do not alias
stores is a major cause of tornadoes in the Cyclone scheduler.
It seems much of the problem would be solved if the actual
latency for each load was known.

To verify this, we extend Cyclone with the load latency pre-
diction techniques recently proposed in [10]. The techniques
in [10] capture 83% of the load misses, and 99% of the cache
hits. More accurate load latency prediction should allow Cy-
clone to more precisely schedule instructions and reduce the
number of switchback structural hazards and replays.

In this paper, we use the hybrid load latency prediction
in [10]. Address and latency predictors, as well as the miss de-
tection engine and SILO, are shared by the threads. We limit
the number of load latency predictions to two in each cycle
to reduce the number of ports required on these structures.
Our experiments show there is no benefit from increasing the

number of ports any further.

Figure 3 shows the performance results for this extended
Cyclone architecture. The first bar shows performance for
the baseline Cyclone and the second shows the performance
for Cyclone enhanced with latency prediction. Contrary to
our expectations, predicting load latency only improves the
performance of a handful of benchmarks (like art.parser and
art.crafty) and actually degrades performance for a few ap-
plication mixes (like ammp.gcc and gcc.gap). On average,
Cyclone+ only shows a slight IPC speedup of 4%.

Our investigation shows that this is due to a dramatic in-
crease in stalls for some applications. Table 4 (presented on
page ) presents the average number of structural hazards seen
in the switchback queues per cycle, the average occupancy of
the queues, and the average number of replays seen per cy-
cle. Note that these behaviors are bursty and tend to occur in
clusters — however, the average behavior is still useful for pur-
poses of comparison. The first column shows the benchmark
mixes we considered, and the first two columns of the haz-
ards and structural hazard results show data for the baseline
Cyclone and Cyclone enhanced with load latency prediction
(Cyclone+) respectively. Cyclone+ sees significantly more
structural hazards — except for a few application mixes (like
art-parser and art-crafty) where there is actually a drop
in hazards.

As shown in Table 4, we observe a substantial increase
in queue occupancy. On average, queue occupancy is 456%
larger with Cyclone+ than baseline Cyclone - with some ap-
plications seeing double the occupancy with Cyclone+. When
load latency prediction is applied, although the descendants
of missed loads obtain their waiting times accurately, these
waiting times are much longer than baseline Cyclone which
assumes loads always hit the cache. These instructions can
progress further towards the end of the Cyclone queues — the
furthest point in the switchback queues from the execution en-
gine. This increases the occupancy of the scheduling queues,
thus creating more switchback hazards. When queue occu-
pancy is high, a tornado can be formed.

As an example, an instruction is not switched on time due
to a structural hazard (i.e. queue conflict due to high occu-
pancy or replay). The dependents of that instruction may
have to be replayed even if they do not encounter any haz-
ards. Such replays occupy queue spaces, which can further
introduce more conflicts and replays. When a tornado is ac-
tive, the scheduler experiences extremely low useful through-
put, and a high volume of replays and hazards. The benefit of
reduction in replays through load latency prediction is effec-
tively canceled for some applications by the dramatic increase
in structural hazards and switchback queue occupancy — all
of which feeds the Tornado Effect.

5.4.1 Tornadoes in Cyclone+

Figure 4 shows a snapshot from the execution of gcc.gap
in Cyclone+4. We observe relatively larger queue occupancies
and relatively more structural hazards. At interval 2, a cache
miss results in the formation of a tornado. By interval 17,
the cache miss is satisfied and a few instructions from gcc
are issued. Before the old instructions drain, however, a new
cache miss brings more instructions into the scheduling queue.
The tornado is sustained and further deteriorates.

5.4.2  Improving Cyclone+

The tornadoes affect Cyclone+ more than the original Cy-
clone scheduler, as evidenced by the increased occupancies,
switchback hazards, and replays. In this section, we attempt
to mitigate this by applying techniques to prevent the forma-
tion of tornadoes.
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Figure 4: Snapshot of Cyclone Extended with Load Prediction (Cyclone+)

Figure 5 shows the normalized IPC (with respect to the
original baseline Cyclone) of Cyclone extended with load la-
tency Prediction (Cyclone+), the further extension of Cy-
clone+ with our sliding window approach (Cyclone+, Sliding-
Window) and Cylone+ with FLUSH (Cyclone+,Flush). Cy-
clone+ with SlidingWindow performs 2% better on average
than Cyclone+ alone. As was the case when applied to base-
line Cyclone, the sliding window approach only improves a
handful of application mixes that suffer from extremely strong
tornadoes, but does not help and even hurts other application
mixes. Cyclone+ with FLUSH has a comparable performance
to that of baseline Cyclone with FLUSH, often degrading per-
formance as it limits the available ILP.

