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Abstract 

Motivated by frequently recurring themes in infonna- 
tion retrieval and related disciplines, we define a genre of 
problems called combinatorial feature selection problems. 
Given a set S of multidimensional objects, the goal is to 
select a subset K of relevant dimensions (or features) such 
that some desired property II holds for  the set S restricted 
to K. Depending on II, the goal could be to either max- 
imize or minimize the size of the subset K .  Several well- 
studied feature selection problems can be cast in this form. 
We study the problems in this class derived from several 
natural and interesting properties H, including variants of 
the classical p-center problem as well as problems akin to 
determining the VC-dimension of a set system. Our main 
contribution is a theoretical framework for  studying combi- 
natorial feature selection, providing (in most cases essen- 
tially tight) approximation algorithms and hardness results 
for  several instances of these problems. 

1. Introduction 
In the simplest vector-space model for text, a document 

is viewed as a set of words and phrases (more generally,fea- 
tures) which occur in it [27]. The cardinality of this feature 
set can get daunting-for instance, on the web, the num- 
ber of different words used (even when restricted to pages 
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in English) is in the millions. The large number of features 
present a significant engineering challenge for data mining, 
document classification, or clustering applications and, si- 
multaneously, pose the even more significant risk of overfit- 
ting.‘ 

The standard approach to alleviate many of these prob- 
lems is to restrict attention to a carefully chosen subset of 
the feature set. This is called feature selection. This pro- 
vides many benefits: (i) the processing and data manage- 
ment tasks get significantly more tractable, (ii) the risk of 
overfitting is largely avoided, and (iii) noisy features are 
eliminated. The obvious question which arises in this con- 
text is: which set of features do we retain and which ones do 
we discard? Posed in this generality, however, there is no 
hope of obtaining a universal answer to this question and the 
answer depends on the intent of the original data processing 
problem. 

For example, suppose we are given a set of distinct ob- 
jects with various distinguishing attributes, and say they are 
represented by vectors in some high-dimensional space. An 
interesting goal then is to pick a small subset of relevant di- 
mensions which still suffice to “tell apart” all the objects; 
this genre of problems are known as dimension reduction 
problems, since we are obtaining the representation of the 
objects in a lower-dimensional space that still “explains” 
their properties. A different scenario in which feature se- 
lection arises is when we have an underlying set of points 
in high-dimensional space which we know a priori to “clus- 
ter well”, but, due to the presence of “noisy” dimensions the 
clustering is destroyed when all dimensions are considered 
together. The aim here is to throw out a set of noisy di- 
mensions so that the data clusters well in all the remaining 
dimensions; we refer to this as the hidden clusters problem. 

Thus, feature selection problems all come equipped with 
some underlying property on sets of vectors, and the goal is 
to pick a maximum or minimum number of dimensions (de- 
pending upon the application) such that the property holds 
on the chosen set of dimensions. 
Our contributions. In this paper, we provide a unified the- 

In fact, irrelevant features (e.g., stopwords) can and do mask underly- 
ing patterns in text data. 
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oretical framework for studying combinatorial featire se- 
lection problems in general. Our framework captures both 
the dimension reduction and clustering problems discussed 
above among other combinatorial feature selection prob- 
lems. These problems turn out to be extremely hard in even 
the simplest of set-ups-often the underlying property we 
wish to satisfy is itself non-trivial and we have to deal with 
the non-obvious task of which subset of dimensions to pick. 

We consider several specific instances of problems 
which fall within our framework, and provide (in most cases 
essentially tight) approximation algorithms and hardness re- 
sults. The precise statement of our results can be found in 
Section 2, we just mention one example here. Consider the 
hidden cluster problem with the L ,  metric to measure clus- 
ter radius and where the data is a priori “known” to cluster 
into p sets for a constant p (this is just the hidden clus- 
ter analogue of the classical p-center problem). We give 
a polynomial time algorithm for this problem that retains 
the maximum number of dimensions with a small (factor 
3) slack in the cluster radius. On the other hand, obtaining 
any reasonable (nl-‘) factor approximation on the number 
of dimensions with a better than factor 2 slack in the radius 
turns out to be NP-hard, even when there are known to be 
only two clusters! This should give some indication of the 
non-trivial nature of these problems. 

Combinatorial vs. affine versions. In a combinatorial fea- 
ture selection problem, the selected subspace is defined by 
choosing some of the original dimensions and discarding 
the rest. In contrast, “affine” versions allow the choice of 
any affine subspace. Though the affine version is more stud- 
ied (at least in the classical theory literature), the combina- 
torial version is interesting in its own right and has several 
practical merits, the most compelling one being that the re- 
sulting (low-dimensional) space is “interpretable”, i.e., the 
selected dimensions (features) have a real meaning in the 
context of the original data set and consequently to the user. 
In the context of data mining and searching, interpretability 
is a significant concern as studies have shown that it im- 
proves the utility and understanding of search and classifi- 
cation results by human subjects, especially with visualiza- 
tion techniques [13]. Even a simple linear combination of 
many dimensions may be hard to interpret [2]. 

Other practical considerations include the following. (i) 
The cost of applying combinatorial feature selection to the 
given set of vectors is significantly less than the cost of ap- 
plying an affine feature selection (which involves a linear 
transform). In practice, this turns out to be an important is- 
sue whenever clustering efficiency and scalability becomes 
more important than (incremental benefits in) classifier ef- 
ficiency and predictive accuracy [8]. (ii) It might seem that 
the increased flexibility provided by allowing affine sub- 
spaces as features could result in significantly improved 
classification and clustering accuracy. Surprisingly, several 
authors provide strong evidence to the contrary [5,20, 111. 

They have successfully used combinatorial approaches to 
feature selection and shown that the resulting gain,s in both 
the efficiency and quality of clustering and classification al- 
gorithms are significant. 

