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Abotract 

We show how to transform any interactive proof system which is 
atatisticnl zero-knowledge with respect to the honest-verifier, into a 
proof system which is statistical zero-knowledgewith respectto any 
vcdflcr, This is done by limiting the behavior of potentially cheat- 
inG VcrilIer~, without 44sirrg computational assumptions or even re- 
firring lo lhe complexity of suclr verijerstrafegies. (Previous trans- 
formations hnveeitherrelied oncomputationalassumptionsorwere 
npplicnblc only to constant-round public-coin proof systems.) 

Our transformation also applies to publiccoin(akaArthur-Merlin) 
computational zero-knowledge proofs: We transform any Arthur- 
Merlin proof system which is computational zero-knowledge with 
respect to the honest-verifier, into an Arthur-Merlin proof system 
which is computational zero-knowledge with respect to any proba- 
bilistic polynomial-time verifier. 

A crucial ingredient in our analysis is a new lemma regarding 
2.universal hashing functions. 

1 Introduction 

Zero-Knowledge proofs, introduced by Goldwasser, Micali andliack- 
off[GMR89], are fascinatingandextremelyusefulconstmcts. Their 
fascinating nature is due to their seemingly contradictory nature; 
they arc both convincing and yet yield nothing beyond the valid- 
ity of the nsscrtion being proven. Their applicability in the domain 
of cryptogrnphy is vast; they are typically used to force malicious 
pnrtieo to behnve according to a predetermined protocol (which re- 
quires pnrtics to provide proofs of the correctness of their secret- 
baaed nctions without revealing these secrets). 

Zero-knowledge proofs come in many flavors. Arguably, the 
most important parameters refer to the strength of the zero-knowledge 
(or simulability) condition. These are captured by two parameters: 
The first parameter is the type of adversary which is supposed to 
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learn nothing while verifying an assertion. The simplest type is a 
honest-verifier; that is, one which follows the protocol (and ends up 
with the transcript of the interaction). Zero-knowledge with respect 
to an honest-verifier is already a fascinating notion from a concep- 
tual as well as a complexity-theoretic point of view. However, cryp- 
tographic applications typically require robustness against arbitrary 
(or arbitrary feasible) behavior which typically deviates from the 
protocol. This is thegeneral(or standard) notion ofzero-knowledge. 
A major open problem in the area is whether honesr-verijerzero- 

knowledge equals general zero-knowledge. A positive answer to 
this question may also lead the way to a useful methodology: First 
construct a honest-verifier zero-knowledge proof to the problem at 
hand, and next transform it to a general zero-knowledge proof. To 
describe our contribution to the above open problem. we need first 
to discuss a second major parameter of the zero-knowledge frame- 
work - the notion of learning nothing. 

The requirement that the verifier learns nothing from the proof 
is formulated by saying that the transcript of its interaction with the 
prover can be simulated by the verifier itself. That is, there exists 
an efficient procedure than on input a valid assertion produces a dis- 
tribution which is “similar” to the distribution of transcripts of the 
executions of the proof system on that assertion. The key param- 
eter is the interpretation of “similarity”. Three notions have been 
commonly considered in the literature (cf., [GMR89, For89]). Per- 
fect Zero-Knowledge (PZK) requires that the two distributions be 
identical. StatisticalZero-Knowledge (SIX) requires that these dis- 
tributions be statistically close (i.e., the variation distance between 
themisnegligible). Finally,ComputationalZero-Knowledge(CZK) 
refers to the case that these distributions are computationally indis- 
tinguishable (cf., [GM84, Yao82]). 

Assumingthe existenceof one-way functions. any language which 
has anintemctive proof, has also a Computational Zero-Knowledge 
one(cf., [GMW91,IY87,BGG+ 881). Thus, assumingtheexistence 
of one-way functions, the above problem (i.e., of honest-verifierZK 
versus general ZK) is long resolved for the case of Computational 
Zero-Knowledge. Still, it is open whetherone can prove that honest- 
verifier CZK equals general CZK, without assuming the existence 
of one-way functions. We resolve this problem for the special case 
of public-coin (aka Arthur-Merlin) proof systems - 

Theorem 1 Every language having an Honest-Verifier Computa- 
tional Zero-Knowledgepublic-coin proofqstem, also has a general 
Computational Zero-Knowledge (public-coin)proof system. 

We note that it is known that the existence of honest-verifier CZK 
for languages outsideBPP yields a weak form of one-way functions 
[OW93]. However, this weak form of one-way functions does NOT 
seem to suffice for constructing general CZK proofs for the same 
language (in general). 
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The main focus of this paper is the honest-verifier versusgeneml 
verifier problem for Srurisricu6 Zero-Knowledge. We fully resolve 
the problem in this case- 

Theorem 2 Every language having an Honest-lkriJ7er Statistical 
Zero-Knowledgeproofsystem, also &~a general (public-coin) Stu- 
tistical Zero-Kno~vledgeproo~ 

Results of similar nature were previously achievedunder intmctabil- 
ity assumptions (cf., [BM090,OVY93,Oka96]). A weakeruncon- 
ditional result was claimed in [DOY97]. All these are discussedin 
detail below. But first we need to be somewhat more precise about 
the notions and issues discussed above. 

1.1 Formal Setting 

The basic notions of interactive proofs [GMRS9] are recalled in Ap 
pcndix A. Throughout this subsection we fix a language L, and an 
interactive proof system, (P, V), for it.’ The basic paradigmof zero- 
knowledge is that for every verifier of a certain class, there should 
be an efficient non-interactive machine, called the simulator, which 
is able to “simulate well” the view of the verifier in real interactions 
with the prescribed prover (i.e., P). The two main issues we con- 
sider are (1) which verifiers should be simulated, and (2) the quality 
of simulation. 

Which verifiers should be simulated (or honest-verifier ver- 
sus general zero-knowledge): Thetwo standardclassesarethe 
class consisting merely of the prescribed verifier V (aka the honest- 
verifier), and the class consisting of all probabilistic polynomial- 
time interactive machines (i.e., feasible cheating strategies for the 
Wifier). 

For the case of statistical zero-knowledge,we will considereven 
a wider (in fact the widest possible) class - the class of all possi- 
ble verifier strategies (including non-computable ones). This will 
make our result even stronger. But how can an efficient machine 
(i.e., the simulator) simulate the behavior (Iet alone interaction) of 
a non-computable verifier strategy? The clue is the familiar notion 
of a reduction, captured in this contest by the notion of a blnck-box 
simulator. The latter is a probabilistic polynomial-time oracle ma- 
chine which is given oracle access to the verifier strategy.2 Vie com- 
ment that the notion of black-box simulation was considered before 
for other reasons (cf., [GO94, GK961). 

The quality of simulation (or SZK versus CZK): When 
defining statistical zero-knowledge (w.r.t. a class of verifiers), one 
requires that for every verifier, I’*, in the class there esists an effi- 
cient simulator, S’, such that the following two distribution ensem- 
bles are statistically close (i.e., the variation distance is eventually 
smaller than l/p(Jzl) for every positive polynomial p): 

1. {(P, V*)(L) : z E L}, where (P, V*)(Z) denotes the view 
of I’* when interacting with P on common input 2. Recall 
that this view consists oft, all internal coin tosses of I/*, and 
all messages received from P. 

