
Moses Charikar *

Query Strategies for Priced Information
(Extended Abstract)

Ronald Fagin t Venkatesan Guruswami $ Jon Kleinberg §

Amit Sahai $

Prabhakar Raghavan t

Abstract

We consider a class of problems in which an algorithm seeks to
compute a function f over a set of n inputs, where each input has an
associated price. The algorithm queries inputs sequentially, trying
to learn the value of the function for the minimum cost. We apply
the competitive analysis of algorithms to this framework, designing
algorithms that incur large cost only when the cost of the cheapest
"proof" for the value of f is also large. We provide algorithms
that achieve the optimal competitive ratio for functions that include
arbitrary Boolean AND/OR trees, and for the problem of searching
in a sorted array. We also investigate a model for pricing in this
framework, constructing a set of prices for any AND/OR tree that
satisfies a very strong type of equilibrium property.

1 Introduction

The potential of priced information sources [12, 13] that charge
for usage is being discussed in a number of domains - - software,
research papers, legal information, proprietary corporate and finan-
cial information - - and it forms a basic component of the larger
area of electronic commerce [4, 6, 16, 17]. In a networked econ-
omy, we envision software agents that autonomously purchase in-
formation from various sources, and use the information to support

* Computer Science Department, Stanford University, CA 94305. Email:
moses@cs.stanford.edu. Research supported by the Pierre and
Christine Lamond Fellowship, NSF Grant IIS-9811904 and NSF Award
CCR-9357849, with matching funds from IBM, Mitsubishi, Schlumberger
Foundation, Shell Foundation, and Xerox Corporation. Most of this work
was done while the author was visiting IBM Almaden Research Center.

tlBM Almaden Reseach Center, 650 Harry Road, San Jose, CA 95120.
Email: {fagin, pragh}@almaden, ibm. com.

SLaboratory for Computer Science, MIT, Cambridge, MA 02139.
Emml: {venkat, amits}@theory, ics.mit, edu. Research sup-
ported by an IBM Graduate Fellowship and DOD Fellowship, respectively.
Most of this work was done while the authors were visiting IBM Almaden
Research Center.

§Department of Computer Science, Cornell University, Ithaca NY
14853. Email: kleinber@cs.comell.edu. Supported in part by a David and
Lucile Packard Foundation Fellowship, an Alfred P. Sloan Research Fel-
lowship, an ONR Young Investigator Award, and NSF Faculty Early Career
Development Award CCR-9701399.

Pemfission to make digital or hard copies of all or part of this work for
personal or classroom use is granted wilhout fee provided that copies
are not made or distributed for profit or commercial advmltage and that
copies bear this notice and tile full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
STOC 2000 Portland Oregon USA
Copyright ACM 2000 1-58113-184-4/00/5...$5.00

decisions. How should one query data in the presence of a given
price structure?

Previous theoretical analysis has posited settings in which there
is a target piece of information, and the goal is to locate it as rapidly
as possible; see for example the work of Etzioni et al. [5] and Kout-
soupias et al. [9]. Here we take an alternate perspective, motivated
by the following type of consideration. Suppose we have derived,
through some pre-processing based on data mining or other statis-
tical means, a decision rule that we wish to apply. To take a toy
example, such a rule might look like

If Analyst A values Microsoft at $X
or Analyst B values Netscape at $¥;

and if Analyst C values Oracle at $Z
or Analyst D values IBM at $W;

then we should sell our shares of eBay.

The decision rule in this example depends on four available infor-
mation sources, which we could label A, B, G', and D; each has a
Boolean value. It is possible to evaluate the rule, under some cir-
cumstances, without querying all the information sources. If each
of these pieces of information has an associated price, what is the
best strategy for evaluating the decision rule?

Note the following features of this toy example. There is an
underlying set of information sources, but our goal is not simply
to gather all the information; rather it is to collect (as cheaply as
possible) a subset of the information sufficient to compute a de-
sired function f . Thus, a crucial component of our approach is
the view that disparate information sources contain raw data to be
combined to reach a decision, and it is the structure of this combina-
tion that determines the optimal strategy for querying the sources.
Our setting may be further generalized to allow inputs that are en-
tire databases, rather than bits (say, a demographic information
database from a vendor such as Lexis-Nexis), and the goal is to dis-
till valuable information from a combination of such databases; this
generalization suggests an interesting direction for further work.

An Illustrative Example. In Figure 1 we depict the above toy
example, with the decision rule represented by a tree-structured
Boolean circuit, and with the prices (6, 3, 1, 4) attached to the in-
puts. An algorithm is presented with this circuit and the vector of
prices; the hidden information is the setting a of the four Boolean
variables. It must query the variables, one by one, until it learns
the value of the circuit; with each variable it queries, it pays the
associated cost. We could ask for an algorithm .,4 that incurs the
minimum worst-case cost over all settings of the variables; but this
is too simplistic: many of the natural functions we wish to study
(including all Boolean AND/OR trees) are evasive [3], so any al-
gorithm can be made to pay for all the variables, and all algorithms
perform equally poorly under this measure.

582

A B C D
cos t : 6 3 1 4

Figure 1: A Boolean function with priced inputs

The competitive analysis of algorithms [2] fits naturally within
our framework; we define the performance of an algorithm .4 on
a given setting a of the variables to be the ratio of the cost in-
curred by .,4 to the cost of the cheapest "proof" for the value of the
function. The competitive ratio of .A is then the maximum of this
performance ratio over all settings a of the variables.

In the example above, consider the algorithm .A' that first queries
C. If C is t r u e , it then queries B and A (if necessary); if C is
f a l s e , it then queries D, then B and A (if necessary). The perfor-
mance ratio of A ' when the setting is (t r u e , f a l s e , f a l s e , t r u e)
is 7/5: .,4' queries all the variables and pays 14, while querying
only A and D would prove the value of the function is t r u e . In-
deed, this is the competitive ratio of .A', and .A' achieves the opti-
mal competitive ratio of any algorithm on this function, with this
cost vector. Two aspects of .,4' are noteworthy: (i) it is adaptive -
its behavior depends on the values of the inputs it has read, and (ii)
it does not always read the inputs in increasing order of price.

A Framework. We now describe a general framework that cap-
tures the issues and example discussed above. We have a function
f over a set V = { x l , . . . , xn} of n variables. Each variable xi
has a non-negative cost ci; the vector e = (e l , . . . ,c,~) will be
called the cost vector. A setting a of the variables is a choice of a
value for each variable; the partial setting restricted to a subset U
of the variables will be denoted a]U. A subset U C V is sufficient
with respect to setting tr if the value of f is determined by the par-
tial setting alU. Such a U is a proof of the value of f under the
setting alU; the cheapest proof of the value of f under a is thus
the cheapest sufficient set with respect to a. We denote its cost by
c(a) .

An evaluation algorithm .,4 is a deterministic rule that queries
variables sequentially, basing its decisions on the cost vector and
the values of variables already queried. When an evaluation algo-
rithm .,4 is run under a setting tr, it incurs a cost that we denote
e.a(a). We seek algorithms .A that optimize the competitive ratio

.),~ (f) de_.f m a x ~ c.a (a) / e (a) . The best possible competitive ratio
for any algorithm, then, is

7¢(f) d e f .

The model above is general enough to include almost any prob-
lem in which an algorithm adaptively queries its input. Our ap-
proach will be to focus on simple functions that have been well-
studied in the case of unit prices. We find that the inclusion of
arbitrary prices on the inputs gives the problem a much more com-
plex character, and leads to query algorithms that are novel and
non-obvious.