Related work. Feature selection problems have received 
extensive attention in the more classical affine setting. For 
instance, see the work of Johnson and Lindenstreiuss [ 181 
for R”, and others [4,22, 31 for more general metrics. One 
of the widely used dimension reduction techniques is the 
singular value decomposition (SVD) [lo, 241. While the 
generic goal is to find a low dimensional representation of 
the original space, the new dimensions (i.e., features), how- 
ever, are not restricted to be a subset of the original fea- 
tures. In the case of Johnson and Lindenstrauss and SVD, 
the new features turn out to be affine linear combinations 
of the original features; in other cases, they are derived in a 
somewhat more complicated manner. The resultin,g dimen- 
sion reduction problems have been analyzed (cf. [22, 31) 
and are provably useful in many contexts (cf. [28, ‘91). 

Koller and Sahami [19] study feature selection in an 
information-theoretic context. They propose that choos- 
ing a subset of dimensions that minimizes the Kullback- 
Liebler divergence (or the cross-entropy) between the distri- 
bution on the classes given the data and the projected data. 
While the strategy is not directly implementable, it becomes 
tractable when a Bernoulli model is posited on the data. 
While Bernoulli models are popular and seem to perform 
well for most classification and clustering problems, many 
real world data sets, including text corpora, are known to 
adhere to the Zipf [30] statistic. 

Another modem approach to feature selection is the 
“wrapper” scheme [ 171. In this, an exhaustive enumeration 
of all subsets of the feature space is evaluated by training on 
a training corpus and testing against a reserved test corpus. 
This method tends to be prohibitively expensive in practice, 
especially when the number of features is large-though it 
does not need to make an assumption about the data distri- 
bution. 

A technique proposed in [8] is to use a wrapper scheme 
similar to [17], but only consider a linear numbeir of sub- 
sets of the feature space. This is done by ordering the di- 
mensions according to some desirability criterion, and then 
considering only prefixes of the ordering. A similar idea is 
used in [5]. While this reduces the Combinatorial explosion, 
it effectively assumes some form of independence among 
the attribute dimensions. 

2. A framework for feature selection problems 

Let S = (xi : 1 5 i 5 m} denote a set of vectors (also 
referred to as points), where each xi E M I  x . . . x Mn, 
where M j  is a metric space equipped with metric distj(., .). 
Throughout the paper n will denote the number of dimen- 
sions and m the number of points xi. Let x i l K  denote the 
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projection of xi onto the subspace indexed by the dimen- 
sions in K and let SI, = {zil,}. Feature selection corre- 
sponds to selecting a subset K E (1, . . . , n} such that SI, 
has some “good properties.” In an optimization setting, two 
complementary flavors of the feature selection problem can 
be defined-subspace selection and dimension reduction. 

Let II(S) be some property of a set of vectors S. In sub- 
space selection, we are given an S which does not satisfy II, 
and we want to find the largest K for which II(S1,) holds 
(or possibly, holds in some relaxed manner). On the other 
hand, in dimension reduction, we are given an S such that 
II(S) holds and we wish to find the smallest set K, such that 
II(S1,) holds (or possibly, holds in some relaxed manner). 
Both these versions have the interpretation of retaining a set 
of relevant dimensions so that the vectors have the desired 
properties when projected onto those dimensions. 

In a typical feature selection problem, the property II is 
parametrized to indicate how well the property is satisfied, 
e.g. the maximum radius T of a clustering, or the number 
e of distinct points. The relevance of a subset K of di- 
mensions is judged by how well property II is satisfied by 
SI,. If property II is such that it is made easier to satisfy 
by discarding dimensions, the corresponding feature selec- 
tion problem is a subspace selection problem, i.e., we try to 
maximize the number of dimensions in our subset K. On 
the other hand, if property II is such that it is made easier to 
satisfy by adding dimensions, the corresponding feature se- 
lection problem is a dimension reduction problem, i.e., we 
try to minimize the number of dimensions in K. 

Several interesting problems fall in the abstract frame- 
work of feature selection problems described above. First, 
we look at subspace selections problems related to cluster- 
ing. Suppose, the input points contain a “hidden cluster- 
ing,” in that one can pick a subset of dimensions such that 
the points, when projected onto this subset of dimensions, 
can be clustered into a small number of groups such that 
distances between points in the same cluster are small. In 
particular we will be interested in the L1 and L, norms: 

def 

di@(r, y) = distj(x, y) , 
j € K  

Hidden clusters problems. We study clustering with the 
min-max objective, i.e. minimizing the maximum distance 
of a point to its cluster center. Our hidden cluster problems 
can be viewed as multidimensional analogs of the classic 
p-center problem (cf. [16, 121). 

The L, hidden cluster problem is the following: given 
radius T and e, find f2 centers C = {cl,. . .,cl}, an as- 
signment of points to centers . : {xi} + C, and a sub- 
set of dimensions K such that dis(p)(z;, .(xi)) 5 T for 
all points x and IK( is maximized. The L1 hidden clus- 

ter problem is similar, except that the radius requirement is 
dist:2(zi, .(xi)) 5 T for all points 2;. 

For the hidden clusters problem, we will be interested 
in bicriteria approximation algorithms, i.e., algorithms that 
approximate both the radius and the number of dimensions. 
Suppose the optimal solution uses radius r and k dimen- 
sions. An (a, P)-approximation algorithm is one that guar- 
antees a solution that has radius at most ar and returns at 
least k/P dimensions. It will be convenient to state our re- 
sults as bicriteria approximations. 

Dimension reduction problems for Boolean vectors. 
When S is restricted to Boolean vectors, a number of inter- 
esting dimension reduction problems arise. We now provide 
several instances that we consider in this paper. 

(i) Entropy maximization problem: Find K such that 
the entropy of the random variable with distribution U(S1,) 
is maximized. Here U( e )  denotes the uniform distribution. 
Suppose there are q distinct elements y1, . . . , yn in St, and 
mi elements take the value yi; E:=, mi = m. The entropy 
H(U(S1,)) = - C:==,pi lgpi, wherep, = q / m .  

