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Abstract 

We consider a class of  problems in which an algorithm seeks to 
compute a function f over a set of n inputs, where each input has an 
associated price. The algorithm queries inputs sequentially, trying 
to learn the value of the function for the minimum cost. We apply 
the competitive analysis of algorithms to this framework, designing 
algorithms that incur large cost only when the cost of the cheapest 
"proof" for the value of f is also large. We provide algorithms 
that achieve the optimal competitive ratio for functions that include 
arbitrary Boolean AND/OR trees, and for the problem of searching 
in a sorted array. We also investigate a model for pricing in this 
framework, constructing a set of prices for any AND/OR tree that 
satisfies a very strong type of equilibrium property. 

1 Introduction 

The potential of priced information sources [12, 13] that charge 
for usage is being discussed in a number of domains - -  software, 
research papers, legal information, proprietary corporate and finan- 
cial information - -  and it forms a basic component of the larger 
area of electronic commerce [4, 6, 16, 17]. In a networked econ- 
omy, we envision software agents that autonomously purchase in- 
formation from various sources, and use the information to support 
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decisions. How should one query data in the presence of a given 
price structure? 

Previous theoretical analysis has posited settings in which there 
is a target piece of information, and the goal is to locate it as rapidly 
as possible; see for example the work of Etzioni et al. [5] and Kout- 
soupias et al. [9]. Here we take an alternate perspective, motivated 
by the following type of consideration. Suppose we have derived, 
through some pre-processing based on data mining or other statis- 
tical means, a decision rule that we wish to apply. To take a toy 
example, such a rule might look like 

If Analyst A values Microsoft at $X 
or Analyst B values Netscape at $¥; 

and if Analyst C values Oracle at $Z 
or Analyst D values IBM at $W; 

then we should sell our shares of eBay. 

The decision rule in this example depends on four available infor- 
mation sources, which we could label A, B,  G', and D; each has a 
Boolean value. It is possible to evaluate the rule, under some cir- 
cumstances, without querying all the information sources. If each 
of these pieces of information has an associated price, what is the 
best strategy for evaluating the decision rule? 

Note the following features of this toy example. There is an 
underlying set of information sources, but our goal is not simply 
to gather all the information; rather it is to collect (as cheaply as 
possible) a subset of the information sufficient to compute a de- 
sired function f .  Thus, a crucial component of our approach is 
the view that disparate information sources contain raw data to be 
combined to reach a decision, and it is the structure of this combina- 
tion that determines the optimal strategy for querying the sources. 
Our setting may be further generalized to allow inputs that are en- 
tire databases, rather than bits (say, a demographic information 
database from a vendor such as Lexis-Nexis), and the goal is to dis- 
till valuable information from a combination of such databases; this 
generalization suggests an interesting direction for further work. 

An Illustrative Example.  In Figure 1 we depict the above toy 
example, with the decision rule represented by a tree-structured 
Boolean circuit, and with the prices (6, 3, 1, 4) attached to the in- 
puts. An algorithm is presented with this circuit and the vector of 
prices; the hidden information is the setting a of the four Boolean 
variables. It must query the variables, one by one, until it learns 
the value of the circuit; with each variable it queries, it pays the 
associated cost. We could ask for an algorithm .,4 that incurs the 
minimum worst-case cost over all settings of the variables; but this 
is too simplistic: many of the natural functions we wish to study 
(including all Boolean AND/OR trees) are evasive [3], so any al- 
gorithm can be made to pay for all the variables, and all algorithms 
perform equally poorly under this measure. 
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A B C D 
cos t :  6 3 1 4 

Figure 1: A Boolean function with priced inputs 

The competitive analysis of algorithms [2] fits naturally within 
our framework; we define the performance of an algorithm .4 on 
a given setting a of the variables to be the ratio of the cost in- 
curred by .,4 to the cost of the cheapest "proof" for the value of the 
function. The competitive ratio of .A is then the maximum of this 
performance ratio over all settings a of the variables. 

In the example above, consider the algorithm .A' that first queries 
C. If C is t r u e ,  it then queries B and A (if necessary); if C is 
f a l s e ,  it then queries D, then B and A (if necessary). The perfor- 
mance ratio of A '  when the setting is ( t r u e ,  f a l s e ,  f a l s e ,  t r u e )  
is 7/5: .,4' queries all the variables and pays 14, while querying 
only A and D would prove the value of the function is t r u e .  In- 
deed, this is the competitive ratio of .A', and .A' achieves the opti- 
mal competitive ratio of any algorithm on this function, with this 
cost vector. Two aspects of .,4' are noteworthy: (i) it is adaptive - 
its behavior depends on the values of the inputs it has read, and (ii) 
it does not always read the inputs in increasing order of price. 

A Framework. We now describe a general framework that cap- 
tures the issues and example discussed above. We have a function 
f over a set V = { x l , . . . ,  xn} of n variables. Each variable xi  
has a non-negative cost ci; the vector e = ( e l , . . .  ,c,~) will be 
called the cost vector. A setting a of the variables is a choice of a 
value for each variable; the partial setting restricted to a subset U 
of the variables will be denoted a]U. A subset U C V is sufficient 
with respect to setting tr if the value of f is determined by the par- 
tial setting alU. Such a U is a proof of the value of f under the 
setting alU; the cheapest proof of the value of f under a is thus 
the cheapest sufficient set with respect to a. We denote its cost by 
c(a) .  

An evaluation algorithm .,4 is a deterministic rule that queries 
variables sequentially, basing its decisions on the cost vector and 
the values of variables already queried. When an evaluation algo- 
rithm .,4 is run under a setting tr, it incurs a cost that we denote 
e.a(a).  We seek algorithms .A that optimize the competitive ratio 

.),~ ( f )  de_.f m a x ~  c.a ( a ) / e ( a ) .  The best possible competitive ratio 
for any algorithm, then, is 

7¢( f )  d e f  . 

The model above is general enough to include almost any prob- 
lem in which an algorithm adaptively queries its input. Our ap- 
proach will be to focus on simple functions that have been well- 
studied in the case of unit prices. We find that the inclusion of 
arbitrary prices on the inputs gives the problem a much more com- 
plex character, and leads to query algorithms that are novel and 
non-obvious. 

Our primary focus will be on Boolean AND/OR trees (briefly, 
Boolean trees) ~ these are tree circuits rooted (w.l.o.g.) at an AND 
gate, with each leaf corresponding to a distinct variable, and with 
each root-to-leaf path strictly alternating AND and OR gates at the 

internal nodes. One can easily build examples in which an opti- 
mal algorithm cannot follow a "depth-first search" style evaluation 
of variables and subtrees. Indeed, the criteria for optimality lead 
quickly to issues similar to those in the search ratio problem and 
minimum latency problem for weighted trees [ 1,9] - -  problems for 
which polynomial-time algorithms are not known. It is not at all 
obvious that the optimal evaluation algorithm for a Boolean tree 
can be found efficiently, or even have a succinct description, even 
in the case of complete binary trees. 

We also consider functions that generalize Boolean trees, in- 
cluding MIN/MAX game trees. Finally, we investigate analogues 
of searching, sorting, and selection within our model; here too, 
problems that are well-understood in traditional settings become 
highly non-trivial when prices are introduced. 

Results 

We provide a fairly complete characterization of the bounds achiev- 
able by optimal algorithms on Boolean trees, and focus on three 
related sets of issues. 