6. ZEPHYR DESIGN AND EVALUATIONS

Our prior attempts to combat tornadoes either sacrificed
ILP to reduce tornadoes or increased queue occupancy beyond
Cyclone’s ability to effectively switchback instructions. In
this section, we propose Zephyr, an architecture that reduces
replays and structural hazards without sacrificing ILP and
without straining Cyclone’s queue structure. Zephyr has the
potential to improve any speculative scheduler plagued by the
tornado effect, but we consider the impact on Cyclone alone
for brevity.

6.1 The Zephyr Scheduler

Figure 6 illustrates the high-level architecture of the Zephyr
scheduler. Zephyr prevents the formation of tornadoes by
sorting instructions in their predicted execution order and
then using Cyclone to adapt to misschedulings. Zephyr effec-
tively allows instructions to enter Cyclone out of order. Fig-
ure 6 is divided into three components: the latency prediction
engine (delineated with a dotted box), the coarse-grain sort-
ing engine (colored in grey), and the fine-grain sorting engine
(surrounded with a dashed box). The latency prediction en-
gine features a timing table (similar to [5]) that is accessed on
every instruction, and a latency prediction structure (similar
to [10]) that is accessed on every load instruction. The re-
sult of this prediction stage is a predicted wait time for each
instruction before all input operands are ready.

Instructions are then enqueued in the coarse-grain sorting
engine — the FIFOs. Instructions with very short waiting

times are placed into FIFOs with a buffering length of 1,
and can progress to the next stage in one cycle. Instructions
with longer waiting times are placed into different FIFOs with
buffering lengths of more than one. During the classification,
we round down waiting times to the closest granularity queue
available, ensuring instructions are not delayed beyond their
estimated waiting time. We adopt the same queue configu-
rations as in [10], but double the number queues to accom-
modate the additional bandwidth of SMT. We have six 0-slot
queues, four 5-slot queues, two 10-slot queues, two 20-slot
queues, and two 150-slot queues. Instructions enter the FI-
FOs in program order, but can leave the FIFOs out of order.

Instructions are buffered in the Prelssue Buffer (PIB) after
sorting. Each thread has a PIB, and we use the ICOUNT [16]
thread selection policy to choose a PIB from which to pull
instructions. ICOUNT measures the number of instructions
from each thread that are currently in the fine-grain sorting
engine. Note that ICOUNT cannot pull instructions from an
empty PIB. Since the coarse-grain sorting has absorbed some
of the expected wait time from instructions in the PIB, if there
are no available instructions in the PIB, it indicates that there
is currently no ILP to exploit in a given thread. Therefore, the
sorting engine enables a more intelligent ICOUNT which has
some notion of available parallelism in a given thread — and
will selectively pull from threads that have such parallelism.

Instructions leave the PIB and enter the fine-grain sorting
engine (Cyclone). Here, instructions may encounter struc-
tural hazards or may need to be replayed if they have been
misscheduled. However, the coarse-grain sorting engines of
Zephyr are able to absorb some of the instruction latency
to keep the countdown/replay queue occupancy low. This
reduces the structural hazards in Cyclone and inhibits the
formation of tornadoes.

Figure 7 shows the relative performance of Zephyr, us-
ing Cyclone as the baseline. Zephyr has an average of 13%
speedup over Cyclone. This benefit comes from the more ac-
curate waiting time prediction as load misses are taken into
account, as well as the reduction in occupancy, and schedul-
ing hazards. As seen from the graph, applications with strong
tornadoes have an average of 22% speedup. The mixed ap-
plications have an average of 13% speedup. The benefits on
applications with weak tornadoes are small. But still, an av-
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erage of 3% speedup is observed.