Our primary focus will be on Boolean AND/OR trees (briefly,
Boolean trees) ~ these are tree circuits rooted (w.l.o.g.) at an AND
gate, with each leaf corresponding to a distinct variable, and with
each root-to-leaf path strictly alternating AND and OR gates at the

internal nodes. One can easily build examples in which an opti-
mal algorithm cannot follow a "depth-first search" style evaluation
of variables and subtrees. Indeed, the criteria for optimality lead
quickly to issues similar to those in the search ratio problem and
minimum latency problem for weighted trees [1,9] - - problems for
which polynomial-time algorithms are not known. It is not at all
obvious that the optimal evaluation algorithm for a Boolean tree
can be found efficiently, or even have a succinct description, even
in the case of complete binary trees.

We also consider functions that generalize Boolean trees, in-
cluding MIN/MAX game trees. Finally, we investigate analogues
of searching, sorting, and selection within our model; here too,
problems that are well-understood in traditional settings become
highly non-trivial when prices are introduced.

Results

We provide a fairly complete characterization of the bounds achiev-
able by optimal algorithms on Boolean trees, and focus on three
related sets of issues.

(1) Tractability of optimal algorithms. We show that for ev-
ery Boolean tree, and every cost vector, the optimal competitive
ratio can be achieved by an efficient algorithm. Specifically, the
algorithm has a running time that is polynomial in the size of the
tree and the magnitudes of the costs. At a high level, the algorithm
is based on the following natural Balance Principle: in each step,
we try to balance the amount spent in each subtree as evenly as
possible. However, to achieve the optimal ratio, this principle must
be modified so that in fact we are balancing certain estimates on
the lower bound for the cost of the cheapest proof in each subtree.
These results are described in Section 2.

(2) Dependence of competitive ratio on the structure of f .
Much of the complexity of the Boolean tree evaluation problem is
already contained in the case of complete binary trees of depth 2d,
with n = 2 2d inputs. When the cost vector is uniform (all input
prices are 1) the situation has a very simple analysis: any algorithm
can be forced to pay n, and the cheapest proof always has value
exactly 2 d = x/-n. A natural question is therefore the following:
is there is a x/if-competitive algorithm for every cost vector on the
complete binary tree? More generally, for a given Boolean tree T,
we could consider the largest competitive ratio that can be forced
by any assignment of prices to the inputs:

7 (T) dej sup ")'¢ (T). (1)
c

This definition naturally suggests the following questions: How
does the above competitive ratio depend on the topology of the un-
derlying tree? Can we characterize the structure of the cost vector
c that achieves 7c(T) = 7 (T)?

We prove a general characterization theorem for 3'(T); as a
corollary, we find that the uniform cost vector is in fact extremal
for the complete binary tree. We say that a Boolean tree T on n
inputs can simulate an AND gate of size k if by fixing the values of
some (n - k) inputs, the function induced on the remaining k inputs
is equivalent to a simple AND of k variables. (We define the simu-
lation of an OR gate analogously.) We show: 7 (T) is equal to the
maximum k for which T can simulate an AND gate or an OR gate
of size k (this also shows that 7 (T) is always an integer). The proof
is obtained using information from the lower bound estimates that
form a component of our optimal balance-based algorithm. These
results are described in Section 2.

We give extensions of some of these results to more general
types of functions. All of these functions are defined over a tree
structure, and for each we can give an efficient algorithm whose
competitive ratio is within a factor of 2 of optimal.

583

(a) Threshold trees. Each intemal node is a threshold gate; the
output is t r u e iff at least a certain number of the inputs are
t r u e . The threshold values for different gates could be dif-
ferent.

(b) Game trees. The inputs are real numbers, and nodes are MIN
or MAX functions.

(e) A common generalization of (a) and (b). The inputs are real
numbers and the nodes are gates that return the tth-largest
of their input values. This threshold t could be different for
different nodes.

In all of this, we have been considering deterministic algo-
rithms only. Understanding how much better one can do with a
randomized algorithm is a major open direction; this would in-
volve a generalization of earlier results on randomized tree eval-
uation [7, 11, 14, 15] to the setting in which inputs have prices.

(3) Equi l ibr ium prices for a function f . Finally, we consider
a "dual" issue, motivated by the following general question. Sup-
pose many individuals are all interested in computing a function f
on variables { X l , . . . , zn}, and each is employing an algorithm that
adaptively buys information from the n vendors that own the val-
ues of x l ,. • •, xn. What is a "natural" set of market prices arising
from this process?

There are, of course, many possible answers to this question
- - just as there are many models for the behavior of prices in a
competitive market [10]. Intuitively, one would believe that each
vendor would try to charge a high price for its input, but not so
high as to price itself out of competition. If we further believe that
the individuals performing the queries will be using only optimal
on-line algorithms, then the vendor of xi will not want to be "priced
out" of optimal on-line algorithms.

Here we describe one set of prices motivated by this intuition;
it exhibits an interesting behavior with a concrete formulation. Let
us say that a cost vector e is ultra-uniform with respect to a tree T
if, with input prices set according to e, every evaluation algorithm
achieves the optimal competitive ratio. In other words, the prices
are in a state such that there is no reason, from the point of view
of competitive analysis, to prefer one algorithm over any other - -
whether an input z i is queried relies purely on the arbitrary choice
of an optimal algorithm by the individual performing the queries.
We prove: for every Boolean tree T , there is an ultra-uniform cost
Vector. The construction of this vector is quite natural, and fol-
lows a direct "balancing" principle of its own. These results are
described in Section 3.

Sorting, Searching and Selection. We also investigate a problem
of a very different character, to which the same style of analysis can
be applied: suppose we are given a sorted array with n positions,

• and wish to determine whether it contains a particular number q. In
the unit-price setting, when we simply wish to minimize the num-
ber of queries to array entries, binary search solves this problem in
at most [log 2 n] queries.

Now suppose each array entry has a price, and we seek an al-
gorithm of optimum competitive ratio. Here the cheapest "proof"
of membership of q is simply a single query to an entry contain-
ing q; the cheapest proof of non-membership is a pair of queries
to adjacent entries containing numbers less than and greater than
q, respectively. It is possible to formalize this problem in terms
of a function f of the type described above, imposing certain con-
straints on the sets of inputs that are allowed; we omit the details
here.

We provide an efficient algorithm for this problem that achieves
the optimal competitive ratio with respect to any given cost vector.
We then consider the associated extremalproblem: which cost vec-
tor forces the largest competitive ratio? We also give an algorithm
achieving a competitive ratio of log 2 n + O(loVT~n log log n) for
any cost vector; this exceeds the competitive ratio for the uniform

cost vector only by lower order terms. Whether the uniform cost
vector is in fact extremal remains an interesting open question.
These results are described in Section 4.

Further Directions. Our approach raises a number of other direc-
tions for further work. We now mention some preliminary results
and open questions. Sorting items when each comparison has a
distinct cost appears to be highly non-trivial. Suppose, for exam-
ple, we construct an instance of this problem by partitioning the
items into sets A and B, giving each A-to-B comparison a very
low cost, and giving each A-to-A and B-to-B comparison a very
high cost. We then obtain a very simple non-uniform cost structure
in the spirit of the notoriously difficult problem of"sorting nuts and
bolts." [8]

Binary search can be viewed as a one-dimensional version of
the problem of searching for a linear separator between "red" and
"blue" points in d dimensions. Determining cheap, query-efficient
strategies for this problem becomes much more challenging in high
dimensions; we have developed one approach that is based on a
VC-dimension analysis, and identified a number of interesting open
questions. This raises the general issue of learning hypotheses from
priced information. We can also generalize the binary search prob-
lem to partially ordered sets. Here it is natural to ask what can be
said about good "splitters" and "central elements" in a poset, when
each item has a cost.