(1) Tractability of optimal algorithms. We show that for ev- 
ery Boolean tree, and every cost vector, the optimal competitive 
ratio can be achieved by an efficient algorithm. Specifically, the 
algorithm has a running time that is polynomial in the size of the 
tree and the magnitudes of the costs. At a high level, the algorithm 
is based on the following natural Balance Principle: in each step, 
we try to balance the amount spent in each subtree as evenly as 
possible. However, to achieve the optimal ratio, this principle must 
be modified so that in fact we are balancing certain estimates on 
the lower bound for the cost of the cheapest proof in each subtree. 
These results are described in Section 2. 

(2) Dependence of competitive ratio on the structure of f .  
Much of the complexity of the Boolean tree evaluation problem is 
already contained in the case of complete binary trees of depth 2d, 
with n = 2 2d inputs. When the cost vector is uniform (all input 
prices are 1) the situation has a very simple analysis: any algorithm 
can be forced to pay n, and the cheapest proof always has value 
exactly 2 d = x/-n. A natural question is therefore the following: 
is there is a x/if-competitive algorithm for every cost vector on the 
complete binary tree? More generally, for a given Boolean tree T,  
we could consider the largest competitive ratio that can be forced 
by any assignment of prices to the inputs: 

7 (T)  dej sup ")'¢ (T).  (1) 
c 

This definition naturally suggests the following questions: How 
does the above competitive ratio depend on the topology of the un- 
derlying tree? Can we characterize the structure of the cost vector 
c that achieves 7c(T) = 7 (T )?  

We prove a general characterization theorem for 3'(T); as a 
corollary, we find that the uniform cost vector is in fact extremal 
for the complete binary tree. We say that a Boolean tree T on n 
inputs can simulate an AND gate of size k if by fixing the values of 
some ( n - k )  inputs, the function induced on the remaining k inputs 
is equivalent to a simple AND of k variables. (We define the simu- 
lation of an OR gate analogously.) We show: 7 (T)  is equal to the 
maximum k for which T can simulate an AND gate or an OR gate 
of size k (this also shows that 7 (T)  is always an integer). The proof 
is obtained using information from the lower bound estimates that 
form a component of our optimal balance-based algorithm. These 
results are described in Section 2. 

We give extensions of some of these results to more general 
types of functions. All of these functions are defined over a tree 
structure, and for each we can give an efficient algorithm whose 
competitive ratio is within a factor of 2 of optimal. 
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(a) Threshold trees. Each intemal node is a threshold gate; the 
output is t r u e  iff at least a certain number of the inputs are 
t r u e .  The threshold values for different gates could be dif- 
ferent. 

(b) Game trees. The inputs are real numbers, and nodes are MIN 
or MAX functions. 

(e) A common generalization of  (a) and (b). The inputs are real 
numbers and the nodes are gates that return the tth-largest 
of  their input values. This threshold t could be different for 
different nodes. 

In all of  this, we have been considering deterministic algo- 
rithms only. Understanding how much better one can do with a 
randomized algorithm is a major open direction; this would in- 
volve a generalization of earlier results on randomized tree eval- 
uation [7, 11, 14, 15] to the setting in which inputs have prices. 

(3) Equi l ibr ium prices for a function f .  Finally, we consider 
a "dual" issue, motivated by the following general question. Sup- 
pose many individuals are all interested in computing a function f 
on variables { X l , . . . ,  zn},  and each is employing an algorithm that 
adaptively buys information from the n vendors that own the val- 
ues of x l  ,. • •, xn. What is a "natural" set of market prices arising 
from this process? 

There are, of course, many possible answers to this question 
- -  just as there are many models for the behavior of prices in a 
competitive market [10]. Intuitively, one would believe that each 
vendor would try to charge a high price for its input, but not so 
high as to price itself out of competition. If we further believe that 
the individuals performing the queries will be using only optimal 
on-line algorithms, then the vendor of xi will not want to be "priced 
out" of optimal on-line algorithms. 

Here we describe one set of  prices motivated by this intuition; 
it exhibits an interesting behavior with a concrete formulation. Let 
us say that a cost vector e is ultra-uniform with respect to a tree T 
if, with input prices set according to e,  every evaluation algorithm 
achieves the optimal competitive ratio. In other words, the prices 
are in a state such that there is no reason, from the point of view 
of competitive analysis, to prefer one algorithm over any other - -  
whether an input z i  is queried relies purely on the arbitrary choice 
of an optimal algorithm by the individual performing the queries. 
We prove: for every Boolean tree T ,  there is an ultra-uniform cost 
Vector. The construction of this vector is quite natural, and fol- 
lows a direct "balancing" principle of its own. These results are 
described in Section 3. 

Sorting, Searching and Selection. We also investigate a problem 
of a very different character, to which the same style of analysis can 
be applied: suppose we are given a sorted array with n positions, 

• and wish to determine whether it contains a particular number q. In 
the unit-price setting, when we simply wish to minimize the num- 
ber of queries to array entries, binary search solves this problem in 
at most [log 2 n] queries. 

Now suppose each array entry has a price, and we seek an al- 
gorithm of optimum competitive ratio. Here the cheapest "proof" 
of membership of q is simply a single query to an entry contain- 
ing q; the cheapest proof of non-membership is a pair of queries 
to adjacent entries containing numbers less than and greater than 
q, respectively. It is possible to formalize this problem in terms 
of a function f of the type described above, imposing certain con- 
straints on the sets of  inputs that are allowed; we omit the details 
here. 

We provide an efficient algorithm for this problem that achieves 
the optimal competitive ratio with respect to any given cost vector. 
We then consider the associated extremalproblem: which cost vec- 
tor forces the largest competitive ratio? We also give an algorithm 
achieving a competitive ratio of log 2 n + O(  loVT~n log log n) for 
any cost vector; this exceeds the competitive ratio for the uniform 

cost vector only by lower order terms. Whether the uniform cost 
vector is in fact extremal remains an interesting open question. 
These results are described in Section 4. 

Further Directions. Our approach raises a number of other direc- 
tions for further work. We now mention some preliminary results 
and open questions. Sorting items when each comparison has a 
distinct cost appears to be highly non-trivial. Suppose, for exam- 
ple, we construct an instance of this problem by partitioning the 
items into sets A and B,  giving each A-to-B comparison a very 
low cost, and giving each A-to-A and B-to-B comparison a very 
high cost. We then obtain a very simple non-uniform cost structure 
in the spirit of  the notoriously difficult problem of"sorting nuts and 
bolts." [8] 

Binary search can be viewed as a one-dimensional version of  
the problem of searching for a linear separator between "red" and 
"blue" points in d dimensions. Determining cheap, query-efficient 
strategies for this problem becomes much more challenging in high 
dimensions; we have developed one approach that is based on a 
VC-dimension analysis, and identified a number of  interesting open 
questions. This raises the general issue of learning hypotheses from 
priced information. We can also generalize the binary search prob- 
lem to partially ordered sets. Here it is natural to ask what can be 
said about good "splitters" and "central elements" in a poset, when 
each item has a cost. 

Finally, the problem of selecting the k th largest element among 
n items - -  when each comparison has a cost - -  is also a challeng- 
ing direction to explore. Finding the median has some of the flavor 
of the sorting problem discussed above; but even finding the maxi- 
mum is surprisingly non-trivial. We will report our progress on this 
problem in the full version of the paper. 

