"Soft-decision" Decoding of Chinese Remainder Codes

Venkatesan Guruswami* Amit Sahai †† Madhu Sudan ††

Abstract

Given \(n \) relatively prime integers \(p_1 < \cdots < p_n \) and an integer \(k < n \), the Chinese Remainder Code, \(\text{CRT}_{p_1,\ldots,p_n,k} \), has as its message space \(\mathcal{M} = \{0,\ldots,\prod_{i=1}^n p_i - 1\} \), and encodes a message \(m \in \mathcal{M} \) as the vector \((m_1,\ldots,m_n) \), where \(m_i = m \pmod{p_i} \). The soft-decision decoding problem for the Chinese remainder code is given as input a vector of residues \(\mathbf{r} = (r_1,\ldots,r_n) \), a vector of weights \((w_1,\ldots,w_n) \), and an agreement parameter \(t \). The goal is to find all messages \(m \in \mathcal{M} \) such that the weighted agreement between the encoding of \(m \) and \(\mathbf{r} \) (i.e., \(\sum_i w_i r_i \) summed over all \(i \) such that \(r_i = m \pmod{p_i} \)) is at least \(t \). Here we give a new algorithm for solving the soft-decision problem for the CRT code that works provided the agreement parameter \(t \) is sufficiently large. We derive our algorithm by digging deeper into the algebra underlying the error-correcting algorithms and unveiling an "ideal"-theoretic view of decoding.

When all weights are equal to 1, we obtain the more commonly studied "list decoding" problem. List decoding algorithms for the Chinese Remainder Code were given recently by Goldreich, Ron, and Sudan [5], and improved by Boneh [1]. Their algorithms work for \(t \geq \sqrt{2k\log p_n/\log p_1} \) and \(t \geq \sqrt{kn \log p_n/\log p_1} \), respectively. We improve upon the algorithms above by using our soft-decision decoding algorithm with a non-trivial choice of weights, and solve the list decoding problem provided \(t \geq \sqrt{k(n+\varepsilon)} \), for arbitrarily small \(\varepsilon > 0 \).

1 Introduction

Given \(n \) relatively prime integers \(p_1 < \cdots < p_n \) and an integer \(k < n \), the Chinese Remainder Code, \(\text{CRT}_{p_1,\ldots,p_n,k} \), has as its message space \(\mathcal{M} = \{0,\ldots,\prod_{i=1}^n p_i - 1\} \), and encodes a message \(m \in \mathcal{M} \) as the vector \((m_1,\ldots,m_n) \), where \(m_i = m \pmod{p_i} \). The

*MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139. Email: {venkat,amits,madhu}@theory.lcs.mit.edu.
††Supported in part by a DOD NDSEG Fellowship.
‖Supported in part by an MIT-NEC Research Initiation Award, a Sloan Foundation Fellowship and NSF Career Award CCR-9875511.

1Mandelbaum [11] does not give a precise bound on the running time of the algorithm. It is pointed out in [5] that the algorithm can have exponential running time for certain values of the \(p_i \)'s. It seems easier to modify the algorithm so as to correctly only \(\binom{n-k}{k} \log p_i \) errors in polynomial (in \(n, \log p_n \)) time (cf. [5]).
One weakness common to all the known algorithmic results on CRT decoding is their poor(er) performance if the primes are varying significantly in size. This can cause the algorithm of Mandelbaum [11] to take exponential time, while it degrades the number of errors that the algorithms of Goldreich et al. [5], or Boneh [1] can correct. This weakness, in turn, highlights an eccentricity of the CRT code: Its alphabet size is not uniform, and so the “contribution” of an error is not independent of its location. Viewed differently, if the residue of a message m is known correctly modulo a small prime, then this provides less information than if the residue of m is known correctly modulo a large prime. The first coordinate of the code provides only $\log p_1$ bits of information about the message, while the last coordinate provides $\log p_n$ bits of information. However when we treat the code as a combinatorial object, all coordinates are declared to be equally important. The distortion in translating between the two measures of “importance” of the coordinates leads to a degradation in performance of the code and this explains the common occurrence of the quantity $\log p_n/\log p_1$. At first glance, this loss in performance seems inevitable. After all we are distorting the natural weighting of the code and so the algorithmic results should suffer. However, a closer look reveals that this distortion has already been accounted for when estimating the distance of the code. It then follows that the code does have distance greater than $n - k$ in the uniform weighting; and thus it should be possible to correct $(n-k)/2$ errors unambiguously. Similarly, some standard results on the combinatorics of list decoding imply that the output size of the list decoding problem is bounded by a polynomial in n if $t > \sqrt{n\log 2}$. However, the algebra of known decoding algorithms defer to the natural weighting of the alphabets of the CRT code. To overcome this limitation, one needs algorithms to decode the CRT code under the uniform weighting, or more generally, some arbitrary “user-specified” weighting, of the coordinates of the code.

Our Results. We first consider the combinatorial implications of the question of “reweighting” the coordinates of a code in a general setting (and not just the CRT code). Say we have a code C of n-letter strings, with its natural weight vector $\alpha = (\alpha_1, \ldots, \alpha_n)$, where α_i is a non-negative real representing the “natural importance” of the i-th coordinate of the code. (For the CRT code $\alpha_i = \log p_i$.) Say the code C has distance D_{α} under this weighting (i.e. for any two codewords $x, y \in C$, $\sum_{i=1}^{n} |x_i - y_i| \alpha_i \geq D_{\alpha}$). Now suppose we wish to impose our own weighting $\beta = (\beta_1, \ldots, \beta_n)$ on the alphabets (typically, our weighting would be the uniform one), and wish to study the code C under this weighting. We first prove some combinatorial results giving some lower bound on t, such that if the weight of agreement under the β-weighting is at least t, then the size of the output of the list decoder is bounded by a polynomial in n. (See Theorem 1 and its Corollaries.)

Next we consider the task of recovering the list of all such codewords in polynomial time, for the CRT code. In general, there are few algorithms in the literature on coding theory where the natural weighting of the code (usually the uniform one) can be overcome by a "user-imposed" weighting; and this is exactly what we wish to do in this case. Two known exceptions to this are the Generalized Minimum Distance (GMD) decoding algorithm of Forney [4], and the weighted version of the Reed-Solomon decoding algorithm of Guruswami and Sudan [6]. These two algorithms form the starting points for our algorithmic results.

