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—Simpler proofs of many of the previously known results about statistical zero knowledge, such as
the Fortnow and Aiello–H˚astad upper bounds on the complexity ofSZK and Okamoto’s result that
SZK is closed under complement.

—Strong closure properties ofSZK that amount to constructing statistical zero-knowledge proofs for
complex assertions built out of simpler assertions already shown to be inSZK.

—New results about the various measures of “knowledge complexity,” including a collapse in the
hierarchy corresponding to knowledge complexity in the “hint” sense.

—Algorithms for manipulating the statistical difference between efficiently samplable distributions,
including transformations that “polarize” and “reverse” the statistical relationship between a pair
of distributions.

Categories and Subject Descriptors: F.1.2 [Computation by Abstract Devices]: Modes of Computa-
tion—interactive and reactive computation; F.1.3 [Computation by Abstract Devices]: Complexity
Measures Classes

General Terms: Security, Theory

Additional Key Words and Phrases: Knowledge complexity, proof systems, statistical difference, zero
knowledge

1. Introduction

A revolution in theoretical computer science occurred when it was discovered that
NP has complete problems [Cook 1971; Levin 1973; Karp 1972]. Most often,
these theorems and other completeness results are viewed as negative statements,
as they provide evidence of a problem’s intractability. These same results, viewed
as positive statements, enable one to study an entire class of problems by focus-
ing on a single problem. For example, all languages inNP were shown to have
computational zero-knowledge proofs when such a proof was exhibited for GRAPH
3-COLORABILITY [Goldreich et al. 1991]. Similarly, the result thatIP = PSPACE
was shown by giving an interactive proof for QUANTIFIED BOOLEAN FORMULA,
which is complete forPSPACE [Lund et al. 1992; Shamir 1992]. More recently,
the celebratedPCP theorem characterizingNP was proven by designing efficient
probabilistically checkable proofs for a specificNP-complete language [Arora et al.
1998; Arora and Safra 1998].

In this article, we present a complete problem forSZK, the class of promise
problems1 possessing statistical zero-knowledge proofs (against an honest veri-
fier). This problem provides a new and simple characterization ofSZK—one which
makes no reference to interaction or zero knowledge. We propose the use of com-
plete problems as a tool to unify and extend the study of statistical zero knowledge.
To this end, we use our complete problem to both establish a number of new results
aboutSZK and easily deduce nearly all previous results aboutSZK.

1 A promise problemis a decision problem given by a pair of disjoint sets of strings, corresponding
to YES andNO instances. In contrast to languages, there may be strings that are neitherYES instances
nor NO instances. A formal definition of promise problems is given in Section 2.1.

Although our complete problem is not a language, it still provides a meaningful characterization of
the class of languages possessing statistical zero-knowledge proofs. Moreover, essentially all of the
applications of our Completeness Theorem to prove results about the promise classSZK also imply
the analogous results for the language class. Thus, throughout the article, all discussion refers to
promise problems rather than languages (except where otherwise noted). Section 2.1 contains further
elaborates on the issue of promise problems vs. languages.
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1.1. STATISTICAL ZERO KNOWLEDGE. Zero knowledge was introduced in the
seminal paper of Goldwasser et al. [1989] within the context of their new notion
of interactive proof systems. Informally, aninteractive proof is a protocol in
which a computationally unbounded proverP attempts to convince a probabilistic
polynomial-time verifierV of an assertion, namely that a stringx is aYES instance
of some (promise) problem. Thezero knowledgeproperty requires that, during
this process, the verifier learns nothing beyond the validity of the assertion being
proven. To formalize this seemingly impossible notion, two probability distribu-
tions are considered:

(1) The interaction ofP andV from V ’s point of view.
(2) The output of a probabilistic polynomial-time machine not interacting with

anyone, called thesimulator, on inputx.

An interactive proof system (P,V) is said to bezero knowledgeif, for every YES
instancex, the two distributions above are “alike.” Intuitively, the verifier gains
no knowledge by interacting with the prover except thatx is aYES instance, since
it could have run the simulator instead. The specific variants of zero knowledge
differ by the interpretation given to “alike.” The most strict interpretation, leading
to perfect zero knowledge, requires that the distributions be identical. A slightly re-
laxed interpretation, leading tostatistical zero knowledge(sometimes calledalmost
perfect zero knowledge), requires that the distributions have negligible statistical dif-
ference from one another. The most liberal interpretation, leading tocomputational
zero knowledge, requires that samples from the two distributions be indistinguish-
able by any polynomial-time machine.

In this work, we focus on the class of problems possessingstatistical zero-
knowledge proof systems, which we denoteSZK. We remark that we concentrate
on zero-knowledge proofs against anhonest verifier, that is, the verifier that fol-
lows the specified protocol. In cryptographic applications, one usually wants the
zero-knowledge condition to hold for all (even cheating) verifier strategies. How-
ever, subsequent to this work, it has been shown that one can transform any proof
system that is statistical zero knowledge against an honest verifier into one that is
statistical zero knowledge against all verifiers [Goldreich et al. 1998], so restricting
our attention to honest verifiers causes no loss of generality.