2 Tree Functions 

We first consider functions computed by Boolean AND/OR trees: 
each gate may have arbitrary fan-in, but only one output. Without 
loss of generality, we may assume that levels of the tree alternate 
between AND gates and OR gates. Let such a Boolean tree T have 
n leaves labeled by variables xx, x 2 , . . . ,  Xn. Variable xi has an 
associated non-negative cost ci for reading the value of  xi.  We say 
a O.witness (resp. 1-witness) for T is  a minimal set W of leaves 
which when set to 0 (resp. 1) will cause T to evaluate to 0 (resp. 
1). The cheapest proof which allows one to prove that T evaluates 
to 0 (resp. 1) is always some 0-witness (resp..1-witness). 

2.1 Efficient algorithm achieving ~/(T) 

We first investigate the competitive ratio 3,(T) for any Boolean tree 
T (recall the definition of Equation (1)), where the structure of  T is 
fixed, but leaf prices vary. We propose the following simple lower 
bound on 7 (T) .  For any Boolean tree T ,  let k be the largest value 
for which one can simulate an AND gate  of  fan-in k using T by 
hardwiring an appropriate set So of  (n - k) leaves of T to 0. (Such 
a k is also the size of the largest minterm in boolean function com- 
puted by T.  One can compute k by giving all leaves of T a value 
of 1, replacing the AND and OR gates of T by SUM and MAX 
functions respectively, and then evaluating the resulting arithmetic 
circuit.) Consider the following cost vector e: ci = 0 whenever 
xi E So, else ci = 1. Clearly, a 0-witness for T would now have 
cost exactly 1, as it would only need to contain one non-zero cost 
leaf whose value is 0. On the other hand, any deterministic algo- 
rithm could easily be made to pay k, simply by setting all but the 
last non-zero cost leaf queried to have value 1. Hence, k is a lower 
bound on 7 (T) .  

One can similarly show that the largest value £ for which T can 
simulate an On gate of fan-in e (or, equivalently, £ is the size of the 
largest maxterm in the function computed by T)  is also a lower 
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bound on 7(T) .  Thus, max{k,  e} is a lower bound on -),(T). x 
Somewhat surprisingly this simple lower bound turns out to be 
tight, as we show by presenting an algorithm with competitive ratio 
max{k,  e} for any setting of leaf costs. The idea behind the algo- 
rithm, which we call WEAKBALANCE, is the following: At each 
node in the tree, we balance the investment on leaves in each of the 
subtrees - scaling this balancing act using the lower bound ideas 
above. This ensures that we do not leave a cheap proof unexplored 
in any subtree. 

Algor i thm WEAKBALANCE: Each node x in the tree keeps track 
of the total cost Cost~ that the algorithm has incurred in the sub- 
tree rooted at x. At each step, the algorithm decides which leaf 
to read next by a process of passing recommendations up the tree: 
Each (remaining) leaf L passes on (to its parent) a recommenda- 
tion (L, eL) to read L at cost eL. For an internal node x, we will 
consider two cases: (a) Suppose x is an AND node with children 
x l , . . . , x t  and it receives recommendations (Lx, C LI ) , . . . ,  ( Lt ,  C Lt ). 
Let k l , . . . ,  kt be the sizes of the largest AND gates that can be in- 
duced in the subtrees rooted at X l , . . . ,  xt ,  respectively. Then x 
passes upward the recommendation (Li,  cz~ ) such that (Cos t~  + 
cL~)/ki  is minimized; (b) If x is an OR node, then the same pro- 
cess occurs with k l , . . . ,  k t  replaced with the sizes of the largest 
inducible OR gates ~1, • . . ,  ~ ,  and the recommendation passed up- 
ward is the one minimizing (Cost~, + el i  )/£i.  Finally, the root of 
the tree T decides on some recommendation (L, eL). This leaf L 
is read at cost eL, and all local total costs Cost~ 's  are updated, and 
the tree is partially evaluated as much as possible from the value of 
L. When the tree is fully evaluated, the algorithm terminates. 

Lemma 2.1 For any Boolean tree T,  let k and £ be defined (as 
above) as the sizes of  the largest induced AND and OR, respec- 
tively. I f  there exists a O-witness (resp. 1-witness) o f  cost c, then 
WEAKBALANCE will spend at most ke (resp. ~c) before finding 
this witness. 

Proof Sketch: We proceed by induction on the size of the tree 
T.  Clearly this holds for trees of size 1. Consider the case where 
the root of the tree is an AND node with children X l , . . . ,  xt.  Let 
kl , . . . ,  kt be the sizes of the largest induced AND gates rooted at 
each child node, and let £1, • • •, ~t be the sizes of the largest OR 
gates. Observe that k = )--~i ki while e = maxi{e~}. 

Any 0-witness for T of cost c consists of a single 0-witness 
(of cost c) for a subtree rooted at some xi.  Now suppose that 
WEAKBALANCE has spent more than kc, and yet WEAKBAL- 
ANCE has spent less than kic o n  node xi.  This means that for some 
x j  ~ xi,  the algorithm has spent more than k j c  on xj .  Consider 
the last recommendation (Lj ,  eL i ) accepted from xj  - it must be 
that (Cost~j + eLi)  > kje; on the other hand, since there is a 
0-witness of cost e rooted at xi that has not been found, by in- 
duction, the recommendation (Li,  eL, ) from xi must be such that 
(Cos t~  + CL~ ) <_ kie. This is a contradiction, since the balancing 
rule would require the recommendation from xl to take precedence 
over the one from xj .  Hence, if  WEAKBALANCE spends at least ke 
on T,  it will uncover any 0-witness of cost e. Now consider the case 
of a 1-witness for T of cost e, which must consist of 1-witnesses of 
cost ca rooted at every child node xi ,  with )-~i ci = c. By induc- 
tion, we know that as soon as WEAKBALANCE spends at least ~iei 
on the subtree rooted at xi,  it will uncover the 1-witness at xl,  upon 
which the rest of the subtree rooted at xl will be pruned. Thus, 
regardless of the balancing, as soon as WEAKBALANCE spends 
~ £ica on T,  the entire 1-witness will be uncovered. Recall that 

e ---- maxi  ~i, and thus )"~i eica < g)-~i ca = ec, as desired. 

1 It is easy to see that max{k, e}/2 is also a lower bound on the expected 
competitive ratio of any randomized algorithm. 

An analogous argument holds for the case of an OR node, ex- 
cept in this case, balancing is important for finding a 1-witness, but 
not for finding a 0-witness. • 

Theorem 2.2 Let k and ~ be as in Lemma 2.1. Then, ~/(T) = 
max{k,/~), and WEAKBALANCE runs in polynomial time and achieves 
a competitive ratio o f  T ( T  ). 

Corol lary 2.3 Let LI  , . . . , Lk ( M1 , . . . ,  Mr)  be the leaves corre- 
sponding to a largest induced AND (resp. OR) in T.  Let co (resp. 
e l )  be the cost vector that assigns cost 1 to leaves L 1 , . . . ,  Lk 
(resp. M 1 , . . . ,  Me) and cost 0 to all other leaves. I f  k > ~, then 
eo is extremal for  T;  otherwise el  is extremal for  T. That is, either 
"/co (T)  or 7~1 (T)  equals 7(T) .  

