
The Calm Before the Storm: Reducing Replays in the Cyclone
Scheduler

Yongxiang Liu† Anahita Shayesteh† Gokhan Memik‡ Glenn Reinman†

†Computer Science Department, University of California, Los Angeles
‡Department of Electrical and Computer Engineering, Northwestern University

Abstract

As future technologies push towards higher clock rates,
traditional scheduling techniques that are based on
wake-up and select from an instruction window fail to
scale due to their circuit complexities. Recently, Cy-
clone was proposed as a broadcast free scheduler with
a significant reduction in logic on the critical schedul-
ing path. However, Cyclone suffers from performance
degradation due to the presence of structural hazards in
the scheduler and wasted issue opportunities on selec-
tive replays.

The impact of replays and structural hazards becomes
even more severe when using Simultaneous Multithread-
ing for higher throughput. The higher utilization of the
SMT processor can cause a positive feedback loop be-
tween hazards and replays that can result in extremely
low performance. This loop results in instructions shuf-
fling around and around in the Cyclone queue, creating
typhoons in the Cyclone scheduler that are character-
ized by extremely low scheduling throughput and a high
volume of hazards and replays.

In this paper, we propose Zephyr, an architecture that
inhibits the formation of typhoons. Zephyr makes use
of existing load latency prediction techniques as well
as course-grain FIFO queues to buffer instructions be-
fore entering scheduling queues. Our simulation results
show that Zephyr reduces the scheduling hazards and
replays significantly. On average, Zephyr observes a
15% speedup over a baseline Cyclone scheduler.

1 Introduction and Motivation

The performance of an out-of-order superscalar pro-
cessor relies on the discovery and exploitation of
instruction-level parallelism (ILP) and thread-level par-
allelism (TLP). However, the amount of ILP and TLP
that a processor can extract is constrained by the design

of the instruction scheduler and the size of the issue win-
dow. The instruction scheduler and issue window may
be difficult to scale to future technology goals due to the
impact of wire latency. Circuit-level studies of dynamic
scheduler logic have shown that broadcast logic domi-
nates performance and power [7, 2].

Recently Ernst et al. proposed Cyclone [3], a broadcast-
free scheduler without the need for complex wakeup
and selection logic. Cyclone relies on a simple mech-
anism to predict the expected issue time of each instruc-
tion, and then delay the issue of the instruction based on
this prediction via switchback queues. However, miss-
chedulings can occur for the dependents of loads that
miss in the first level data cache and for the depen-
dents of instructions delayed by structural hazards in the
switchback queues. Therefore, Cyclone is also able to
support efficient selective instruction replay [4] in the
event of an incorrect scheduling.

Prior work demonstrates that a large fraction of in-
structions directly or indirectly depend on load opera-
tions [5]. If a load misses, its dependents may be re-
played many times before the load completes. Replayed
instructions can also prevent independent instructions
from moving through the switchback queues, further
contributing to structural hazards. Hazards can also in-
crease in processors with Simultaneous Multithreading
(SMT) [10], where overall switchback queue utilization
increases. More utilization also leads to more loads and
more contention in shared cache resources, which can
lead to more replays. The positive feedback loop be-
tween replays and structural hazards can degrade per-
formance dramatically for an SMT processor, as we will
demonstrate in our results. The feedback loop eventu-
ally results in many instructions requiring replay, cir-
culating around the Cyclone queues many times before
correctly scheduling. We refer to this effect as typhoons
in the Cyclone Scheduler.

Liu et al. [5] developed techniques to predict the exe-
cution time of load instructions in the early stages of

the pipeline in an effort to scale the size of the instruc-
tion window for a conventional instruction scheduler.
They use simple FIFO queues to sort instructions based
on their predicted execution time to prevent instructions
from entering the issue window before their operands
are ready – effectively providing out-of-order entry into
the issue window. However, their technique does not
include any dynamic adaptation to mispredicted load la-
tency, and dependents of a misscheduled load can still
clog issue queue and degrade performance.

A simple solution to these challenges might be the ad-
dition of load latency prediction techniques from [5] to
the Cyclone scheduler. Such a solution should decrease
the number of hazards and replays, thereby improving
scheduler performance. However, our experimental re-
sults demonstrate that this approach can suffer by creat-
ing even more structural hazards, degrading processor
performance. The additional structural hazards come
from the increased utilization of the Cyclone switchback
queues. We will explore this impact on the Typhoon Ef-
fect in more depth in later Sections.