2. {S.(x) : ZEL). 

The variation distance behveen the hvo distribution ensembles is 
called the sbnrdatordeviation . In case there exists a black-box sim- 
ulator, denoted S, the second distribution ensemble is {S”’ (z) : 

’ AU ourrcsulu extend also to promise problems. 
a That is, assuming deterministic sate&s. each queay is parsed es a sequence of 

pro~crmesu~csrcpresentingapretixof theintmction,andtheanswerisIheresponse 
of this verifier strategy to such a prefix. Prob;ibilistic wilier strategies are considered 
by lirst randomly selecting and f&g n detemkistic strategy. and then proceeding as 
above. 

z E L}, where Sv*(z) denotes the output distribution of S on in- 
put x and oracle access to V’. 

When defining compufafional zero-knowledge (with respect to 
a class of verifiers), one instead requires that the two distributions 
aboveare computationally indistinguishable (cf., [GMS4, YaoE!]). 
That is, for every probabilistic polynomial-time algorithm, D, the 
following quantity is negligible (i.e., is eventually smaller than l/p(lel) 
for every polynomial p): 

lPr(D((l’,V’)(~c)) = 1) - Pr(D(S”*(x)) = I)1 

In our definitions of zero-knowledge, we require that the simu- 
lators run in strict polynomial-time, as in [Goll)S]. 

Notations: Let HVSZX: (resp., SZIC) denote the class of lan- 
guageshavingintemctiveproofswhicharestatisticalzero-knowledce 
with respect to the honest-verifier (resp., with respect to any proba- 
bilistic polynomial-time verifier). The classes 7fVC2li nnd C2h: 
are defined analogously for computational zero-lmowlcdge. 

Public-coin (or Arthur-Merlin) proof systems. As we re- 
fer to this notion, let us recall thatpublic-coinproofsysterns are in- 
teractive proof systems in which the prescribed verifier’s strategy 
amounts to the following: In each round, the verifier tosses a pro- 
determined number of coins and sends the outcome to the prover, 
and at the end it decides whether to accept by applying a predicate 
to the (full) sequenceof messages it has sent and received. For each 
oftheclassesc above,wedenoteby& thesubclassofpttbkcoin 
(or Arthur-Merlin) proof systems having the corresponding zero- 
knowledge property. 

1.2 Previous work 

Clearly, SZX: C 7WSZK: (resp., C2X E WCZAJ, BPP C_ 
SZX: E CZX: (resp., HVSZk’ C 7WC2~), and &at d C C 
ZP for each of these four ZK classes. 

1.2.1 On the complexity of various ZK classes. 

The situation with respect to computational ZK is as follows. 

Positive for CZK: Assuming the existence of one-wayfunctions, 
mq*M = ZP (cf., [GMW91, NS7,BGG+SS,HILL, Nao91]), 
and so under this assumption the status of all computational 
zero-knowledge classes is resolved. 

“Negative” for CZK: If one-way functions do not exist then only 
“easy on the average languages” have honest-verifier (com- 
putational) zero-knowledge proofs [OW93]. This result al- 
most complements the positive result above. 

Open for CZK: Does ‘HVCZK = CZEC hold unconditionally7 
(Or put otherwise, can it be proven without assuming the ex- 
istence of one-way functions?) 

Recall, this paper resolves this open problem for the case of public- 
coin proof systems; that is, we show that 7WCZK~.,,, = CZA$CI. 
As for statistical ZK we have 
Positive for SZK: Severalcomputationalproblems, believed to be 

hard, areknown to have statistical zero-knowledge proof sys- 
tems: for example, Quadratic Residuosity [GMRS9], Graph 
Isomorphism [GMW91], aproblemequivalentto theDiscrete 
Logarithm Problem [GK93], Statistical Difference [SV97], 
and a gap promise problem for lattices [GGgS]. 

Negative for SZK: HVSZX C AM I-I coAM [ForS9, AHS7]. 
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Inrjldc HVSZK: A key result regarding SZK is that any honest- 
verifier statistical zero-knowledge proof can be transformed 
intooncusingonly public-coins [Olca96]. Thatis, ‘JflXZK: = 
7fyS21C(rr~. It is also known that HYSZK: is closed under 
complement [Oka96, SV971. 

Open for SZK: Does HVSZlC = S2K hold? 

Recall, Ibis paperresolves this open problem, showing that 3tYSZK: = 
S2lc (nnd in fact 7WSZK: = S2iC(rm). 

1,2,2 Previous transformation of honest-verifier to gen- 
cral ZK 

Condltlonal rcoults for SZK: ThcproblemofrelatingtiHySZK: 
to S2K was first studied in [BM090]. They showed that the two 
clasocs coincide, provided that the Discrete Logarithm Pmblem is 
hnrd. At lb time, it seemed puzzling that computational assump- 
tions can be used In the supposedly “information theoretic” context 
of’atatiatical zero-knowledge. However, a careful examination re- 
veals that the standard class SZK: does refer to computationallim- 
itntlons: It is required to simulate only all probabilistic polynomial- 
tlmc vcdflers. Thecomputational assumptionis thusused to restrict 
the behnvior of cheating verifiers. This approach was carried to its 
climax In [Okn96] (cf., [DGOWgS, Part 21): Using any bit com- 
mitment scheme (and thus any one-way function [HILL, NaoSl]) 
It v/no shown that ‘?0S2K(,, 
?tvszK: = 7.tVSZtCl 

= S2KjrLr. Combined with the 
A,8 result cited above, one gets that the exis- 

tence of one-wny functions implies HVSZK: = SZX: (and in fact 
7-IVSZIc ~3 SZICIM). 

Unconditional results for constant-round ZK: The only un- 
conditional transformations of honest-vedfierSZK (resp., CZK) known 
before, referred to thcclass ofconsrunr-roundpublic-coinproofsys- 
terns (cf,, [Dam94, DGW94]), It was shown that if L has a HVSZK 
(reap,, HVCZK) public-coin proof system of a constant number of 
rounds then 1; E S21ClrM (resp., L E C2KjrM). 

Wonk SZK: In [DOY97] it isclaimedthatanylanguagein3-IYSZX 
has an interactive proof, (P, V), with the following non-standard 
atntioticnl zero-knowledge property: For every positive polynomial 
p, nnd every probabilistic polynomial-time verifier V’, there exists 
n probabilistic polynomial-time simulator SG (with nmning-timede- 
pending on p) so that the variation distance between the probability 
enacmblca, {(P, V*)(z) : z E L} and {S;(z) : x E L), is at most 
1MlW 

1.3 Restating our results 

WC obtdn the first unconditional general transformation of honest- 
vcrillcr zero-knowledge to general zero-knowledge. 

Thcorcm 3 (main result): There exisrs an eflcient transformation 
ofHonest-WlJierStatistical (resp., Computational)Zero-Knowledge 
public-coinproofsysrems, into generufStutisticu1 (resp., Computa- 
tional) Zero-Knowledge public-coin proof systems. Furthermore, 

I. The resulting proofsystems has twice as many rounds as the 
original one. 

2, The resulting prover strategy can be implemented in proba- 
bilistic polynomail-time given oracle access to the original 
prover strategy. 