Corol lary 2.4 I f  T is a complete binary tree with n = 22a leaves, 
then 7(T)  = x/ft. Hence, for  such trees, the all-ones cost vector is 
extremal. 

Remark: For any monotone boolean function f(Xl, X2,.. . ,  Xn), 
one can prove that the following simple algorithm achieves a com- 
petitive ratio of (2 max{k,  I}) for any cost vector. Pick the cheap- 
est minterm and maxterm of f ,  and read all variables in the cheaper 
of the two; if  this proves that f evaluates to 0 or 1 stop, else replace 
f by the function f l  obtained by setting the variables just read to 
their values, and continue with f ' .  The key to proving the claimed 
bound is that any minterm-maxterm pair of f must share a vari- 
able, and hence the algorithm never reads more than 1 minterms 
or k maxterms. How do we compute the cheapest minterm and 
maxterm? For boolean trees this computation is actually easy, and 
this gives a simple polynomial-time (2 max{k,/})-competi t ive al- 
gorithm for boolean tree evaluation, for any cost vector. WEAK- 
BALANCE does not lose a factor 2 in the competitive ratio, and 
more importantly, generalizing its approach enables us to devise an 
algorithm BALANCE that is optimal for any given cost vector, as is 
described in the next Section. 

2.2 Optimal Algorithm for given cost vector 

For a particular vector e of costs, the optimal competitive ratio 
7¢ (T)  can be much less than 7 (T) ,  the ratio guaranteed by WEAK- 
BALANCE. These observations lead us to more exact lower bounds 
and our algorithm BALANCE which, for any tree T and cost vector 
e, achieves the optimal competitive ratio 7e (T). The key to devel- 
oping this algorithm is to define certain lower bound functions that 
are more refined than the minterm-maxterm based lower bounds 
of  WEAKBALANCE. For any Boolean tree T and cost vector e, 
we define functions fo T (x) and f iT(x)  representing lower bounds 
on the cost that any deterministic algorithm must incur in finding 
a 0-witness (or 1-witness, respectively) of S of cost at most x /  
These functions imply that for any tree T,  every deterministic al- 
gorithm must have a competitive ratio of at least the maximum of 
maxx{foT ( X ) / x }  and m a x ~ { f ~  ( x ) / x } .  

Lower Bound Functions.  For a Boolean tree T,  the functions 
fo T and f T  are computed in a bottom-up manner moving from the 
leaves to the root of the tree. 

• For a leaf L with cost c, we have 

0 i f x < c  
fon(x) = f ~ ( x )  = c i f x  > c. 

2These functions am actually functions of c as well; we omit this de- 
pendence for notational convenience. 
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• For a subtree S, let r s  denote the root of S, and let $1, $ 2 , . . . ,  St 
be the subtrees rooted at the children of r s .  Suppose we al- 
ready know the functions fo s~ and fsli,  our goal is to compute 
fo s and f s  from these functions. There are two cases which 
arise now depending upon whether r s  is an AND node or an 
OR node. 

(1) rs  is an AND node: Now, a minimal 0-witness for S 
consists of exactly one 0-witness for some subtree. The 
adversary can thus choose to "hide" this witness in any 
of  the subtrees, suggesting the bound we define below. 
On the other hand, a minimal 1-witness for S consists 
of 1-witnesses from each of the subtrees. Thus, the ad- 
versary's only choice is to pick such 1-witnesses in a 
manner that maximizes any deterministic algorithm's 
expenditure, suggesting the other bound we define be- 
low. Formally, we define a 

loS(X) = ~ foS'(x). (2) 

x<i<t 

f~(x)----{ei:lIn<_i~X<t} ( 2 f~i(Xi)) " (3) 
Ei zi=~ l<i<t 

(2) rs  is an OR node: Here the situation is exactly reversed 
from that of an AND node. Thus, we define 4 

fxS(X) = ~ f l s ' (x ) .  (4) 

l<i<t 

E i  ~i=~ l<i<t 

Remark :  It is easy to see that the definitions above imply fo r (c) = 
0 (resp. f ~  (c) = 0) if  T has no 0-witness (resp. 1-witness) of cost 
c or less. 

Complexity of comput ing fo T and f ~ :  The functions f ~  and fo L 
are step functions when L is a leaf and therefore it is easy to see that 
the functions fff  and f ~  are also step functions for any Boolean 
tree T.  Hence all the functions above have a compact (of complex- 
ity polynomial in the number of leaves and the sum of the costs) 
representation as a table of values and this representation can be 
computed efficiently: It is clear that the operations of Equations (2) 
and (4) can be performed efficiently. For Equations (3) and (5), it 
is not difficult to see that by representing all functions as a table 
of  values, it is possible to calculate them in time polynomial in the 
sum of the costs of the leaves. 

Later, in the specification of our algorithm, we will also be re- 
ferring to the inverse (f0T) -1 and (flT) -1 of these functions. Since 
these functions are not injective, this is loose notation. By f - x  (y), 
we actually mean min{x  : f ( x )  = y}. In words, f - l ( y )  is the 
minimum element in the inverses image of y under f .  Also, for 
ease of notation, we sometimes refer to fo s and f s  for a subtree 
rooted at a node x also as f~  and f~  respectively. 

We now claim that the above are actually lower bound functions 
which have some additional nice properties. 

3In Equation (3), the max operator is taken only over those xi such that 
there can exist a 1-witness in Si of cost at most xi. If no such xl  • • • xt 
exist for a particular x, then f s  (x) = 0. 

4In Equation (5), the max operator is taken only over those xi such that 
a 0-witness can exist in Si of cost at most xi. If no such Xl .. • xt exist for 
a particular x, then loS(X) : O. 

Proposition 2.5 I f T  is an arbitrary tree, then fTo (c) (resp. fx T (c)) 
is a lower bound on the cost any algorithm must incur in the worst 
case in order to find a O-witness o f  cost at most c (resp. 1-witness 
of  cost at most c). More specifically, there is an adversary strategy 
that ensures that, as long as any algorithm has incurred a cost 
strictly less than for(c) (resp. f T  (c)): 

(1) It does not find a O-witness (resp. 1-witness) of  cost at most c. 

(2) The partial assignment to the leaves that have been read can 
be extended so that a O-witness (resp. 1-witness) o f  cost at 
most c exists, and also be extended so that every O-witness 
(resp. 1-witness), i f  any at all, has cost strictly more than c. 

Proof: The proof works by inductively moving upward from the 
leaves to the root of the entire tree T.  For the leaves, the claim 
of the Proposition is clearly satisfied; i f  e is the cost of the leaf, 
then the cost of a 0-witness and 1-witness are both c. Unless an 
algorithm incurs a cost of c, the adversary can always set the leaf to 
be 0 when it is queried thereby creating a 0-witness of cost c, and 
can instead set it to I in which case there is no 0-witness at all (and 
therefore trivially every 0-witness has cost more than c). 

Suppose S is a subtree whose root rs  is an AND node with sub- 
trees $1, $2 , . .  •, St rooted at its t children. We want to prove that, 
assuming fo s '  and f s ,  satisfy the conditions of the Proposition, the 
definition of fo s and f s  as per the Equations (2) and (3) above also 
satisfies the requirement of  the Proposition. 