Our first algorithmic result (Theorem 2) applies the GMD algorithm of Forney [4] to the task of decoding the CRT code under the uniform weighting. We show how to combine this result with the results of Mandelbaum [11, 12] and Goldreich et al. [5] to obtain the first polynomial time algorithm which decodes the CRT code up to half the minimum distance of the code (i.e., recovering from up to $(n-k)/2$ errors). We stress that no polynomial time algorithm was known for this task prior to our result, since the run time of Mandelbaum’s algorithm [11, 12] to correct up to $(n-k)/2$ errors, was not always polynomial in $n, \log p_n$, (see [5] for a discussion). Our algorithm can actually recover from a number of errors which is less than half the weighted minimum distance for any set of positive weights imposed on the codeword positions. Technically, this part of the paper is simple — the main contribution of this part may be viewed as highlighting the role of GMD decoding in the task of decoding the CRT code.

Our second algorithmic result extends the weighted list decoding algorithm of Guruswami and Sudan [6] to the case of the CRT code. As a consequence we show how to solve the weighted list decoding problem for an arbitrary choice of the β vector, as long as the β-weighted error matches the combinatorial bound of Theorem 1. This result is shown in Corollary 4 to Theorem 4. We then show how to choose the weight vector β (and this part turns out to be a non-trivial guess) so that we get a solution to the uniform list decoding problem for the CRT code, for $t \geq \sqrt{k(n+\varepsilon)}$, for a tolerance parameter $\varepsilon > 0$ as small as we seek. In fact, we can efficiently list decode as long as $t \geq \min \{ \sqrt{k(n+\varepsilon)}, \sqrt{(\sum_{i=1}^{n} \log p_i)\left(\frac{1}{\log p_i} + \varepsilon\right)}\}$.

Theorem 3 is the technical centerpoint of this paper. It is proven by creating an “ideal”-like view of error-correcting codes and the decoding problem. This view captures all known algebraic codes, including Reed-Solomon codes and the more general algebraic-geometric codes, as well as number-theoretic codes such as the CRT code. Further, we present a decoding algorithm in the same framework that unifies the algebra of most of the known list decoding algorithms including those in [16, 14, 6, 5, 1], and most im-
important for us, the weighted list decoding algorithm of [6]. The resulting abstraction reduces the decoding problem to a number of "elementary" algorithmic problems on the underlying ideals. In the case of the CRT code, these problems turn out to be well-solved problems on integer lattices, such as the problems of computing the sum and the intersection of given lattices, or finding short vectors in them, and thereby solves the weighted list decoding problem for the CRT code. The unified algebraic framework emerging from this study may be of independent interest.

Organization. We begin by describing combinatorial bounds on the "radius" up to which we are guaranteed to have a small number of codewords for a general code which has varying weights (and varying alphabet sizes) on its various coordinates. In Section 3 we describe and analyze a "soft-decision" algorithm for decoding CRT codes, and also prove our main algorithmic result (Theorem 3). Our algorithm is motivated and founded upon an ideal-theoretic view of existing decoding algorithms [6, 5, 1] for "redundant-residue codes" like the Reed-Solomon and Chinese Remainder codes, which we ferret out and describe as an Appendix (Appendix A). We then get specific results for interesting weightings of the coordinates by non-trivial choice of weights in the main algorithm.

2 Combinatorial Bounds

Theorem 1 Let \(C \) be a code of length \(n \) with the \(i \)th symbol coming from an alphabet of size \(q_i \). Let the distance \(D_a \) of the code be measured according to a weighting vector \(\alpha \) i.e., for any two distinct codewords \(c_1, c_2 \), \(\sum_{i=1}^{n} \alpha_i \) \(c_1c_2 \), \(\alpha_i \geq D_a \) (assume each \(\alpha_i \geq 1 \) without loss of generality). For a weighting vector \(\beta \) and a received word \(y \), define the ball \(B_{\beta}(y,W) \) to consist of all strings \(z \) (in the space \([q_1] \times [q_2] \times \cdots \times [q_n] \)) such that \(\sum_{i:y_i \neq z_i} \beta_i \leq W \). Then, for all \(y \), the ball \(B_{\beta}(y,E_\beta) \) has at most \(\frac{D_a}{\sum_{\alpha_i-D_a} \left(\sum_{\alpha_i} \beta_i \right)} \varepsilon^{-1} \) codewords from \(C \) provided:

\[
E_\beta \leq \sum_{i} \left(1 - \frac{1}{q_i} \right) \beta_i - \left[\left(\sum_{i} \left(1 - \frac{1}{q_i} \right) \beta_i^2 + \varepsilon \right) \left(\sum_{i} \left(1 - \frac{1}{q_i} \right) \alpha_i - D_a \right) \right]^{1/2}.
\]

(All sums are for \(1 \leq i \leq n \).)

We prove this bound by generalizing the method of [7], which was used to establish a similar bound in the special case where \(\alpha \) is the all \(1^n \) vector, and \(\beta \in \{0,1\}^n \), and all \(q_i \)'s are equal. The details of the proof are quite technical, and may be found in the full version of the paper.

When \(\beta \) equals \(\alpha \) or is the all \(1 \)s vector, we can get the following Corollaries:

Corollary 1 When \(\beta = \alpha \) in the above Theorem, then there are at most a polynomial (in \(n, \sum \alpha_i \varepsilon^{-1} \)) many codewords in any ball \(B_{\alpha}(y,E_a) \) provided \(E_a \leq \alpha_{tot} - \sqrt{(\alpha_{tot} + \varepsilon)(\alpha_{tot} - D_a)} \), where \(\alpha_{tot} = \sum_{i=1}^{n} \alpha_i \).

Corollary 2 If \(\beta_i = 1 \) for all \(i \), i.e., the distance of the received word from codewords is measured using the Hamming distance, then there are at most a polynomial in \(n, 1/\varepsilon \) many codewords in a Hamming ball of radius \(E \) provided

\[
E \leq n - \sqrt{(\alpha_{tot} - D_a) \left(\sum_{i=1}^{n} \frac{1}{\alpha_i} + \varepsilon \right)}.
\]

We will see that for the case of CRT codes, we can essentially match the bounds of Theorem 1 (in the limit of large alphabet sizes) and Corollaries 1 and 2 algorithmically.