Finally, the problem of selecting the k th largest element among
n items - - when each comparison has a cost - - is also a challeng-
ing direction to explore. Finding the median has some of the flavor
of the sorting problem discussed above; but even finding the maxi-
mum is surprisingly non-trivial. We will report our progress on this
problem in the full version of the paper.

2 Tree Functions

We first consider functions computed by Boolean AND/OR trees:
each gate may have arbitrary fan-in, but only one output. Without
loss of generality, we may assume that levels of the tree alternate
between AND gates and OR gates. Let such a Boolean tree T have
n leaves labeled by variables xx, x 2 , . . . , Xn. Variable xi has an
associated non-negative cost ci for reading the value of xi. We say
a O.witness (resp. 1-witness) for T is a minimal set W of leaves
which when set to 0 (resp. 1) will cause T to evaluate to 0 (resp.
1). The cheapest proof which allows one to prove that T evaluates
to 0 (resp. 1) is always some 0-witness (resp..1-witness).

2.1 Efficient algorithm achieving ~/(T)

We first investigate the competitive ratio 3,(T) for any Boolean tree
T (recall the definition of Equation (1)), where the structure of T is
fixed, but leaf prices vary. We propose the following simple lower
bound on 7 (T) . For any Boolean tree T , let k be the largest value
for which one can simulate an AND gate of fan-in k using T by
hardwiring an appropriate set So of (n - k) leaves of T to 0. (Such
a k is also the size of the largest minterm in boolean function com-
puted by T. One can compute k by giving all leaves of T a value
of 1, replacing the AND and OR gates of T by SUM and MAX
functions respectively, and then evaluating the resulting arithmetic
circuit.) Consider the following cost vector e: ci = 0 whenever
xi E So, else ci = 1. Clearly, a 0-witness for T would now have
cost exactly 1, as it would only need to contain one non-zero cost
leaf whose value is 0. On the other hand, any deterministic algo-
rithm could easily be made to pay k, simply by setting all but the
last non-zero cost leaf queried to have value 1. Hence, k is a lower
bound on 7 (T) .

One can similarly show that the largest value £ for which T can
simulate an On gate of fan-in e (or, equivalently, £ is the size of the
largest maxterm in the function computed by T) is also a lower

584

bound on 7(T) . Thus, max{k, e} is a lower bound on -),(T). x
Somewhat surprisingly this simple lower bound turns out to be
tight, as we show by presenting an algorithm with competitive ratio
max{k, e} for any setting of leaf costs. The idea behind the algo-
rithm, which we call WEAKBALANCE, is the following: At each
node in the tree, we balance the investment on leaves in each of the
subtrees - scaling this balancing act using the lower bound ideas
above. This ensures that we do not leave a cheap proof unexplored
in any subtree.

Algor i thm WEAKBALANCE: Each node x in the tree keeps track
of the total cost Cost~ that the algorithm has incurred in the sub-
tree rooted at x. At each step, the algorithm decides which leaf
to read next by a process of passing recommendations up the tree:
Each (remaining) leaf L passes on (to its parent) a recommenda-
tion (L, eL) to read L at cost eL. For an internal node x, we will
consider two cases: (a) Suppose x is an AND node with children
x l , . . . , x t and it receives recommendations (Lx, C LI) , . . . , (Lt , C Lt).
Let k l , . . . , kt be the sizes of the largest AND gates that can be in-
duced in the subtrees rooted at X l , . . . , xt , respectively. Then x
passes upward the recommendation (Li, cz~) such that (Cos t~ +
cL~)/ki is minimized; (b) If x is an OR node, then the same pro-
cess occurs with k l , . . . , k t replaced with the sizes of the largest
inducible OR gates ~1, • . . , ~ , and the recommendation passed up-
ward is the one minimizing (Cost~, + el i)/£i. Finally, the root of
the tree T decides on some recommendation (L, eL). This leaf L
is read at cost eL, and all local total costs Cost~ 's are updated, and
the tree is partially evaluated as much as possible from the value of
L. When the tree is fully evaluated, the algorithm terminates.

Lemma 2.1 For any Boolean tree T, let k and £ be defined (as
above) as the sizes of the largest induced AND and OR, respec-
tively. I f there exists a O-witness (resp. 1-witness) o f cost c, then
WEAKBALANCE will spend at most ke (resp. ~c) before finding
this witness.

Proof Sketch: We proceed by induction on the size of the tree
T. Clearly this holds for trees of size 1. Consider the case where
the root of the tree is an AND node with children X l , . . . , xt. Let
kl , . . . , kt be the sizes of the largest induced AND gates rooted at
each child node, and let £1, • • •, ~t be the sizes of the largest OR
gates. Observe that k =)--~i ki while e = maxi{e~}.

Any 0-witness for T of cost c consists of a single 0-witness
(of cost c) for a subtree rooted at some xi. Now suppose that
WEAKBALANCE has spent more than kc, and yet WEAKBAL-
ANCE has spent less than kic o n node xi. This means that for some
x j ~ xi, the algorithm has spent more than k j c on xj . Consider
the last recommendation (Lj , eL i) accepted from xj - it must be
that (Cost~j + eLi) > kje; on the other hand, since there is a
0-witness of cost e rooted at xi that has not been found, by in-
duction, the recommendation (Li, eL,) from xi must be such that
(Cos t~ + CL~) <_ kie. This is a contradiction, since the balancing
rule would require the recommendation from xl to take precedence
over the one from xj . Hence, if WEAKBALANCE spends at least ke
on T, it will uncover any 0-witness of cost e. Now consider the case
of a 1-witness for T of cost e, which must consist of 1-witnesses of
cost ca rooted at every child node xi , with)-~i ci = c. By induc-
tion, we know that as soon as WEAKBALANCE spends at least ~iei
on the subtree rooted at xi, it will uncover the 1-witness at xl, upon
which the rest of the subtree rooted at xl will be pruned. Thus,
regardless of the balancing, as soon as WEAKBALANCE spends
~ £ica on T, the entire 1-witness will be uncovered. Recall that

e ---- maxi ~i, and thus)"~i eica < g)-~i ca = ec, as desired.

1 It is easy to see that max{k, e}/2 is also a lower bound on the expected
competitive ratio of any randomized algorithm.

An analogous argument holds for the case of an OR node, ex-
cept in this case, balancing is important for finding a 1-witness, but
not for finding a 0-witness. •

Theorem 2.2 Let k and ~ be as in Lemma 2.1. Then, ~/(T) =
max{k,/~), and WEAKBALANCE runs in polynomial time and achieves
a competitive ratio o f T (T).

Corol lary 2.3 Let LI , . . . , Lk (M1 , . . . , Mr) be the leaves corre-
sponding to a largest induced AND (resp. OR) in T. Let co (resp.
e l) be the cost vector that assigns cost 1 to leaves L 1 , . . . , Lk
(resp. M 1 , . . . , Me) and cost 0 to all other leaves. I f k > ~, then
eo is extremal for T; otherwise el is extremal for T. That is, either
"/co (T) or 7~1 (T) equals 7(T) .