We first consider the case when the algorithm is trying to find 
a 0-witness of cost at most c. Note that since rs  is an AND node, 
the 0-witness is simply a 0-witness of one of the subtrees Si. The 
adversary strategy to "hide" a 0-witness of cost at most c is as fol- 
lows: The basic idea is to use, for each subtree S~, the strategy for 
Si guaranteed by induction. More specifically, for the first t -  1 sub- 
trees Sj (excluding Sk for some k) for which the algorithm ends up 

spending an amount at least fo s~ (c), ensure (using part (2) of the 
inductive hypothesis) that there is no 0-witness for Sj of cost at 
most c. For the "last" subtree Sk, use the inductive strategy for Sk 
to hide a 0-witness of  cost c till the algorithm spends fo s~ (c). 

Now suppose an algorithm has spent a total cost C which is 

less than the "lower bound function" loS(c) = )-'~, f s  o ' (c) as per 
Equation (2). Hence there exists a k, 1 < k _< t, such that the 
algorithm has spent less than fo sk (c) on S~, and hence the above 
adversary strategy ensures that the algorithm has not found a 0- 
witness for S. It is also clear that the adversary has the option of 
either extending the partial assignment so that a 0-witness of  cost 
at most c exists, or so that every 0-witness for S has cost more than 
C. 

Now we consider the case when the algorithm is trying to find 
a 1-witness of cost at most c. We may assume that f s  (c) > 0 for 
otherwise the statement of the Proposition holds vacuously. Note 
that a 1-witness of cost c for S consists of 1-witnesses for Si of 
cost c~ for I < i < t with ~'~i ci = c. Let us pick c , ,  c2,. • •, ct for 
which the maximum in Equation (3) is attained. By our assumption 
on Equation (3), there exist 1-witnesses for Si of cost at most ci 
for every i 6 [1..t]. The adversary strategy now is as follows: 
for the first (t - 1) subtrees Sj  (excluding Sk for some k), for 

which the algorithm incurs a cost of at least fs~ (cj), the adversary 
causes Sj to evaluate to 1 through a 1-witness of cost at most cj 
(using the strategy for each subtree guaranteed by the induction 
hypothesis), and thus it reduces the value of S to the value of Sk. 
Meanwhile, for Sk,  the adversary also uses the strategy for Sk to 
hide a witness of cost ck until the algorithm spends f sk  (ci). As 
long as any algorithm has incurred a cost (strictly) less than f s  (c), 
this strategy leaves the adversary with the option of either creating 
a 1-witness of cost at most c or ensuring that every 1-witness of S 
has cost more than c. This completes the proof for the case when S 
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is rooted at an AND node; the other case when it is rooted at an OR 
node is handled similarly. • 

The BALANCE Algor i thm.  We now show how to use the lower 
bound functions described above to derive an algorithm, which we 
call BALANCE, that achieves the best possible competitive ratio. 
The high level idea behind BALANCE is the same as WEAKBAL- 
ANCE: At each intermediate node, we balance the amount spent 
on reading leaves in each of the subtrees - by "balancing" we do 
not necessarily mean that the exact amounts spent are all nearly 
equal, rather we mean that the costs of the possible witnesses that 
can still be found in all the subtrees are of nearly equal cost, so 
that after spending a huge amount, we do not still leave the possi- 
bility of there existing a cheap witness in some unexplored part of 
the tree which in turn will imply a poor competitive ratio. BAL- 
ANCE actually uses the above lower bound functions fo T and f ~  
for the balancing criterion. The algorithm is formally described in 
Figure 2. 

We want to prove that BALANCE indeed achieves the optimal 
competitive ratio % (T)  for any Boolean tree T and cost vector e. 
For this we prove below that if  there is a witness (for T evaluating 
to either 0 or 1) of cost at most c, then BALANCE discovers the wit- 
ness by spending a total cost that is at most max{loT(c) ,  f ~ ( c ) } .  
In conjunction with Proposition 2.5, note that this immediately im- 
plies that BALANCE achieves the optimum competitive ratio possi- 
ble for any deterministic algorithm; indeed any deterministic algo- 

rithm has a competitive ratio of at least m a x  ]max~{foT( :e ) /x} ,  
I .  

{ f l  T (x) / x } ] ,  and BALANCE achieves m a x  z this competitive ratio. 

Theorem 2.6 I f  BALANCE when running on (T, e) spends an amount 
which is greater than loT(C) (respectively f T  (c)), then there exists 
no O-witness (respectively 1-~vitness) for T which has cost at most 
c. Or, equivalently, if there exists a O-witness (resp. 1-witness)for 
T of cost at most c, then BALANCEproves that T evaluates to 0 
(resp. 1) by spending at most f T ( c )  (resp. f~'(c)) .  

Proof: The proof once again works by inductively moving up the 
tree from the leaves to the root. When T just consists of a leaf/_,, 
the statement of the theorem clearly holds. Now suppose the root r 
of T is an AND node (the other case can be handled similarly) with 
children x l ,  x 2 , . . . ,  xt  with subtree Ti rooted at xi  for 1 < i < t. 

First, suppose BALANCE spends an amount strictly greater than 
f ~ ( c )  when evaluating T,  and yet T has a 1-witness W of  cost at 
most c. Since r is an AND node, W is a collection of 1-witnesses 
Wi of cost ci for Ti, 1 < i < t, with c = )-'~=1 ci. By the 

definition of f~ ( c )  in Equation (3), this implies that there exists a 

k, 1 < k < t, such that BALANCE spends more than f~k(ek)  on 
reading leaves in Tk. By induction, however, this implies that Tk 
has no  1-witness of cost ek or less, a contradiction to the existence 
of Wi. Hence if  BALANCE spends more than f ~ ( c ) ,  then it rules 
out the possibility of T having any 1-witness of cost c or less. 

We now consider the case of 0-witnesses. Suppose BALANCE 
has spent an amount more than for(e) E ~ = I  ri = /Co (c) and yet 
there is a 0-witness W of cost c; we will then arrive at a contradic- 
tion. Using the fact that r is an AND node, the witness W is simply 
a 0-witness Wi of cost c for some i, 1 <_ i < t, say for definiteness, 
it is a 0-witness Wt for Tt. By induction, we know that BALANCE 
never spends more than fo Tt (c) on Tt (or else there could not be a 
0-witness Wt of cost at most c). Since on the whole BALANCE has 
spent more than )-'~=a fZ  i (e), there must exist a j ,  1 < j < t, say 
for definiteness j ---- 1, such that BALANCE has spent more than 
f ~  (c) on T1. Now consider the point when BALANCE chose the 
recommendation R1 = (L1, cL~ ) from 7'1 and went above fo 7"1 (c) 

on its expenditure on T~, so that Cost~ 1 + eLl > f ~  (c). At 

this point, it rejected the recommendation Rt  = (Lt,  eLt ) from Tt 
which we know satisfies Costzt +CL~ <_ fo Tt (c). But we then have 

_< < (So l)- (Cost   + c 1). Thus 
BALANCE would have never chosen the recommendation from Tx 
over that of Tt (here we are using the fact at levels where the parent 
is an AND node, BALANCE uses the function fo T to decide whose 
recommendation to take), a contradiction. Hence there cannot be a 
0-witness of cost at most c as we supposed, and we are done. • 

Corol la ry  2.7 For any boolean tree T and cost vector e, BAL- 
ANCE achieves a competitive ratio of  T¢(T). 