3 Algorithms for decoding CRT codes

In this section, we discuss efficient decoding algorithms for the CRT code. As stated above, we consider a sequence \(p_1 < p_2 < \cdots < p_n \) of relatively prime integers and an integer \(k < n \). Let \(K = \prod_{i=1}^{k} p_i \); \(N = \prod_{i=1}^{n} p_i \). We associate to each integer \(m \in \{0,1,\ldots,K-1\} \) the sequence \((m_1, m_2, \ldots, m_n) \), where \(m_i = m \bmod p_i \). We will abuse notation and refer to both this sequence and \(m \) as a codeword. We consider a received word to be a sequence \((r_1, r_2, \ldots, r_n) \) of integers with 0 \(\leq r_i < p_i \) for each \(i \) from 1 to \(n \). By the Chinese Remainder Theorem, each such sequence corresponds to a unique non-negative integer \(r < N \). For a given sequence of weights \(\omega = (w_1, \ldots, w_n) \), we say the \(\omega \)-weighted agreement (or simple weighted agreement when the weighting we are referring to is clear) between a codeword \(m < K \) and a received word \(r < N \) is \(\sum a_i w_i \), where \(a_i = 1 \) if \(m_i = r_i \), and \(a_i = 0 \) otherwise.

In this section, we present two efficient decoding algorithms. For any sequence of positive weights \(\beta \), the first one efficiently (in near-quadratic time) recovers the unique codeword \(m < K \) with highest \(\beta \)-weighted Hamming agreement with a received word \(r \), as long as there is a codeword whose \(\beta \)-weighted Hamming distance from \(r \) is less than half the \(\beta \)-weighted minimum distance of the code. codeword modulo at least \((n+k)/2 \) positions. This is accomplished by adapting the method of Forney, introduced for Reed-Solomon codes in [4], to CRT codes. Note that in particular this gives the first efficient algorithm to correct from \((n-k)/2 \) errors (i.e., decode up to half the minimum distance) for the CRT code.

In the second (which is our main) decoding algorithm, the goal is to efficiently find a list of all codewords \(m < K \) such that \(m \) and the received word \(r \) have sufficient weighted agreement. In particular, we are able to give an efficient list decoding algorithm which outputs all codewords
m < K which agree with r modulo at least $\sqrt{k(n+\epsilon)}$ positions (for any ϵ, with the running time of the algorithm depending polynomially in $1/\epsilon$).

3.1 GMD decoding for CRT codes

For integers k, n and relatively prime integers $p_1 < p_2 < \cdots < p_n$, and any integer j, $1 \leq j \leq n$, Goldreich, Ron, and Sudan [5] gave a near-linear time algorithm to compute the unique integer m, if any, that satisfies

$$\sum_{i=1}^{j} a_i \log p_i > \frac{1}{2} \left(\sum_{i=1}^{j} \log p_i + \sum_{i=1}^{k} \log p_i \right)$$

where a_i is defined in the usual way: $a_i = 1$ if $m = r_i (\mod p_i)$ and $a_i = 0$ otherwise. Note that the above algorithm decodes up to half the minimum \vec{d}-weighted distance ($\log(N/K)$) for the "natural" weighting $w_i = \log p_i$ of the CRT code. Using this algorithm as the "basic algorithm" and running a GMD style algorithm similar to Forney [4], we are able to perform such a decoding for any choice of weights $\vec{\beta} = (\beta_1, \beta_2, \ldots, \beta_n)$.

To prove this we show a more general result. Suppose we have an arbitrary code C of blocklength n. We show how to use a decoding algorithm designed for any weighting $\vec{\alpha}$ to produce one that works for the desired weighting $\vec{\beta}$. Define

$$A_{\beta} = \sum_{i=1}^{n} a_i - D_{\alpha}$$

where D_{α} is $\vec{\alpha}$-weighted distance of the code, so that A_{α} is the maximum $\vec{\alpha}$-weighted agreement between two distinct codewords of C. A_{β} is defined similarly. We are now ready to state the main result of this section:

Theorem 2 Let $\vec{\alpha}, \vec{\beta} \in \mathbb{R}^n_+$ be positive real vectors such that $\beta_1 \geq \beta_2 \geq \cdots \geq \beta_n$. Suppose we have a polynomial time algorithm Alg_{α} that given a received word $\vec{r} = (r_1, \ldots, r_n)$ and an index j ($1 \leq j \leq n$), can find the unique codeword \vec{c}, if any, whose $\vec{\alpha}$-weighted agreement with \vec{r} in the first j positions is more than $\frac{1}{2} \left(\sum_{i=1}^{j} \alpha_i + A_{\alpha} \right)$. Then, for any vector of positive reals $\vec{\beta} = (\beta_1, \ldots, \beta_n)$, there is a polynomial time algorithm Alg_{β} that given a received word $\vec{r} = (r_1, \ldots, r_n)$, outputs the unique codeword, if any, whose $\vec{\beta}$-weighted agreement with \vec{r} is at least $\frac{1}{2} \left(\sum_{i=1}^{j} \beta_i + A_{\beta} + \beta_{\max} \right)$, and moreover the run-time of Alg_{β} is at most $O(n)$ times that of Alg_{α}.

Corollary 3 For the CRT code with parameters $(n, k; p_1, p_2, \ldots, p_n)$, for any received word $\vec{r} = (r_1, r_2, \ldots, r_n)$, there is a polynomial time (in fact near-quadratic time) algorithm to find the unique codeword $\vec{m} = (m_1, m_2, \ldots, m_n)$, if any, that agrees with \vec{r} in at least $\frac{n+1}{2}$ positions.

Proof: By Equation (1) we have a near-linear time decoding algorithm for the weighting $\alpha_i = \log p_i$ and $A_{\alpha} = \log K$ (where $K = p_1 p_2 \cdots p_n$). By Theorem 2 applied to $\vec{\beta}$ being the all-ones vector, we have $A_{\beta} = k$ and thus we can find the unique codeword \vec{m} that agrees with \vec{r} in at least $(n + k + 1)/2$ places. For any constant c, we can also correct additional errors by simply erasing c symbols for all $(\binom{n}{c})$ possible choices of c positions and then running the above decoding algorithm. In particular, this implies that we can find the unique codeword with agreement at least $(n + k)/2$ with \vec{r} in polynomial time.

