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Abstract 

We present a complete promise problem for  SZK, the 
class of languages possessing statistical zero-knowledge 
proofs (against an honest verijier). The problem is to de- 
cide whether two eficiently samplable distributions are ei- 
ther statistically close or far  apart. This characterizes S Z K 
with no reference to interaction or zero-knowledge. From 
this theorem and its prooj we are able to establish several 
other results about S Z K, knowledge complexio, and efi-  
ciently samplable distributions. 

1 Introduction 

A revolution in theoretical computer science occurred 
when it was discovered that N P has complete problems [ 11, 
24, 231. Most often, this theorem and other completeness 
results are viewed as negative statements, as they provide 
evidence of a problem’s intractability. These same results, 
viewed as positive statements, enable one to study an en- 
tire class of problems by focusing on a single problem. For 
example, all languages in NP were shown to have com- 
putational zero-knowledge proofs when such a proof was 
exhibited for GRAPH 3-COLORABILITY [ 191. Similarly, 
the result that IP = PSPACE was shown by giving an 
interactive proof for QUANTIFIED BOOLEAN FORMULA, 
which is complete for PSPACE [25,30]. More recently, the 
celebrated PCP theorem characterizing N P was proven by 
designing efficient probabilistically checkable proofs for a 
specific NP-complete language [3,4]. 

In this paper, we present a complete promise problem1 
for SZK, the class of languages possessing statistical zero- 
knowledge proofs against an honest verifier. For traditional 
complexity classes, such as N P and PSPACE, the construc- 
tion of natural complete problems has become a routine 
task. However, it may come as a surprise that SZK, which 
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is defined in terms of two interacting machines and a simu- 
lator, has a complete problem which makes no reference to 
interaction or zero-knowledge. We use this complete prob- 
lem not as a negative tool, but as a positive tool to derive 
general results about the entire class. Our hope is that this 
new characterization will also aid and simplify further re- 
search in this area. 

Statistical zero-knowledge. Informally, an interactive 
proof is a protocol in which a computationally unbounded 
prover P attempts to convince a probabilistic polynomial- 
time verifier V of an assertion, i.e. that a string x is in a lan- 
guage L. Following the framework laid out by Goldwasser, 
Micali, and Rackoff [22] ,  we consider two probability dis- 
tributions in defining zero-knowledge: 

1. The interaction of P and V from V’s point of view. 

2. The output of a probabilistic polynomial-time ma- 
chine not interacting with anyone, called the simula- 
tor, on input x. 

We say an interactive proof system (P ,  V )  for L is zero- 
knowledge against V (the honest verifier), if for every in- 
put I in L,  the two distributions above are “alike.” Intu- 
itively, the verifier gains no knowledge by interacting with 
the prover except that z E L,  since it could have run the 
simulator instead. The specific variants of zero-knowledge 
differ by the interpretation given to “alike.” The most strict 
interpretation, leading to perfect zero-knowledge, requires 
that the distributions be identical. A slightly relaxed in- 
terpretation, leading to statistical zero-knowledge, requires 
that the distributions have negligible statistical deviation 
from one another. The most liberal interpretation, lead- 
ing to computational zero-knowledge, requires that sam- 
ples from the two distributions be indistinguishable by any 
polynomial-time machine. This variant is not pursued in 
this paper. We focus on the class of languages possessing 
statistical zero-knowledge proof systems against an hon- 
est verifier, which we denote SZK. Usually one wants the 
zero-knowledge condition to hold for all (even dishonest) 
polynomial-timeverifiers. Our results translate to this more 
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general setting under cryptographic assumptions such as 
the existence of one-way functions [8,27, 12, 14,261. 

SZK contains a number of important problems, includ- 
ing GRAPH NONISOMORPHISM [ 191, a problem which is 
not known to be in N P. It also contains problems with cryp- 
tographic application and significance that are believed to 
be hard on average [22, 181. At the same time, the statistical 
zero-knowledge property has several strong consequences. 
Unlike a computational zero-knowledge protocol, a statisti- 
cal zero-knowledge protocol remains zero-knowledge even 
against a computationally unbounded verifier. In addition, 
a language which has a statistical zero-knowledge proof 
must lie low in the polynomial-time hierarchy. In fact, such 
a language cannot be NP-complete unless the polynomial- 
time hierarchy collapses [16, 2, 101. Because SZK con- 
tains problems believed to be hard yet cannot contain N P- 
complete problems, it holds an intriguing position in com- 
plexity theory. 

The complete problem. The promise problem we show 
to be complete for SZK is STATISTICAL DIFFERENCE. An 
instance of STATISTICAL DIFFERENCE consists of a pair 
of circuits, each of which defines a probability distribution 
on strings by selecting the input uniformly at random and 
taking the output. The problem is to decide whether the dis- 
tributions defined by the two circuits are statistically close 
or far apart. The gap between ‘close’ and ‘far apart’ is what 
makes it a promise problem and not just a language. 

A key ingredient in our proof that all languages in 
SZK reduce to STATISTICAL DIFFERENCE is a power- 
ful theorem of Okamoto [26], which states that all lan- 
guages in SZK have public coin, also known as Arthur- 
Merlin [5], statistical zero-knowledge proofs. In the same 
paper, Okamoto proves a second theorem, showing that 
SZK is closed under complementation. Our techniques pro- 
vide a simpler proof of this second theorem. 

From the formal description of our complete prob- 
lem, it will follow immediately that SZK is a nat- 
ural generalization of BPP. In the definition of 
STATISTICAL DIFFERENCE, the circuits can output 
strings of any length. If we restrict the circuits to have 
output of logarithmic length, the resulting problem is 
easily shown to be complete for BPP. 