The entropy objective function encourages us to find 
K such that SI, has a large number of distinct elements; 
moreover it favors a somewhat equal distribution of rows 
amongst the various distinct elements. This corresponds 
to dividing the vectors into a large number of equivalence 
classes so that the distribution of vectors amongst equiva- 
lence classes is not very skewed. Note that if H(U(S1,)) 2 
lgl ,  then SI, must have at least 1 distinct elements. A 
heuristic for a similar objective function is studied in [SI. 
We consider the problem of maximizing the entropy given 
a bound k on K, as well as the dual problem of minimizing 
JKI such that H(S1,) 2 e where e is given. 

(ii) Distinct vectors problem: Given S, a collection of 
distinct vectors, find the smallest K such that SI, are still 
distinct. 

(iii) Maximum distinct points problem: Maximize the 
number of distinct elements in SI,, given an upper bound le 
on IKI-considerations similar to this are motivated by the 
study of VC-dimension of set systems [25]. We also con- 
sider the dual problem where given e, we wish to minimize 
K so that SI, has at least 1 distinct points. 

Our results. We give a deterministic (3,l)-approximation 
algorithm (Section 3.1) for the L, hidden cluster prob- 
lem and a randomized (quasi-polynomial) (O(1g m), 1 +e)- 
approximation algorithm (Section 3.2) for the L1 version, 
for any E > 0 when the number of clusters 4 is con- 
stant. Through reductions from CLIQUE and DENSEST 
SUBGRAPH, we provide evidence that the exponential de- 
pendence in the running time on the number of clusters is 
likely to be inherent (Section 4.1). Furthermore, even for 
constant number of centers, for any constants 6 > 0, c > 1, 
we show that it is NP-hard to obtain a (2 - ~,TL’-~)- 
approximation algorithm for the L, hidden cluster problem 
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and a (c, n1-6)-approximation algorithm for the L1 version 
(Section 4.2). These highlight the extreme hardness of these 
problems and the fact that the approximation guarantees of 
our algorithms are quite close to the best possible. 

We give a (1 - e-’)-approximatioa algorithm for the err- 
tropy maximization problem and a lg m-approximation al- 
gorithm for its dual (Section 5.1). We then show a tight rela- 
tionship between the approximability of the distinct vectors 
problem and SET COVER (Theorem 20 and also show that 
the maximum distinct points problem and its dual vcrsion 
are related to DENSEST SUBGRAPH. 

3. Algorithms for Ridden cluster problems 

3.1. L,  hidden cluster 

We now give a (3,1)-approximation algorithm for the 
L,  hidden cluster problem, i.e., if there is an optimal solu- 
tion to the L,  hidden cluster problem with t clusters of ra- 
dius r on k “relevant” dimensions, the algorithm will find a 
solution with 1 clusters of radius at most 3r  and will “pick” 
at least le dimensions. The algorithm runs in polynomial 
time provided t is constant. 

Intuition. The high level idea behind our solutions for both 
the L,  and L1 hidden cluster problems is the following. 
Since the number of centers t is a constant, we can assume 
that we know the set of centers in an optimal solution s’ 
(a% the algorithm can try all possible choices of 1 centers 
and output the best solution found). We show that once the 
centers are known, there is a small subset &ist of the set of 
dimensions K* picked in the optimal solutions’ , and an ef- 
ficient way to assign the m points to the centers only based 
on dimensions in &ist (according to a “suitable” criterion) 
that gives a fairly “accurate” description of the assignment 
in the optimal solution S* and thus achieves a good approx- 
imation. Since the set of dimensions Kdist is “small”, the 
algorithm can search over all choices of Kdist, and output 
the best solution found. 

The Algorithm. We will assume that the algorithm knows 
the optimum radius r.* The algorithm appears in Figure 
1. The algorithm guesses a set of 1 centers and a subset 
of dimensions, and uses the subset of dimensions to as- 
sign points to centers. Having come up with an assign- 
ment, it then includes all dimensions for which points are 
close to their assigned centers. It is clear that the algo- 
rithm runs in polynomial time for constant 1. The run- 
ning time of the algorithm is dominated by the number 
of choices of 1 centers and at most (f) dimensions. For 
each choice of centers and dimensions, the algorithm runs 

’If the optimum radius is not known and the number of dimensions k 
is specified instead, we simply run the algorithm for all values of r (there 
are only polynomially many possibilities). The solution with the smallest 
value of r which includes at least k dimensions is retumed. 

1. For ali poss1’bIe choices of e centers C = {cl,. . . c t )  and 
subset K ’ ot dimensions, IK’I 5 (i) do: 

(a) Foi every point z, assign z to a chosen center c, such 
t h d  distj,“) (s,~,) 5 r (ties broken arbitrarily). If no 
such centel exists,  fail and go on to next choice of cen- 
ters and dimensions. 

(b) For point I, let .(I) denote the center that x is as- 

(c) Choose K K ~ , c  = { J  : VI, dist,(z, .(I)) 5 3r). 

signed to. 

1 2. Retum argmaxKr,c{lKKi,cI}, the largest set generated 1 during the above process. 
L... I 

Figure 1. Algorithm L,  hidden cluster 

in O ( d 3  + mn) time. The overall running time of the al- 
gorithm is O(m(13 + n)mfn(i)). 

We now analyze the algorithm. Suppose the optimal so- 
lution picks centers C* = {cl , .  . . l CL} and subset K* of 
dimensions, IK* I = k. Let r be the radius of the optimum 
solution. We build a subset Ksep of at most (i) dimen- 
sions as follows. For every pair of centers ci, cj, such that 
disf,“!(ci, cj) > 2 ~ ,  pick a dimension d in K* such that 
distd(ci, c j )  > 2r. Ksep C K* consists of all the: dimen- 
sions picked in this way. 