2.3 Threshold Trees 

Observe that AND and OR gates are both threshold gates, i.e., their 
output is 1 provided sufficiently many of its inputs are set to 1. It 
turns out the BALANCE algorithm of the previous sections can be 
modified to competitively evaluate threshold trees as well: a thresh- 
old tree is a tree where each internal node is a threshold ( t ,p)-gate  
for some values of t,  p, where the output of a (t,  p)-gate is 1 if  and 
only if  at least p of its t inputs are 1. The values Of the threshold 
p can vary over the nodes of the tree. The algorithm for evaluating 
threshold trees is BALANCE with appropriate lower bound func- 
tions defined for threshold gates akin to the functions defined for 
AND and OR gates. The structure of witnesses is more general than 
for Boolean trees, and as a result we need to run two algorithms 
in parallel (balancing the costs they incur) one of which uses the 
function f l  and the other fo for the balancing criterion; this incurs 
a factor 2 loss in the competitive ratio of the algorithm. We next 
specify the lower bound functions for general threshold gates. The 
details of the proof on how and why modified BALANCE works for 
threshold trees are similar to those given for Boolean trees and are 
omitted in this version. 

Lower  Bound  Func t ion  for  Thresho ld  Gates: Suppose a thresh- 
old tree T has a ( t ,p) -gate  at its root r and let S 1 , . . . ,  ,-qk be the 
subtrees rooted at the children of r .  We define s 

max { 
~ l , . . , , ~ p :  

~./ =. i  = ®  

+ .  + Sx 

(6) 
Observe that this equation is equivalent to: 

max {ST' l (x l )+  
L ==1 . . . . .  z l o - - 1  : 

+ E,,, Ej x,)}] 
(7) 

The latter equation gives insight into the lower bound argument, 
while the former corresponds to the argument for osptimality of the 
modified BALANCE algorithm. The equation for f~ is obtained by 

5In Equations (6) and (7), the first max operators are taken over choices 
of l = { i1 , i 2 , . . . , i p}  C [t]. In Equation (6), the second max op- 
erator is taken only over choices of x l , . . .  ,xp such that there can ex- 
ist 1-witnesses in S i a , . . . ,  Sip of cost at most X l , . . . ,  Xp, respectively. 
If no such X l . .  • xp exist for a particular x, then the value of the max 
is 0. Similarly, in Equation (7), the second max operator is taken only 
over choices of Xl , . . . , :~p-1  such that: (A) there can exist 1-witnesses 
in Sil , .  •., Si(p_ x) of cost at most x 1,. • -, x~_ 1, respectively; (B) there 
exists some i ~ I such that a 1-witness can exist in Si of cost at most 
x - )"~d :rj. Again, if no such Xl . . . x p - 1  exist for a particular x, then 
the value of the max is 0. 
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Algorithm BALANCE: 

Input: A Boolean tree T with a cost vector c on its n leaves. 
Output: The value of the tree T.  

/* For each node x, we keep track of the total cost Cost~ incurred on the subtree rooted at x. */ 

Let Cost~ = 0 for all nodes x in the tree. 

Compute the lower bound functions f~  and f~' for all nodes x of T.  (Actually we will only be 
referring to the "inverses" of these functions.) 

While T is not fully evaluated 

1. Moving up the tree from the leaves to the root: 

(a) Each leaf L which has not been read or pruned yet passes a recommendation 
RL = (L, CL) up to its parent. (CL is the cost of leaf L.) 

(b) Each internal node x of the tree that receives recommendations R1, R 2 , . . . ,  Rt,  with 
R / =  (Li,  CL~ ), from its t (not yet pruned) children x l ,  x 2 , . . . ,  xt chooses one of its children 
as follows: 

(i) If  x is an AND node, choose the child Xq with the minimum value of ( fo  q )-1 (czq + Costxq ). 
• . . . . . . Z q  - - I  

(n) If  x ls an OR node, choose the chdd xq w l t h t h e r m n l m u m v a l u e o f ( f l  ) ( •Lq +Costzq). 
(ties are broken arbitrarily) 

Node x then propagates the recommendat ion/~  from Xq up to its parent 
(unless x is the root in which case goto Step 2) 

/* At this point recommendations have passed upward to the root from the leaves. */ 

2 . /*  Now we are at the root r and say it chose a recommendation RL = (L, cz) .  */ 
The value of the leaf L is read at a cost of CL. 

3. For all ancestors y of L in T the total cost incurred on their subtree is increased by CL, 
i.e perform Cost~ = Cost~ + CL. 

endWhile 

Output the value of the tree T.  

Figure 2: The BALANCE Algorithm. 
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writing the above equation with p '  ---- t - p + 1 instead o f p  since 
the complement of a (t ,p)-gate is a (t, t - p + 1)-gate. 6 

Theorem 2.8 For any threshold tree T and any cost vector e, there 
is a polynomial time algorithm for evaluating T with competitive 
ratio at most tw&e ",[~ (T). 

2.4 Game Trees 

We can in fact generalize BALANCE to competitively evaluate game 
trees (also called MIN/MAX trees). A game tree has real values on 
its leaves and the internal nodes are MIN and MAX functions; our 
goal is to evaluate the value of the root. 

For a MIN/MAX tree T we use a pair of witnesses, an L- 
witness and a U-witness, that prove matching lower and upper 
bounds respectively on the value of  the tree. One can then de- 
fine app.sopriate lower bound functions f ~ ,  f u  r similar to the func- 
tions f l" ,  f~" (for Boolean trees) respectively, and run two copies 
of BALANCE simultaneously (balancing the cost they incur), one 
trying to prove a lower bound (on the value of T)  and using fff  for 
balancing, and the other trying to prove a matching upper bound 
(and using f u  T for balancing), till these two bounds match. 

Theorem 2.9 For any MIN/MAX tree T and a cost vector c, there 
is an efficient algorithm that evaluates T with a competitive ratio 
at most 2"yc (T). 

The above theorem also holds for a common generalization of thresh- 
old and MIN/MAX trees where the internal nodes are gates that 
return the t TM largest element for some t (the value of t could be 
different for different nodes). 

3 Ultra-uniform Prices 

Given a Boolean tree T with n leaves, we ask: how do we "fairly" 
price the leaves of T so that every on-line algorithm achieves the 
same competitive ratio? Such a price vector, if  one exists, is called 
an ultra-uniform price vector. Intuitively, it means that the leaves 
are so evenly priced that at every stage it does not matter which 
leaf is queried next, from the point of view of the competitive ratio. 
(Clearly if a leaf is overpriced, an algorithm will defer reading it 
unless absolutely necessary; and similarly, if  a leaf is underpriced 
it will be read right away). It is far from clear why such a pricing, 
which appears to be a very strong requirement, should exist at all. 
We show in this section that such a pricing not only exists, but can 
also be found efficiently. 

Theorem 3.1 Given a Boolean tree T with n leaves, one can find 
an ultra-uniform price vector for  T in polynomial (in n) time. 

Proof: The idea is to ensure that the cost of all 0-witnesses o f T  is 
the same, say co, and similarly that the cost of all 1-witnesses of T 
is the same, say cx (the costs co, cl need not be equal). 

We first claim that any setting of prices satisfying the above 
property is in fact an ultra-uniform price vector. To see this, note 
that tree functions are evasive and hence any algorithm can be 
forced to examine all the leaves, and the final value of the tree can 
be set to either 0 or I after the last leaf is read. If C is the total cost 
of all the leaves, any algorithm can thus be forced to have a compet- 
itive ratio of C/min(co,  cl) .  Moreover, any algorithm has a com- 
petitive ratio at most C/rain(co, el) ,  as the most an algorithm can 
spend is the total cost C of all the leaves, and the adversary incurs 
a cost at least rain(co, Cl) for both 0-witnesses and 1-witnesses. 
Hence these prices are indeed ultra-uniform. 