In order to show that STATISTICAL DIFFERENCE is 
in SZK, we give a simple two-round statistical zero- 
knowledge proof system for it, implying that every problem 
in SZK has such a proof system. In our protocol, the ver- 
ifier flips a coin to select one of the two distributions, and 
sends the prover a sample from the chosen distribution. The 
prover then attempts to guess from which distribution the 
sample came, and the verifier accepts if the prover guesses 
correctly. Thus, in the entire interaction, the prover sends 
only a single bit to the verifier. We will show that, when the 

two distributions are statistically far apart, this protocol can 
be simulated by a polynomial-time simulator with exponen- 
tially small statistical deviation. Thus, every problem in 
SZK has a protocol which can be simulated with exponen- 
tially small deviation. Moreover, we will show that the sim- 
ulator deviation can be made exponentially small in a secu- 
rity parameter which can be much larger than the length of 
the assertion being proved. This is in contrast to the defi- 
nition of SZK, which only requires that the verifier be able 
simulate the interaction with statistical deviation that is a 
negligible2 function of the assertion length. 

Additional consequences. One interesting result that 
comes out of our argument is that for every pair of effi- 
ciently samplable distributions, we can construct another 
pair of efficiently samplable distributions such that when 
the former are statistically close, the latter are statistically 
far apart, and when the former are far apart, the latter are 
close. 

Our work also has some consequences for knowledge 
complexity [22,21]. Knowledge complexity seeks to mea- 
sure how much knowledge a polynomial-time verifier gains 
from an interactive proof. Loosely speaking, the definitions 
of knowledge complexity measure the “amount of help” a 
verifier needs to generate a distribution that is statistically 
close to its real interaction with the prover. There are sev- 
eral ways of formalizing the “amount of help” the verifier 
needs and each leads to a different notion of knowledge 
complexity. We show that for the weakest of these variants, 
knowledge complexity collapses by logarithmic additive 
factors at all levels, and in particular, knowledge complex- 
ity log n equals statistical zero-knowledge. No collapse 
was previously known for any of the variants of knowledge 
complexity suggested in [21]. 

As with zero-knowledge, pelfect knowledge complex- 
ity can also be defined. In this model, we measure the 
number of bits of help the verifier needs to simulate the 
interaction exactly, rather than statistically closely. Using 
our complete problem for SZK, we are able to give tighter 
bounds on the perfect knowledge complexity of statistical 
zero-knowledge, as studied previously in [ 11. 

To summarize informally, our paper 

0 Introduces a simple complete promise problem for sta- 
tistical zero-knowledge, 

0 Exhibits a simple 2-round statistical zero-knowledge 
protocol for that problem and thus for all of SZK, 

0 Gives a simpler proof for Okamoto’s second theorem 
in [26], showing that SZK is closed under complemen- 
tation, 

2Recall that a function f(n) is negligible if for any polynomialp(n), 
f(n) < l / p ( n )  for sufficiently large n. 
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Shows that SZK naturally generalizes BPP, 

Demonstrates that one can efficiently transform a pair 
of samplable distributions to invert their statistical re- 
lationship, 

Proves that there is a partial collapse in one of the 
knowledge complexity hierarchies, and 

Establishes tighter bounds on the perfect knowledge 
complexity of SZK. 

Related work. The complexity of statistical zero- 
knowledge was first considered by Fortnow [16], who 
showed that SZK C CO-AM. Aiel10 and Hastad [2] contin- 
ued Fortnow’s work, showing that SZK C AM. De Santis 
et. a1 [ 151 and Damgard and Cramer [ 131 studied monotone 
boolean closure properties of SZK. Okamoto [26] first 
proved closure under complementation and showed that 
every language in SZK has a public-coin proof system. 

Relationships between the various types of knowl- 
edge complexity were first explored by Goldreich and Pe- 
trank [21]. The computational complexity of languages 
with low knowledge complexity was studied in [9,20,29]. 
The relationship between perfect and statistical knowledge 
complexity was explored in [20, I]. 

2 Notation and definitions 

The problem we prove to be complete for SZK is not a 
language, but is a promise problem. Formally, a promise 
problem II consists of two disjoint sets of strings IIy and 
IIN, where IIy corresponds to “yes” instances and II, cor- 
responds to “no” instances. Thus it is “promised” that only 
inputs from IIy U IIN will appear. The complement of II is 
the promise problem E, where E;. = IIN and EN = IIy . 
Note that languages are special cases of promise problems. 

Let X and Y be discrete random variables on probabil- 
ity spaces s2 and r, respectively. We denote the statistical 
difference between X and Y by IIX - YII. Several basic 
facts about this metric are stated in Appendix A. We write 
X 8 Y for the random variable on !2 x that takes value 
( X ( w ) , Y ( y ) )  onsamplepoint (U ,? ) .  i.e. X g Y  isasam- 
ple of X followed by an independent sample of Y. For any 
positive integer I C ,  & X  is the random variable on Rk that 
takes value (X(wl), X ( w 2 ) , .  . . , X ( w k ) )  on sample point 
( w ~  , . .  . , w k ) .  If R = r, we denote by ( X ,  Y) the ran- 
dom variable on Q that takes value ( X ( w ) ,  Y ( U ) )  on sam- 
ple point w in 0. 

In this paper, we will consider probability distributions 
defined both by circuits and probabilistic Turing machines. 
If A is a probabilistic Turing machine, we use A(I) to de- 
note the output distribution of A on input x. If C is a cir- 
cuit mapping m-bit strings to n-bit strings, then choosing 

the input to C uniformly at random from (0 , l ) ”  defines a 
probability distribution on n-bit strings. By abuse of nota- 
tion, we also denote this probability distribution by C. 

Before defining zero-knowledge, we need to introduce 
some more terminology. A PPTalgorithm is a probabilistic 
algorithm which runs in strict polynomial time. A function 
f(n) is negligible if for all polynomialsp(n), f(n) 5 ph 
for all sufficiently large n. 