As an alternative, we propose Zephyr, an architec-
ture that effectively prevents the formation of typhoons.
Zephyr buffers instructions using course-grain FIFO
queues. Instructions are released into the Cyclone
queues only when they are close to their scheduled exe-
cution time. In this way, we keep the scheduling queue
occupancy low to maintain its switchback efficiency.
The switchback queues still provide dynamic adapta-
tion to mispredicted instruction latency and selective re-
play. Our results show that Zephyr is able to eliminate a
substantial amount of structural hazards and replay, sub-
stantially improving IPC.

Load latency prediction is not perfect, particularly when
loads are not address predictable. We further consider
stalling threads with less predictable loads in Zephyr
to improve overall throughput. Our results demonstrate
that Zephyr with this stalling option further eliminates
structural hazards and replay, thereby improving overall
IPC.

Our contributions over prior work include:

• An investigation of the impact of structural hazards
and replays on Cyclone in an SMT environment.

• The discovery of the limitations of a simple inte-
gration of load latency prediction and Cyclone.

• The observation of the Typhoon Effect, character-
ized by low execution core throughput due to a high
volume of misschedulings and structural hazards.
This phenomenon may occur in any generalized

replay-based schedulers, but we limit our analysis
to the Cyclone scheduler.

• The Zephyr architecture, which effectively pre-
vents the formation of typhoons in Cyclone.
Zephyr is able to improve IPC significantly over
both a baseline Cyclone scheduler and a simple in-
tegration of Cyclone with load latency prediction.

The rest of this paper is organized as follows. In Sec-
tion 2 we discuss the prior work, followed by an de-
scription of our experimental methodology in Section 3.
Section 4 presents the architecture design of Zephyr, the
challenges and our experimental results. Concluding re-
marks follow in Section 5.

2 Related Work

In this Section, we review the most relevant prior work
to our study.

2.1 Instruction Scheduling

Ernst et al. [3] proposed Cyclone, a broadcast-free dy-
namic instruction scheduler with selective replay. The
Cyclone scheduler relies on a simple one-pass schedul-
ing algorithm to predict the time when instructions
should execute. Once decided, this schedule is imple-
mented with a timed queue structure that additionally
supports efficient selective replay in the event of an in-
correct schedule. Execution time prediction is accom-
plished with a timing table and MAX calculation. The
timing table is indexed by logical register, and returns
the expected delay until the logical register is ready. In-
structions use the timing table to estimate when their in-
put dependencies will be available, and are buffered in a
countdown queue for this expected waiting time.

Instructions are injected into the tail of the Cyclone
scheduler queue with a prediction of how far the instruc-
tion should progress down the countdown queue before
turning around and heading back towards execution in
the main queue. Switch back in cyclone can be a source
of conflict and must be resolved. Once an instruction
reaches the head of the main queue, a table of physi-
cal register ready bits is used to determine whether or
not all input operands to the instruction are ready. If
any operands is not ready, the instruction is routed back
to the countdown queue and replays. Cyclone assumes
that all loads hit in first level cache (unless they are de-
termined to alias a store). Cache misses will likely result
in instruction misscheduling, creating replays.

2.2 Latency Prediction

Liu et al. [5] proposed an instruction sorting engine
guided by latency prediction. Their pre-scheduler at-
tempts to deliver instructions to a conventional issue
queue in the order of their execution, preventing depen-
dents of long latency instruction from entering the issue
queue and clogging it. Their scheduler consists of three
major components: a latency prediction component, a
sorting structure consisting of a few FIFO queues, and
a Pre-issue buffer where instructions are buffered before
entering the issue queue.

Liu et al. [5] use a hybrid approach to predict memory
access latency in early stages of the pipeline via several
structures. The Latency History Table (LHT) is a last
value predictor indexed by instruction PC and returns
the latency experienced by the last instance of a given
load. When the LHT is unable to predict load latency
confidently, Cache Latency Propagation (CLP) is used.
CLP identifies cache misses, and propagates the com-
pletion time of cache misses to any aliasing load via a
structure that stores the Status of In-flight Loads (SILO).
An address predictor is used to generate load addresses
for the CLP structures. This predicted load address is
used to index a miss detection engine [6] which returns
definite miss or maybe hit for that load address. The
SILO is accessed in parallel with the miss detection en-
gine and returns the latency of in-flight loads.