We now describe how to construct prices that ensure the uni- 
formity of the costs of 0-witnesses and 1-witnesses. It is easy to 

~For our algorithm, it is important that these functions fo T and f l  T can 
be computed in polynomial time; this turns out to be true. 

see that if  this property holds for a Boolean tree T ,  then it holds for 
all subtrees of T as well, and this actually shows that such a price 
vector is unique up to scaling. This motivates the construction of 
prices in a bottom-up fashion, appropriately rescaling the prices as 
we move up the tree so that when we reach each intermediate node, 
the cost of all 0-witnesses and 1-witnesses of the subtree rooted at 
that node have the same cost. 

We begin by setting the prices of all leaves to 1. As we move 
up the tree, we maintain, for each node v that has been visited, 
quantities Co [v] and C1 [V] which represent the uniform costs of  all 
0-witnesses and 1-witnesses respectively in the subtree rooted at v 
just after v was visited (these quantities will change as we move 
further up the tree to v 's  ancestors). Now, suppose we move up the 
tree and reach an internal node u (which we assume for definite- 
ness to be an AND node) with children u l ,  u 2 , . . . ,  uk (which are 
OR nodes). Our goal is to construct an ultra-uniform price vector 
for T~,, the subtree of T rooted at u, from the ultra-uniform price 

vectors/~i of  the T,,~ 's. Since u is an AND node, a 0-witness of 
T,, is simply a 0-witness of  one of the T,,~'s. Hence in order to 
make the cost of  all 0-witnesses of T,, equal, we rescale the prices 
of the nodes in the T,,~ 's so that the cost of 0-witnesses of T~,~ and 
T,,j for 1 < i < j < k are all the same. We can achieve this, 

for instance, by dividing the price vector a6i of the leaves in T,,~ by 
Co[u/]. After this rescaling, all 0-witnesses of Tu have cost 1, so 
we set Co [u] = 1. A 1-witness of T,, is the union of 1-witnesses 
for T~,,, T , , ~ , . . . ,  T,,~ ; after the above rescaling all 1-witnesses in 
T,,~ have the same cost C1 [ui]/Co[ui], and hence all 1-witnesses 

of T,, have the same cost C1 [u] h k = E i = I  Cl[ui]/Co[ui]. 
When we reach the root of the tree T,  we have a price vector 

with the required property. It is clear that this procedure can be 
implemented to run in O(n ~) time, and thus an ultra-uniform price 
vector for T exists and can be found in polynomial time. • 

4 Searching with Prices 

4.1 A near-optimal algorithm 

We outline an algorithm for searching an n element array with com- 

petitive ratio bounded by log 2 n + O(log~/a n) for any cost vector 
on the elements of  the array. Later, we will improve the algorithm 
to get a competitive ratio bounded by log 2 n+O(ox/]-O-~ log log n). 
This proves that the unit price vector is essentially an extremal price 
vector for binary search, and also that our algorithm is at most off 
by lower order terms from the true competitive ratio. 

The algorithm is motivated by two goals: (1) We do not exam- 
ine costly elements until we have eliminated the possibility of the 
element q lying in an array location occupied by cheaper elements; 
and (2) to achieve a competitive ratio close to log s n, we mimic 
binary search by attempting to halve the search interval with every 
comparison. Unfortunately, the two goals could be contradictory 
because the only way to halve the search interval might be to ex- 
amine an expensive element. 

I-Iigh-level description of the algorithm. Our algorithm uses two 
parameters r and c. Initially costs are grouped geometrically by 
rounding costs up to the nearest multiple of r ;  the algorithm con- 
siders groups in increasing order of cost. We normalize costs so that 
the lowest cost is 1. Let group j consist of all elements with cost 
r j .  The algorithm maintains a search interval I ,  which is the set of 
possible (contiguous) locations where q could lie, and splits I into 
three (contiguous) intervals L, M,  R where the left and right inter- 
vals L, R do not contain any element of (the current) group j and 
the middle interval M,  referred to as the effective interval, which 
begins and ends with an element of group j .  The algorithm main- 
tains the property that I does not contain any elements of groups 
( j  - 1) or lower. We repeatedly compare q with the group j ele- 
ment that is closest to the middle of the effective interval M.  Such 

589 



comparisons are called regular comparisons and each such compar- 
ison is guaranteed to halve the size of the effective interval. This 
certainly makes progress as long as the element q lies within the ef- 
fective interval. However, if q does not belong to the current group 
j ,  at some point, q could fall outside the effective interval for group 
j .  In such a case, we do not want to spend too much on querying 
group j elements. To handle this possibility, after every c regu- 
lar comparisons of q with group j elements, we perform an extra 
comparison by querying one of the extreme group j elements. This 
checks if  q lies outside the effective interval. If  the current search 
interval I does not contain any element of the current group j ,  we 
move on to group j + 1, and continue the algorithm. 

We now give a formal description of the algorithm. 

Algorithm Search 

1. I +-- [1 . . .  n], j +-- O, left_ent ~-- O, right_ent +-- O. 

2. While ! does not contain an element of group j 
j +-- j + 1; left_cnt +-- 0; right_cnt +-- O. 

endWhile 

3. If left_cnt = e, 
left_cnt +-- O. 
Let x be the leftmost element of group j in I .  
type +-- EXTRA.  Jump to Step 6. 

4. If  right_cnt = c, 
right_ent +-- O. 
Let x be the rightmost element of  group j in I .  
type +-- EXTRA.  Jump to Step 6. 

5. Decompose I as I = L o M o R into three intervals L, M,  R 
such that the left and right intervals L and R do not contain 
any element of group j ,  while the middle interval M starts 
and ends with an elemeht from group j .  M is thus the current 
effective interval. 

Let x be the element in group j that is closest to the middle 
of M,  breaking ties arbitrarily. 
type +-- REGULAR.  

6. Le t I  = IL o x o  lR. 

7. Compare q to x. 

8. If  x = q, return P R E S E N T  
else if  q < x, 

I+--IL,  
if  type = REGULAR 

left_cnt +-- left_cnt + 1; right_cnt ~-- O. 
else if  q > x, 

I+ ' - In ,  
if type = REGULAR 

right_ent +-- right_ent + 1; left_ent +-- O. 

9. If I is empty, return NOT P R E S E N T  

10. Goto step 2. 

Competi t ive analysis of the algori thm. The algorithm maintains 
an interval I of the array in which the element q being searched for 
must lie. It compares q to some element x in the current interval. 
Depending on the result of the comparison, the algorithm restricts 
its search in the subinterval of I to the left of x (if q < x) or to the 
right of x (if q > x). This procedure is thus guaranteed to find q if  
indeed it is present in the array. 

Recall that we distinguish between two kinds of comparisons 
made by the algorithm. If the element x compared to is chosen in 
Steps 3 or 4, such a comparison is called an extra comparison. On 
the other hand, if  the element x compared to is chosen in Step 5 

such a comparison is called a regular comparison. The following 
lemma shows that the algorithm makes progress in performing reg- 
ular comparisons. 