3, The completeness error of the resulting proof ustern is expo- 
nentially vanishing. In case the originalproofsystemhasper- 
feet completeness, so does the resulting one. 

e’fho flr~t nulhorwas unnbleto verifythecl;llmsandPrgumen(sSivenin [DOY97J. 

4. The soundnesserrorof the resultingproofsysrem is bounded 
above by l/p( izl), wherep is an arbitra~*polynomial deter- 
mined by the Wansfomtah’on. 

5. The resulting proof system has a bhzck-box zero-knowledge 
sbnuhltor. 

6. In case of Statistical Zero-Knowledge, the resulting simulator 
is strong (i.e., it can handle arbitrary venjiersrrategiesj, and 
its sbnuludon error is at most poly(lzl) - E(Z) + 2-*(trl), 
where c(x) is the simulation error of the original system. 

Theorems 1 and2follow, wherein caseofStatisticalZero-Knowledge 
weuseOkamoto’s result by which XYSZK: = ‘HVSZK&., [Oka96, 
Thm. I]. 

We stress that, in contrast to the previously mentioned condi- 
tional results, ourresult for (unbounded)stutistical zero-knowledge 
is unconditional and guarantees (black-box) simulation of all possi- 
ble verifier strategies (not only polynomial-time ones). Theorem 3 
also provides a transformation for a wide class of computational 
zero-knowledgeproof systems- that is, the class ofpublic-coin proof 
systems. We view our result as a significant step towards showing 
that HVCZK: = CZK: without relying on any intractability as- 
sumptions. 

Soundness error and number of rounds: The transformation 
of Theorem 3 increases the number of rounds of the original proof 
system only by a factor of 2. However, the resulting protocol has 
noticeable soundness error. That is, for any positive polynomial p, 
we can achieve a soundness error of I/p(lzl). The soundness er- 
ror may be further decreased, while preserving the zero-knowledge 
property, by sequential repetition of the proof system. In partic- 
ular, to achieve negligible soundness error it suffices to use w(l) 
sequential repetitions. This is unavoidable, unless n/P C BPP. 
since only BPP languages may have black-box simula&n zero- 
knowledge public-coin proofs with constant number of rounds and 
negligible error probability [GK96]! 

Completenesserror: Byfirstapplyingthetransformationof[FGM989], 
we may eliminate compIeteness error altogether (at the cost of at 
most one additional round and not preserving the complexity of the 
prover). (Recall that the transformation of [FGM+89] increases the 
simulation error by at most an exponentially vanishing amount.) 

Corollaries: Many known results regarding the class ‘HVSZK. 
translate to the class SZX: (and respectively results for HX2Kjr,1 
translate to CZIcI&. For example, using known results regard- 
ing HVSZIG, one obtains that SZK: is closed under complement, 
equals SZKI~, has a complete promise problem. etc. A somewhat 
less straightforward corollary is the following. 

Corollary 4 Every language in S2K has a SZKproofsystem with 
petj&zt completeness in which the soundness error and the sbnula- 
tion deviation are exponentially vanishing. 

Given Theorem 3 (and the discussion above), the only non-obvious 
part in Corollary 4 is the claim about the simulation error. Here we 
rely on the result of [SV97] by which every language in ‘HYSZK: 
has a I-round interactive proof system for which the honest-verifier 
can be simulated with exponentially vanishing simulation error. We 

4 Recall that if one-way functions exist then NP has constant-roundpubtic-coin 
proofs with negligible soundness esror which rue honest-verifier computational zero- 
knowledge[GhllY91]. So.ifTbeorem3 v;eretopreserveallitsfeahlresahjleresulting 
in e proofsystem with negligible soundness error then NP C BPP would follow 
(nssumhlg thnt one-wtlyfuncdonsexist). 
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also use a careful analysis of the 3tYSZK: to ZYS2Klna, transfor- 
mation of [Oka96] by which this transformation increases the sim- 
uIation error by at most an exponentially vanishing amount. And 
lastly, applying Theorem 3, we use its item 6. 

1.4 Techniques 

Theorem 3 is proven by modifying the transformation presented in 
[DGW94]. Whereas the proof systems resulting from that transfor- 
mation could be simulated only for a constant number of rounds, 
our modified transformation can be simulated for any (polynomial) 
number of rounds. Both transformations apply to honest-verifier 
Arthur-Merlin zero-knowledge proofs (both statistical and compu- 
tational). 

In thetransformation of [DGW94], each&bit long (random) mes- 
sage sent by Arthur is replaced by an invocation of a 2-round Ran- 
dom Selection protocol, for generating strings in (0, l}e. For any 
fixed positive polynomial p, a Random Selection protocol with the 
following two properties was presented pGW94]: 

1. As long as Arthur plays according to the protocol, Merlin may 
cause the outcome to deviate from uniform distribution over 
(0, l}e by at most l/p(k). (That is, the variation distance is 
at most l/p(Q) 

2. As long as Merlin plays according to the protocol, Arthur may 
not cause any E-bit string to appear as the outcome with prob- 
ability greater than p(l)‘>l - 2-e. In particular, when Arthur 
applies a deterministic cheating strategy, the outcome of the 
protocolis uniformly distributedoversomeset of & strings. 

The proof system resulting from the above transformation is sim- 
ulated in lDGW94] by running the honest-verifier simulator, and 
hoping that all Arthur-messages included in the transcript fall in the 
sets mentioned in Item (2) above. If the proof system uses only a 
constant number of invocations of the Random Selection protocol, 
then the above suffices for producing a black-box simulation with 
respect to any cheating Arthur-strategy. This approach fails when 
we have a non-constant number of rounds (Random Selection in- 
vocations). 

In this paper we modify the above transformation as follows. 
Rather than selecting a message, we use the Random Selectionpro- 
tocol to specify (in a succinct manner) a set of 2” messages. Mer- 
lin is then supposed to select a message for Arthur, uniformly from 
this set. An immediate concern is that this allows Merlin to select 
a string which is advantageous for cheating. However, this onIy 
increases Merlin’s cheating probability by a factor of 2” per each 
round. (We can first make the original proof system have an even 
smaller soundness error, so this should not scare us.) So the ques- 
tion is what we gained by doing so. Intuitively, we gained not hav- 
ing to simulate the Random Selection protocol for any possible out- 
come. Rather than having to simulate an execution which results in 
any specific &bit output, (Y, we only need to simulate an execution 
which results in a random set of strings containing CY. The distinc- 
tion is important since esecutions of the former type may exist only 
for a l/poly(e) fraction of the possible&, whereas-as we show- 
executions of the latter type exists and can be efficiently generated 
for all but a 2-“(“) fraction of the CY’S. Proving the last statement is 
a major technical undertaking of the paper. It is reduced to proving 
the following lemma which may be of independent interest: 

Lemma 5 (Hashing Lemma): Thereexistsauniversalconstant, c > 
0, so that the following hola!s, for every e, 6 > 0. Let D and T be 
finite sets, H be a 2-universalfamily of hashjimctionsfiom D to 
T, and e E T. Let S C H such that ISI 2 SjHj, and X be a 

random variable ranging over afinite set D having collision prob- 
ability at most fi (i.e., &n Pr [X = $1” < fi>. Then the sta- 
tistical dtyerence behveen the following hvo randomprocesses is at 
most c. eltcP. 
(A) Select h uniformly in S, and let z be selectedfiotn X condi- 

tioned on h(X) = e. Output (h, z), 
(B) Let x c X, and h be selected uniformly among all k E II 

sutisfjGng h(z) = e. Output (h, 2). 