We follow [22] and [I71 in defining zero-knowledge. 
For an interactive protocol (P ,  V ) ,  we let Viewp,v be a 
random variable describing the random coins of V and the 
messages exchanged between P and V during their inter- 
action on input x. A language L is said to have a statistical 
zero-knowledge proof system (for the honest verifier) with 
completeness error e(.) and soundness error s(n) if there 
exists a PPT verifier V ,  a PPT simulator S, a prover P,  and 
a negligible function (Y such that 

1. If I E L,  then 
Pr [(P, V ) ( z )  = accept] 2 1 - ~(1x1). 

2. If 2 @ L,  then for all P*, 
Pr [(P*, V)(I) = accept] 5 ~(1x1). 

3. If 2 E L,  then IlS(x) - Viewp,v(x)II 5 a(I11). 

A perfect zero-knowledge proof system is defined in the 
same way, except that the third condition is replaced by 
IlS(x) - Viewp,v(z)ll = 0, where S is allowed to output 
‘ fa i l ’  with probability at most 1/2 and S ( x )  denotes the 
conditional distribution of S given that S(z) # fail. We 
let SZK (resp. PZK) denote the class of languages with sta- 
tistical (resp. perfect) zero-knowledge proof systems with 
~ ( n )  = s(n) = 1/3. As long as 1 - c(n)  is larger than 
s(n) by an inverse polynomial, the class of languages hav- 
ing statistical or perfect zero-knowledge proofs does not 
change [ 171. The negligible function (Y is termed the simu- 
lator deviation. 

An interactive proof system is said to be public coin if 
on every input, the verifier’s random coins r can be written 
as a concatenation of strings 731-2 . . . rl such that the i’th 
message sent from the verifier to the prover is simply ri. 

Observe that like [17], we work with the variant of 
zero-knowledge in which the simulator is required to run 
in strict polynomial time, with some probability of failure 
in the perfect case. The original definition in [22] allows 
the simulator to run in expected polynomial time, but with 
zero probability of failure. Our choice is not very restric- 
tive, because we are only discussing honest-verifier statis- 
tical zero-knowledge and we know of no particular lan- 
guage which requires an expected polynomial time simula- 
tor for the honest verifier. In addition, our techniques can be 
used to prove that expected polynomial time simulators and 
strict polynomial time simulators are actually equivalent 
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for public-coin statistical zero-knowledge proofs against an 
honest verifier. The details of this transformation will be 
discussed in the full version of the paper. 

3 Results and discussion 
3.1 The complete problem 

The main aim of this paper is to demonstrate that 
SZK consists exactly of the problems that involve de- 
ciding whether two efficiently samplable distributions 
are either far apart or close together. This can be for- 
mally described as the following promise problem 
STATISTICAL DIFFERENCE (abbreviated SD): 

(Co,Ci) llco - Gill > - 

In the above definition, CO and C1 are circuits; these de- 
fine probability distributions as discussed in Section 2. The 
thresholds of 1/3 and 2/3 in this definition are not arbitrary; 
it is important for the Amplification Lemma of Section 3.2 
that (2/3)’ > 1/3. 

We wish to prove that SD is “complete” for SZK. In or- 
der for this to make sense, we extend SZK to promise prob- 
lems in the natural way, as previously done by Goldreich 
and Kushilevitz [18]. That is, we require the completeness 
and zero-knowledge conditions to hold for inputs in the Y 
set, and we require the soundness condition to hold for in- 
puts in the N set. For the sake of elegance, we also call this 
extension SZK. This extension and an alternative notion of 
completeness is discussed in more detail in the full version 
of the paper. 

We can now state the main theorem of the paper. 

Theorem 1 SD is complete for  SZK. 

The most striking thing about Theorem 1 is that it char- 
acterizes statistical zero-knowledge with no reference to in- 
teraction. Future investigation of the properties of SZK as 
a class can focus on the single problem SD, instead of deal- 
ing with complicated protocols and arbitrary languages. 

We emphasize that the importance of this result lies in 
the specific complete problem we present and not simply 
the existence of a complete promise problem. It is fairly 
straightforward to construct a complete promise problem 
for PZK involving descriptions of Turing machines for the 
verifier and simulator. This construction has been extended 
to SZK by [7], using a result of Bellare [6] on negligible 
functions. However, in contrast to SD, acomplete problem 
constructed in this manner is essentially restatement of the 
definition of the class and therefore does not simplify the 
study of the class at all. 

The proof of Theorem 1 will come in Sections 3.3 and 
3.4 via two lemmas and a theorem of Okamoto [26].  But 
first, we observe that a statement analogous to Theorem 1 
can be made for BPP, if we generalize BPP to promise 
problems in the obvious way. The proof is omitted in this 
abstract. 

Proposition 2 If SDI is the promise problem obtained by 
modifying the definition of SD so that CO and C1 only have 
1 bit of output, then SDI is complete for  BPP. 

Proposition 2 remains true even if we allow CO and CI 
to output strings of logarithmic length. Other classes such 
as P and RP can be obtained by modifying the definition of 
SD in a similar fashion. This demonstrates that SZK is a 
natural generalization of these well-known classes. 

3.2 An amplification lemma 

Fact A.4 gives an efficient technique for increasing the 
statistical difference between two distributions. The fol- 
lowing lemma provides a complementary technique which 
decreases the statistical difference. Combining these two 
techniques enables us to amplify the thresholds of 1/3 and 
2/3 in the definition of SD to S and 1 - S in time polynomial 
in log 6-l. 

Lemma 3 There is a polynomial-time computable function 
that maps a triple (CO, C1, l’), where CO and C1 are cir- 
cuits, toapairofcircuits (DO, 0 1 )  such that /ID0 - Dlll = 
llC0 - ClIlk. 

Proof: For each b E (0, l}, let Db do the following: 
Randomly choose ( b l ,  . . . , b k )  E (0, l}k such that 
b l $ . . - @ b k  = b. OutputasampleofCb, @.. -@Ccbk.  
It is easily verified that llDo - Dlll = llCo - C1llk. This 
construction is a generalization of the technique used 
in [15] to represent the logical AND of statements about 
GRAPH NONISOMORPHISM. 

Combining the constructions of Lemma 3 and Facts A.4 
and A.3, we obtain the following amplification lemma.3 
The details are omitted in this abstract. 