Corol lary 2.4 I f T is a complete binary tree with n = 22a leaves,
then 7(T) = x/ft. Hence, for such trees, the all-ones cost vector is
extremal.

Remark: For any monotone boolean function f(Xl, X2,.. . , Xn),
one can prove that the following simple algorithm achieves a com-
petitive ratio of (2 max{k, I}) for any cost vector. Pick the cheap-
est minterm and maxterm of f , and read all variables in the cheaper
of the two; if this proves that f evaluates to 0 or 1 stop, else replace
f by the function f l obtained by setting the variables just read to
their values, and continue with f ' . The key to proving the claimed
bound is that any minterm-maxterm pair of f must share a vari-
able, and hence the algorithm never reads more than 1 minterms
or k maxterms. How do we compute the cheapest minterm and
maxterm? For boolean trees this computation is actually easy, and
this gives a simple polynomial-time (2 max{k,/})-competi t ive al-
gorithm for boolean tree evaluation, for any cost vector. WEAK-
BALANCE does not lose a factor 2 in the competitive ratio, and
more importantly, generalizing its approach enables us to devise an
algorithm BALANCE that is optimal for any given cost vector, as is
described in the next Section.

2.2 Optimal Algorithm for given cost vector

For a particular vector e of costs, the optimal competitive ratio
7¢ (T) can be much less than 7 (T) , the ratio guaranteed by WEAK-
BALANCE. These observations lead us to more exact lower bounds
and our algorithm BALANCE which, for any tree T and cost vector
e, achieves the optimal competitive ratio 7e (T). The key to devel-
oping this algorithm is to define certain lower bound functions that
are more refined than the minterm-maxterm based lower bounds
of WEAKBALANCE. For any Boolean tree T and cost vector e,
we define functions fo T (x) and f iT(x) representing lower bounds
on the cost that any deterministic algorithm must incur in finding
a 0-witness (or 1-witness, respectively) of S of cost at most x /
These functions imply that for any tree T, every deterministic al-
gorithm must have a competitive ratio of at least the maximum of
maxx{foT (X) / x } and m a x ~ { f ~ (x) / x } .

Lower Bound Functions. For a Boolean tree T, the functions
fo T and f T are computed in a bottom-up manner moving from the
leaves to the root of the tree.

• For a leaf L with cost c, we have

0 i f x < c
fon(x) = f ~ (x) = c i f x > c.

2These functions am actually functions of c as well; we omit this de-
pendence for notational convenience.

585

• For a subtree S, let r s denote the root of S, and let $1, $ 2 , . . . , St
be the subtrees rooted at the children of r s . Suppose we al-
ready know the functions fo s~ and fsli, our goal is to compute
fo s and f s from these functions. There are two cases which
arise now depending upon whether r s is an AND node or an
OR node.

(1) rs is an AND node: Now, a minimal 0-witness for S
consists of exactly one 0-witness for some subtree. The
adversary can thus choose to "hide" this witness in any
of the subtrees, suggesting the bound we define below.
On the other hand, a minimal 1-witness for S consists
of 1-witnesses from each of the subtrees. Thus, the ad-
versary's only choice is to pick such 1-witnesses in a
manner that maximizes any deterministic algorithm's
expenditure, suggesting the other bound we define be-
low. Formally, we define a

loS(X) = ~ foS'(x). (2)

x<i<t

f~(x)----{ei:lIn<_i~X<t} (2 f~i(Xi)) " (3)
Ei zi=~ l<i<t

(2) rs is an OR node: Here the situation is exactly reversed
from that of an AND node. Thus, we define 4

fxS(X) = ~ f l s ' (x) . (4)

l<i<t

E i ~i=~ l<i<t

Remark : It is easy to see that the definitions above imply fo r (c) =
0 (resp. f ~ (c) = 0) if T has no 0-witness (resp. 1-witness) of cost
c or less.

Complexity of comput ing fo T and f ~ : The functions f ~ and fo L
are step functions when L is a leaf and therefore it is easy to see that
the functions fff and f ~ are also step functions for any Boolean
tree T. Hence all the functions above have a compact (of complex-
ity polynomial in the number of leaves and the sum of the costs)
representation as a table of values and this representation can be
computed efficiently: It is clear that the operations of Equations (2)
and (4) can be performed efficiently. For Equations (3) and (5), it
is not difficult to see that by representing all functions as a table
of values, it is possible to calculate them in time polynomial in the
sum of the costs of the leaves.

Later, in the specification of our algorithm, we will also be re-
ferring to the inverse (f0T) -1 and (flT) -1 of these functions. Since
these functions are not injective, this is loose notation. By f - x (y),
we actually mean min{x : f (x) = y}. In words, f - l (y) is the
minimum element in the inverses image of y under f . Also, for
ease of notation, we sometimes refer to fo s and f s for a subtree
rooted at a node x also as f~ and f~ respectively.

We now claim that the above are actually lower bound functions
which have some additional nice properties.

3In Equation (3), the max operator is taken only over those xi such that
there can exist a 1-witness in Si of cost at most xi. If no such xl • • • xt
exist for a particular x, then f s (x) = 0.

4In Equation (5), the max operator is taken only over those xi such that
a 0-witness can exist in Si of cost at most xi. If no such Xl .. • xt exist for
a particular x, then loS(X) : O.

Proposition 2.5 I f T is an arbitrary tree, then fTo (c) (resp. fx T (c))
is a lower bound on the cost any algorithm must incur in the worst
case in order to find a O-witness o f cost at most c (resp. 1-witness
of cost at most c). More specifically, there is an adversary strategy
that ensures that, as long as any algorithm has incurred a cost
strictly less than for(c) (resp. f T (c)):

(1) It does not find a O-witness (resp. 1-witness) of cost at most c.

(2) The partial assignment to the leaves that have been read can
be extended so that a O-witness (resp. 1-witness) o f cost at
most c exists, and also be extended so that every O-witness
(resp. 1-witness), i f any at all, has cost strictly more than c.

Proof: The proof works by inductively moving upward from the
leaves to the root of the entire tree T. For the leaves, the claim
of the Proposition is clearly satisfied; i f e is the cost of the leaf,
then the cost of a 0-witness and 1-witness are both c. Unless an
algorithm incurs a cost of c, the adversary can always set the leaf to
be 0 when it is queried thereby creating a 0-witness of cost c, and
can instead set it to I in which case there is no 0-witness at all (and
therefore trivially every 0-witness has cost more than c).

Suppose S is a subtree whose root rs is an AND node with sub-
trees $1, $2 , . . •, St rooted at its t children. We want to prove that,
assuming fo s ' and f s , satisfy the conditions of the Proposition, the
definition of fo s and f s as per the Equations (2) and (3) above also
satisfies the requirement of the Proposition.

We first consider the case when the algorithm is trying to find
a 0-witness of cost at most c. Note that since rs is an AND node,
the 0-witness is simply a 0-witness of one of the subtrees Si. The
adversary strategy to "hide" a 0-witness of cost at most c is as fol-
lows: The basic idea is to use, for each subtree S~, the strategy for
Si guaranteed by induction. More specifically, for the first t - 1 sub-
trees Sj (excluding Sk for some k) for which the algorithm ends up

spending an amount at least fo s~ (c), ensure (using part (2) of the
inductive hypothesis) that there is no 0-witness for Sj of cost at
most c. For the "last" subtree Sk, use the inductive strategy for Sk
to hide a 0-witness of cost c till the algorithm spends fo s~ (c).