Actually, a special case of this lemma, where X is uniform over D 
(and IT/ = e - IDI> suffices for the current proof of Theorem 3. 
Thus, only a proof of this special case is given in this version. The 
stronger version was developed for an alternative proof, discovered 
first, which is totally superseded by the current proof. 

2 Notation 

Whenever we consider an interactive proof system, x will denote 
the common input and n will be the length of p. For notational con- 
venience, we will often hide dependenceon z or n when it is clear. 
For example, we write T instead of r(n). 

If X and Y are random variables, we write IlX - Y II for their 
statistical difference (or variation distance), defined as IlS - 1’11 = 
f(c, I Pr [X = Z] - Pr [y = $1 I). By t + X, we mean taking 
a sample x from random variable X. If S is a set a ER S indicates 
that x is chosen uniformly from S. 

3 The starting proof system 

Theorem 3 is proven by combining two tmnsfonnations. The first 
transformation is obtained by parallel repetition, and is stated with- 
out proof below.5 The protocols resulting from this transformation 
are the starting point for our main transformation, stated in the nest 
section. 

Lemma 3.1 Let L be a language having a honest-verifier statis- 
tical (resp., computational) zero-knowledge public-coin proof sys- 
tents of r rounds. Then L has such a (T-round honest-verifier) zcro- 
knowledge (public-coin) proof system in wkich 

1. Theproverstrategycan be implemented inprobabilisticpolynomta 
time given oracle access to tke originalproverstate~y, 

2. The completenesserroris exponentailly vanishing, andin case 
the original proof system has perfect completeness so dots 
the resulting one. 

3. Soundness error is less tkan 2’“*(p+1). 
4. For L E NVSZIG: The simulator deviation is at most a 

polytomialfactor greater tkan the original one. 

4 The transformation 

Fix a language L in 3tYSZK or HVC2iClrM and let (Jf, 11) be 
the proof system guaranteed by Lemma 3.1. Let T = ~(9)) be the 
number of rounds of (kf, A) and let e = E(n) be the length of A’s 
messages. We may describe this proof system as follows: 

‘ Recall thathonest-verifierzero-I;nowledgeproperticsnr~ prcwvcdunderpmallcl 
repetition. 
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Original Proof System (M,A), on input z: 
1, In round i (i = 1,2,. . . , T), 

(a) A chooses a message ai ER { 0, 1)’ and sends it to M. 

(b) M sends a response /3i +- M(cul, /3x, (~2, /&, . . . , ai) 
toA. 

2, A&r round T, machine A deterministically decides whether 
to accept or reject, 

Thercasonsuchaprotocolcould bezero-knowledgeagainstthe hon- 
est verifier but not against dishonest verifiers is that nothing pre- 
vents A from choosing the ai’s maliciously rather than uniformly. 
Thcldcnofourtransformationis toreplaceA’srandomchoiceswith 
a Random Selection protocol (to be described in Section 5) which 
gunrnntecs Ihat the ai’s are statistically close to uniform, regardless 
of how A behnves, The new protocol, denoted (M, A), proceedsas 
followa, 

Tranoformed Proof System (M,A), on input 2: 
1, In r;tagc i (i = 1,2,. . . , r), 

(a) M and A use the Random Selection protocol, 
RS2nr(n),c(n)(n)t to select ai E (0, l)L. 

(b) M sends thcresponsepi + M(cr~, PI, (~2, Pz, . . . , ai) 
to A, 

2, After stage r, machine A accepts or rejects as A would on 
(ranscrIpt ((~1, pi, , . . , +, &). 

We will prove the following about the Transformed Proof Sys- 
tem: 

Lemma 4,l The TrunsformedProofSystem (M, A) husthefollow- 
big properties: 

I, Thenumbcrof roundsistwice thenumberofroundsin (M, A). 

2, M can be implemented inprobabilisticpolynomial time given 
oracle access to M. 

3, The completeness error is exponentially vanishing. In case 
(M, A) lrasperj&completeness, so does (M, A). 

4, Sormdnesserror l/n. 
5, When (M, A) is Honest-Ver#erStatistical (resp., Computa- 

tional) Z&o-Knowledge, (M, A) is Statistical (resp., Com- 
putational) Zero-Knowledge, and this zero-knowledgeprop- 
erty is exhibited by a black-box simulator. 

I, In the case of Statistical Zero-Knowledge, the simulator de- 
viation is at most 2-“(“1 greater than that of (M, A). 

Theorem 3, follows immediately from Lemmas 3.1 and 4.1.6 
Wcnowinformally explainwhyLemma4.1 holds. Alloftheseprop- 
crtics depend on facts about our Random Selection protocol which 
will be proven in subsequent sections. Property 1 follows from the 
fact that our Random Selection Protocol consists of 2 rounds with 
Merlin sending the last message. Property 2 is clear, given that the 
Merlin’s strategy in the Random Selection protocol can be imple- 
mented In probabilistic polynomial time. 

Properly 3, the completeness error, follows from the fact that 
(M, A) hascxponcntiallyvanishingcompletenesserrorandthefact 
that when M behaves honestly in the Random Selection protocol, 
the a’5 will hnve only have a statistical difference of 2-“(“) from 
uniform, It is obvious that perfect completeness is preserved by our 

%x cnso of preanlntion, WC only show how to obtrdn a soundnesserror of I/n. 
but thlo can be replnced v&h nay inversepolynomiol. 

transformation. For soundness (Property 4, we will show that in our 
Random Selection protocol, a cheating M cannot make the output 
lie in any set S c (0, 1)’ with probability greater that 2” - 9 + 
&. This gives M essentially an extra 2” factor of freedom (com- 
pared to what M has) at each stage. Over r stages, we expect M to 
succeed with probability 2’” times greater than M can. But since 
the original (M, A) protocol has soundness error 2-(++‘)“, M still 
has only an exponentially small chance of succeeding. The additive 
error term of 1/2nr also accumulates to give an additional additive 
factor of 1/2n to the soundness error over r rounds, yielding a total 
soundnesserror less than l/n. A more detailed proof of soundness 
will be given in the full version of the paper [GSV98]. 