Proof of Theorem 2: Recall that the codeword positions i are ordered so that $\frac{a_1}{a_1} \geq \frac{a_2}{a_2} \geq \cdots \geq \frac{a_n}{a_n}$. Define

$$\bar{A}_{\beta} \overset{\mathrm{def}}{=} \max_{\sum_{i=1}^{n} \beta_i \leq A_{\alpha}} \left\{ \sum_{i=1}^{n} \beta_i \alpha_i \right\}.$$

Note that under the condition $\vec{x} \in \{0, 1\}^n$, the above would just define A_{β}; we relax the condition to $\vec{x} \in \{0, 1\}^n$ in the above to define \bar{A}_{β}. Clearly $A_{\beta} \leq \bar{A}_{\beta} < A_{\beta} + \beta_{\max}$. We will present an algorithm to find the unique codeword \vec{c}, if any, that satisfies

$$\sum_{i=1}^{n} a_i \beta_i > \frac{1}{2} \left(\sum_{i=1}^{n} \beta_i + \bar{A}_{\beta} \right)$$

(where $a_i = 1$ if $C_i = r_i$ and 0 otherwise), and this will imply the claimed result (since $\bar{A}_{\beta} < A_{\beta} + \beta_{\max}$). We now assume such a C exists, for, otherwise, there is nothing to prove.

The algorithm Alg_{β} will simply run Alg_{α} for all values of j, $1 \leq j \leq n$, and pick the closest codeword among the (at most n) codewords which the runs of Alg_{α} returns. If this algorithm fails to find the codeword \vec{c} that satisfies Condition (3), then we must have, by the hypothesis of the Theorem, for every j, $1 \leq j \leq n$,

$$2 \sum_{i=1}^{j} a_i \alpha_i \leq \sum_{i=1}^{n} a_i + A_{\alpha}.$$

Let $\vec{\xi} = (1 1 \cdots 1 \varepsilon 0 \cdots 0)$ be a vector such that $\sum_{i=1}^{n} a_i \xi_i = A_{\alpha}$ (here $0 \leq \varepsilon < 1$). Denote by ℓ the last position where $\xi_i = 1$ (i.e., $\xi_{\ell} = 1$ and $\xi_{\ell+1} = \varepsilon$). By our definition (2) $\bar{A}_{\beta} \geq \sum_{i=1}^{\ell} \beta_i \xi_i$ (in fact by the ordering of the codeword positions it is easy to see that $\bar{A}_{\beta} = \sum_{i=1}^{\ell} \beta_i \xi_i$ though we will not need this). Now for $j \geq \ell + 1$, $A_{\alpha} = \sum_{i=1}^{n} a_i \xi_i = \sum_{i=1}^{\ell} a_i \xi_i + \sum_{i=\ell+1}^{n} a_i \xi_i$. Also, for $1 \leq j \leq \ell$, we have the obvious inequality $\sum_{i=1}^{n} a_i \alpha_i \leq \sum_{i=1}^{\ell} a_i \alpha_i = \sum_{i=1}^{\ell} a_i \xi_i$. Combining these with Equation (4) we obtain the following uniform condition that holds for all j, $1 \leq j \leq n$:

$$2 \sum_{i=1}^{j} a_i \alpha_i \leq \sum_{i=1}^{\ell} a_i + \sum_{i=1}^{n} \alpha_i \xi_i.$$

162
Multiplying the jth inequality above by the non-negative quantity $\left(\frac{\beta_j}{\alpha_j} - \frac{\beta_{j+1}}{\alpha_{j+1}}\right)$ for $1 \leq j \leq n$ (define $\beta_{n+1} = 0$ and $\alpha_{n+1} = 1$), and adding the resulting inequalities, we get
\[
2 \sum_{i=1}^{n} a_i \beta_i \leq \sum_{i=1}^{n} \beta_i + \sum_{i=1}^{n} \beta_i \tilde{z}_i \leq \sum_{i=1}^{n} \beta_i + \tilde{A}\beta,
\]
which contradicts Condition (3). Thus the codeword C that satisfies (3), if any, will indeed be output by the algorithm Alg$_\beta$.

\section{The Weighted List Decoding Algorithm}

Our goal in this section is to efficiently find a list of all codewords $m < K$ such that m and the received word r have sufficient weighted agreement. We note that a simple transformation makes it equivalent for us to find integers m where $|m| \leq K/2$, with sufficient agreement with a received word (r_1, \ldots, r_n).

Our algorithm follows the ideal-based framework presented in Appendix A. Following [5], the basic idea will be to find an integer polynomial $c(z)$ (based on the received word r) with the property that all codewords that have sufficient weighted agreement with the received word are roots of the polynomial $c(z)$ over the integers. Then, by factoring $c(z)$ and extracting all factors of the form $(z - m)$ for $|m| \leq K/2$ where m has sufficient weighted agreement, we could recover all sufficiently similar codewords. We are able to construct such a polynomial by pursuing two objectives, which are in turn adaptations of the objectives of [16] in the context of Reed-Solomon codes:

1. To ensure that the polynomial $c(z)$ has the property that for any integer m such that $|m| \leq K/2$, if $m = r_i \mod p_i$, then $c(m) \equiv 0 \mod M_i$, for some sequence of moduli M_i. By the Chinese Remainder Theorem, this in turn implies that for any m with $|m| \leq K/2$, we have that $c(m) \equiv 0 \mod \left(\prod_i M_i^{n_i}\right)$, where $a_i = 1$ if $m = r_i$, and $a_i = 0$ otherwise.

2. To ensure that the coefficients of $c(z) = \sum_{j=0}^{\ell} c_j z^j$ are sufficiently small. In particular, for some integer G, ensure that $|c_j| \leq G/(K/2)^j$ for all j. This in turn implies that if ℓ is the degree of $c(z)$, for any m with $m \leq K/2$, we have that $|c(m)| < \sum_{j=0}^{\ell} |c_j|/(K/2)^j \leq (\ell + 1) \cdot G$.