Call a run of the algorithm lucky when the t centers 
c1,. . . CL and the subset Kscp of dimensions is chosen in 
the first step. 

Lemma 1 In a lucky run, Vx, i fx  is assigned to I:; in the 
optimal solution, then dis(pLp(z, ci) 5 r. 

Proof: Since r is assigned to ci in the optimal so- 
lution, disfp.)(z,ci) < r. Further, since Ksep C K * ,  

As a consequence of Lemma 1, the algorithm does not fail 
when the parameters chosen in the first step correspond to 
the lucky run. In a lucky run, the following lemma guaran- 
tees that if the algorithm assigns a point to a center different 
from that chosen by the optimal, the two centers are close 
in the optimal solution. 

Lemma2 For a lucky run of the algorithm, suppose the 
optimal solution assigns x to c; and the above algorithm 
assigns x to C j .  Then distl(Xm!(cil C j )  5 2r. 

Proof: Let ci # cj and assume for contradiction that 
dist:p.)(ci, cj) > 2r. By the construction of Ksepr there 
must be one dimension d E Ksep such that distd(ci, cj) > 
2r. Since z is assigned to ci in the optimal solution, 
dis{F.)(x,c;) 5 r which implies that diStd(x,cd) 5 r. 

dist:pLp(z, c;) < distfp?(x, ci) 5 r. 
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From triangle inequality distd(z, C j )  2 distd(q,cj) - 
distd(z, q) > T .  Hence diStlK,ep(z, cj) 2 distd(z, cj) > T .  
Therefore, the algorithm could not have assigned z to cj. 
Thus, dist:p.)(ci, cj) < 2 ~ .  

Lemma 3 In a lucky run, the algorithm retums a solution 
of radius at most 3r  and a subset of dimensions that in- 
cludes K *. 

Proo$ By construction, all dimensions j included in the 
final solution satisfy distj(z, U(.)) < 3 ~ .  If K is the sub- 
set of dimensions picked, then distlK (2, U( z)) < 3~ for all 
points a. Hence the solution returned has radius at most 3 ~ .  

Consider point z which is assigned to center q by the 
optimal solution. By Lemma 2, if the algorithm assigns z 
to center c j  then distL?)(ci, cj) < 2 ~ .  Also, since z is as- 
signed to ci in the optimal solution, dis&?)(z, ci) < T .  By 
the triangle inequality, distL?)(z, cj) 5 3 ~ .  This means 
that for all dimensions d E K*, distd(z, U(.)) < 3r  for 
all points z. Thus all the dimensions in the optimal solu- 
tion satisfy the condition checked for in the third step of 
the algorithm and hence all of them will be included in the 
solution returned. 
Since the returned set of dimensions is at least as large as 
K*, we obtain the following theorem. 

Theorem 4 Algorithm L ,  hidden cluster is a ( 3 , l ) -  
approximation algorithm. 

3.2. L1 hidden cluster 

The steps in the algorithm for L1 hidden cluster are very 
similar to those in the algorithm for the L ,  case. The basic 
idea is to guess a set of 4 centers and a subset K of dimen- 
sions. We use the subset of dimensions to assign the points 
to centers. Having fixed an assignment, we find a large sub- 
set of dimensions such that for this assignment, every point 
is close to its assigned center. Since we use the L1 norm 
for computing distances, the individual steps are more com- 
plicated than in the previous algorithm. Firstly, we need 
to argue that a small subset of dimensions can be used to 
figure out the assignment of points to centers. In fact, we 
will use a multi-set of dimensions of size O(lg m) for every 
pair of centers. Secondly, in order to find a large subset of 
dimensions that are good for the assignment produced, we 
will need to solve a packing integer program (PIP). Since 
we need to guess O(lg m) size multi-sets of dimensions to 
obtain the assignment, our algorithm will run in n0(lgm) 

time. Further, since we need to solve a PIP in order to ob- 
tain our final solution, we lose a factor of O(1gm) on the 
radius. 

As before, we will assume that the algorithm knows the 
optimum radius T .  The algorithm is described in Figure 
2. We now analyze the algorithm. Let T be the radius, 

c1, . . . , ct be the centers and K* be the subset of dimen- 
sions chosen in the optimal solution. We begin with a tech- 
nical Lemma that guarantees the existence of a small (i.e., 
O(1gm) sized) multi-set of the n dimensions that allows 
us to distinguish between pairs ci, cj of centers, i.e., for all 
points z that are assigned to either ci or cj, it allows us to 
tell correctly whether z is assigned to ci or to cj. Formally, 
for an assignment of points to centers and a pair of cen- 
ters ci, cj, a multi-set K of dimensions is said to be distin- 

dist,(O,C.)-dist,(+,cj) guishing if a ( z ,  ci, cj, K )  = xnEK dist,(c.,cj) 
is > 0 for all points z assigned to c, and a(z ,  C i r  c,, K) < 0 
for all points z assigned to ci. 

We will need the following version of Hoeffding's 
bound. (cf. [23]): 
Lemma 5 Let Y1 , . . . , Y,, be independent and identically 
distributed random variables over [- 1 , 11, and dejine Y = x. Then Pr[Y - E[Y] > a] <_ exp (-6'/2n). 
Lemma 6 Consider a pair of centers ci, c, such that 
d i s t p  (ci, cj) > 3 ~ .  Then, for  the assignment for  points 
to centers in the optimal solution and the pair of centers 
ci , c,, there exists a O(lg m) sized distinguishing multi-set 
Kij of dimensions. 

Pro08 We will give a probabilistic proof of existence of 
a distinguishing multi-set of dimensions. We define a prob- 
ability distribution on dimensions K E K* (note that we do 
not know the set K*, but this is okay as we are only demon- 
strating the existence of the desired multi-set). We will pick 
an O(lg m) sized multi-set of dimensions by sampling from 
this distribution with replacement, and show that with posi- 
tive probability the multi-set of dimensions obtained is dis- 
tinguishing. 