Now suppose an algorithm has spent a total cost C which is

less than the "lower bound function" loS(c) =)-'~, f s o ' (c) as per
Equation (2). Hence there exists a k, 1 < k _< t, such that the
algorithm has spent less than fo sk (c) on S~, and hence the above
adversary strategy ensures that the algorithm has not found a 0-
witness for S. It is also clear that the adversary has the option of
either extending the partial assignment so that a 0-witness of cost
at most c exists, or so that every 0-witness for S has cost more than
C.

Now we consider the case when the algorithm is trying to find
a 1-witness of cost at most c. We may assume that f s (c) > 0 for
otherwise the statement of the Proposition holds vacuously. Note
that a 1-witness of cost c for S consists of 1-witnesses for Si of
cost c~ for I < i < t with ~'~i ci = c. Let us pick c , , c2,. • •, ct for
which the maximum in Equation (3) is attained. By our assumption
on Equation (3), there exist 1-witnesses for Si of cost at most ci
for every i 6 [1..t]. The adversary strategy now is as follows:
for the first (t - 1) subtrees Sj (excluding Sk for some k), for

which the algorithm incurs a cost of at least fs~ (cj), the adversary
causes Sj to evaluate to 1 through a 1-witness of cost at most cj
(using the strategy for each subtree guaranteed by the induction
hypothesis), and thus it reduces the value of S to the value of Sk.
Meanwhile, for Sk, the adversary also uses the strategy for Sk to
hide a witness of cost ck until the algorithm spends f sk (ci). As
long as any algorithm has incurred a cost (strictly) less than f s (c),
this strategy leaves the adversary with the option of either creating
a 1-witness of cost at most c or ensuring that every 1-witness of S
has cost more than c. This completes the proof for the case when S

586

is rooted at an AND node; the other case when it is rooted at an OR
node is handled similarly. •

The BALANCE Algor i thm. We now show how to use the lower
bound functions described above to derive an algorithm, which we
call BALANCE, that achieves the best possible competitive ratio.
The high level idea behind BALANCE is the same as WEAKBAL-
ANCE: At each intermediate node, we balance the amount spent
on reading leaves in each of the subtrees - by "balancing" we do
not necessarily mean that the exact amounts spent are all nearly
equal, rather we mean that the costs of the possible witnesses that
can still be found in all the subtrees are of nearly equal cost, so
that after spending a huge amount, we do not still leave the possi-
bility of there existing a cheap witness in some unexplored part of
the tree which in turn will imply a poor competitive ratio. BAL-
ANCE actually uses the above lower bound functions fo T and f ~
for the balancing criterion. The algorithm is formally described in
Figure 2.

We want to prove that BALANCE indeed achieves the optimal
competitive ratio % (T) for any Boolean tree T and cost vector e.
For this we prove below that if there is a witness (for T evaluating
to either 0 or 1) of cost at most c, then BALANCE discovers the wit-
ness by spending a total cost that is at most max{loT(c) , f ~ (c) } .
In conjunction with Proposition 2.5, note that this immediately im-
plies that BALANCE achieves the optimum competitive ratio possi-
ble for any deterministic algorithm; indeed any deterministic algo-

rithm has a competitive ratio of at least m a x]max~{foT(:e) /x} ,
I .

{ f l T (x) / x }] , and BALANCE achieves m a x z this competitive ratio.

Theorem 2.6 I f BALANCE when running on (T, e) spends an amount
which is greater than loT(C) (respectively f T (c)), then there exists
no O-witness (respectively 1-~vitness) for T which has cost at most
c. Or, equivalently, if there exists a O-witness (resp. 1-witness)for
T of cost at most c, then BALANCEproves that T evaluates to 0
(resp. 1) by spending at most f T (c) (resp. f~'(c)) .

Proof: The proof once again works by inductively moving up the
tree from the leaves to the root. When T just consists of a leaf/_,,
the statement of the theorem clearly holds. Now suppose the root r
of T is an AND node (the other case can be handled similarly) with
children x l , x 2 , . . . , xt with subtree Ti rooted at xi for 1 < i < t.

First, suppose BALANCE spends an amount strictly greater than
f ~ (c) when evaluating T, and yet T has a 1-witness W of cost at
most c. Since r is an AND node, W is a collection of 1-witnesses
Wi of cost ci for Ti, 1 < i < t, with c =)-'~=1 ci. By the

definition of f~ (c) in Equation (3), this implies that there exists a

k, 1 < k < t, such that BALANCE spends more than f~k(ek) on
reading leaves in Tk. By induction, however, this implies that Tk
has no 1-witness of cost ek or less, a contradiction to the existence
of Wi. Hence if BALANCE spends more than f ~ (c) , then it rules
out the possibility of T having any 1-witness of cost c or less.

We now consider the case of 0-witnesses. Suppose BALANCE
has spent an amount more than for(e) E ~ = I ri = /Co (c) and yet
there is a 0-witness W of cost c; we will then arrive at a contradic-
tion. Using the fact that r is an AND node, the witness W is simply
a 0-witness Wi of cost c for some i, 1 <_ i < t, say for definiteness,
it is a 0-witness Wt for Tt. By induction, we know that BALANCE
never spends more than fo Tt (c) on Tt (or else there could not be a
0-witness Wt of cost at most c). Since on the whole BALANCE has
spent more than)-'~=a fZ i (e), there must exist a j , 1 < j < t, say
for definiteness j ---- 1, such that BALANCE has spent more than
f ~ (c) on T1. Now consider the point when BALANCE chose the
recommendation R1 = (L1, cL~) from 7'1 and went above fo 7"1 (c)

on its expenditure on T~, so that Cost~ 1 + eLl > f ~ (c). At

this point, it rejected the recommendation Rt = (Lt, eLt) from Tt
which we know satisfies Costzt +CL~ <_ fo Tt (c). But we then have

_< < (So l)- (Cost + c 1). Thus
BALANCE would have never chosen the recommendation from Tx
over that of Tt (here we are using the fact at levels where the parent
is an AND node, BALANCE uses the function fo T to decide whose
recommendation to take), a contradiction. Hence there cannot be a
0-witness of cost at most c as we supposed, and we are done. •

Corol la ry 2.7 For any boolean tree T and cost vector e, BAL-
ANCE achieves a competitive ratio of T¢(T).

2.3 Threshold Trees

Observe that AND and OR gates are both threshold gates, i.e., their
output is 1 provided sufficiently many of its inputs are set to 1. It
turns out the BALANCE algorithm of the previous sections can be
modified to competitively evaluate threshold trees as well: a thresh-
old tree is a tree where each internal node is a threshold (t ,p)-gate
for some values of t, p, where the output of a (t, p)-gate is 1 if and
only if at least p of its t inputs are 1. The values Of the threshold
p can vary over the nodes of the tree. The algorithm for evaluating
threshold trees is BALANCE with appropriate lower bound func-
tions defined for threshold gates akin to the functions defined for
AND and OR gates. The structure of witnesses is more general than
for Boolean trees, and as a result we need to run two algorithms
in parallel (balancing the costs they incur) one of which uses the
function f l and the other fo for the balancing criterion; this incurs
a factor 2 loss in the competitive ratio of the algorithm. We next
specify the lower bound functions for general threshold gates. The
details of the proof on how and why modified BALANCE works for
threshold trees are similar to those given for Boolean trees and are
omitted in this version.