Lemma  4.1 For all regular comparisons performed on group j the 
length of the effective interval goes down by a factor of at least 2. 

Proof: Suppose I is the current interval. Let I ---- L o M o R 
where L, M and R are the intervals obtained in Step 5. Suppose 
x is the element that is chosen to compare with. By choice, x is 
the element closest to the middle of M.  Let M = ML o x o MR. 
Without loss of generality, assume that IMLI _< IMRI. Hence, 
IMLI < (IMI - 1)/2.  Further, let MR = L' o M'  where M '  
is the smallest interval containing all the elements of group j in 
MR. Note t h a t M  = ML o x o L ' o M ' .  By the choice of x, 

_ ½]MI. IM'I < [MLI + 1. We claim that [M'I < If [MLI < 
( IM1-1) /2 ,  IM'I < IMLI+I < ½1MI. If IMLI = (IM1--1)/2, 
x is exactly the middle element of  M.  Thus IMnl = (IMI - 1)/2 
and IM'I <_ IMRI < XlMI. 

I fq  < x, the effective interval is a subinterval of ML. Suppose 
q > x. In this case, the effective interval is M ' .  Inboth cases, the 
size of the effective interval drops by a factor of at least 2. • 

Let n j  be the length of the search interval I at the first time that 
the algorithm considers group j .  If  m is the last group examined, 
define nm+~ to be 1. Let ej be the total number of comparisons 
performed with elements of  group j .  

Lemma  4.2 

cj <_ 1 +  log z ~ + e + 2  

Proof: Let I j  be the search interval at the first time that the algo- 
rithm considers elements of group j .  I j+x must have been created 
by comparisons to the elements immediately to the left and right of 
Ij+l (say xt and xr  respectively). Suppose that xt was compared 
to before xr.  We will bound separately, the number of comparisons 
of group j performed up to the comparison with xz and the number 
after the comparison with xt. 

Consider the number of comparison steps performed up to the 
point that xz was compared with. Throughout this time, l j+1 is 
part of the effective interval. Let el  be the length of the effec- 
tive interval at the first time that group j is considered and e2 be 
the length of the effective interval just before xl is compared with. 
el < IZJl = nj and e2 > II~+11 = nj+l.  Since each regular 
comparison reduces the length of the effective interval by at least 
2, the number of regular comparisons before xz is compared is at 
most log2(e l /e2  ) < log2(nj/nj+l) .  Further, the number of ex- 
tra comparisons performed during this time is at most 1 /c  times 
the number of regular comparisons, since each extra comparison 
can be charged to c regular comparisons. Thus the total number of  
comparisons including the comparison to xl is at most 

1 + ( 1 + 1 )  l°g2 

After the comparison with xt, the search interval is of the form 
I j + l  o xr  o I ' .  Since lj+1 does not contain any elements of group 
j ,  it is no longer part of the effective interval. Since the search gets 
narrowed down to lj+1 later, it follows that for all group j elements 
x '  compared to from this point on, q < x ' .  But there can be at most 
c + 1 such comparisons. If  within c more comparisons the search 
has not already been narrowed down to Ij+~, then element x~ will 
be picked in the next iteration in Step 3 and compared with q. That 
will narrow down the search interval to Ij+~ in at most e + 1 steps. 
Adding the two bounds, we get the bound in the statement of the 
lemma. • 
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Theorem 4.3 For r 1 + 1 / l o g  1/a n and c 1/3 = = log2 n, the com- 
petitive ratio of  the algorithm is bounded by log= n + O(log~/a n). 

Proof: Let group m be the last group examined by the algorithm. 
Then the cost of the algorithm is at most 

Z rJ " cj < Z r i 1 +  log2 nj ' + c + 2  

j=O j=O 

(1) o,  
= 1 +  , J  • log=  

j =o j =o 

< ( 1 - } - l )  rm logsnq - ( e - } -2 )  rm+l 
- -  r - - 1  

The optimal proof has cost at least r m-1. Hence the competitive 
ratio of the algorithm is bounded by 

( l  + l )  r l o g s n + ( c + 2 )  r= . 
r - - 1  

1/3 , 1/3 
Setting r ---- 1 + I / l o g  2 n a n d c = m g  2 n, we get the desired 
bound. • 

We can improve the competitive ratio by modifying the algo- 
rithm slightly. The idea is to change the way in which extra com- 
parisons are performed. Note that in the algorithm described above, 
the number of extra comparisons for group j is of the form c + 

log 2 (_.SL'~ The improvement comes from balancing the two \ n j + l  )"  
terms in this expression. The modified algorithm does not use the 
parameter c. We keep track of the total number of regular compar- 
isons performed so far for the current group. An extra comparison 
is performed every time the total number of regular comparisons 
equals a perfect square. As before, let cj be the total number of 
comparisons performed with elements of group j .  We can prove 
that 

q < log= nj + 0 og 2 

Setting r = 1 + 2/1V/i-~2n, we can prove that the competitive 
ratio of the algorithm is bounded by log 2 n + O(vq--og n log log n). 
We omit the details in this extended abstract. 

4.2 Optimal search for a given cost vector 

We now present a dynamic programming algorithm to compute the 
optimal algorithm for searching a sorted array of priced elements. 
Straightforward dynamic programming would entail considering 
all O(n =) subintervals, and computing the best competitive ratio 
possible for each subinterval. This, however, fails, as can be seen 
from the following illustration. Suppose on some particular subin- 
terval I of interval J ,  the adversary could force any algorithm to 
pay total cost at least 2 to find an element of cost 1, or pay total 
cost at least 60 to find an element of cost 20. A strict competitive 
ratio analysis would lead us to believe that the adversary should al- 
ways force the algorithm to pay at least 60 to find an element of 
cost 20. However, if  on the larger interval J ,  it was the case that 
the adversary could force any algorithm to pay cost at least 2 be- 
fore reducing the search problem to I ,  then clearly when the search 
focuses on I ,  the adversary should force the algorithm to pay 2 
more and find the element of cost 1, as this would lead to an overall 
competitive ratio of 4 (as opposed to (60 + 2)/20). 

This suggests the following algorithm, which does work: For 
every subinterval I ,  and every x, we will first compute a lower 

bound f ( I ,  x) for the competitive ratio that any deterministic al- 
gorithm can achieve on I ,  given that the algorithm has already 
spent x. For any element a E I ,  let ca denote the cost of exam- 
ining a. For any singleton interval I = {a}, clearly f ({a} ,  x) = 
(x + ea)/c~ is an exact bound on the competitive ratio. Also, for 
an empty interval, we let f ( I ,  x) = 0 for all x. Now for all larger 
intervals I ,  we define: 

r 
f ( [  [a.. b], x) = rain / max{ f ( [ a . . .  (i - 1)], x + ci), 

iEl L 
(X + Ci)/Ci, 

/ ( [ ( i  + 1 ) . . .  b], x + c,)} / 

(8) 
A simple inductive argument shows that this gives the desired lower 
bound, as the algorithm has choice over which i to examine, and 
the adversary can choose to either respond that the element being 
searched for is smaller than, equal to, or greater than element i. 
Furthermore, we can efficiently pre-compute a table of these lower 
bounds for every subinterval and every value for x up to the sum 
of all costs. This then yields an optimal algorithm for performing 
the binary search, as the optimal first move for interval I having 
already spent x is determined by the minimizing choice of i in the 
computation of f ( I ,  x). 
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