The probability distribution is defined as follows: 
Choose dimension K. with probability p, proportional to 
dist,(ci, C j ) ,  i.e., 

dist,(ci, cj) 
disc! (ci , cj) . 

PK = 

Observe that dist:! (ci, cj) = CKEK. dist,(ci, cj). Thus xnEK. p, = 1. Let Y(z) be a random variable that takes 
value 

dist,(z, ci) - dist,(z, cj) 
dist,(ci, cj) 

a(z ,  Car c,, K )  = 

with probability p,. Note that Y ( z )  E [ - I ,  11 by triangle 
inequality. Also, 

E[Y(z)] = pn * a ( z ,  Ci,  cj,  6) 
S€K* 

dist,(ci, cj) . dist,(z, q) - dist,(z, cj) 

= E  n E K .  dis@ (ci , cj) 

- - dist$!(z,ci) - disc!(z, cj) 

dist,(q, cj) 

d i sc!  (ci, cj) 
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1. For all choices off centers c1 , . . . , ci and for all undirected graphs G on the centers do. 
(a) For every pair of centers c,, c, such that G has an edge from c, to c,, pick a multi-seK K,, of 19lgm dimensions. Over all 

choices of K,, do: 
i. For every point z build a directed graph G, on centers as follows: 

ii. Forall(c,,c,) E G,computea(z,c,,c,,K,,) = 
,E&, 

iii. Place a directed edge from c, to cJ in G, if this quantity is > 0, else place a directed edge from c, to C, in G,. 
iv. For all points z, assign I to any sink (i.e. any vertex with no outgoing edges) in the graph G,. If for some z, G, does no! 

v. Let .(I) denote the center that I is assigned to. 
vi. Let K denote the set of dimensions n such that dist,(z, .(I)) 5 4r for all I. 

vii. Write the following P P  max CKEK y, subject to Vz, 

viii. Solve the LP relaxation of this obtained by relaxing the last constraint to y, E [0,1] to obtain LP'. 

dist,(z, c,) - dist,(c, c,) 
dist,(c,, cJ) 

have a sink, go on to the next choice in Step l(a). 

y, . dist,(x, U(.)) 5 4r and y, E (0,l). m e  value of 
y, corresponds to choosing whether or not to include dimension n in the solution.) 

ix. Obtain an integer solution to the PIP by applying randomized rounding to the fractional LP solution such that the value 
of the integral solution is n(LP' )  and the packing constraints are violated by a factor of O(lg m). This gives a subset 01 
dimensions K' consisting of all dimensions n for which y, = 1. 

2. Amongst all solutions generated with radius at most O(lg n) . r, retum the solution with the largest number of dimensions. 

Figure 2. Algorithm L1 hidden cluster 

Suppose z is assigned to ci in the optimal solution. Then 
distK.(z,ci) 5 T .  Also, distK.(ci,cj) > 3 r  (by the 
hypothesis). By triangle inequality, we can upper bound 
E[Y(z)l by: 

distK.(z,ci) (1) + (dis@(z,ci) -di&!(ci,cj)) 

disc! ( ci , cj) 

Suppose we choose a multi-set Kij of size k from 
K* by sampling from the probability distribution ( p K }  
constructed above. Let Z(Z)  = c~(z , c i , c j ,K i j )  = 
CKEKij a ( z ,  C i ,  C j l  6). Then Z(z )  is a random variable 
suchthatZ(z) = Y(l)(z)+..  .+Y(k)(z) whereY(.)(z) are 
independent and identically distributed random variables 
that have the same distribution as Y(z)  defined above. We 
say that the multi-set Kij is distinguishing for a point z as- 
signed to ci if Z(z)  < 0 and for a point z assigned to cj  if 
Z(z)  > 0. Kij is distinguishing if it is distinguishing for 
all the points z that are assigned to either ci or cj  . 

Suppose z is assigned to ci, then E[Z(z)] < - k / 3 .  
Using Lemma 5 ,  we get Pr[Z(r)  2 01 5 Pr[Z(r)  - 
E[Z(z)] > k / 3 ]  5 exp(-k/lS). By symmetry, if z is 
assigned to cj, Pr[Z(z) 5 01 5 exp(-k/lS). For z as- 
signed to either ci or C j ,  let A, be the event that Kij is 
distinguishing for z. Then P r i m  5 exp (-k/lS). 

Setting k = 19lgm, P r [ z ]  < l/m. Since there are 
only m points, P r [ U Z ]  < 1 and Pr[nd,]  > 0. With 

positive probability, the multi-set Kij is distinguishing for 
the pair ci, c j  and the assignment of points to centers in the 

The separation graph GleP for the optimal solution is 
an undirected graph on the centers c l ,  . . . , c( in the op- 
timal solution such that the edge (ci, cj) is present iff 
disc! (ci, cj) > 3 r .  Consider the run of the algorithm in 
which the e centers c1, c2, . . . , cl of the optimal solution are 
chosen and the graph G on the e centers chosen in Step 1 is 
the separation graph Glee,; and further for all p i i h  ci, c j  
such that the edge (ci, cj) is present in G = G:ep (i.e., 
dis&! (ci, cj) > 3 r ) ,  a distinguishing multi-set of dimen- 
sions Kij is chosen in Step 2. (The existence of such a 
multi-set for each pair (q, cj) is guaranteed by Lemma 6.) 
Call such a run of the algorithm, a lucky run. 

Lemma 7 rfa point x is assigned to center ci in the optimal 
solution, then in a lucky run of the algorithm, ci is a sink in 
G, (and hence the algorithm on its lucky run actually runs 
and goes past Step 4 to actually retum a solution). 