Lemma 4 (Amplification Lemma) There is a 
polynomial-time computable function Amplify that 
takes a triple (CO, C1, lk), where CO and C1 are circuits, 
and outputs a pair of circuits (DO,  01) such that 

\\CO - Gill < 1/3 * - Dlll < 2-k 
llC0 - Cill > 2/3 * [ID0 -Dill > 1 - 2-k 

3The use of the Amplification Lemma in the rest of this paper could 
be avoided by modifying the definition of SDN to have a threshold of 
1/ I( CO, C1) I. For details, see the preliminary version of this paper, avail- 
able from http: //--math.mit . edu/Nsalil. 
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3.3 A protocol for STATISTICAL DIFFERENCE 

In this section, we show that SD has a simple two-round 
statistical zero-knowledge protocol, similar to the stan- 
dard ones for QUADRATIC NONRESIDUOSITY [22] and 
GRAPH NONISOMORPHISM [ 191. Intuitively, if two dis- 
tributions are statistically far apart, then, when given a ran- 
dom sample from one of the distributions, the prover should 
have a good chance of guessing which distribution it came 
from. However, if the two distributions are statistically 
very close, a prover should not have much better than a 50% 
chance of guessing correctly. More formally, we have the 
following 2-round private-coin protocol for S D: 

Protocol n. 

- 1. V I P :  Compute (DO 01)  - 
Amplify(C0, CI, In+'), where n = ~ ( C O ,  C1)l. 

2. V :  Hip one random coin r E { 0 , l ) .  Let z be a sample 
of D,.. Send z to P. 

3. P: If Pr [DO = z ]  > Pr [DI = 21, answer 0, other- 
wise answer 1. 

4. V :  Accept if P's answer equals r ,  reject otherwise. 

We establish the following lemma, whose proof is omit- 
ted in this abstract. 

Lemma 5 The above is a statistical zero-knowledge pro- 
tocol for  SD, with soundness error 3 + 2-", and com- 
pleteness error and simulator deviation both 2-". Thus 
SD E SZK. 

Observe that by using a security parameter X: rather than 
n in the call to Amplify, both the completeness error 
and simulator deviation can be reduced to 2-k, Hence 
all languages in SZK have protocols that can be security- 
parametrized in this manner. Contrast this with the original 
definition of SZK [22], which only requires that the simu- 
lator deviation vanish as an negligible function of the input 
length. 

This also demonstrates that SZK is closed under 
polynomial-time many-one reductions, i.e. if A reduces 
to B and B E SZK, then A E SZK; To prove that 
2 E A, apply the reduction to z to obtain y and execute 
the B-protocol with security parameter 121. The security 
parameter is essential because an arbitrary reduction could 
potentially shrink string lengths dramatically, but we want 
the simulator deviation to be negligible as a function of 

Since the above protocol is nearly identical to the one 
for GRAPH NONISOMORPHISM, ideas useful for that pro- 
tocol can be applied to SD and thereby all of SZK. For 

1x11 not IYI. 

example, [15] gives SZK proofs for all monotone boolean 
formulae whose atoms are statements about membership 
in GRAPH NONISOMORPHISM. Their techniques general- 
ize readily to SD. Using this in conjunction with Theo- 
rem 1 and Corollary 9, we can obtain SZK proofs for all 
(not necessarily monotone) boolean formulae whose atoms 
are statements about membership in any SZK language. 

3.4 SZK-hardness of SD 

The other major lemma we prove to show that SD is 
complete for SZK follows: 

Lemma 6 Suppose promise problem II has a public coin 
statistical zero-knowledge proof. Then there exist PPT's A 
and B and a negligible function a such that 

2 E IIY * llA(2) - B(z)ll i a(lzl), and 
2 E IIN + l l A ( ~ )  - B(z)ll 2 1 - 2-a(lzl). 

We defer the proof of this Lemma to Section 4. We first ob- 
serve how this lemma gives a reduction to SD for problems 
with public coin statistical zero-knowledge proofs. 

Corollary 7 Suppose promise problem II has apublic coin 
statistical zero-knowledge protocol. Then II ispolynomial- 
time reducible to m. (Equivalently, is polynomial-time 
reducible to SD.) 

Proof: First apply Lemma 6 to produce A and B, with 
p(  15 I) being a polynomial bound on the running times of 
A(z) and B ( z ) .  Given a string z, we can, by standard 
 technique^,^ produce in polynomial time circuits CO and 
C1 describing the computation of A and B,  respectively, 
on z for p (  1x1) steps. The inputs to CO and C1 are the 
first p( lz1)  bits on the random tapes of A and B and the 
outputs are the first p (  1x1) positions on the output tapes. 
Then llC0 - Clll = llA(z) - B(z)ll, which is at most 
a(IzI) < 1/3 if 2 E II and at least 1 - 2-14 > 2/3 if 
2 @ n (for all sufficiently long z). So z H (CO, C,) is a 
reduction from II to SD which works for all but finitely 
manyz. 

The final ingredient in the proof of Theorem 1 is a the- 
orem of Okamoto [26] ,  which we state in termsof promise 
 problem^.^ 

Theorem 8 ([26, Thm. 13) I f a  promise problem 11 has a 
statistical zero-knowledge proof, then II has a public coin 
statistical zero-knowledge proo$ 

We now show how to use Corollary 7 and Theorem 8 to 
obtain a simpler proof of Okamoto's Theorem 2 in [26]. 

See, for example, [28, Thms. 8.1 and 8.21. 
50kamoto stated his result in terms of languages. Extending it to 

promise problems will be discussed in the full version of this paper. 
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Corollary 9 ([26, Thm. 21) SZK is closed under comple- 
ment, even for  promise problems. 

Proof: Suppose II E SZK. Then by Theorem 8, II has 
a public-coin statistical zero-knowledge proof system. 
- Corollary 7 then tells us that n reduces to SD, and hence 
I I E S Z K .  

Now it will be easy to show that SD is complete for 
SZK. 

Proof (of Theorem 1): Lemma 5 tells us that SD E SZK, 
so we only need to show that every problem in SZK 
reduces - to SD. Suppose ll E SZK. By Corollary 9, 
II E SZK. Theorem 8 tells us that has a public coin 
statistical zero-knowledge proof system. We conclude that 
II reduces to SD, by Corollary 7. 

By Theorem 1 and Corollary 9, we see that SD reduces 
to SD. This is equivalent to the following surprising result: 

Proposition 10 There is a polynomial-time computable 
function that mapspairs of circuits (CO, Cl) topairs of cir- 
cuits (DO, 0 1 )  such that 

llC0 - Clll < 1/3 llD0 - Dl11 > 2/3 
lIC0 - Clll> 2/3 * llD0 -Dl11 < 1/3 

* 

It would be interesting to describe such a transformation 
explicitly. 