By combining Objectives 1 and 2, we see that for any integer m such that $|m| \leq K/2$ with sufficient agreement so that $\sum_i M_i^{n_i} > (\ell + 1) \cdot G$, we have that m is a root of $c(z)$, not only modulo some number, but over the integers as well. Note that the decoding condition is equivalent to $\sum_i a_i \log M_i > \log ((\ell + 1) \cdot G)$.

We show how to achieve these objectives for $M_i = p_i^{d_i}$, for arbitrary non-negative integer sequences z_i, yielding a weighted decoding condition similar to the one in [6] for Reed-Solomon codes.

\subsection{The Weighted List Decoding Algorithm}

We now state and prove our main algorithmic result.

\textbf{Theorem 3} For a CRT code with the above parameters, given a received word $r = (r_1, r_2, \ldots, r_n)$ with $0 \leq r_i < p_i$, and any non-negative integers ℓ and z_i for $1 \leq i \leq n$, we can find in time polynomial in $n, \log N, \ell$ and $\sum_i z_i$, a list of all codewords m that satisfy
\[
\sum_{i=1}^{n} a_i z_i \log p_i > \log(\ell + 1) + \frac{\ell}{2} \log K + \sum_{i=1}^{n} \left(\frac{z_i + 1}{2}\right) \log p_i, \tag{6}
\]
where $a_i = 1$ if $m = r_i$ and $a_i = 0$ otherwise.

\textbf{Proof:} In light of the preceding discussion, our basic objective will be, given some sequence of integers z_i, to find a polynomial $c(x)$ such that for all i, $1 \leq i \leq n$, the following Condition holds:

(*) For all integers m such that $|m| \leq K/2$, we have that $m \equiv r_i \mod p_i$ implies $c(m) \equiv 0 \mod p_i^{s_i}$.

For a fixed i, consider the $(z_i + 1)$ polynomials $\{p_i^{s_i}(x - r_i)^{e_i+\alpha_i}\}_{\alpha_i=0}^{e_i}$. These certainly satisfy Condition (*). Let $I_i^{s_i}$ be the ideal in the polynomial ring $\mathbb{Z}[x]$ generated by these $(z_i + 1)$ polynomials. In other words, $I_i^{s_i}$ is the closure of this set of polynomials under addition, and multiplication by any polynomial. It is immediate that all polynomials in $I_i^{s_i}$ satisfy Condition (*). We now establish that there must be polynomials in $I_i^{s_i}$ with small coefficients that lie in the intersection\footnote{We note that the exponentiation notation actually makes sense here, see Appendix A.} ideal $I = \bigcap_{i=1}^{n} I_i^{s_i}$, and thus satisfy Condition (*) for all i.

\textbf{Lemma 1} For any positive integers ℓ and F, if
\[
F > \left(\prod_{i=1}^{n} p_i^{(r_i+1)}\right)^{\ell/2} \cdot (K/2)^{\ell/2}
\]
then there exists some degree $\leq \ell$ integer non-zero polynomial $c(x) = \sum_{j=0}^{\ell} c_j x^j$ such that $|c_j| < F/(K/2)^j$ for all j from 0 to ℓ, and $c \in I$.

\footnote{Note that this is also the product ideal, but we will refer to it as the intersection ideal in this text to retain intuition. See Appendix A for discussion.}
Proof: For any fixed i, we will count how many possible residues any integer polynomial $c(z)$ can have modulo I_i^ℓ. Consider the following sequence of polynomials: Let $d^\ell(z)$ be the remainder when $c(z)$ is divided by $(z - r_i)^{\ell i}$ (using the standard polynomial division algorithm). Because $(z - r_i)^{\ell i}$ is monic, $d^\ell(z)$ has degree at most $z_i - 1$. Now add or subtract $p_i(z)(z - r_i)^{z_i-\ell}$ as many times as necessary from $d^\ell(z)$ in order to force the coefficient of $z^{z_i-\ell}$ to be non-negative and less than p_i^*. Let the result be $c^\ell(z)$. Continue this process, obtaining $c^\ell(z)$ by adding or subtracting $p_i^*(z)(z - r_i)^{z_i-\ell}$ as many times as necessary from $c^\ell(z)$ in order to force the coefficient of $z^{z_i-\ell}$ to be non-negative and less than p_i^*. We stop at $c^\ell(z)$, which we will call the canonical residue of $c(z)$ modulo I_i^ℓ. The canonical residue is a degree $(z_i - 1)$ integer polynomial such that for all a from 0 to z_i, the coefficient of z^a is non-negative and less than p_i^*.

There are thus $\prod_{a=0}^{z_i} p_i^* = p_i^{(z_i+1)}$ such polynomials. We associate a canonical residue to $c(z)$ for each ideal I_i^ℓ, yielding $\prod_{a=1}^{\ell} I_i^\ell$ possible sets of canonical residues.

Now we consider the space of degree $\leq \ell$ integer polynomials $c(z) = \sum_{j=0}^{\ell} c_j z^j$ such that $0 \leq c_j < F/(K/2)^j$ for all j from 0 to ℓ. There are $\prod_{j=0}^{\ell} (F/(K/2)^j)$ such polynomials. If $\prod_{j=0}^{\ell} (F/(K/2)^j) > \prod_{a=0}^{z_i} p_i^{(z_i+1)}$, then there must either be a non-zero such polynomial $c(z)$ such that all the canonical residues vanish, in which case $c(z) \in I_i$; or there must be two distinct such polynomials $c(z)$ and $c'(z)$ such that the canonical residues are identical modulo every I_i^ℓ. In this case, the polynomial $c(z) - c'(z)$ is in the intersection I and satisfies the condition of the Lemma. \square(Lemma 1)

To establish our algorithmic result, we need only show how to find such a polynomial $c(z)$ efficiently. Note that if we consider the intersection ideal I restricted to polynomials of degree at most ℓ, this can be seen as an integer lattice L of dimension $(\ell + 1)$. Finding a suitable polynomial with small coefficients can therefore be seen exactly as finding a short vector in this lattice. This can be accomplished using lattice basis reduction algorithms such as LLL, provided we can construct a basis for this lattice. We stress that it is not necessary to explicitly write down the basis; all that we need is to be able to efficiently compute a basis. We now demonstrate how to do this.