Once an instruction’s latency is predicted, it is classified
and inserted into one of the sorting queues, based on its
predicted latency. A locking mechanism ensures that in-
structions can not leave the sorting queues before their
parent instructions to avoid deadlock. Instructions leave
the sorting queues to a Pre-issue Buffer (PIB) where
they are then delivered to the issue queue in the order
of their predicted execution.

3 Methodology

The simulator used in this study was derived from the
SimpleScalar/Alpha 3.0 tool set [1], a suite of func-
tional and timing simulation tools for the Alpha AXP
ISA. We have made significant modifications to Sim-
pleScalar to model Simultaneous Multithreading (SMT)
as in [10]. We randomly select 10 floating-pint and 10
integer benchmarks from the SPEC 2000 benchmarking
suite. We select 11 random combinations of four-thread
benchmarks. We then select the first two threads from
these benchmarks as two-thread benchmarks to be eval-
uated. The applications were compiled with full opti-
mization on a DEC C V5.9-008 and Compaq C++ V6.2-

024 on Digital Unix V4.0. We simulate at least 100 mil-
lion instructions for each thread after fast-forwarding an
application-specific number of instructions according to
Sherwood et al. [8].

Simulation is execution-driven, including execution
down any speculative path until the detection of a fault,
TLB miss, or branch misprediction. We model an 8-
way out-of-order multithreaded processor. All threads
share a 16KB 4-way set associative L1 data cache with
a 2 cycle access latency and 32 byte block size; a pri-
vate 16KB 2-way set associative L1 instruction cache
with a 32 byte block size; and a unified 512KB 4-way
set associative L2 cache with a 12-cycle access latency
and 64 byte block size. The L2 cache is shared among
all threads. The total round trip time to memory is
164 cycles. The processor has 8 integer ALU units, 2
load/store units, 2 FP adders, 2 integer MULT/DIV, and
1 FP MULT/DIV. Each thread has a 4K-entry BBTB
and an 8K-entry gshare private predictor. The minimum
branch misprediction penalty is 20 cycles.

4 Zephyr Design and Evaluations

In this Section, we examine a SMT processor enhanced
with the Cyclone scheduler, and propose an architecture
to reduce replays and structural hazards within this ar-
chitecture.

The timing table [3] is indexed by logical register and
thread number. It returns the expected ready time of a
particular logical register. Our Cyclone scheduler uses
a switchback queue length of 100 – all threads share a
common switchback queue. Our experiments demon-
strate that there is no benefit from further lengthen-
ing the queues, even with latency prediction. We use
ICOUNT [11] for thread selection, where priority to en-
ter the Cyclone queue is given to the thread with the
least number of instructions in Cyclone queues.

Cyclone [3] as described in Section 2 assumes all loads
hit in first level cache, and schedules their dependent in-
structions based on this assumption. However, missed
loads and their dependents account for a large fraction
of all instructions [5]. Ignoring long latency memory
accesses results in a large number of replays and struc-
tural hazards. The situation becomes worse, in a simul-
taneously multithreading processor, where switchback
queue utilization is higher, and any replays potentially
cause switching conflicts. The benchmarks gap and
gcc can help to illustrate this. When run alone, gap
sees around 2 replays per issued instruction and gcc
sees around 6 replays per issued instruction. When run
together on a 2-threaded SMT with Cyclone, around 37

replays per issued instruction are seen. Similarly, gap
sees 5 structural hazards per cycle on average in the Cy-
clone switchback queues – gcc sees 8 on average. But
when run together, they see around 19 hazards on aver-
age each cycle.

As a first pass, we extend cyclone with the load latency
prediction techniques recently proposed in [5]. More
accurate load latency prediction should allow Cyclone
to precisely schedule instructions and reduce the num-
ber of switchback structural hazards and replays. Load
latency is predicted using the hybrid approach proposed
in [5]. Address and latency predictors as well as the miss
detection engine and SILO are shared by the threads.
level 1 caches. For architectures with shared level 1
caches (not considered in this paper), the SILO and
cache miss detection engine can also be shared. We limit
the number of load latency predictions from the struc-
tures in [5] to two in each cycle to reduce the number
of ports required on these structures. Our experiments
show there is no benefit from increasing this number.