3.5 Consequences for knowledge complexity 

Due to space constraints, we only give terse definitions 
of the variants of knowledge complexity we consider. All 
of the following definitions of knowledge complexity for 
interactive proof systems come from [21], except for the 
last which comes from [ 11. 

0 Hint sense: We say that (P, V) has perfect (resp., sta- 
tistical) knowledge complexity k(n) in the hint sense 
if there exists a PPT simulator S and a hint func- 
tion h:L+{O,l}* such that lh(x)I = k(Ix1) and 
IlS(x, h(x)) - Viewp,v(x)II is 0 (resp., is bounded 
by a negligible function of 1x1.) 

0 Strict oracle sense: (P, V) is said to have perfect 
(resp., statistical) knowledge complexity k(n) in the 
strict oracle sense if there exists a PPT oracle-machine 
S and an oracle 6 such that on every input z, S queries 
6 at most k(lz1) times and I(S‘(z) - Viewp,v(x)ll 
is 0 (resp., is bounded by a negligible function of lzl.) 

0 Average oracle sense: (P,  V) has perfect (resp., sta- 
tistical) knowledge complexity k ( n )  in the average 

0 

oracle sense if there exists a PPT oracle-machine S 
and an oracle 0 such that for every input z, the aver- 
age number of queries S makes to 0 is at most k( 1x1) 
and IISu(x) - Viewp,v(z)(l is 0 (resp., is bounded 
by a negligible function of /z I .) 
Entropy sense: (P, V) has perfect (resp., statis- 
tical) knowledge complexity k(n) in the entropy 
sense if there exists a PPT oracle-machine S, an 
oracle 6, and a PPT oracle-simulator A such that 
for all x, E ~ [ l o g P , ( R ) - ~ l  5 k(IxI) ,  where 
P,(R) = Pr,[A(x, R;p)  = So(x;R)]  and 
IISo(x) - Viewp,v(x)II is 0 (resp., is bounded by a 
negligiblefunction of 1x1). Here, the notation M(y; r) 
denotes the output of PFT M on input y and random 
coins r, 

We say that the knowledge complexity (in some speci- 
fied sense) of a language L is k ( n )  if there exists an inter- 
active proof system (P, V) for L achieving negligibleerror 
probablity in both the completeness and soundness condi- 
tions such that the knowledge complexity of (P, V) is k(n) .  
The class of languages possessing perfect knowledge com- 
plexity k(n) in the hint, strict oracle, average oracle, and 
entropy senses are denoted by PKChint, PKCstrict, PKC,,,, 
and PKCent, respectively. Statistical knowledge complex- 
ity is denoted by SKC with the appropriate subscript. 

Our first result about knowledge complexity is that the 
%Chint hierarchy collapses by logarithmic additive fac- 
tors. Previously, Goldreich and Petrank [21] have shown 
that SKChint(pOly(n)) C AM and SKChint(O(lOg(n))) C 
co-AM; the second of these results can be derived imme- 
diately from our result and Fortnow’s theorem [16] that 
SZK c CO-AM. 

Theorem 11 For any polynomially bounded function 
k(n), 

SKChint(k.(n) + logn) = SKChint(k.(n)). 

For intuition, consider the case that k ( n )  = 0. Loosely 
speaking, if the verifier is given the hint along with the in- 
put, then the original language becomes a statistical zero- 
knowledge promise problem, so we can apply the results 
of the previous section. Since statistical zero-knowledge 
is easily seen to be closed under (polynomially bounded) 
intersection, closure under union follows from the closure 
under complementation given by Corollary 9. Thus, if we 
take the “union over all hints,” we obtain a statistical zero- 
knowledge problem, which is easily seen to be the original 
language. The formal proof is omitted in this abstract. 

The next theorem establishes tighter bounds on the per- 
fect knowledge complexity of SZK. Aiello, Bellare, and 
Venkatesan [ 13 have previously demonstrated that every 
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language in SZK has perfect knowledge complexity n-w(l) 
(resp., 1 + n-w(l)) in the entropy (resp. average oracle) 
sense. Our results improve on these bounds, although the 
results of [ 11 also apply to cheating-verifier classes and ours 
do not. Goldreich, Ostrovsky, and Petrank [20] show that 
SZK has logarithmic perfect knowledge complexity in the 
oracle sense, so our results are incomparable to theirs. Our 
result for the strict oracle sense is the first that we know of. 

Theorem 12 

1. For every polynomial-time computable f(n) 

2. SZK c PKC,,,(l + 2-"(")). 

= 
w(logn), SZK c PKCstrict(f(n)). 

3. SZK = PKC,,t(2-"(")). 

Theorem 1 tells us that every language in SZK has a sim- 
ple two-round proof system like Protocol 7r of Section 3.3. 
Thus, in order to measure the perfect knowledge complex- 
ity of SZK and prove Theorem 12, it suffices to analyze 
this protocol. Intuitively, since the prover is only sending 
the verifier one bit and this bit is almost always a value the 
verifier knows, the knowledge complexity of this protocol 
should be extremely small. However, this argument does 
not suffice, because the knowledge complexity of a lan- 
guage L is determined only by proof systems for L which 
achieve negligible error probability in both the complete- 
ness and soundness conditions. We can overcome this dif- 
ficulty by perfonningw(1og n)  parallel repetitions. The for- 
mal proof is omitted. 

4 Proof of Lemma 6 
For the sake of clarity, we give the proof for languages. 

The proof for promise problems is nearly identical. The 
constructions in this lemma and protocol 7r are carried out 
for the specific example of GRAPH ISOMORPHISM in the 
full version of the paper. 

Intuition. Recall that we wish to construct a pair of prob- 
abilistic polynomial-time machines A and B such that if 
x E L ,  the distributions A ( x )  and B ( x )  are statistically 
very close, but when x 4 L,  A ( x )  and B ( x )  are far 
apart. We are given that L has apublic-coin statistical zero- 
knowledge proof system. A natural place to search for such 
distributions is in the output of the simulator for this proof 
system. We think of the simulator as describing the moves 
of a virtual prover and a virtual verifier?. We wish to find 

6The 2-n(n) in these results can be improved to 2-"(nk) for any 
constant k by amplifying with security parameter nk instead of n + 1 in 
Protocol T of Section 3.3. 