Explicit bases for the individual lattices L_i corresponding to the polynomials of degree at most ℓ in each I_i^ℓ are easily obtained by considering the generating polynomials for I_i^ℓ restricted to polynomials of degree at most ℓ: Let $z_i = \min \{z_i, \ell\}$. The first $z_i + 1$ vectors in our basis correspond to the generating polynomials $p_i^{(z_i - \ell)}(z - r_i)^a : 0 \leq a \leq z_i$ from the ideal I_i^ℓ. For example, corresponding to $p_i^{z_i-\ell}(z - r_i)^2$, we add the vector $(r_i^2 \cdot p_i^{z_i-\ell} - 2r_i \cdot p_i^{z_i-\ell} \cdot p_i^{z_i-2} + 0 \ldots , 0)$. If $\ell > z_i$, then we also add vectors corresponding to the polynomials $(z - r_i)^\ell(\sum_{a=0}^{z_i} p_i^a)$. Let $M_i(\ell)$ be the $(\ell + 1)$ by $(\ell + 1)$ matrix whose rows are the vectors from this basis. We observe that the integer linear combinations of these vectors correspond exactly to the set of polynomials in the ideal I_i^ℓ of degree at most ℓ.

Lemma 2 The space of polynomials corresponding to vectors in the lattice L_i is exactly the ideal I_i^ℓ restricted to polynomials of degree at most ℓ.

Proof: By construction, the polynomials corresponding to integer linear combinations of the rows of $M_i(\ell)$ are a subset of I_i^ℓ restricted to polynomials of degree at most ℓ. Let $c(z) = \lambda^\ell(z) \cdot p_i^\ell + \lambda^2(z) \cdot p_i^{(z_i-1)}(z - r_i) + \ldots + \lambda^z(z - r_i)^z$ be an arbitrary polynomial of degree at most ℓ in I_i^ℓ. Since $p_i \cdot p_i(z - r_i)^j = (z - r_i)^j \cdot p_i^{(z_i-1)}(z - r_i)^{j-1}$, we may assume without loss of generality that the degree of $\lambda^j(z)$ is at most 0 for each $j < z_i$ (if this fails for a particular $j < z_i$, subtract the appropriate multiple of $(z - r_i)$ from $\lambda^j(z)$ and add the appropriate multiple of p_i to $\lambda^{j+1}(z)$). Thus, $c(z)$ is an integer linear combination of $\{p_i(z - r_i)^a : 0 \leq a \leq z_i\}$ and $\{z^a \cdot (z - r_i)^{z_i-1} \}_{a=0}^{z_i}$, as claimed. \square(Lemma 2)

We remark that using standard techniques (see Appendix B), given bases for the (full-dimensional) lattices L_i, a basis B for the intersection lattice $L = \bigcap_{i=1}^n L_i$ can be computed. By Lemma 2, L corresponds exactly to the space of polynomials in the intersection ideal I of degree at most ℓ.

Let L' be a re-scaling of the lattice L where $(v_0, v_1, \ldots , v_{\ell}) \in L$ iff $(v_0, v_1, (K/2), \ldots , v_{\ell} \cdot (K/2)^{\ell}) \in L'$. We now show that applying the LLL algorithm to the lattice L' gives us the polynomial we are looking for:

Lemma 3 Let v' be the lattice vector returned by the LLL lattice basis reduction algorithm when applied to the lattice L', and let $c(z)$ be the corresponding polynomial. Then for any m with $|m| \leq K/2$ such that:

$$\prod_{i=1}^n p_i^{m, z_i} > (\ell + 1) \cdot \left(\prod_{i=1}^n p_i^{(z_i+1)}\right)^{1/\ell} \cdot K^\ell/2$$

we have that m will be an integer root of the polynomial $c(z)$.

Proof: Let $G = \left(\prod_{i=1}^n p_i^{(z_i+1)}\right)^{1/\ell} \cdot (K/2)^{\ell/2}$. Lemma 1 shows that there exists a vector v in L' such that for all j, we have that $|v_j| \leq G$, and so $\|v\| \leq \sqrt{\ell + 1} \cdot G$. Thus, the LLL lattice reduction algorithm returns a vector $v' \in$
Alternative Proof (of Theorem 3): As in the original proof, we will seek to find a polynomial \(c(x) \), with coefficients that are bounded in size and with degree at most \(\ell \), such that for all integers \(m \) with \(|n| \leq K/2 \), we have that \(|c(m)| \leq (2^{\ell/2}) \cdot (\ell + 1) \cdot G \). This corresponds to a polynomial \(c(x) \) such that for all integers \(m \) with \(|n| \leq K/2 \), we have that \(|c(m)| \leq (2^{\ell/2}) \cdot (\ell + 1) \cdot G \); on the other hand, of course, \(c(x) \in I \), so by construction \(c(m) \equiv 0 \mod (\prod p_i^{\epsilon_i}) \).

The Lemma follows. □ (Lemma 3)

Thus, we see that under the condition prescribed by the Theorem, we can efficiently find a polynomial whose set of roots contains all codewords with sufficient weighted agreement with the received word, and the decoding can then be completed by finding all integer roots of this polynomial using the polynomial time algorithm for factoring polynomials in \(\mathbb{Z}[x] \) from [10]. □ (Theorem 3)

For easy reference, we summarize in Figure 1 the main steps of the algorithm from the above proof of Theorem 3.

We now present an alternative algorithmic proof of Theorem 3, in which we translate the ideal-based reasoning given above directly into an explicit lattice.

Alternative Proof (of Theorem 3): As in the original proof, we will seek to find a polynomial \(c(x) \), with coefficients that are bounded in size and with degree at most \(\ell \), such that for all integers \(i \), \(1 \leq i \leq n \), the following Condition holds:

\[
(*) \quad \text{For all integers } m \text{ such that } |m| \leq K/2, \text{ we have that } m \equiv r_i \mod p_i \text{ implies } c(m) \equiv 0 \mod p_i^{\epsilon_i}.
\]

Here, we present an alternative method to find such polynomials. Recall the definitions of the ideals \(I_{t+1}^i \) and the intersection ideal \(I \) from the original proof, to provide intuition for our construction. We build an explicit lattice \(L \) in which all polynomials (of degree at most \(\ell \)) are represented, but where we also represent, for each ideal \(I_{t+1}^i \), the possible translates of these polynomials by elements of the ideal (again restricted to degree at most \(\ell \)). Thus, polynomials that are present in all the ideals \(I_{t+1}^i \) can be translated to 0 in each of the ideals. We constrain all non-zero translations to contribute a very large factor to the norm of the corresponding vector. Thus, we obtain a lattice \(L \) in which all polynomials are represented (by many vectors), but in which polynomials outside the intersection ideal \(I \) must be represented by very long vectors, whereas polynomials inside the ideal \(I \) have one representative vector (where the polynomial has been translated to 0 for each ideal) that is quite short. Thus, the construction essentially mimics the steps of the proof of Lemma 1 to give this implicit representation, allowing us to extract small polynomials in the intersection ideal \(I \).