Pmo$ Consider a center c j  # ci. ci has an edge to or 
from c j  in G, iff GleP contains the edge (ci, cj), i.e., iff 
disc!(ci,cj) > 3 r .  However, if dis$!(ci,cj) >. 37, then 
a distinguishing multi-set Kij is chosen in the lucky run. By 
the definition of a distinguishing multi-set, the algorithm 
directs the edge from c j  to ci in Step 3. Thus all edges 
involving ci are directed towards ci. Hence ci is a sink. 

Lemma 8 For a lucky run of the algorithm, suppose the 

optimal solution. 
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optimal solution assigns a point x to center ci and the algo- 
rithm assigns x to cj then dis$! ( c i ,  c j )  5 3r. 

Proof. Suppose ci # c j .  Then, by Lemma 7, ci is a sink 
in G,. Further, as the algorithm assigns a: to c j ,  cj must 
be a sink in G, as well. This implies that there is no edge 
between ci and cj in G,. Hence the edge ( c i ,  c j )  must be 
absCnt in Gt, which implies that distg! ( c i ,  c j )  5 3r. 

Lemma 9 In a lucky run of the algorithm, there is a fea- 
sible solution to the PIP in Step 5, with objective value at 
least IK* I. 
Proof. Consider a point x. If x is assigned to ci in the 
optimal solution,dis@! (2, c i )  5 r. Further, if x is assigned 
to c, by the algorithm, then disg! ( c i ,  c j )  5 3r. Hence 
disg! (x, c j )  5 4r (by triangle inequality). This implies 
that for all K E K', dist,(x,a(x)) 5 4r. Further, this 
condition holds for all points 2. Therefore, all K E K* are 
included in the subset K chosen in Step 5.  

We can now construct a feasible solution to the PIP in 
Step 5 as follows: For all K E K*, set yn = 1, for K. $Z K*, 
set yK = 0. Then, 

= dist$!(x, a(.)) 5 4r. 

Thus the solution is a feasible solution to the PIP. Also, the 
value of the objective function is CnEK yn = CnEK. 1 = 
IK* I. 

Applyingrandomized rounding to solve the PIP [26,29], 
we get the following guarantee. 

Lemma 10 In a lucky run of the algorithm, withprobability 
1 - poly-'(m), the solution produced by the algorithm has 
at least IK* I/( 1 + E )  dimensions and radius O(lg m) . T .  

ProoJ By Lemma 9, there exists a feasible solution to the 
PIP of objective value (K'I. Hence, with probability at least 
1 - l/poly(m), randomized rounding returns a solution of 
objective value lK*l/(l + E) which violates the packing 
constraints by at most a factor of O(1gm) (See [26, 291). 
The violation of the packing constraints implies that the ra- 
dius of the clustering produced is at most O(lg m) . T .  m 
Since the algorithm returns the solution with the most num- 
ber of dimensions amongst all solutions with radius at most 
O(1gm) . T ,  we get the following theorem. 

Theorem 11 With probability 1 - poly- l (m),  the algo- 
rithm retums a solution with radius O(lg m) . r and number 
of dimensions at least IK* I/( 1 + E). 

The running time of the algorithm is dominated by the 
time taken to iterate over subsets of vertices of size 1 and 

O(lg m) size multi-sets of dimensions for every pair of cen- 
ters; thus the running time is mf 2(:)n0('gm)poly(n), which 
is at most nO(lgm). 

Remarks. (i) The probabilistic construction of distinguish- 
ing multi-sets in the proof of Lemma 6 might give the im- 
pression that exhaustive search over O(lg m) sized multi- 
sets can be replaced by a randomized construction of dis- 
tinguishing multi-sets, resulting in a polynomial time algo- 
rithm for fixed 1. Unfortunately, this is not true. The proba- 
bilistic construction uses a probability distribution over the 
dimensions in K' . Since the algorithm does not know K*, 
it cannot perform the randomized multi-set construction. 

(ii) Using similar (actually simpler) ideas, one can design 
an algorithm that runs in time O(mr") time if the points are 
on the hypercube and T is the optimal radius. Thus in the 
case when T ,  1 are both constants, this gives a polynomial 
time algorithm. 

(iii) The approach in Lemma 6 is very similar in spirit to 
techniques used in [21] in that random sampling is used to 
'distinguish' pairs of points. 

4. Hardness of hidden cluster problems 
This section presents hardness results for the hidden 

cluster problems we have considered. As it will turn out, 
the algorithms in Section 3 are close to the best possible, as 
versions of the hidden cluster problems we consider seem 
to contain as special cases some notoriously hard problems 
like CLIQUE, DENSEST SUBGRAPH, etc. 

4.1. Hardness with arbitrary number of centers 

One of the apparent shortcomings of our algorithms is 
the runtime has an exponential dependence on the number 1 
of clusters. We prove hardness results and provide evidence 
that this dependence might be inherent, in that with an un- 
bounded number of centers, the problems are probably very 
hard to approximate within even very moderate factors. 

Consider the following special case: Suppose we have a 
m x n 0-1 matrix representing m points in n dimensions 
and we want to find k dimensions such that in these dimen- 
sions we obtain at most 1 distinct points (this corresponds 
to having 1 clusters with radius 0 for both the L1 and L ,  
norms). (Each of the metrics corresponding to the n di- 
mensions has a particularly simple form: it partitions the m 
points into two parts, and the distance between two points 
is 0 if they are in the same side of the partition, and is 1 
otherwise.) Here, since the optimal radius is 0, any approx- 
imation on the radius is equally good, and the question of 
interest is how well one can approximate the number of di- 
mensions. We prove that obtaining the exact number of di- 
mensions as the optimum is NP-hard via a reduction from 
MAX CLIQUE. 
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Lemma 12 For the L1 and L ,  hidden clusterproblems, it 
is NP-hard to find a solution with the optimum number of 
dimensions with anyfinite approximation on the radius. 