7This terminology is taken from [2]. The cases we consider are quite 
similar to those analyzed in [16, 21 Because we focus on public coin 
proofs, many complications that otherresearchers faced do not arise. This 
allows us to make some new observations and reach a novel conclusion. 

properties of the simulator's output that (1) distinguish the 
case z E L from x L ,  and (2) are captured by the sta- 
tistical difference of samplable distributions. In the case 
that x E L,  we have strong guarantees on the simulator Is: 
output. Namely, it outputs accepting conversations with 
high probability and its output distribution is statistically 
very close to the real interaction. When x L,  there are 
two cases. If the simulator outputs accepting conversations 
with low probability, this easily distinguishes it from the 
simulator output when x E L.  However, it is possible that 
the simulator will output accepting conversations with high 
probability even when x $ L. This means that the vir- 
tual prover is doing quite well in fooling the virtual verifier. 
This naturally suggest a strategy for a real prover - imi- 
tate the virtual prover's behavior. Such a prover, called a 
simulation-based prover, was introduced by Fortnow [ 161 
and is a crucial construct in our proof. The soundness of 
the proof system tells us that the simulation-based prover 
cannot hope to convince the real verifier with high probabil- 
ity. There must be a reason for this discrepancy between the 
success rates of the virtual prover and the simulation-based 
prover. One possibility is that the virtual verifier's coins 
in the simulator's output are farfrom uniform, so that the 
simulation only captures a small fraction of possible veri- 
fier states. However, this is not the only difficulty. The re- 
sponses of the virtual prover may depend on future coins 
of the virtual verifier, which is impossible in a real public- 
coin interaction. Note that this is equivalent to the virtual 
verifier's coins being dependent on previous messages of 
the virtual prover. We will show that these are the only two 
obstacles the simulation-based prover faces in trying to fool 
the verifier, and thus they must be present when x 6 L. In 
the case that x E L,  however, these difficulties cannot arise 
since we are guaranteed that the simulator output distribu- 
tion is very close to that of the real interation. If we could 
measure the extent to which these anomalies are present by 
the statistical difference between samplable distributions, 
we would achieve our objective. This is precisely what we 
do. 

Notation. Let (PI V )  he a public coin interactive 
proof system for a language L which is statistically 
zero-knowledge against V and let S be a simulator for 
this proof system. Without loss of generality, it may 
be assumed that the interaction of P and V on input x 
always has 2r( 1x I) exchanged messages, with V sending 
the first message and each message consisting of exactly 
q(Ix1) bits, for some polynomials q and T .  Moreover, 
it may be assumed that S's output always consists of 
2r(lxl) strings of length q(lx1). The output of S and 
the conversation between P and V on input x will be 
written in the form S(z) = (cl PI, . . . e,., p , ) s  and 
(P ,  V ) ( x )  = ( C l ,  PI 1 . ' . 1 e,, P T ) ( P , V ) ,  respectively, where 
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c1,.  . . , c, represent the coins of V ,  p l ,  . . . , p ,  represent 
the prover messages, and r = r(1xI). (Dependence on 
z will often be omitted in this manner for notational 
convenience.) We use notation such as ( c i ) ~  for the ran- 
dom variable obtained by running S once and taking the 
c;-component of its output. More generally, partial con- 
versation transcripts will be written like (CI, p i ,  CZ,  ~ 2 ) s .  

We call a conversation transcript (cl ,  pl , . . . , c,, p , )  
which would make V accept (resp., reject) an accepting 
conversation (resp., rejecting conversation). We denote by 
V ( n )  the uniform distribution on strings of length n. 

The proof. In order to formalize the above intuition, a 
definition of the simulation-based prover needs to be given. 
This is the prover P* that imitates the virtual prover, i.e. P* 
does the following to compute its next message when the 
current conversation transcript is (c1, p l ,  . . . , c;): 

If S(z) outputs conversations that begin with 
(c1 , p l ,  . . . , ci) with probability 0, then out- 
put 0q(lx1 ). 

Else output y E (0, l}q(lxl) with probability 

py = Pr[S(x) begins with (c1, PI, . . . , ci, y)( 

S ( x )  begins with (cl ,  p l ,  . . . , c i ) ] .  

In order to analyze the success probability of Pm, we 
first compare the output of S to the actual conversations be- 
tween P* and V .  Let E;  be the statistical difference between 
(ci , pi . . . , ci - 1 ,  pi - 1 ,  ci ) s and (ci , pi . . . , ci - 1 ,  pa - 1 )  s @ 
V(q(  1x1)). Thus ~i measures how far from uniformthe vir- 
tual verifier's i-th set of coins are and how far from inde- 
pendent they are from what comes before. The following 
claim formalizes our intuition that P* can do as well as the 
virtual prover, as long as the virtual verifier's coins are near- 
uniform and near-independent from what preceeds them. 

Claim 13 IlS(x) - ( P * ,  V)(z)ll 5 

Proof: Let Cf = (c1, p i  , . . . , c i ) ~  be the random variable 
of partial simulator transcripts ending with the i-th coins 
of the virtual verifier. Let Pi" = (c1 , P I , .  . . , c; ,p;)s  be 
the random variable of partial transcripts ending with the i- 
th virtual prover response. Similarly define C,* and Pa* as 
partial conversation transcripts of ( P * ,  V ) .  The aim is to 
show that at round k ,  the statistical error grows by at most 
Ek. Formally, it will be shown by induction on k that 

E;.  

k 

i = O  

The case k = 0 is trivial. For general IC, first note that 
since Pm gives a response chosen according to the same 
distribution as the virtual prover, adding these responses to 

the conversations cannot increase the statistical difference. 
That is, 

p:+1 - Pi+lII = IIG+l - G+l II 
The idea now is to extract the parts of IIC{+l - C&,ll 

corresponding to 6k+l and observe that what is left is sim- 
ply the error from the previous round. Note that C;+, = 
P i  18 V(q(lzl)) ,  since the real verifier's coins are always 
uniform and independent from what came before. 