Let us now describe the lattice \(L \) formally, by presenting an explicit basis. The lattice \(L \) will have \((n+1) \cdot (\ell + 1) \) dimensions, conceptually separated into \(n+1 \) blocks of \(\ell + 1 \) components each. We represent the basis vectors by the rows of the following matrix, described modularly:

\[
\begin{pmatrix}
0 & 0 & \cdots & 0 & qM^{(n)} \\
0 & 0 & \cdots & qM^{(n-1)} & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & qM^{(1)} & \cdots & 0 & 0 \\
\end{pmatrix}
\]

Above, all component matrices are \((\ell+1) \) by \((\ell+1) \). Let

\[
G = \left(\prod_{i=1}^{n} p_i^{(r_i+1)} \right)^{\ell/2} \cdot (K/2)^{\ell/2}.\]

Above, \(q = \sqrt{\ell + 1} \cdot G \cdot 2^{(n+1)/(\ell+1)}. \) The matrix \(I_{(\ell+1)} \) simply represents the \((\ell+1) \) by \((\ell+1) \) identity matrix. The matrix \(\Lambda \) is an identity matrix with each diagonal entry scaled as shown:

\[
\Lambda = \begin{pmatrix}
1 & 0 & \cdots & 0 \\
0 & K/2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & (K/2)^\ell
\end{pmatrix}
\]

Thus, the last \(\ell + 1 \) basis vectors correspond to the polynomials \(1, x, x^2, \ldots, x^\ell \). These vectors are broken up into \((n+1) \) blocks of \((\ell + 1) \) dimensions each: the first block measures how large the polynomial can be when evaluated on an integer of magnitude at most \((K/2) \); the remaining \(n \) blocks are each used to measure the residue of the polynomial modulo the ideals \(I_{t+1}^1, \ldots, I_{t+1}^n \). In order to measure this residue, we need to have other vectors in our lattice that allow us to “reduce” this residue by the generators of the ideals. The matrices \(M^{(i)} \), as defined in the original proof, serve this purpose. Recall that the rows of the matrix \(M^{(i)} \) correspond to the generating polynomials of the ideal \(I_{t+1}^i \) restricted to polynomials of degree at most \(\ell \). Note, however, that in our proof, we will only need that the polynomials corresponding to integer linear combinations of the rows of \(M^{(i)} \) satisfy Condition \((*)\) – we do not need to refer to the ideals themselves.

Now, for any polynomial \(c(x) \) of degree at most \(\ell \), we can mimic the steps of the proof of Lemma 1 by adding and subtracting integer multiples of the polynomials represented by the rows of \(M^{(i)} \) for each \(i \). Thus, for any polynomial \(c(x) \) of degree at most \(\ell \), there exists a vector \(v \in L \) such that for all \(i \) between 1 and \(n \), in the \(i \)th block of \(v \) there is one of at most \(p_i^{(r_i+1)} \) vectors. Hence, (again mimicking the proof of Lemma 1), if we consider all polynomials \(c(x) \) of degree at most \(\ell \) such that \(0 \leq \epsilon_j \leq G/(K/2)\ell \) for all \(j \), we must find either a corresponding vector \(v \in L \) with all 0's beyond the first \(\ell + 1 \) coordinates, or two vectors \(v^{(1)} \) and \(v^{(2)} \) such that all coordinates beyond the first \(\ell + 1 \) agree. In the second case, \(v = v^{(1)} - v^{(2)} \) will have the property that \(|v_j| \leq G \) for all \(j \) between 1 and \(\ell + 1 \), and

165
Figure 1. The list decoding algorithm
Thus, we see that under the condition prescribed by the Theorem, we can efficiently find a polynomial whose set of roots contains all codewords with sufficient weighted agreement with the received word, and the decoding can then be completed by finding all integer roots of this polynomial using the polynomial time algorithm for factoring polynomials in \(\mathbb{Z}[x] \) from [10]. \(\square \) (Theorem 3)

3.4 Decoding for Interesting Weightings

We now get specific results for the CRT code for interesting choice of weights on the coordinate positions through an appropriate choice of parameters (like \(\ell, z_i \)) in Theorem 3. We begin by stating a version of Theorem 3 with arbitrary (not necessarily integer) values of \(z_i \). This result is not difficult and involves scaling the weights by a large integer and then taking ceilings to convert them to integer weights; a formal proof can be found in the full version of the paper.

Theorem 4 For list decoding of CRT codes, for any tolerance parameter \(\varepsilon > 0 \), and non-negative reals \(z_i \), given a received word \(r \), we can in time polynomial in \(n, \log N \) and \(1/\varepsilon \), find a list of all codewords such that

\[
\sum_{i=1}^{n} a_i z_i \log p_i \geq \sqrt{\log K \left(\sum_{i=1}^{n} z_i^2 \log p_i + \varepsilon z_{\max}^2 \right)}.
\]

Corollary 4 For list decoding of CRT codes, for any tolerance parameter \(\varepsilon > 0 \), and non-negative real weights \(\beta_i \), given a received word \(r \), we can, in time polynomial in \(n, \log N \) and \(1/\varepsilon \), find a list of all codewords whose \(\beta \)-weighted agreement with \(r \) satisfies:

\[
\sum_{i=1}^{n} a_i \beta_i \geq \sqrt{\log K \left(\sum_{i=1}^{n} \frac{\beta_i^2}{\log p_i} + \varepsilon \max_j \frac{\beta_j^2}{\log p_j} \right)}.
\]

Note that the above Corollary implies that, in the limit of large \(p_i \), we can decode up to (essentially) the combinatorial bound of Theorem 1 with \(a_i = \log p_i \) and \(D_a = \log(N/K) \). Let us now collect further results for the “usual” uniform weighting of the codeword positions, i.e., \(\beta_i = 1 \) for all \(i \).