Figure 1 shows single and multithreaded performance
results for this extended Cyclone architecture. The
first bar shows performance for the baseline Cyclone
and the second shows the performance for Cyclone en-
hanced with latency prediction. Contrary to our expec-
tations, predicting load latency only improves the per-
formance of a handful of benchmarks (like ammp-art
and equake-applu) and actually degrades perfor-
mance for a few application mixes (like gap-gcc and
bzip-gzip).

Our investigation shows that this is due to a dramatic in-
crease in stalls for some applications. Table 1 presents
the average number of structural hazards seen in the
switchback queues per cycle and the average number of
replays seen per cycle. Note that both of these behav-
iors are bursty and tend to occur in clusters – however,
the average behavior is still useful for purposes of com-
parison. The first column shows the benchmark mixes
we considered, and the first two columns of the haz-
ards and structural hazard results show data for the base-
line Cyclone (Base) and Cyclone enhanced with load la-
tency prediction (LoadLat). LoadLat sees significantly
more structural hazards – except for a few application
mix (like ammp-art and apsi-crafty-gap-art
where there is actually a drop in hazards.

We also observe a substantial increase in queue occu-
pancy. On average, queue occupancy is 41% larger
with LoadLat than Base - with some applications see-
ing 118% more occupancy with LoadLat. When load
latency prediction is applied, although the descendants
of missed loads obtain their waiting times accurately,
these waiting times are much longer than baseline Cy-

clone which assumes loads always hit the cache. These
instruction can progress farther towards the end of the
Cyclone queues – the furthest point in the switchback
queues from the execution engine. This increases the
occupancy of the Cyclone queues. When queue occu-
pancy is high, Cyclone develops into a Typhoon. As an
example, a parent instruction P is not switched on time
due to a structural hazard (i.e. queue conflict due to high
occupancy or replay). The child instruction C may have
to be replayed even if it does not encounter any haz-
ards. Such replays occupy queue spaces, which further
introduce more conflicts and replays. When a typhoon
is active, the scheduler experiences extremely low useful
throughput, and a high volume of replays and hazards.
The reduction in replays through load latency predic-
tion is effectively canceled for some application by the
dramatic increase in structural hazards and switchback
queue occupancy – all of which feeds the Typhoon ef-
fect.

4.1 Zephyr Scheduler

Figure 2 illustrates the high-level architecture of the
Zephyr scheduler. Zephyr prevents the formation of Ty-
phoons by sorting instructions in their predicted exe-
cution order and then using Cyclone to adapt to miss-
chedulings. The Figure is divided into three compo-
nents: the latency prediction engine (delineated with
a dotted box), the coarse-grain sorting engine (colored
in grey), and the fine-grain sorting engine (surrounded
with a dashed box). The latency prediction engine fea-
tures a timing table [3] that is accessed on every instruc-
tion, and a latency prediction structure [5] that is ac-
cessed on every load instruction. The result of this pre-
diction stage is a predicted wait time for each instruction
before all input operands are ready.

Instructions are then enqueued in the coarse-grain sort-
ing engine (the FIFOs of [5]). Instructions with very
short waiting time are placed into the fast FIFO queues,
and can progress to the next stage in one cycle. Instruc-
tions with longer waiting time are placed into FIFOs
queues for more than one cycle. During the classifica-
tion, we round down waiting times to the closest granu-
larity queue available, ensuring instructions are not de-
layed beyond their estimated waiting time. We adopt the
same queue configurations as in [5], but double the num-
ber queues to accommodate the additional bandwidth of
SMT. We have six 0-slot queues, four 5-slot queues, two
10-slot queues, two 20-slot queues, and two 150-slot
queues. Instructions enter the FIFOs in program order,
but can leave the FIFOs out of order. Instructions are
buffered in the PreIssue Buffer (PIB) after sorting. Each