Lower Bound Func t ion for Thresho ld Gates: Suppose a thresh-
old tree T has a (t ,p) -gate at its root r and let S 1 , . . . , ,-qk be the
subtrees rooted at the children of r . We define s

max {
~ l , . . , , ~ p :

~./ =. i = ®

+ . + Sx

(6)
Observe that this equation is equivalent to:

max {ST' l (x l)+
L ==1 z l o - - 1 :

+ E,,, Ej x,)}]
(7)

The latter equation gives insight into the lower bound argument,
while the former corresponds to the argument for osptimality of the
modified BALANCE algorithm. The equation for f~ is obtained by

5In Equations (6) and (7), the first max operators are taken over choices
of l = { i1 , i 2 , . . . , i p} C [t]. In Equation (6), the second max op-
erator is taken only over choices of x l , . . . ,xp such that there can ex-
ist 1-witnesses in S i a , . . . , Sip of cost at most X l , . . . , Xp, respectively.
If no such X l . . • xp exist for a particular x, then the value of the max
is 0. Similarly, in Equation (7), the second max operator is taken only
over choices of Xl , . . . , :~p-1 such that: (A) there can exist 1-witnesses
in Sil , . •., Si(p_ x) of cost at most x 1,. • -, x~_ 1, respectively; (B) there
exists some i ~ I such that a 1-witness can exist in Si of cost at most
x -)"~d :rj. Again, if no such Xl . . . x p - 1 exist for a particular x, then
the value of the max is 0.

587

Algorithm BALANCE:

Input: A Boolean tree T with a cost vector c on its n leaves.
Output: The value of the tree T.

/* For each node x, we keep track of the total cost Cost~ incurred on the subtree rooted at x. */

Let Cost~ = 0 for all nodes x in the tree.

Compute the lower bound functions f~ and f~' for all nodes x of T. (Actually we will only be
referring to the "inverses" of these functions.)

While T is not fully evaluated

1. Moving up the tree from the leaves to the root:

(a) Each leaf L which has not been read or pruned yet passes a recommendation
RL = (L, CL) up to its parent. (CL is the cost of leaf L.)

(b) Each internal node x of the tree that receives recommendations R1, R 2 , . . . , Rt, with
R / = (Li, CL~), from its t (not yet pruned) children x l , x 2 , . . . , xt chooses one of its children
as follows:

(i) If x is an AND node, choose the child Xq with the minimum value of (fo q)-1 (czq + Costxq).
• Z q - - I

(n) If x ls an OR node, choose the chdd xq w l t h t h e r m n l m u m v a l u e o f (f l) (•Lq +Costzq).
(ties are broken arbitrarily)

Node x then propagates the recommendat ion/~ from Xq up to its parent
(unless x is the root in which case goto Step 2)

/* At this point recommendations have passed upward to the root from the leaves. */

2 . /* Now we are at the root r and say it chose a recommendation RL = (L, cz) . */
The value of the leaf L is read at a cost of CL.

3. For all ancestors y of L in T the total cost incurred on their subtree is increased by CL,
i.e perform Cost~ = Cost~ + CL.

endWhile

Output the value of the tree T.

Figure 2: The BALANCE Algorithm.

588

writing the above equation with p ' ---- t - p + 1 instead o f p since
the complement of a (t ,p)-gate is a (t, t - p + 1)-gate. 6

Theorem 2.8 For any threshold tree T and any cost vector e, there
is a polynomial time algorithm for evaluating T with competitive
ratio at most tw&e ",[~ (T).

2.4 Game Trees

We can in fact generalize BALANCE to competitively evaluate game
trees (also called MIN/MAX trees). A game tree has real values on
its leaves and the internal nodes are MIN and MAX functions; our
goal is to evaluate the value of the root.

For a MIN/MAX tree T we use a pair of witnesses, an L-
witness and a U-witness, that prove matching lower and upper
bounds respectively on the value of the tree. One can then de-
fine app.sopriate lower bound functions f ~ , f u r similar to the func-
tions f l" , f~" (for Boolean trees) respectively, and run two copies
of BALANCE simultaneously (balancing the cost they incur), one
trying to prove a lower bound (on the value of T) and using fff for
balancing, and the other trying to prove a matching upper bound
(and using f u T for balancing), till these two bounds match.

Theorem 2.9 For any MIN/MAX tree T and a cost vector c, there
is an efficient algorithm that evaluates T with a competitive ratio
at most 2"yc (T).

The above theorem also holds for a common generalization of thresh-
old and MIN/MAX trees where the internal nodes are gates that
return the t TM largest element for some t (the value of t could be
different for different nodes).

3 Ultra-uniform Prices

Given a Boolean tree T with n leaves, we ask: how do we "fairly"
price the leaves of T so that every on-line algorithm achieves the
same competitive ratio? Such a price vector, if one exists, is called
an ultra-uniform price vector. Intuitively, it means that the leaves
are so evenly priced that at every stage it does not matter which
leaf is queried next, from the point of view of the competitive ratio.
(Clearly if a leaf is overpriced, an algorithm will defer reading it
unless absolutely necessary; and similarly, if a leaf is underpriced
it will be read right away). It is far from clear why such a pricing,
which appears to be a very strong requirement, should exist at all.
We show in this section that such a pricing not only exists, but can
also be found efficiently.

Theorem 3.1 Given a Boolean tree T with n leaves, one can find
an ultra-uniform price vector for T in polynomial (in n) time.

Proof: The idea is to ensure that the cost of all 0-witnesses o f T is
the same, say co, and similarly that the cost of all 1-witnesses of T
is the same, say cx (the costs co, cl need not be equal).

We first claim that any setting of prices satisfying the above
property is in fact an ultra-uniform price vector. To see this, note
that tree functions are evasive and hence any algorithm can be
forced to examine all the leaves, and the final value of the tree can
be set to either 0 or I after the last leaf is read. If C is the total cost
of all the leaves, any algorithm can thus be forced to have a compet-
itive ratio of C/min(co, cl) . Moreover, any algorithm has a com-
petitive ratio at most C/rain(co, el) , as the most an algorithm can
spend is the total cost C of all the leaves, and the adversary incurs
a cost at least rain(co, Cl) for both 0-witnesses and 1-witnesses.
Hence these prices are indeed ultra-uniform.

We now describe how to construct prices that ensure the uni-
formity of the costs of 0-witnesses and 1-witnesses. It is easy to

~For our algorithm, it is important that these functions fo T and f l T can
be computed in polynomial time; this turns out to be true.

see that if this property holds for a Boolean tree T , then it holds for
all subtrees of T as well, and this actually shows that such a price
vector is unique up to scaling. This motivates the construction of
prices in a bottom-up fashion, appropriately rescaling the prices as
we move up the tree so that when we reach each intermediate node,
the cost of all 0-witnesses and 1-witnesses of the subtree rooted at
that node have the same cost.