Proot We can reduce CLIQUE to this as follows: Given 
an instance (G, 1) of CLIQUE, the input matrix to our prob- 
lem is the incidence matrix of G with rows corresponding 
to vertices and columns to edges in G. Thus each column 
of G has precisel two 1's. Now, G has a clique of size 1 iff 
the matrix has ($ columns such that in these columns we 
have at most 1 + 1 distinct patterns. Hence for the hidden 
cluster problems with (1 + 1) clusters each of radius 0, it is 
NP-hard to find the optimum number of dimensions. 
When we relax the requirement on the dimensions, the re- 
duction used in the proof of the above lemma does not yield 
anything because, given a graph which has an 1-clique it is 
possible to find a subgraph of size 1 containing (1 - E) ( t )  
edges in quasi-polynomial time [14]. We can give a simi- 
lar reduction from DENSEST SUBGRAPH, however, and this 
gives the following: 

Lemma 13 If DENSEST SUBGRAPH is f ( N )  hard to ap- 
proximate on N-vertex graphs, then for  both the L1 and 
L ,  hidden cluster problems with n dimensions, it is hard 
to approximate the number of dimensions within a factor of 
f (fi) for  any finite approximation on the radius. 

In light of the generally believed hardness of DENSEST 
SUBGRAPH, the above shows that in order to get a constant 
factor approximation for the number of dimensions, an ex- 
ponential dependence of the runtime on e seems essential. 

4.2. Hardness with a fixed number of centers 

The conventional clustering problems (with just one di- 
mension) are trivially solvable in the case when the number 
of centers is a constant; this, however, is not the case for the 
hidden clusters problem. We prove that the L, problem is 
very hard with just two centers and the L1 version is in fact 
hard to approximate even when there is only one center. 

Theorem 14 For any 6 > 0, for  the L ,  hidden clus- 
ter problem with n dimensions and e clusters, it is NP- 
hard (under randomized reductions) to get a ( 2  - 6, nl-&)- 
approximation for  the radius and number of dimensions re- 
spectively, even if1 = 2. In case the centers of the 1 clusters 
are specijied, then it is in fact hard to get a (3 - 15, nl-a)-  
approximation. 

Proof Sketch. We only sketch the reduction; the full proof 
can be found in the full version. The reduction is from 
MAX-CLIQUE, and will prove that the number of dimen- 
sions in the L ,  hidden cluster is as hard to approximate as 
MAX-CLIQUE even with a slack of (2 - 6) on the cluster 
radius. The claimed result will then follow using the inap- 
proximability of MAX-CLIQUE [15]. 

Given a graph G, we construct an instance of Loo hidden 
cluster with 1 = 2 clusters as follows. The points in the 
hidden cluster problem consist of one point xu for each ver- 
tex U of G and two additional points C and e. We have one 
dimension IC, corresponding to each vertex U of G. 'Each di- 
mension is just a line; in fact the only coordinates we need 
to use are 0,1,2,3,4 (the distance between two points in 
any dimension is simply the absolute value of the differ- 
ence between their coordinates in that dimension). The co- 
ordinates of points in dimension IC, are as follows: x, has 
coordinate 0. For all U that are adjacent to U in G, xu has 
coordinate 2. For all U that are not adjacent to U in G, xu 
has coordinate 4. C has coordinate 1 and has coordinate 
3. Note that C has coordinate 1 in all dimensions and has 
coordinate 3 in all dimensions. 

If G has a clique of size k, the picking C,c as cen- 
ters and the dimensions corresponding to the vertices in the 
clique gives a solution with IC dimensions and radius 1 (as- 
sign x, to C if U belongs to the clique and to otherwise). 
On the other hand, one can show that in any solution with 
radius at most (2 - 6), the vertices corresponding to dimen- 
sions picked must form a clique, and if C, are specified 
as the centers, the same holds even for a radius of (3 - S). 

Since L ,  hidden cluster is a (3,1)-approximation algo- 
rithm, it is close to being the best possible. Of course the 
algorithm has the same performance even if the centers are 
specified (and cannot be picked arbitrarily), and hence the 
above hardness result implies that for the case when the cen- 
ters are specified, the algorithm is in fact optimal. 

We now turn to the L1-version of the problem: The fol- 
lowing theorem shows the NP-hardness of designing any 
constant factor approximation algorithm for the radius in 
the L1 hidden cluster problem, and hence the O(lg ~n) factor 
achieved by our algorithm L1 hidden cluster is not too far 
from optimal. The theorem follows from arguments similar 
to the results of Chekuri and Khanna [7] on the hardness of 
approximating PIPS. 

This proves the claimed result. 

Theorem 15 For any 6 > 0 and any constant c > 1, for  the 
L1 hidden cluster problem with n dimensions and 1 cen- 
ters, it is NP-hard under randomized reductions to find a 
( c ,  nl-')-approximation algorithm for  the radius und num- 
ber of dimensions respectively, even for  the case when there 
is only one center; i.e., 1 = 1. 

5. Dimension reduction problems 

5.1. Entropy maximization 

The problem is to pick K so that the entropy of the 
random variable U(S1x) is maximized. We consider 
two kinds of problems: (i) FIXED-DIMENSION-MAX- 
ENTROPY: Given k, find K such that IK(1 = k so as to 
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maximize the entropy H(U(SII ( ) ) ,  and its dual (ii) FIXED- 
ENTROPY-MIN-DIMENSION: Given E, find K such that 
H(U(S1x)) 2 E and IK() is minimized. 

We can use the natural greedy algorithm to solve the two 
problems. The idea is to repeatedly add a dimension j to the 
currently picked set K of dimensions; j is chosen so as to 
maximize the entropy of U ( s l ~ ~ { j ) ) .  We repeat this step 
until. we pick k dimensions or achieve the specified entropy 
bound E. The analysis of the algorithm uses the subaddi- 
tivity of the entropy function, and foliows the analysis of 
the greedy algorithm for the SET COVER and MAX COV- 
ERAGE problems. 