Theorem 5 For list decoding of CRT codes, for any \(\varepsilon > 0 \), we can in time polynomial in \(n, \log N \) and \(1/\varepsilon \), find a list of all codewords which agree with a received word in \(t \) places provided \(t \geq \sqrt{k(n+\varepsilon)} \).

Proof: Let us apply Theorem 4 with \(z_i = 1/\log p_{k+1} \) for \(1 \leq i \leq k, z_i = 1/\log p_i \) for \(k < i \leq n \), and \(\varepsilon' = \varepsilon \log p_{k+1} \). This gives that we can decode whenever the number of agreements \(t \) is at least

\[
k - \log K \left(\log p_{k+1} \right) + \sqrt{\log K \left(\log K + \sum_{i=k+1}^{n} \frac{1}{\log p_i} + \varepsilon' \right)}.
\]

Define \(\Delta \defeq k - \frac{\log K}{\log p_{k+1}} \); clearly \(\Delta \geq 0 \). Since \(\log p_{k+1} \leq \log p_i \) for \(i = k+1, \ldots, n \), the above condition is met whenever \(t \geq \Delta + \sqrt{\log K + \sum_{i=k+1}^{n} \frac{1}{\log p_i} + \varepsilon'} \). Now, a simple application of Cauchy-Schwartz shows \(\Delta + \sqrt{(k-\Delta)(n-\Delta + \varepsilon)} \leq \sqrt{k(n+\varepsilon)} \), and thus our decoding algorithm works whenever \(t \geq \sqrt{k(n+\varepsilon)} \). \(\square \)

Theorem 6 For list decoding of CRT codes, for any \(\varepsilon > 0 \), we can in time polynomial in \(n, \log N \) and \(1/\varepsilon \), find a list of all codewords which agree with a received word in \(t \) places provided

\[
t \geq \sqrt{\frac{1}{\log K} \left(\sum_{i=1}^{n} \frac{1}{\log p_i} + \varepsilon \right)}.
\]

Proof: This follows from Corollary 4 with \(\beta_i = 1 \) for \(1 \leq i \leq n \).

Note that the above matches the combinatorial bound of Corollary 2. The bounds in Theorem 5 and Theorem 6 are incomparable in general.

Acknowledgments

We thank Dan Boneh for informing us of his work [1] and making a copy of his paper available on his homepage. We thank Daniele Micciancio for useful discussions on Lattices and pointers to [13].

References

Algebraic-geometry codes and the CRT codes, are ideal alphabets of underlying rings. We assume the reader is familiar with the concept of commutative rings, integral domains and ideals. The definition is interesting only in the element \(a \in R\).

In this section we describe a framework for studying algebraic error-correcting codes and the decoding problem in the setting of ideals in commutative rings. We give a definition in Section 3.2 for CRT decoding. Here we focus only on the qualitative features of codes and decoding. A more quantitative analysis of the performance of the algorithm (since a list-decoding algorithm to recover from zero errors may not be very interesting). The application to CRT decoding in Section 3.2 is obtained by finding and adding these ingredients.

A Ideals and Error-correcting codes

In this section we describe a framework for studying algebraic error-correcting codes and the decoding problem in the setting of ideals in commutative rings. We give a decoding algorithm in the same framework — this decoding algorithm abstracts and unifies known algorithms for this task, and specializes to the algorithm given in Section 3.2 for CRT decoding. Here we focus only on the qualitative features of codes and decoding. A more quantitative version of this abstraction can be developed using norms on the underlying rings. We assume the reader is familiar with the concept of commutative rings, integral domains and ideals.

Definition 1 (Ideal error-correcting code)

An Ideal Code \(C\) is given by an integral domain \(R\) and ideals \(J_1, \ldots, J_n \subseteq R\). The message space of \(C\) is some subset \(M \subseteq R\). The alphabets of \(C\) are given by \(\Sigma_i = R/J_i\). (Note that the definition is interesting only if \(R/J_i\) is finite.) The code maps the element \(a \in M\) to the sequence \((a + J_1, \ldots, a + J_n)\).

While not every linear code is an ideal code, many commonly studied ones, including Reed-Solomon codes, Algebraic-geometry codes and the CRT codes, are ideal codes. Now, consider an instance of the list-decoding problem with a received vector \((r_1, \ldots, r_n)\). Informally, the algorithm of [16, 14, 6, 5, 1] cast this problem as follows:

Definition 2 ("Ideal"-lic list-decoding)

Let \(R[x]\) be the ring of polynomials in \(x\) with coefficients from \(R\). Let \(I_i = (x - r_i) + J_i\) be the ideal \((a(x) + b(x) \cdot p(a(x), b(x)) \in R[x], p \in J_i)\). Find a list of all elements of \(R[x]\) of the form \(r - f\), with \(f \in R\), such that \(x - f \in I_i\) for "many" values of \(i \in \{1, \ldots, n\}\).

From this formulation, their algorithms (and the use of factoring there) emerge naturally.

B Lattice Algorithms

We recall some standard techniques in the algorithmics of lattices, in particular computing the intersection of full-dimensional lattices. A more formal treatment may be found in [2, 13]. Let \(L\) be any full-dimensional lattice of dimension \(d\), with basis given by the rows of the matrix \(M\). We define the dual \(L^*\) of the lattice \(L\) to be \(\{u \in \mathbb{R}^d : u \cdot v \in \mathbb{Z}\text{ for all }v \in L\}\). Note that the rows of \((M^{-1})^T\) give a basis for \(L^*\).

Note also that given bases for two lattices \(L_1\) and \(L_2\), a basis for the closure of union of the two lattices (denoted \(L_1 \cup L_2\)) can be found efficiently using algorithms for computing the Hermite Normal Form of a generating set of vectors. Now, to compute a basis for the intersection of two lattices \(L_1\) and \(L_2\), observe that \(L_1 \cap L_2 = (L_1^* \cup L_2^*)^\perp\). Therefore, by combining the facts above, one obtains an efficient algorithm for computing the intersection of full-dimensional lattices.