Then, applying Fact A.3 and the Triangle Inequality, 

IlC,S,l - C,"+lll 
I IIG+l - p f  @ W ( l ~ I ) ) l ~  

+ pf @ V(q(lxl)) - pi  @ w7(lxl))/l 
5 €k+l -k - pi 1 1  + Ilu(!dlxl>> - V(dlxl))ll 

- < Ek+l + 
k 

i = O  

This completes the induction. Since P," = S(z) and 
P,* = ( P * ,  V ) ( x ) ,  the Claim is proved. 
We are now ready to construct the distributions we 
seek. Let A be the algorithm whose output on input 
x is (Ao(x) ,  A l ( x ) ,  . . . , A T ( z ) ) ,  all run indepen- 
dently, and let B be the algorithm whose output is 
(Bo (z) , Bi (x), . . . , B, (x)), all run independently. The 
components of A and B are described in Table 1. 

Here, A; is a sampling of a partial conversation tran- 
script from S up to the virtual verifier's i-th set of coins, 
while Bi is a sampling of a partial conversation transcript 
from S up to the virtual prover's (i - 1)-th response fol- 
lowed by q(Ix1) independent random bits. So, for i 2 1, 
the statistical difference between Ai and Bi is ci. 

We will show that the statistical difference between A 
and B is negligible if x E L and is noticeable if x 4 L. 
Amplifying this gap by repetition will give us Lemma 6.  

H 

Claim 14 There exists a negligible function a such that i f  
x E L, then llA(x) - B(x)ll 5 a(lx1). 

Proof: By Fact A.3, the statistical difference between 
A(%) and B ( x )  is bounded above by the sum of the 
statistical differences between A; (z) and Bi ( x) over 
i = 1,. . . , ~(1x1). First, let's examine A0 and Bo. Since 
S(z) outputs a conversation which makes V accept with 
probability at least 2/3 - neg(lzl), the Chernoff bound 
implies that Pr [Ao(x) = 13 1 - 2-'(14), so the 
statistical difference between A0 and Bo is negligible. 
In the real conversations of P and V, the verifier's coins 
are truly uniform and independent from prior rounds, so 
IIAi(x) - B;(z)/l should essentially be bounded by the 
statistical difference between the simulator's output and 

= 
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Algorithm A 
Ao(z) Run S(z) for IzI repetitions. 

Output '1' if the majority are 
accepting conversations and '0' otherwise. 
RunS(z) tooutput ( c ~ , p ~ ,  ..., c , )qS) .  A i ( z )  

Table 1: The components of A and B 

Algorithm B 
Bo(z) output 1. 

B;(z )  RunS(z) andflipq(lz1) morecoinstooutput 
( C I , P I , .  . . , ci-1,Pi-1)s(s) 8 U(q(lz1)). 

the real interaction. This is in fact true, as for each i 2 1, 
applications of Facts A.2, A.3, and the Triangle Inequality 

that IIAa(z) - Bi(g)ll I 2 IlS(c) - (P ,  V)(c)II 
Since the statistical difference between S and (P,  V )  is 
negligible, llA(z) - B(z)l/ is bounded by the sum of 
polynomially many negligible functions and is therefore 
negligible itself. W 

Claim 15 If. 4 L then llA(z) - B(z)ll 2 1/12r(lcl). 

Proof: By Fact A.2, it suffices to show that for some i, 
IIAa(z) - Bj(z)ll > 1/12r(lzl). We deal with two cases 
depending on the probability that S outputs an accepting 
conversation. 

Case 1: Pr [S(z) accepts] 5 5/12. Then, by the 
Chernoff bound, Pr [Ao(z) = 11 5 2-a(14), so the 
statistical difference between Ao(z) and Bo(z) is at least 
1 - 2-"('4) > 1/12r(Izl). 

Case 2: Pr [S(z) accepts] > 5/12. Then, since 
Pr [(P*,  V ) ( z )  accepts ] is at most 1/3, we must have 

P 

i=O 

Thus, at least one must be greater than 1/12r(lzl). W 

Now consider the samplable distributions 
a(z) = @'(lmI)A(z) and B(z) = @ s ( ~ s ~ ) B ( z ) ,  where 

~(1x1) llA(z) - B(z)ll, which is still negligible. If z 6 L,  
then by Fact A.4, A(,) - B(~) l l  2 1 - 2-n(lzl), 

s(n) = n(12r(n))2. If 2 E L,  llA(z) -B(z)ll 5 

II 
This completes the proof of Lemma 6. W 

Acknowledgements 

We thank our advisor Shafi Goldwasser for getting us 
started on the topic of statistical zero-knowledge and pro- 
viding direction and advice throughout our work. We are 
deeply indebted to Oded Goldreich for many enlightening 
conversations on this topic and his extensive comments on 

this paper. We are grateful for Mihir Bellare's valuable sug- 
gestions on our presentation. Our thanks also to Erez Pe- 
trank for useful discussions on this topic and bringing [ l] 
to our attention, and to anonymous referees for helpful sug- 
gestions. 

References 
[l] W. Aiello, M. Bellare, and R. Venkatesan. Knowledge on 

the average-perfect, statistical, and logarithmic. In Pro- 
ceedings of the Twenty Seventh Annual ACM Symposium on 
the Theory of Computing, 1995. 

[2] W. Aiello and J. Hastad. Perfect zero-knowledge languages 
can be recognized in two rounds. In Proceedings of the 
Twenty Eighth Annual Symposium on Foundations of Com- 
puter Science, pages 439448,1987. 

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. 
Proof verification and hardness of approximation problems. 
In Proceedings of the Thirty Third Annual Symposium on 
Foundations of Computer Science, pages 14-23,1992. 

[4] S. Arora and S. Safra. Probabilistic checking of proofs. 
In Proceedings of the Thirty Third Annual Symposium on 
Foundations of Computer Science, pages 2-1 3, 1992. 

[5] L. Babai and S. Moran. Arthur-Merlin games: A random- 
ized proof system and a hierarchy of complexity classes. 
Journal of Computer and System Sciences, 36:254-276, 
1988. 