The proof of zero-knowledgeness(Properties 5 and 6) is the ma- 
jor technical undertaking of the paper, and it too reduces to proper- 
ties of our Random Selection protocol. We will demonstrate that no 
matter what strategy the verifier follows, the ai’s will be distributed 
statistically close to uniform. Moreover, we will show that the Ran- 
dom Selection protocol satisfies a strong sbnulability property: Us- 
ing the verifier algorithm as a black-box subroutine and given a ran- 
dom (Y E (0, l}L, one can efficiently simulate the distribution of 
Random Selection transcripts which yield (Y. Thus, a simulator for 
the Transformed Proof System could operate as follows: Run the 
honest verifier simulator for the original proof system to produce a 
transcript of ai’s and pi’s; then use the strong simulator for the Ran- 
dom Selection protocol to “fill in” how the cr;‘s are chosen. These 
intuitive arguments will be made precise in the next few sections. 

5 Random Selection 

Let q and4 be any polynomials. In this section, we describe an Arthur- 
Merlin protocol RS,,l(n) = (i&S, ARS)(~) for randomly se- 
lecting a string in (0, 1) ‘cm). The protocol employs the Random 
selection protocol DGW,,f(n) = (&, AD) of [DGW94] as a 
subprotocol, and the following presentation is adapted from that pa- 
per. 

For notational convenience, we will write q to mean q(la] and 
L to mean e(n). Let ‘If be the space of affine linear functions from 
(0, 1)’ to {0,1}(-, , i.e. h E 31 is of the form h(z) = Az + b for 
some appropriately sized matrix A and vector b.7 For cr E { 0, 1)‘. 
vfewrite3tofor{h E H:h(cy) = 0). Lets = t-(e-n)+ 
@-n)andt= s - 410g2(3qs). Note that elements of (0, 1)’ can 
be viewed as elements from 31. The protocol DGW,,f utilizes a 
space of functions T from (0, 1)’ to (0, 1): satisfying the follow- 
ing properties: 

1. Each f E T has a description of size poly(n). 
2. There is a poly(n)-time algorithm that, on input f E 7 and 

h E (0, 1}5, outputs f(h). 
3. There is a poly(n)-time algorithm that, on input f E T, y E 

{O,1}‘,listsalltheelementsoff-‘(y). Inparticular.If”(y)1~ 
p(n) for some polynomial p. 

4. For every y E (0, 1)’ and f E 3, f-‘(y) is nonempty. 
5. 3 is a family of almost s-wise independent hashing functions 

inthefollowingsense: Foreverys distinctpointshl, . . . , h, E 
((0, 1)’ \ (0, l}tOs-*), for a uniformly chosen f E 3, the 
random variables f&l), . . . , f(hS) areindependentlyanduni- 
formly distributed in (0, 1)‘. QIis property is used only for 
tbe proof of the soundnesscondition of the protocol, found in 
[DGW94].) 

‘Any 2-universal family for which the required compuratioos are feasible can be 
used; we use his particular family for simplicity and ease of presentation. 
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An esplicit construction of such a family is given in [DGW94]. We 
can view each f E 7 as defining a partition of { 0, 1)’ into 2t cells 
of the form f-‘(y). each of size poly(a). For notational conve- 
nience, we will sometimes write cell y to refer to the cell f-’ (,y). 

We now describe the protocol of [DG\V94]: 

The DGW Random Selection Protocol DGFVV,,e = (MD, AD)(~): 
1. AD selects f ER F, and sends it to MD (i.e., AD selects a 

random partition). 
2. lrf~ se1ect.s y ER (0, I}‘, and sends it to AD (i.e., & uni- 

formly selects a cell). 
3. AD selects k ER f-‘(y) (i.e. AD uniformly selects an ele- 

ment of the cell). 
4. output k. 

If, at any step, AD or & do not select an object from the appro- 
priate set, whatever message they zend is interpreted as a canonical 
element of that set. In [DGW94]. it was shown that the above pro- 
tocol has the following properties (roughly speaking): 

I. (Soundness) For any Merlin strategy kfs, the output distri- 
bution on 7-l = (0, 1)’ of (@,, AD) deviates from uniform 
by at most l/q (in statistical difference). 

2. (Simulability) Let A& be any strategy for Arthur. At least 
a l/poly(n) fraction of the h’s in (0,l)” occur as possible 
outputs of the interaction (3fD, A&) and given such an h, 
one can simulate in poly(n)-time AL’s view of an interac- 
tion resulting in h. 

Themainhindranceinapplyingtheprotocol asusedby [DC&V941 
is that the simulator is only guaranteed to work for a l/polg(n) 
fraction of the h’s. The new technique of this paper is to interpret 
the output k E 7i of the DGW protocol as a set of strings (namely 
k” (O)), from which a single string Q is randomly selected by Mer- 
lin. It is this cy, rather than k, that is the output of the Random Selec- 
tion protocol. Thus, we only need to simulate the Random Selection 
protocol for a random o’ rather than a random k. For a given a, there 
are esponentially many hash functions k such that k(a) = 0. Be- 
cause this space of k’s is so large and covers the (Y’S near-uniformly, 
we are able to perform the simulation for a 1 - 2-n(“) fraction of 
the ~8s. 

A full description of our Random Selection protocol follot.vs. 

Our Random Selection Protocol RS,,e = (AIRS, ARS)(~): 

1-3. AS in DGS?‘,,e(a). 
4. AIRS sekcts Q ER k-‘(O). (If h-‘(O) = 8 then (Y is defined 

to be Oe.) 
5. output (Y. 

As with the DGW protoco1, if AM or i&7 do not seIect an object 
from the appropriate set at any step, whatever message they send is 
interpreted as a canonical element of that set. The properties of this 
protoco1 are described in the following Proposition. 

Proposition 1 Foranypolynonials q and.t’, the Random Selection 
protocolRS,,e isa 2-roundprotocolwith thefollowingproperties: 

1. (&@ciency) Both 41~s and ARS can be implementedin time 
poly(a) and the protocol is public-coin for both parties. 

2. (Soundness) For all Merlin strategies Al& and all sets S C 
{O,l}e. the probability that the output of (M&S, A&7)(78) 
lies in S is at most 

yd!+1 
ze Q 

3. (Strong Simulability) There exists a black-bo.rsimulator Sris 
running in time poly (n), such thatforall deterministic’ Arthur 
strategies A& the statistical d$erence between the follon- 
ing distributions is 2’“(“): 

0 Execute (A& kfRS)(TZ), let LY E (0, 1)’ be the output 
of the protocol, and let v be Aks’s view of the interac- 
tion (i.e., 21 is a transcript (f, y, k, LY)),~ 

(II) Choosecu uniformlyj?om (0, 1)‘. Output (SGis ((u), a), 

Remark. The (Y’S are included in the outputs of Distributions 
0 and (lI) above to force the simulator to produce a transcript for 
an externally speczjied (Y (rather than an LY which it generates on its 
own while producing the transcript.) 

Proof: Efficiency is immediate from the description of the pro- 
tocol and the properties of the families T and H. For Soundness, 
let ni;is be any cheating Merlin strategy and consider an cxecu- 
tion of the protocol (M &, ARS). Notice that that the probability 
that the output (Y lies in some set S is bounded above by the prob- 
ability that h” (0) contains an element of S. Now, for lb chosen 
uniformly from X (instead of by the protocol), the probability that 
h-l (0) contains an element of S is at most 

In our protocol, h is chosen using the DGW protocol. It shown in 
[DGW94, Prop. l] that a cheating Merlin can cause at most a l/q 
statistical difference from the uniform distribution on H, and so the 
Soundness property follows. 