0
0.5

1
1.5

2
2.5

3

 a

mmp

 ap

plu

 a

ps
i

 a

rt

 bz

ip2

cra

fty

 e

on

eq

ua
ke

ga

lge
l

 g

ap

 g

cc

 g

zip

 luc

as

 m

es
a

 m

gri
d

 p

erl

 tw

olf

vo

rte
x

 v

pr

 w
up

wise

Base LoadLat

IP
C

0
0.2
0.4
0.6
0.8

1
1.2
1.4 Base LoadLat

amp apl aps bzi equ gap gcc luc per two wup amp apl aps bzi equ gap gcc luc per two wup
art wup cra gzi apl gcc vpr wup eon cra cra art wup cra gzi apl gcc vpr wup eon cra cra
 aps mes gap gal mes cra gap amp mes per app
 equ luc art mgr art eon vor aps equ eon gap

N
or

m
al

iz
ed

 IP
C

Figure 1: Single and multithread results: baseline Cyclone (Base) and Cyclone extended with load latency prediction
(LoadLat). SPEC names arr abbreviated.

10-cycle

4-cycle

150-cycle

PC A
ddress

P
redictor

LHT

Instructions
Update

Completion
Time F

a
st

Q
ueues

C
lassification &

 E
nqeuing

R
epla

y?

F
unctional

U
nits

M
iss

P
redictor

Tim
ing

T
able

PIB
PIB
PIB
PIB

Countdown/replay queue

main queue

switchback
datapaths

P
redicted W

aiting T
im

e

S I L O

Figure 2: Zephyr Scheduler Architecture

thread has a PIB, and we use the ICOUNT [11] thread
selection policy to choose a PIB from which to pull in-
structions. ICOUNT measures the number of instruc-
tions from each thread that are currently in the fine-grain
sorting engine. Note that ICOUNT cannot pull instruc-
tions from an empty PIB. Since the coarse-grain sorting
has absorbed some of the expected wait time from in-
structions in the PIB, if there are no available instruc-
tions in the PIB, it indicates that there is currently no
ILP to exploit in a given thread. Therefore, the sorting
engine enables a more intelligent ICOUNT which has
some notion of available parallelism.

Instructions leave the PIB and enter the fine-grain sort-
ing engine (Cyclone). Here, instructions may encounter
structural hazards or may need to be replayed if they
have been misscheduled. However, coarse-grain sort-
ing engines of Zephyr are able to absorb some of the
instruction latency to keep the countdown/replay queue
occupancy low. This should reduce the structural haz-
ards in Cyclone and inhibit the formation of Typhoons.

Figure 3 shows the IPC speedup of Zephyr, using Cy-
clone as the baseline. Zephyr has an average of 8%
speedup over Base. This benefit comes from the more
accurate waiting time prediction as load misses are taken
into account, as well as the reduction in structural haz-
ards.

As mentioned in [3], the greatest contributors to IPC loss
with Cyclone are structural hazards (switchback con-
flicts) and replays in the scheduling queues. Zephyr
reduces the number of hazards by buffering the in-
structions in the coarse-grain sorting structure. Instruc-
tions entering the scheduling queues are expected to
have their operands ready in a short time. We ob-
serve an average of 35% reduction in queue occu-
pancy comparing to baseline Cyclone. Table 1 il-
lustrates this reduction with the data labeled Zephyr.
Zephyr observes 52% reduction in structural hazards
from the original Cyclone, and 60% from Cyclone using
load latency prediction. The benchmarks ammp.art,
bzip.gzip and gap.gcc all observe large reduc-
tions in structural hazards and replays. Correspond-
ingly, these benchmarks see significant speedup over
the Cyclone baseline in Figure 3. However, some
applications such as gcc-vpr-crafty-eon and
twolf-crafty-perl-eon still see some degrada-
tion. We notice that crafty, eon, and gcc have a rel-
atively high branch misprediction rate that ranges from
5% to 12%. Zephyr has two additional pipe stages for
instruction sorting and enqueuing in the preissue buffer.
In addition, we add two extra cycles of branch mispre-
diction penalty to compensate the latency of load latency
predictions. The resulted degradation cancels off the

benefits from Zephyr in these application mixes.