We begin by setting the prices of all leaves to 1. As we move
up the tree, we maintain, for each node v that has been visited,
quantities Co [v] and C1 [V] which represent the uniform costs of all
0-witnesses and 1-witnesses respectively in the subtree rooted at v
just after v was visited (these quantities will change as we move
further up the tree to v 's ancestors). Now, suppose we move up the
tree and reach an internal node u (which we assume for definite-
ness to be an AND node) with children u l , u 2 , . . . , uk (which are
OR nodes). Our goal is to construct an ultra-uniform price vector
for T~,, the subtree of T rooted at u, from the ultra-uniform price

vectors/~i of the T,,~ 's. Since u is an AND node, a 0-witness of
T,, is simply a 0-witness of one of the T,,~'s. Hence in order to
make the cost of all 0-witnesses of T,, equal, we rescale the prices
of the nodes in the T,,~ 's so that the cost of 0-witnesses of T~,~ and
T,,j for 1 < i < j < k are all the same. We can achieve this,

for instance, by dividing the price vector a6i of the leaves in T,,~ by
Co[u/]. After this rescaling, all 0-witnesses of Tu have cost 1, so
we set Co [u] = 1. A 1-witness of T,, is the union of 1-witnesses
for T~,,, T , , ~ , . . . , T,,~ ; after the above rescaling all 1-witnesses in
T,,~ have the same cost C1 [ui]/Co[ui], and hence all 1-witnesses

of T,, have the same cost C1 [u] h k = E i = I Cl[ui]/Co[ui].
When we reach the root of the tree T, we have a price vector

with the required property. It is clear that this procedure can be
implemented to run in O(n ~) time, and thus an ultra-uniform price
vector for T exists and can be found in polynomial time. •

4 Searching with Prices

4.1 A near-optimal algorithm

We outline an algorithm for searching an n element array with com-

petitive ratio bounded by log 2 n + O(log~/a n) for any cost vector
on the elements of the array. Later, we will improve the algorithm
to get a competitive ratio bounded by log 2 n+O(ox/]-O-~ log log n).
This proves that the unit price vector is essentially an extremal price
vector for binary search, and also that our algorithm is at most off
by lower order terms from the true competitive ratio.

The algorithm is motivated by two goals: (1) We do not exam-
ine costly elements until we have eliminated the possibility of the
element q lying in an array location occupied by cheaper elements;
and (2) to achieve a competitive ratio close to log s n, we mimic
binary search by attempting to halve the search interval with every
comparison. Unfortunately, the two goals could be contradictory
because the only way to halve the search interval might be to ex-
amine an expensive element.

I-Iigh-level description of the algorithm. Our algorithm uses two
parameters r and c. Initially costs are grouped geometrically by
rounding costs up to the nearest multiple of r ; the algorithm con-
siders groups in increasing order of cost. We normalize costs so that
the lowest cost is 1. Let group j consist of all elements with cost
r j . The algorithm maintains a search interval I , which is the set of
possible (contiguous) locations where q could lie, and splits I into
three (contiguous) intervals L, M, R where the left and right inter-
vals L, R do not contain any element of (the current) group j and
the middle interval M, referred to as the effective interval, which
begins and ends with an element of group j . The algorithm main-
tains the property that I does not contain any elements of groups
(j - 1) or lower. We repeatedly compare q with the group j ele-
ment that is closest to the middle of the effective interval M. Such

589

comparisons are called regular comparisons and each such compar-
ison is guaranteed to halve the size of the effective interval. This
certainly makes progress as long as the element q lies within the ef-
fective interval. However, if q does not belong to the current group
j , at some point, q could fall outside the effective interval for group
j . In such a case, we do not want to spend too much on querying
group j elements. To handle this possibility, after every c regu-
lar comparisons of q with group j elements, we perform an extra
comparison by querying one of the extreme group j elements. This
checks if q lies outside the effective interval. If the current search
interval I does not contain any element of the current group j , we
move on to group j + 1, and continue the algorithm.

We now give a formal description of the algorithm.

Algorithm Search

1. I +-- [1 . . . n], j +-- O, left_ent ~-- O, right_ent +-- O.

2. While ! does not contain an element of group j
j +-- j + 1; left_cnt +-- 0; right_cnt +-- O.

endWhile

3. If left_cnt = e,
left_cnt +-- O.
Let x be the leftmost element of group j in I .
type +-- EXTRA. Jump to Step 6.

4. If right_cnt = c,
right_ent +-- O.
Let x be the rightmost element of group j in I .
type +-- EXTRA. Jump to Step 6.

5. Decompose I as I = L o M o R into three intervals L, M, R
such that the left and right intervals L and R do not contain
any element of group j , while the middle interval M starts
and ends with an elemeht from group j . M is thus the current
effective interval.

Let x be the element in group j that is closest to the middle
of M, breaking ties arbitrarily.
type +-- REGULAR.

6. Le t I = IL o x o lR.

7. Compare q to x.

8. If x = q, return P R E S E N T
else if q < x,

I+--IL,
if type = REGULAR

left_cnt +-- left_cnt + 1; right_cnt ~-- O.
else if q > x,

I+ ' - In ,
if type = REGULAR

right_ent +-- right_ent + 1; left_ent +-- O.

9. If I is empty, return NOT P R E S E N T

10. Goto step 2.

Competi t ive analysis of the algori thm. The algorithm maintains
an interval I of the array in which the element q being searched for
must lie. It compares q to some element x in the current interval.
Depending on the result of the comparison, the algorithm restricts
its search in the subinterval of I to the left of x (if q < x) or to the
right of x (if q > x). This procedure is thus guaranteed to find q if
indeed it is present in the array.

Recall that we distinguish between two kinds of comparisons
made by the algorithm. If the element x compared to is chosen in
Steps 3 or 4, such a comparison is called an extra comparison. On
the other hand, if the element x compared to is chosen in Step 5

such a comparison is called a regular comparison. The following
lemma shows that the algorithm makes progress in performing reg-
ular comparisons.

Lemma 4.1 For all regular comparisons performed on group j the
length of the effective interval goes down by a factor of at least 2.

Proof: Suppose I is the current interval. Let I ---- L o M o R
where L, M and R are the intervals obtained in Step 5. Suppose
x is the element that is chosen to compare with. By choice, x is
the element closest to the middle of M. Let M = ML o x o MR.
Without loss of generality, assume that IMLI _< IMRI. Hence,
IMLI < (IMI - 1)/2. Further, let MR = L' o M' where M '
is the smallest interval containing all the elements of group j in
MR. Note t h a t M = ML o x o L ' o M ' . By the choice of x,

_ ½]MI. IM'I < [MLI + 1. We claim that [M'I < If [MLI <
(IM1-1) /2 , IM'I < IMLI+I < ½1MI. If IMLI = (IM1--1)/2,
x is exactly the middle element of M. Thus IMnl = (IMI - 1)/2
and IM'I <_ IMRI < XlMI.

I fq < x, the effective interval is a subinterval of ML. Suppose
q > x. In this case, the effective interval is M ' . Inboth cases, the
size of the effective interval drops by a factor of at least 2. •

Let n j be the length of the search interval I at the first time that
the algorithm considers group j . If m is the last group examined,
define nm+~ to be 1. Let ej be the total number of comparisons
performed with elements of group j .

Lemma 4.2

cj <_ 1 + log z ~ + e + 2

Proof: Let I j be the search interval at the first time that the algo-
rithm considers elements of group j . I j+x must have been created
by comparisons to the elements immediately to the left and right of
Ij+l (say xt and xr respectively). Suppose that xt was compared
to before xr. We will bound separately, the number of comparisons
of group j performed up to the comparison with xz and the number
after the comparison with xt.