We now describe the simulator which will be used to establish 
Strong Simulability. Recall that p is polynomial bound on the size 
of f”(y) for any f E F, s is the description length for elements 
of 7& and functions in 7 map (0, 1}3 to (0, 1)‘. where 1 = 8 - 
4 1% (W. 

The simulator Si$, on input CY E {O,l}‘, proceeds as 
follows: 

Sl. Let f E 3 be the first message sent by A& 
S2. Repeat the following up to a - 2(3sq)4 - p times: 

(a) Chooseh’uniformlyfromti, (RecallthatT&, = {h: Is(rw) = 
01. 

(b) Let y = f(h’) (i.e., y is the cell containing ib’). Com- 
pute k %r If-‘(y) 17 X,1. With probability 1 - $., pro- 
ceed to next iteration of Step S2. (Otherwise contmue.) 

(c) Let h = A&(y), that is, the element (hereafter called 
the cell representative) of cell y that Aks gives in Step 3 
after being sent y in Step 2. 

(d) If h(a) = 0, output ((f, y, k, cu), (Y) and terminate the 
simulation. Otherwise, proceedto nextiteration ofStep S2. 

S3. If the simulator failed to produce output so far, output fniL 

eThe restriction to deterministic Arthur strategies is only for WC of prcrmtation, 
ns n simulator for randomized Arthur strategies can uniformly select und fix kthur’o 
coinsondthenuse thesimulator for deterministicstrategies. What wo uso!ho Random 
Selection simulator us tt subroutine in the simulator for tho Transformed Protocol In 
Section 6, the coins of Arthur will have already been fixed by the outer simulator. 

“In Section 1.1, we defined theVerifier’s view to consist of his rnndomcoins and 
theProver’smessages. Here.wedonotinchtdemndomcohts,ns thcynreitrclnvantfor 
deterministic stmtegies. We also include Arthur’s messages - this 19 unncrcssary i13 
they are functions of Merlin’s messages, but it will be convenient for our prc:cntn!lon. 

404 



From the various properties of the families F and H, such as 
the fact that f-‘(v) can be enumerated in time poly(n), and the 
fact lhat o, q, and p are ail poiy(n), we see immediately that the 
nmning Lime of S$P is poly(n). 

Let ua now show that Distributions (I) and (II) in Proposition 1 
havcatatioticnidiffcrcnce2’“~“~. Eachproducesoutputoftheform 
((f, v, h, (w), IX), In both cases, f is the (deterministically chosen) 
first message of Ahs and 1/ = f(h), so it suffices to show that the 
distributions restricted to their (h, a) components are statistically 
close, We therefore define the Distributions (I’) and (II’) to be the 
Distributions (I) and (II) restricted to their (h, cr) components. To 
analyze lhese distributions, we make use of the following Lemma, 
the proof of which is in Section 7. (As statedin the introduction, we 
can nloo prove n much more general form of this lemma. The proof 
in omitted in this abstract.) 

Lcmmn 5.1 Thereexistsa univcrsalconstanrc > 0, so thatthefol- 
lowing holds: Let Z be the family of affine-linear maps from D = 
{0, 1)’ toT = (0, l)f’, i,e, h E 7i is oftheform h(z) = Az + lo 
for some matrix A and vector b. Let 5’ C H be such that ISI 2 
6(74. Let e = B, Then 

Part 1; The statistical difference between the following two dktri- 
butlorts is at tnost (c . .?67: 
A 

bl 
Choose h EJZ S. Let x ER h”(0 

7-l 
. 

Choose x En D. Let h CR S fl 
Output (h, z). 

I* Output (h, x). 

Part 2: For at least a 1 - (c * e1/c6--c)fraction of x E D, 

When we apply the lemma, we take 1’ = e - n, E = 2-“. and 
S = {A&(y): 21 E {O,l)t}. In other words, S is the set all possi- 
ble cell representatives that Ahs can send in Step 3 of the protocol 
(Mno, Ahs), Notice that 

6 d!’ ,!!ii. = 2’ = 2-4 lwa(3w) 
IN 2 

and so, c e #6-c = 2’*(“). Now, observe that the protocol 
(Mno, Ais) selects h uniformly from S. (Recall that A%, is de- 
terministic,) Thus, Distribution (I’) is exactly Distribution (A) of 
Lemma 5.1. Now we will show that the Distribution (II’) is statis- 
tically close to Distribution 03). 

Let uu consider n single iteration of Step S2 in Sj$. In such 
an itemlion, h’ is chosen uniformly from 7f,, and y = f(h’). We 
write .f(‘&) to denote the set of images of elements of ‘H, underf 
(Le,, f(7L) = {f(h): h E ti,)). In otherwords, f(‘?L) istheset 
of ceils intersecting tia, We want to establish that the distribution 
oP R’a produced by the simulator will be uniform in S n N,. In 
order for this to happen, v must be uniformly selected from f(K). 
IP f wns chosen honestly by A&, we would expect it to be one-to- 
one on the set ‘IL, since ?i, is a vanishingly small fraction of the 
domain, However, f is chosen adversarially, so we must do some 
work to ensure uniformity: 

Notice that for any ~0 E f(7&), the probability that f(h’) = 
yo whenuniformly selectingh’ E ‘?&, isexacUy~3C,~f-‘(~~)~/~3Cal. 
In §tcpX!b, anysuchchoiceis maintained with probability l/IX& 
f”‘(uo)l, Thus the probability that v = go after Steps S2aandS2b 
fn Sns la exactly 1/17Ll. Th is is independent of ~0, and there- 
fore y is n uniformly chosen element of f(K) - that is, a uni- 
formly chosen ceil intersecting ‘Ha, (These probabilities sum up to 

lfW4l/l%l. h’ h w IC may be less than 1; this is due to the possi- 
bility that the iteration ends prematurely in Step S2b.) 

Now, since, in Step S2c, h = A;&) is taken to be the repre- 
sentative of cell y, the function h is uniformly distributed over the 
representatives of cells which intersect %. In Step S2d, we aban- 
don any h not in 7-L. so the resulting distribution on h is uniform 
over cell representatives in H,. that is, uniform over Sn7-L. Thus 
a single iteration of the loop produces an h uniformly chosen from 
S n Ho, if it manages to produce output at all. This is identical 
to how h is chosen in Distribution (B) of Lemma 5.1. So, to show 
that the Distribution (II’) is statistically close to Distribution (B), 
we need only to show that the probability that the repeat loop fails 
to produce output in all its poly(n) iterations is 2-*(“I for at leasst 
a 1 - 2-*(“I fraction of the a’s in (0, l}L. We do this by showing 
that each iteration produces output with probability at least R times 
the reciprocal of the number of iterations. 

There are Wfo places in which an iteration can be exited, causing 
it to fail to produce output - Steps S2b and S2d. Observe that the 
simulator never exits in Step S2d if h’ chosen in Step S2a lies in 
S, because then h will equal h’. This occurs with probability IS n 
‘&l/l7f,l. By Lemma 5.1, for at least a 1 - 2-“(“1 fraction of 
a E (0, l}L, this quantity is at least 6/2 = l/2(330)‘. 