4.2 Zephyr with Thread Stalling

In [5], if the latency prediction engine is not able to con-
fidently report a latency for load instruction, it conser-
vatively guesses the latency of a cache hit. Our analysis
shows that if a load is not address/latency predictable,
it will likely miss in the cache. Treating such loads as
cache hits, potentially brings instructions prematurely
into the scheduling queue introducing potential struc-
tural hazards and replays. We therefore propose an ex-
tension to Zephyr – the ZephyrStall approach – where
a thread is stalled when a load instruction with unpre-
dictable latency is encountered. The thread is stalled
until the unpredictable load address is available. The
unpredictable load is tagged. When the tagged load is
issued, it signals the stalling thread to continue. This
prevents the descendants of such loads from causing po-
tential hazards and replays, and at the same time frees
the scheduling resources to other needy threads. This
technique is very similar to the architecture Tullsen et
al. [9] used to handle threads with long latency loads.
However, there are two important differences between
our approach and their prior work. We do not flush a
thread on every L2 miss – we only stall a thread from is-
suing if it is unpredictable. There are a lot of load misses
that are predictable using techniques in [5] and this helps
to avoid degrading the performance of the thread suffer-
ing from the L2 miss.

With ZephyrStall, an average of 15% speedup is ob-
served as shown in Figure 3. The additional per-
formance mainly comes from the additional reduction
of hazards and replays. The single thread degrada-
tion of 25% is seen by apsi in the 4-threaded run –
ammp-art-apsi-equake, 28% by applu in the 4-
threaded run – eqauke-applu-mesa-art. Other
than this, we see no more than 10% degradation in per
thread.

Table 1 shows that ZephyrStall achieves even further re-
duction in scheduling hazards, at a reduced rate of 48%.
ZephyrStall efficiently reduce the number of replays as
indicated in Table 1. We observe that ZephrStall re-
duces the queue occupancy by 44% from the baseline
Cyclone.

5 Summary

While Cyclone is able to provide scalable instruction
scheduling for deeply pipelined processors, the struc-

-10%
0%

10%
20%
30%
40%
50%

amp apl aps bzi equ gap gcc luc per two wup amp apl aps bzi equ gap gcc luc per two wup
art wup cra gzi apl gcc vpr wup eon cra cra art wup cra gzi apl gcc vpr wup eon cra cra
 aps mes gap gal mes cra gap amp mes per app
 equ luc art mgr art eon vor aps equ eon gap

Zephyr ZephyrStall

IP
C

 S
pe

ed
up

Figure 3: Performance speedup of Zephyr and ZephyrStall over the baseline Cyclone

hazards per replays per
cycle cycle

Base LoadLat Zephyr ZephyrStall Base LoadLat Zephyr ZephyrStall
ammp.art 52 39 27 13 6.3 5.6 5.4 2.9
applu.wupwise 20 20 14 9 5.1 5.0 5.1 3.7
apsi.crafty 4 4 2 2 1.6 1.6 1.5 1.2
bzip2.gzip 23 32 11 11 4.9 5.0 4.6 4.3
equake.applu 41 47 39 5 6.7 6.3 6.5 2.0
gap.gcc 19 34 11 4 6.2 6.0 5.1 2.3
gcc.vpr 16 28 9 2 6.6 6.4 5.4 1.5
lucas.wupwise 48 81 34 41 6.2 5.5 6.0 6.2
perl.eon 16 15 6 6 3.7 3.6 3.3 3.2
twolf.vpr 18 20 8 3 6.1 5.9 5.4 2.1
wupwise.crafty 9 9 7 4 3.9 3.8 3.8 2.9
ammp.art.apsi.equake 47 78 26 19 6.3 5.8 6.1 3.9
applu.wupwise.mesa.lucas 31 59 25 28 5.4 5.2 5.3 5.1
apsi.crafty.gap.art 23 20 10 8 5.2 3.8 3.8 2.9
bzip2.gzip.galgel.mgrid 23 27 12 15 4.1 4.0 3.9 3.7
equake.applu.mesa.art 33 55 22 14 6.1 5.4 5.8 3.8
gap.gcc.crafty.eon 15 27 9 5 5.2 5.2 4.7 2.6
gcc.vpr.gap.vortex 15 30 9 4 5.6 5.5 5.2 2.5
lucas.wupwise.ammp.apsi 46 101 24 31 5.5 5.4 5.2 5.2
perl.eon.mesa.equake 22 44 12 11 5.2 5.1 5.2 3.6
twolf.vpr.perl.vortex 17 21 6 8 4.8 4.7 4.7 3.4
wupwise.crafty.applu.gap 19 23 11 10 4.9 4.8 4.8 3.6