Lemma 16 Suppose K1 and K2 are two subsets of dimen- 
sions. Let e l  = H(U(SIK( , ) )  and e2 = H(U(SIK-,)) .  
If el > e2, then there exists j E K1 such that the 
H(U(SIKaU{j))) L e2 + (el - e2)/lK1 I. 
Pro05 For dimension j ,  let Y j  be the random variable 
V(S1j) and for a subset K of dimensions, let YK be the ran- 
dom variable U ( S I I ( ) .  Then for a subset K of dimensions, 
the entropy of U ( S I K )  equals H ( Y K ) .  

where the inequalities are a consequence of subadditiv- 
ity. Choose j *  E K1 that maximizes H(Yj.  ~ Y K ~ ) .  Then 
H(Y,* IYK~) 2 (el - e2)/1K119 and hence 

H(U(SIKau{j))) = H(YKau{j*)) L 
H(YK2) + H(Yj* IYKa) 2 e2 -t . 

Using Lemma 16 and the analysis of the greedy algorithm 
for MAX COVERAGE, we get: 

Theorem 17 There is a polynomial time (1 - e-')- 
approximation algorithm for  FIXED-DIMENSION-MAX- 
ENTROPY. 

Theorem 18 There is a polynomial time O(1gm)- 
approximation for  FIXED-ENTROPY-MIN-DIMENSION. 

Pro05 Suppose the optimal solution is a set of k dimen- 
sions K* such that H(U(SII( . ) )  = e*. Let Ki be the set 
of dimensions constructed after i steps of the greedy algo- 
rithm; lKil = i. Let ei = H(V(SIK, ) ) .  We can show that 
ei+l- ei > c / m  for some constant c. Using Lemma 16, we 
get (e* -.;+I) 5 (e* -e;)(l- A). Since e* 5 lgm, this 
implies that in O( IK* I lgm) steps, we have e* - ei 5 c/m.  

But this means that we reach the target entropy in at most 

The problem FIXED-ENTROPY-MIN-DIMENSION with 
E = l g m  is equivalent to the distinct vectors problem. 
The following theorem follows from the hardness for dis- 
tinct vectors (Theorem 20). 

Theorem 19 Unless P=NP, there exists c > 0, such that 
FIXED-ENTROPY-MIN-DIMENSION is  hard to approxi- 
mate to within a factor of c l g n  where n is the number of 
dimensions, 

one more step. H 

5.2. Distinct vectors 

We now consider the feature selection problem where 
the goal is to pick the minimum number of dimensions that 
can still distinguish the given points. Using a reduction to 
SET COVER, it is easy to see that this problem can be ap- 
proximated within a factor of O(lg n) (if n is the number of 
dimensions; the number of points is bounded by a polyno- 
mial in n). The special structure of this problem might raise 
hopes that one can in fact do much better, but, we show that 
that this is not the case. This result is very similar to a folk- 
lore result that it is as hard as set-cover to find the smallest 
set of features needed to distinguish a specified vector from 
all the others; our proof also follows from a reduction from 
SET COVER, and can be found in the full version of the 
paper. 

Theorem 20 Unless P=NP, there is a constant c > 0 such 
that the distinct vectors feature selection problem is hard to 
approximate within a factor of c lg n where n is the number 
of dimensions. 

We now consider some generalizations of the distinct vec- 
tors problem. Given a 0- 1 matrix, consider the problem of 
choosing k dimensions so as to maximize the number of 
distinct rows. We call this the MAX-DISTINCT-POINTS 
problem. The dual problem of minimizing the number of 
dimensions so that there are 1 distinct rows is called the 
MIN-~-DISTINCT-DIMENSION problem. 

We give reductions from DENSEST SUBGRAPH to both 
these problems which show that good approximations for 
either of them would imply good approximations for DENS- 
EST SUBGRAPH. The input to MAX-DISTINCT-POINTS 
and MIN-~-DISTINCT-DIMENSION in both our reductions 
is a matrix M which is the incidence matrix of G = (V, E) 
(with rows corresponding to E and columns corresponding 
to V) together with an additional IVI + 1 rows-one row 
corresponding to each vertex v with a 1 in the column cor- 
responding to v and 0 elsewhere and the last row with all 
zeros. We will use the following property connecting M 
and G: For every proper induced subgraph of G with k ver- 
tices and m edges, the corresponding k columns in M have 
m + k + 1 distinct rows and vice-versa (using the fact that 
G is connected and the subgraph is proper). 
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Theorem 21 An a-approximation algorithm for M A X -  
DISTINCT-POINTS implies a 2a-approximation for  DENS- 
EST SUBGRAPH. 

Theorem 22 An a-approximation algorithm for  M I N - ~ -  
DISTINCT-DIMENSION implies a a(a + 1)-approximation 
for  DENSEST SUBGRAPH. 

6. Further work 

There are a number of interesting problems in the feature 
selection framework. We mention a few: 

(i) Stopword elimination: Given a clustering 
Cl,. . . , Ct and a, maximize K such that for each 
pair of clusters, C and C', distlK(C, C') 2 alc. This 
is tantamount to eliminating stopwords to make latent 
document clusters apparent. 

(ii) Metric embedding: Given that the Hamming dis- 
tance between any pair of vectors in S is at least an for 
some a E ( 0 , l )  and ap < a, minimize IKI such that such 
that the Hamming distance between any pair of vectors in 
SIK is at least PIKI. This problem corresponds to asking 
whether a code with distance a contains a sub-code with 
distance at least p. 

(iii) Min dimension perceptron: given S = R U B and 
a guarantee that there is a hyperplane H separating R from 
B, find the smallest K such that there is a hyperplane sepa- 
rating RIK and B ~ K .  

It will be interesting to study these and other feature se- 
lection problems from the algorithms and complexity point 
of view. 
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