Now suppose that h’ has been chosen in S. The probability of 
not exiting in Step S2b is at least l/If-‘(y)I, which is at least l/p 
by the properties of the family 7. Thus, for a l-2-*(“) fraction of 
the CT’S, a single iteration produces output with probability at least 
1/(2(3sq)4 -p). Since there are (2(3sq)’ - p) + n iterations, output 
is produced with probability 1 - 2-“(“I. 

We have shown that Distribution (I’) is identical to Distribution 
(A) in Lemma 5.1 and Distribution (II’) has a statistical difference 
of 2-*(“) from Distribution (B). So, by Lemma 5.1. we conclude 
that Distributions (I) and (II) have statistical difference 2’“(“) and 
Strong Simulability is established. n 

6 Simulating the Transformed Protocol 

In this section, we describe the simulator for the protocol (M, A) 
of Section 4. Let S be the simulator for the honest verifier in the 
original protocol (M, A). We will give a universal simulator S for 
(M, A) which uses any verifier strategy A* as a black-box. 

The simulator S**, on input z: 
1. Uniformly choose and fix random coins c for A’ to obtain a 

deterministic strategy A(l). 
2. Run the original honest-verifier simulator to obtain a transcript 

(cyI,/% ,..., %Pr)+-S(z). 
3. For i = 1 to r, do the following: 

(a) Run the strong simulator for the Random Selection pro- 
tocol, on input ai with Arthur strategy A(‘). to obtain a 
simulated transcript ii of the Random Selection pmto- 
co1 (i.e., t. + S&’ (aj)). 

(b) L.et A(‘+‘) be the state of A(‘) after additional history 
ti, ai, Pi. 

4. Output(tl,al,pl,...,t,,crr,~r;c). 

To prove that the above simulator has the desired properties, we 
firstconsiderits output distribution in the casethattbe original honest- 
verifier simulator S is perfect: Let s^’ be the output distribution 
of SA. if the output of S in Step 2 is replaced with a true sample 
(a&,..., (rr, &) of the protocol (hf, A). By an induction ar- 
gument using the strong simulability property of the Random Se- 
lection protocol, it is easy to show the following: 
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. 
Claim 6.1 sA (x) and (AI, A*)(Z) huve statistical dtfirenceat 
most 2-n(n). 

The proof of Claim 6.1 can be found in the full version of the 
paper [GSVgS]. Now we deduce Lemma 4.1, Parts 5 and 6, from 
Claim 6.1. 

Statistical Zero-Knowledge. UsingtheoutputofSinsteadofa 
true sample from (111, A) can increase the simulator deviation by at 
most &S(Z)-(,!I, A)(x)l[, h’ h !! IC is exactly the simulator deviation 
for the protocol (~11, A). 

Computational Zero-Knowledge. We claim that the probabil- 
ityensemblesX1 dgf {@$A’)(E)}~,zL andX2 Sf {SA*(x)}& 
are computationally indistinguishable for any probabilistic polynomial- 
time A*. ConsidertheensembleXa d&f {sA* (z))%~L. ByClaim6.1, 
XI and Xa are statistically closeand therefore computationally in- 
distinguishable. We claim that Xi and X3 are computationally in- 
distinguishable,foranyprobabilisticpolynomial-timeA*. This holds 
becauseanydistinguisherD between,& andXa can betransformed 
into adistinguisher D’ between {(III, A)(z))~~L and {S(Z)~~~~L, 
which arecomputationallyindistinguishableby hypothesis. Thenew 
distinguisher D’ operates as follows: Given a transcript 2’ of ei- 
ther of the latter two ensembles, perform the procedure specified by 
SA* , replacing the execution in Step 2 with T, and feed the output 
of 3’. to D. When T is selected according to {(Al-, A)(z):[~EL, 
D is fed with ensemble X3, whereas when T is selected according 
to {q~))sEL, D is fed with ensemble X2. 

Remark. The above proof actually shows that, for any (not just 
probabilistic polynomial-time) verifier A*, if (M, A*) and SA* 
can be distin_&shed by algorithm D, then there is an algorithm no 
more powerful than A* and D (i.e., a probabilistic polynomial time 
machine with oracle access to A” and D) that can distinguish the 
original honest-verifier proof system (ill, A) from its simulator S. 
So:ifthehonest-verifiersimulatorproducestranscripts indistinguish- 
able from (U, A) by any machine running in, say, quasi-polynomial 
time, then the new protocol (M, A) is zero-knowledge against all 
quasi-polynomial time verifiers. 

7 Proof of Hashing lemma 

Here we provide a proof of the Hashing Lemma used to establish 
the main result of this paper. We restate the lemma here: 

Lemma 7.1 (Hashing Lemma) There exists a universal constant 
c > 0, so that the following holds: Let 3c be the family of u@ine- 
lincurmapsfiom D = (0, l’je to T = {O,l}e’, i.e. h E 3-1 is 
of the form h(r) = Ax + b for some matrix A and vector B. Let 
S c 3c be such that 1.91 2 S]‘H]. Let c = H. Then 

Part 1: The statistical difference behveen the following two distri- 
butions is at most c . E~~‘S-~: 

il= (&,Ax): LethEnS. .kt~Enh-~(O). @aput (h,x). 

B = (Ba, Bx): L&X ERD. kt hEnSn%. Output (h, x). 

Part 2: For at least a 1 - (c - el/cS-c)fiaction of x E D, 

IsnH,I 1 ISI 6 -> -.-> -* 
I4 - 2 IHI - 2 

Proof: We define a per&t hash function h E 7i to be one of the 
form h(x) = Ax + b, where the matrix A is full rank @nd hence h 
is surjective). Note that a straightforward calculation shows that at 
most an E fraction of the functions in H are not perfect. 

We first establish Part 1 of the Hashing Lemma for the special 
case of perfect hash functions. 

Sublenuna 7.2 Part I of the Hashing Lemma holds when S con- 
tains only perfect hash functions. 

Proof: First, we consider the relationship between distributions 
Ax and Bx. 

Claim 7.3 IlAx - Bx11 6 q. 

Proof: Note Bx is uniform over D. To establish the claim, it suf- 
fices to show that for all C E D, 

Pr [Ax E C] 
3$/3 

-- 1:; $ s. 

Note IPr [Ax E C] - Hl = IPr [AX E (D \ C)] - yUyI, so 

it suffices to considersets C such that H 1 f . From the definition 
of A, we observe: 

lb-l(o) l-l Cl 
Pr’AxEC1 = $ Ih-l(o)1 

where the last equality is due to our assumption that every lr E S is 
perfect, and hence Ih-‘(O)I = l/e. 