As mentioned in [5], the greatest contributors to IPC loss
with Cyclone are structural hazards (switchback conflicts)
and replays in the scheduling queues. Zephyr reduces the
number of hazards by buffering the instructions in the coarse-
grain sorting structure. Instructions entering the scheduling
queues are expected to have their operands ready in a short
time. We observe an average of 31% reduction in queue oc-
cupancy compared with baseline Cyclone. Table 4 illustrates
this reduction with the data labeled “Z” — Zephyr. Zephyr
observes a 42% reduction in structural hazards from the origi-
nal Cyclone, and a 60% reduction from our Cyclone+. Zephyr
also observes a 24% reduction in the number of replays rel-
ative to the original Cyclone design. The applications with
strong tornadoes and the mixed applications observe large re-
ductions in structural hazards and replays. Correspondingly,
these applications see significant speedup over the Cyclone
baseline in Figure 7. Applications from the group of weak
tornadoes see less of a drop in queue occupancy, hazards, and
misschedulings, and therefore see a smaller performance im-
provement.

6.2 Zephyr with the Sliding Window

Zephyr cannot eliminate all replays. There are only a fi-
nite number of sorting queues, and therefore the fine grained
sorting in the Cyclone queues can still cause switchback haz-
ards even for instructions with highly predictable latencies.
Moreover, if the latency prediction engine is not able to con-
fidently report a latency for a load instruction, it conserva-
tively guesses the latency of a cache hit. On average, 17% of
load misses are not captured. In addition to underestimating
loads that are not address or latency predictable, an instruc-
tion’s waiting time may be underestimated due to other types
of structural hazards such as contention for functional units,
memory ports, and the memory bus. This underestimation
potentially issues instructions prematurely, spawning replays
and potentially more structural hazards.

We consider using the preventive measures presented in
Section 5 to reduce replays spawned by unpredictable loads
and structural hazards. The best performing approach with
Zephyr is the Sliding Window from Section 5.2. We use this
approach to throttle instructions from entering the Cyclone
queues via the PIBs on a per thread basis. We use the same
set of parameters as described in section 5.2.

Since Zephyr is able to safeguard ILP by effectively buffer-
ing those instructions that are waiting on input dependencies,
we expect our Sliding Window to be more effective in reducing
tornado formation without impacting performance.

Figure 7 shows the performance of the Sliding Window on
Zephyr. This approach shows significant speedup from the
baseline Cyclone. On average, we observe a 23% improvement
in performance, 60% less hazards, a 41% drop in occupancy,
and 48% fewer replays. This represents a further performance
improvement from Zephyr alone. Applications in the strong
group observe further speedups ranging from 40% to 50%.
The mixed applications observe an average of 23% speedup.
A single thread degradation of 13% is seen by gcc in the 2-
thread run gcc.gap, and a degradation of 15% by parser in
the 2-thread run parser.mgrid. Other than this, we see no
more than a 4% per thread degradation.

Load latency prediction is unable to capture 10% to 30%
of load misses in art, ammp, and equake. In gcc, parser
and gzip, frequent conflicts for FUs cause a great deal of un-
derestimation. In these application mixes, the Sliding Win-
dow scheme successfully limits the underestimated instruc-
tions from entering the scheduling queues before the onset of
a tornado. As a result, these applications experience substan-

tial performance improvement.

The applications from the weak group see fewer tornadoes.
Hence, these applications see no further improvement using
our sliding window. The mix of bzip2.crafty.mesa.vortex
even experiences a slight degradation of 1% relative to Zephyr
alone. This is because the application has very few tornadoes,
and the sliding window can still limit ILP.

Figure 8 shows a snapshot of 300 cycles from the execu-
tion of gap.gcc using Zephyr with our Sliding Window. In
general, we observe more accurate scheduling and through-
put and fewer hazards and Cyclone queue occupancy. When
cache misses are captured by the predictor, their dependents
cannot enter the scheduling queues immediately, but have to
go through the sorting queues and PIBs. They can only enter
the scheduling queue when they are close to their predicted
issuing time. This reduces unnecessary queue occupancy and
switchback hazards. As can be seen in the figure, instructions
are soon issued after they enter the scheduling queues.

As shown in the figure, there are still a substantial amount
of premature instructions being replayed though at much re-
duced scale. This is because instructions can enter the schedul-
ing queue several cycles in advance due to the finite granu-
larity in the sorting stage. This can also be due to underes-
timated waiting time caused by load latency mispredictions,
hardware hazards, and scheduling hazards. However, Zephyr
with our Sliding Window can take preventive measures before
premature instructions can form tornadoes. When early tor-
nado symptoms are observed via the (Decrement_Flag), the
underestimated instructions are forced to wait longer in the
PIBs. This helps these instructions to enter the scheduling
queues at the right time. Overall, Zephyr with our Sliding
Window prevents tornadoes, and is able to schedule instruc-
tions correctly with sustained useful throughput.