Consider the number of comparison steps performed up to the
point that xz was compared with. Throughout this time, l j+1 is
part of the effective interval. Let el be the length of the effec-
tive interval at the first time that group j is considered and e2 be
the length of the effective interval just before xl is compared with.
el < IZJl = nj and e2 > II~+11 = nj+l. Since each regular
comparison reduces the length of the effective interval by at least
2, the number of regular comparisons before xz is compared is at
most log2(e l /e2) < log2(nj/nj+l) . Further, the number of ex-
tra comparisons performed during this time is at most 1 /c times
the number of regular comparisons, since each extra comparison
can be charged to c regular comparisons. Thus the total number of
comparisons including the comparison to xl is at most

1 + (1 + 1) l°g2

After the comparison with xt, the search interval is of the form
I j + l o xr o I ' . Since lj+1 does not contain any elements of group
j , it is no longer part of the effective interval. Since the search gets
narrowed down to lj+1 later, it follows that for all group j elements
x ' compared to from this point on, q < x ' . But there can be at most
c + 1 such comparisons. If within c more comparisons the search
has not already been narrowed down to Ij+~, then element x~ will
be picked in the next iteration in Step 3 and compared with q. That
will narrow down the search interval to Ij+~ in at most e + 1 steps.
Adding the two bounds, we get the bound in the statement of the
lemma. •

590

Theorem 4.3 For r 1 + 1 / l o g 1/a n and c 1/3 = = log2 n, the com-
petitive ratio of the algorithm is bounded by log= n + O(log~/a n).

Proof: Let group m be the last group examined by the algorithm.
Then the cost of the algorithm is at most

Z rJ " cj < Z r i 1 + log2 nj ' + c + 2

j=O j=O

(1) o,
= 1 + , J • log=

j =o j =o

< (1 - } - l) rm logsnq - (e - } -2) rm+l
- - r - - 1

The optimal proof has cost at least r m-1. Hence the competitive
ratio of the algorithm is bounded by

(l + l) r l o g s n + (c + 2) r= .
r - - 1

1/3 , 1/3
Setting r ---- 1 + I / l o g 2 n a n d c = m g 2 n, we get the desired
bound. •

We can improve the competitive ratio by modifying the algo-
rithm slightly. The idea is to change the way in which extra com-
parisons are performed. Note that in the algorithm described above,
the number of extra comparisons for group j is of the form c +

log 2 (_.SL'~ The improvement comes from balancing the two \ n j + l)"
terms in this expression. The modified algorithm does not use the
parameter c. We keep track of the total number of regular compar-
isons performed so far for the current group. An extra comparison
is performed every time the total number of regular comparisons
equals a perfect square. As before, let cj be the total number of
comparisons performed with elements of group j . We can prove
that

q < log= nj + 0 og 2

Setting r = 1 + 2/1V/i-~2n, we can prove that the competitive
ratio of the algorithm is bounded by log 2 n + O(vq--og n log log n).
We omit the details in this extended abstract.

4.2 Optimal search for a given cost vector

We now present a dynamic programming algorithm to compute the
optimal algorithm for searching a sorted array of priced elements.
Straightforward dynamic programming would entail considering
all O(n =) subintervals, and computing the best competitive ratio
possible for each subinterval. This, however, fails, as can be seen
from the following illustration. Suppose on some particular subin-
terval I of interval J , the adversary could force any algorithm to
pay total cost at least 2 to find an element of cost 1, or pay total
cost at least 60 to find an element of cost 20. A strict competitive
ratio analysis would lead us to believe that the adversary should al-
ways force the algorithm to pay at least 60 to find an element of
cost 20. However, if on the larger interval J , it was the case that
the adversary could force any algorithm to pay cost at least 2 be-
fore reducing the search problem to I , then clearly when the search
focuses on I , the adversary should force the algorithm to pay 2
more and find the element of cost 1, as this would lead to an overall
competitive ratio of 4 (as opposed to (60 + 2)/20).

This suggests the following algorithm, which does work: For
every subinterval I , and every x, we will first compute a lower

bound f (I , x) for the competitive ratio that any deterministic al-
gorithm can achieve on I , given that the algorithm has already
spent x. For any element a E I , let ca denote the cost of exam-
ining a. For any singleton interval I = {a}, clearly f ({a} , x) =
(x + ea)/c~ is an exact bound on the competitive ratio. Also, for
an empty interval, we let f (I , x) = 0 for all x. Now for all larger
intervals I , we define:

r
f ([[a.. b], x) = rain / max{ f ([a . . . (i - 1)], x + ci),

iEl L
(X + Ci)/Ci,

/ ([(i + 1) . . . b], x + c,)} /

(8)
A simple inductive argument shows that this gives the desired lower
bound, as the algorithm has choice over which i to examine, and
the adversary can choose to either respond that the element being
searched for is smaller than, equal to, or greater than element i.
Furthermore, we can efficiently pre-compute a table of these lower
bounds for every subinterval and every value for x up to the sum
of all costs. This then yields an optimal algorithm for performing
the binary search, as the optimal first move for interval I having
already spent x is determined by the minimizing choice of i in the
computation of f (I , x).

Acknowledgments
We thank Ravi Kumar for useful discussions and for suggesting the
generalization to threshold trees.

References

[1] A. Blum, E Chalasani, D. Coppersmith, W. Pulleyblank, E Raghavan
and M. Sudan, "The minimum latency problem," Proceedings of the 26th
ACM Symposium on the Theory of Computing, 1994, 163-171.

[2] A. Borodin, R. E1-Yaniv, On-Line Computation and Competitive Anal-
ysis, Cambridge University Press, 1998.

[3] B. Bollobas, Extremal Graph Theory, Academic Press, 1978.
[4] Clickshare Service Corp., www.clickshare.com.
[5] O. Etzioni, S. Hanks, T. Jiang, R.M. Karp, O. Madani, O. Waarts, "Ef-

ficient information gathering on the Interact," Proc. IEEE FOCS 1996.
[6] H. Garcia-Molina, S. Ketchpel, N. Shivakumar, "Safeguarding and

Charging for Information on the Interact," Proc. Intl. Conf. on Data En-
gineering, 1998.

[7] R. Heiman, A. Wigderson, "Randomized vs. Deterministic Decision
Tree Complexity for Read-Once Boolean Functions," Complexity The-
ory, to appear.

[8] J. Koml6s, Y. Ma, E. Szemer6di, "Matching nuts and bolts in
O(n log n) time," Proc. ACM-SIAM SODA 1996.

[9] E. Koutsoupias, C. Papadimitriou, M. Yannakakis, "Searching a fixed
graph," Proc. Intl. Conf. on Automata, Languages, and Programming
1996.

[10] D. Kreps, A Course in Micro-Economic Theory, Princeton University
Press, 1990.

[11] R. Motwani, E Raghavan, Randomized Algorithms, Cambridge Uni-
versity Press, 1995.

[12] Pricing Economic Access to Knowledge (PEAK) Home Page,
http://www.lib.umich.edu/libhome/peak/papers.html.

[13] S. Sairamesh, C. Nikolaou, D. E Ferguson and Y. Yemini. Economic
Framework for Pricing and Charging in Digital Libraries. D-Lib Maga-
zine, February 1996.

[14] M. Saks, A. Wigderson, "Probabilistic Boolean decision trees and the
complexity of evaluating game trees" Proc. IEEE FOCS, 1986.

[15] M. Snir, "Lower bounds on probabilistic linear decision trees," Theo-
retical Computer Science 38(1985), pp. 69-82.

[16] D. Tygar, "NetBill: An Interuet Commerce System Optimized for
Network-Delivered Systems" IEEE Personal Communications 2(1995),
pp. 20-25.

[17] "What's the Value of Digital Information?", panel at ICEE Conf. on
Electronic Commerce: Foundations for the Future, 1999.

[18] Y. Zhang, "On the optimality of randomized alpha-beta search," SIAM
Journal on Computing 24(1995), pp. 138-147.

591