Table 1: Comparison of number of replays and structural hazards (i.e. switchback conflicts) in Cyclone count-
down/replay queues.

tural hazards and replays that are possible with Cyclone
can severely degrade performance in a multithreaded en-
vironment. Useful issue bandwidth can be wasted on
misscheduled instructions, limiting the amount of thread
level parallelism that can be exploited. There exists a
positive feedback loop between structural hazards and
replays that can result in the misscheduling of a large
portion of Cyclone-issued instructions. This is charac-
terized by instructions from different threads continually
shuffling around the scheduler, with low useful schedul-
ing throughput. This typhoon effect can also happen
with other replay-based schedulers that employ specu-
lative scheduling.

In this paper, we present Zephyr, an architecture that
intelligently schedules instructions to avoid typhoons
in the Cyclone scheduler for multithreaded processors.
Scheduling instructions dependent on loads is extremely
challenging as load access time is highly nondetermin-
istic, particularly when considering loads that alias with
in-flight memory requests. Assisted by prior work on
load latency prediction, Zephyr is able to predict in-
struction waiting times accurately, including instruc-
tions dependent on loads. Zephyr buffers instructions
in a coarse-grain sorting engine, resulting in an approx-
imate execution ordering for each thread. This order-
ing is buffered in a per-thread buffer that can then steer
thread selection for execution. Instruction scheduling is
still done via Cyclone, with fine-grain sorting handled
by the Cyclone switchback queues. Cyclone is also able
to dynamically adapt to unpredictable load latencies and
misschedulings using selective replay.

We further propose a stall option in Zephyr, which pre-
vents instructions dependent on loads from entering the
scheduling queues prematurely when their latencies are
unpredictable. The Zephyr architecture delivers con-
sistently higher IPC throughput than the baseline Cy-
clone. Our experiments show Zephyr achieves 15% IPC
speedup, and substantial reductions in scheduling haz-
ards and replays.

References

[1] D. C. Burger and T. M. Austin. The simplescalar tool
set, version 2.0. Technical Report CS-TR-97-1342, U.
of Wisconsin, Madison, June 1997.

[2] D. Ernst and T. Austin. Efficient dynamic scheduling
through tag elimination. In 29th Annual International
Symposium on Computer Architecture, May 2002.

[3] D. Ernst, A. Hamel, and T. Austin. Cyclone: A
broadcast-free dynamic instruction scheduler with selec-
tive replay. In Proceedings of the 30th Annual Inter-

national Symposium on Computer Architecture (ISCA),
June 2003.

[4] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel. The microarchitecture of the
pentium 4 processor. Intel Technology Journal Q1, 2001.

[5] Y. Liu, A. Shayesteh, G. Memik, and G. Reinman. Scal-
ing the issue window with look-ahead latency prediction.
In Proceedings of the 18th International Conference on
Supercomputing (ICS), June 2004.

[6] G. Memik, G. Reinman, and W. H. Mangione-Smith.
Just say no: Benefits of early cache miss determination.
In Proceedings of the Ninth International Symposium
on High-Performance Computer Architecture, February
2003.

[7] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-
effective superscalar processors. In Proceedings of the
24th Annual International Symposium on Computer Ar-
chitecture, pages 206–218, June 1997.

[8] T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and simu-
lation points in applications. In International Conference
on Parallel Architectures and Compilation Techniques,
September 2001.

[9] D. Tullsen and J. Brown. Handling long-latency loads in
a simultaneous multithreading processor. In 34th Inter-
national Symposium on Microarchitecture, 2001.

[10] Dean Tullsen, Susan Eggers, and Henry Levy. Simulta-
neous multithreading: Maximizing on-chip parallelism.
In Proceedings of the 22rd Annual International Sympo-
sium on Computer Architecture (ISCA), June 1995.

[11] D.M. Tullsen, S.J. Eggers, J.S. Emer, H.M. Levy, J.L.
Lo, and R.L. Stamm. Exploiting choice: Instruction
fetch and issue on an implementable simultaneous multi-
threading processor. In 23rd Annual International Sym-
posium on Computer Architecture, May 1996.