To analyze the expressionabove, which refers to a sum over I& f 
S, we first consider the behaviour of the sum over all h E ‘Ii, Here, 
we can use Chebyshev’s inequality. Consider the probability space 
uniform over H, and define, for every 2 E C, an indicator mndom 
variable: 

xr(h) = 
lifh(c)=O 
0 otherwise 

Let WC(h) = E - ]h-l(o) n Cl = e . zFcXT(h). Since 3c is 

a 2-universal family of hash functions, the Xr’s are painvise inde- 
pendent with PrheE[xz(h) = l] = & = &. Thus, we have 
that: 

Varh&Vc(h)] = e2 

By Chebyshev’s inequality, 

hP,a Wc(h) [I 

< 
E~‘~]DI < aelI 
-iq-= 

where the last inequality is because ICI 1 IDl/2. Since ## 2 6, 
we can apply the above to the probability space uniform over S nnd 
conclude, 
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Recall, 

Pr LAX E q = -!- c WC(h). IS( heS 
Hence, for all but at most v l ISI terms in the sum, we have 

that lW~(h) - /$j[ 5 e1/3j$#. Since for every h it is true that 
0 4 WG@) 4 1, we have, 

And the churn Is proved. n 
WC arc now ready to complete the proof of this sublemma. For 

fill;, E D and all 11 E S such that h(x) = 0, we have, by Bayes’ 

Pr [A71 =f &4x = x] = Pr [Ax =xlAx=h]-Pr[Ax=h] 
Pr [Ax = z] 

= Ih-l(0)~-l * IsI-’ = E * IsI-’ 
Pr [Ax = s] Pr [AX = z] 

whcrc the last step is because for all perfect h, ]h”(O)] = l/e. 
Note that this value has no dependence on h. Hence, for every x, 
given Ax = x, the distribution AN is uniform over {h E S : 
h(x) = 0), Note that for all x, given Bx = x, B’H is also uni- 
form over lhc same set. Thus, conditioned on the value of x, the 
dlolrlbutions An and Bn are identical. 

Hcncc IlA - Bll = [IAx 
cstnblishcd, 1 

- BX ]I 5 ~1, and the sublemma is 

Before WC argue Part 1 of the Hashing Lemma in general, we 
will show how Part 2 follows from Sublemma 7.2. In the sequel, 
it will be convenient to introduce the following notation: For any 
Gbnct I C ‘I& we will write L to denote the set {h E I : h(x) = 

’ In order to apply Sublemma7.2, we will considerthesubsets’ C 
S of all pcrfcct hash functions in S. Since less than an E fraction of 
all hnshfunctionsnrcnotperfect, IS’1 2 (l- s)]S] 1 (S-e)-]%]. 
Similarly, we define the following two modifications of thedistribu- 
tlons A and B, using S’ instead of S: 
A’ = (A&,Ak): Let ~EJzS’. Let XER~L-~(~). Output (h,x). 
D’ z (B;,, Sk): Let x EJZ D. Let h~~S’n71,. Output (h, x). 

The following claim establishes Part 2 of the Hashing Lemma: 

Clnlm 7.4 Lid el dSf +$ For at least a (1 - m fraction of 
x E D, /j!$[ 2 6/Z 

Proof: I3y the definition of Ak, 

Pr[A;=x]=A c G=E- Ia 
PI ,‘ESL Ih WI IS’1 

where the lnst equality follows becauselh” (O)] = l/e for all h E 
S’, However, by the Sublemma, 11 Ak - Bkll 5 el. Note that B& 
is uniform over D, so for a (1 - ,/Zi) fraction of x E D, it must be . . . 
that 

eH=Pr[Ak=x]t(l-me&. 

Thus, 

where the last equality follows from E - IDI = ITI and ITI * I%.] = 
Iti]. Using the fact that 11$/ 1 (1 - f) - H, we have, for a (1 - 
&i) fraction of x E D. 

Note that the final inequality follows becausewe can safely assume 
that ,/Zi + i < 3. This is because we can freely assume that c . 
,llq-c < 1, since otherwise the statement of the Hashing Lemma 
becomes trivially satisfied. Since &+ $ is upperboundedby H - 
#S-k for someconstant k, our assumption can be made to imply 
that fi + 5 < $ by choosing c > 2L. H 

Finally, we establish Part 1 of the Hashing Lemma in general by 
showing that the presence of imperfect hash functions will not dis- 
turb our computations. First, we see immediately that since IS’] 2 
(1 - f)]S], the statistical difference behveen A and A’ can be at 
most f. To see that the statistical difference between B’ and B is 
sufficrently small, it suffices to show that for almost alI x, the proba- 
bility that Bn outputs an imperfect hash function, given that BX = 
x, is small. First we argue: 

Claim 7.5 For every x E D, ,$g [h is imperfect] 5 E. 
= 

Proof: Observe that for any x E D, ‘H, consists exactly of those 
functions h(y) = Ay + b where b = -Ax. Thus, there is exactly 
one function in 7iz for every matrix A. Hence, the fraction of im- 
perfect functions in 7fz is precisely the fraction of matrices A that 
do not have full rank, which is at most E. n 

For any x E D, the probability that BN outputs an imperfect 
hash function given that Bx = x is 

hz; [h is imperfect] 5 *I& WA [h is imperfect] 9 -. * t ISA 
UsingClaim7.4andClaim7.5above,wehavethatforatleasta(l- 
m fraction of x E D, this probability is at most ~2 d2f E ’ (2/b). 
Thus,]]B-B’]]s(l-&)~cs+fi~~s+&.Wehave 
already observed that IlA’ - AlI 5 J, and Sublemma 7.2 showed 
that IlB’ - A’ll s el. Hence IIA - Bll 6 cl-l- 5 + ~2 -+ A, and 
the Hashing Lemma is established. 1 
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A Definitions 

Definition 6 (InteractiveProofs-IP) [GMR89]: An intemctiveproof 
system with completeness error c : pq I-+ N and soundness error 
s : MI+ Njbr a lunguage L is a two-party gum, between a veti- 
fier executinguprobubilisticpolynomiul-time strategy (denoted V) 
unda proverwhichexecutesucomp~ctutionull~tmboundedstruteg~ 
(denoted P), sutisfiing 

l Completeness; For every x E L, the veriQier ‘II rejects with 
probability at most c( Ix]), after interacting with the prover P 
on common input 2. 

l Soundness: For every x e L and evev potential strategy 
P’, theverifierV ucceptswithprobubilityutmosts(lal), UJ 
ter interacting with P’ on common input 3;. 

In case c I 0 we say that the interactive proof has pe@ct cot+ 
pleteness. 

Unless specifieddifferently, an interactive proof system means one 
in which both the completeness and soundness errors arc negligible 
(i.e., eventually smaller than l/p(-), for any polynomial p). Recall 
that completeness and soundness errors can be decreased by pamllel 
repetitions of the proof system. Thus, a proof system with sound- 
ness and completeness errors which sum-up to n function bounded 
away from 1 (i.e., c(n) -I- s(n) c 1 - l/poly(n)), can be tmns- 
formed into a proof system of the same number of rounds having 
exponentially decreasing completeness and soundness errors. This 
transformation preserves honest-verifierstatistical (resp., computa- 
tional) zero-knowledge. (Recall that zero-knowledge with respect 
to any verifier is not preserved, in geneml, under pamllel repetition 
[GK96].) 
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