[6] M. Bellare. A note on negligible functions. Technical Re- 
port CS97-529, Department of Computer Science and Engi- 
neering, University of Califomia at San Diego, March 1997. 
Also available from the Theory of Cryptography Library 
(http: //theory. ICs .mit . edu/-tcryptol). 

[7] M. Bellare, 0. Goldreich, and M. Sudan. Personal commu- 
nication, June 1997. 

[8] M. Bellare, S. Micali, and R. Ostrovsky. The (true) com- 
plexity of statistical zero-knowledge. In Proceedings of the 
Twenty SecondAnnual ACM Symposium on Theory of Com- 
puting, pages 494502,1990. 

[9] M. Bellare and E. Petrank. Making zero-knowledge provers 
efficient. In Proceedings of the Twenty Sixth Annual ACM 
Symposium on the Theory of Computing, 1994. 

[lo] R. B. Boppana, J. Hastad, and S .  Zachos. Does CO-NP have 
short interactive proofs? Information Processing Letters, 
25:127-132,1987. 

456 

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 22:02 from IEEE Xplore.  Restrictions apply. 



S. Cook. The complexity of theorem-proving procedures. 
In Conference Record of Third Annual ACM Symposium on 
Theory of Computing, pages 151-158,1971. 
I. Damgard. Interactive hashing can simplify zero- 
knowledge protocol design. In Proceedings of Crypto ‘95, 
Lecture Notes in Computer Science, volume 403, pages 
100-109. Springer-Verlag, 1994. 
I. Damgard and R. Cramer. On monotone function 
closure of perfect and statistical zero-knowledge. The- 
ory of Cryptography Library: Record 96-03, 1996. 
http://theory.lcs.mit.edu/Ntcryptol. 
I. Damgard, 0. Goldreich, T. Okamoto, and A. Wigderson. 
Honest verifier vs. dishonest verifier in public coin zero- 
knowledge proofs. In Proceedings of Crypto ‘95, Lecture 
Notes in Computer Science, volume 403. Springer-Verlag, 
1995. 
A. De Santis, G. Di Crescenzo, G. Persiano, and M. Yung. 
On monotone formula closure of SZK. In Proceedings of 
the Thirty Fifth Annual Symposium on Foundations of Com- 
puter Science, pages 454-465,1994. 
L. Fortnow. The complexity of perfect zero-knowledge. 
In S. Micali, editor, Advances in Computing Research, vol- 
ume 5, pages 327-343. JAC Press, Inc., 1989. 
0. Goldreich. Foundations of Cryptography (Fragments of 
a Book). Weizmann Institute of Science, February 1995. 
0. Goldreich and E. Kushilevitz. A perfect zero-knowledge 
proof system for a problem equivalent to the discrete loga- 
rithm. Journal of Cryptology, 6:97-116,1993, 
0. Goldreich, S. Micali, and A. Wigderson. Proofs that yield 
nothing but their validity or all languages in NP have zero- 
knowledge proof systems. Journal of the Association for 
Computing Machinery, 38(1):691-729,1991. 
0. Goldreich, R. Ostrovsky, and E. Petrank. Computational 
complexity and knowledge complexity. In Proceedings of 
the Twenty Sixth Annual ACM Symposium on the Theory of 
Computing, pages 534443,1994. 
0. Goldreich and E. Petrank. Quantifying knowledge com- 
plexity. In Proceedings of the Thirty Second Annual Sym- 
posium on Foundations of Computer Science, pages 59-68, 
1991. 
S.  Goldwasser, S .  Micali, and C. Rackoff. The knowledge 
complexity of interactive proof systems. SIAM Journal on 
Computing, 18(1):186-208, February 1989. 
R. M. Karp. Reducibility among combinatorial problems. 
In J. W. Thatcher and R. E. Miller, editors, Complexity of 
Computer Computations, pages 85-103. Plenum Press, Inc., 
1972. 
L. A. Levin. Universal’nyie perebomyie zadachi (Universal 
search problems : in Russian). Problemy Peredachi Infor- 
matsii, 9(3):265-266,1973. 
C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic 
methods for interactive proofs. In Proceedings of the Thirty 
First Annual Symposium on Foundations of Computer Sci- 
ence, pages I-10,1990. 

T. Okamoto. On relationships between statistical zero- 
knowledge proofs. In Proceedings of the Twenty Eighth An- 
nual ACM Symposium on the Theory of Computing, 1996. 
R. Ostrovsky, R. Venkatesan, andM. Yung. Interactive hash- 
ing simplifies zero-knowledge protocol design. In Proceed- 
ings of Eurocrypt ‘93, Lecture Notes in Computer Science. 
Springer-Verlag, 1993. 
C. H. Papadimitriou. Computational Complexity. Addison- 
Wesley, 1994. 
E. Petrank and G. Tardos. On the knowledge complexity of 
NP. In Proceedingsof the Thirty SeventhAnnual Symposium 
on Foundations of Computer Science, pages 496502,1996. 
A. Shamir. IP=PSPACE. In Proceedings of the Thirty First 
Annual Symposium on Foundations of Computer Science, 
pages 11-15,1990. 

The statistical difference metric 

Let X and Y be random variables (possibly on differ- 
ent probability spaces) taking values in a discrete space D. 
We define the statistical difference of X and Y, denoted 
IIX - Y 1 1  to be 

= maxIPr[XET]-Pr[Y E T J ~  

= P r [ X E S ] - P r [ Y  ES], 
T C D  

where S = { z  E D : Pr  [ X  = z ]  > Pr [y = z ] } .  We now 
state several facts about statistical difference. 

Fact A.l (Triangle Inequality) If X ,  Y, and 2 are ran- 
dom variables, IIX - YII 5 IIX - 211 + 112 - YII. 

Fact A.2 I f X  and Y are random variables and f is any 
function, then I l f (X )  - f(Y)II 5 IIX - YII. 

Fact A.3 Suppose X1 and X z  are independent random 
variables on probability space R and YI and Y2 are inde- 
pendent random variables on probability space I’. Then, 

Fact A.4 Suppose X and Y are random variables with 
IIX - YII = E. Then, forall  k, 

457 

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 22:02 from IEEE Xplore.  Restrictions apply. 

http://theory.lcs.mit.edu/Ntcryptol