6.3 Zephyr vs Cyclone vs Conventional Issue
Queue

Our baseline cyclone scheduler sees a 10% average IPC
degradation compared to a 32-entry conventional wakeup-
and-select issue queue with perfect speculative scheduling.
This degradation is slightly less than seen in [5] due to
the round-robin placement strategy (Section 4). The degra-
dation mainly comes from inaccurate estimation of waiting
time, scheduling replays, and structural hazards. Zephyr ef-
fectively combats these problems, and is able to see an average
IPC speedup of 11% over a conventional 32-entry 8-way issue
queue.

7. SUMMARY

While Cyclone is able to provide scalable instruction schedul-
ing for deeply pipelined processors, the structural hazards and
replays that are possible with Cyclone can severely degrade
performance in a multithreaded environment. Useful issue
bandwidth can be wasted on misscheduled instructions, lim-
iting the amount of thread level parallelism that can be ex-
ploited. There exists a positive feedback loop between struc-
tural hazards and replays that can result in the misschedul-
ing of a large portion of Cyclone-issued instructions. This is
characterized by instructions from different threads continu-
ally shuffling around the scheduler, with low useful scheduling
throughput. This Tornado Effect can also happen with other
replay-based schedulers that employ speculative scheduling.

In this paper, we present Zephyr, an architecture that in-
telligently schedules instructions to avoid tornadoes in mul-
tithreaded processors. Scheduling instructions dependent on
loads is extremely challenging as load access time is highly
nondeterministic, particularly when considering loads that
alias with in-flight memory requests. Assisted by prior work



hazards per cycle occupancy replays per instruction

C|C+ | Z | ZWin Cl|C+|Z|ZWin| C [C+ | Z | ZWin
ammp.gcc 21| 23 | 12 5 101 | 126 | 63 36 6.2 | 6.1 | 4.7 1.6
art.parser 12| 10 6 1 56 | 101 | 40 28 6.0 | 4.4 | 3.1 1.4
ammp.art.gzip.equake 25| 41 | 10 11 82 | 166 | 49 63 4.7 | 4.0 | 3.9 2.2
bzip2.gap 6 7 3 3 34 | 37 |21 21 14| 14113 1.2
crafty.mgrid 5 5 4 3 29 | 30 | 21 20 15|15 |14 1.2
bzip2.crafty.mesa.vortex || 6 6 5 4 33 36 | 27 24 1.0 1.0 | 1.0 0.9
ammp.bzip2 22 | 22 | 12 9 87 | 92 | 55 42 2212219 1.4
gee.gap 9 | 16 | 4 1 45 | 88 | 30 16 53| 5.6 | 3.7 1.5
art.crafty 10| 2 1 1 51 | 57 | 19 18 43|13 |12 1.0
parser.mgrid 5 7 5 4 31 51 | 33 28 26| 24 |21 1.4
ammp.gzip.bzip2.mesa 171 20 | 6 8 61 | 71 | 33 40 1.7 1.7 | 1.3 1.2
art.equake.crafty.vortex 13| 21 |10 5 56 | 128 | 52 40 33| 24 |26 1.2

Table 4: Comparison of the number of replays and structural hazards (i.e.

switchback conflicts) in the scheduling

queues. Symbols: “C” — Cyclone, “C+” — Cyclone+, “Z” — Zephyr, “ZWin” — Zephyr Sliding Window.
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Figure 8: Snapshot of Zephyr with Sliding Window

on load latency prediction, Zephyr is able to predict instruc-
tion waiting times accurately, including instructions depen-
dent on loads. Zephyr buffers instructions in a coarse-grain
sorting engine, resulting in an approximate execution order-
ing for each thread. This ordering is buffered in a per-thread
buffer that can then steer thread selection for execution. In-
struction scheduling is still done via Cyclone, with fine-grain
sorting handled by the Cyclone switchback queues. Cyclone is
also able to dynamically adapt to unpredictable load latencies
and misschedulings using selective replay.

We further propose a Sliding Window algorithm to enhance
Zephyr, which dynamically caps the number of instructions
allowed in the scheduling queues by observing the symptoms
that lead to the formation of a tornado. With this option, the
Zephyr architecture delivers consistently higher IPC than the
baseline Cyclone. Our experiments show Zephyr has a 23%
improvement in IPC performance, 60% less hazards, a 41%
drop in occupancy, and 48% fewer replays compared with a
baseline scheduler.
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