One reason for interest inSZK is that it contains a number of important compu-
tational problems. These include problems not known to be inNP, such as GRAPH
NONISOMORPHISM[Goldreich et al. 1991] and PERMUTATION GROUPNONISOMOR-
PHISM[Kannan 1989]. It also contains problems with cryptographic application and
significance that are believed to be hard on average, such as QUADRATIC RESIDU-
OSITY (and its complement) [Goldwasser et al. 1989], a problem equivalent to the
DISCRETELOGARITHM problem [Goldreich and Kushilevitz 1993], and approxi-
mate versions of the SHORTESTVECTORand CLOSESTVECTORproblems in lattices
[Goldreich and Goldwasser 2000]. At the same time, the statistical zero knowledge
property has several strong consequences. Unlike a computational zero-knowledge
protocol, a statistical zero-knowledge protocol typically remains zero know-
ledge even against a computationally unbounded verifier.2 In addition, a problem

2 A rare exception are the results of Bellare et al. [1990], which yield protocols that are only zero
knowledge for polynomial-time verifiers.
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that has a statistical zero-knowledge proof must lie low in the polynomial-time hi-
erarchy. In fact, such a problem cannot beNP-complete unless the polynomial-time
hierarchy collapses [Fortnow 1989; Aiello and H˚astad 1991; Boppana et al. 1987].
BecauseSZK contains problems believed to be hard yet cannot containNP-
complete problems, it holds an intriguing position in complexity theory.

1.2. THE COMPLETEPROBLEM. The promise problem we show to be complete
for SZK is STATISTICAL DIFFERENCE. An instance of STATISTICAL DIFFERENCE
consists of a pair of probability distributions, specified by circuits that sample from
them. Roughly speaking, the problem is to decide whether the distributions defined
by the two circuits are statistically “close” or “far apart”. (The gap between “close”
and “far apart” is what makes it a promise problem and not just a language.) Our main
theorem is that STATISTICAL DIFFERENCEis complete forSZK. This Completeness
Theorem gives a new characterization ofSZK. Informally, it says that the assertions
that can be proven in statistical zero knowledge are exactly those that can be cast as
deciding whether a pair of efficiently samplable distributions are statistically close
or far apart.

The starting point for our proof of the Completeness Theorem is a powerful the-
orem of Okamoto [2000], which states that all languages inSZK havepublic-coin
(also known as Arthur–Merlin [Babai and Moran 1988]) statistical zero-knowledge
proofs. Using the approach pioneered by Fortnow and others [Fortnow 1989; Aiello
and Håstad 1991; Ostrovsky 1991], we analyze the simulator of such a proof sys-
tem and show that statistical properties of the simulator’s output distribution can be
used to distinguish betweenYES andNO instances of the problem in consideration.
Our key new observation is that, for apublic-coinproof system, these statistical
properties can be captured by the statistical difference between efficiently sam-
plable distributions. We thereby conclude that every problem inSZK reduces to
STATISTICAL DIFFERENCE.

To show that STATISTICAL DIFFERENCEis inSZK, we exhibit a simple 2-message
proof system for it, generalizing the well-known proof systems for QUADRATIC
NONRESIDUOSITY [Goldwasser et al. 1989], and GRAPH NONISOMORPHISM
[Goldreich et al. 1991]. One ingredient in our proof system is a new “Polarization
Lemma” for statistical difference, which may be of independent interest. Roughly
speaking, this lemma gives an efficient transformation that takes as input a pair
of probability distributions (specified by circuits that sample from them) and pro-
duces a new pair of distributions such that if the original pair is statistically close
(respectively, far apart), the new pair is statistically much closer (respectively, much
further apart).

1.3. CONSEQUENCES. We propose using complete problems, such as STATISTI-
CAL DIFFERENCE, to unify and extend the study ofSZK. We also use the connection
betweenSZK and statistical properties of samplable distributions to establish new
techniques for manipulating such distributions. The results we obtain along these
lines are summarized below.

The Relationship betweenSZK and BPP. Our complete problem illustrates
that statistical zero knowledge is a natural generalization ofBPP. In the definition
of STATISTICAL DIFFERENCE, the circuits can output strings of any length. If we
restrict the circuits to have output of logarithmic length, the resulting problem is
easily shown to be complete forBPP.
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Efficient SZK Proof Systems. The zero-knowledge proof system we exhibit
for STATISTICAL DIFFERENCEhas many attractive properties (which we describe
shortly); by the Completeness Theorem, it follows that every problem inSZK also
has a proof system with such properties. First, the protocol is very communication
efficient–only two messages are exchanged between the prover and verifier, and
the prover only sendsone bit to the verifier (to achieve soundness error 1/2). In
addition, we will show that when the input is aYES instance, the verifier’s view of
the interaction can be simulated by a polynomial-time simulator withexponentially
smallstatistical deviation.

Closure Properties. Using the complete problem, we demonstrate thatSZK
has some very strong closure properties. These can be informally described as as-
serting the existence of statistical zero-knowledge proofs for complex assertions
built out simpler assertions already known to be inSZK. These complex asser-
tions take the form of arbitrary propositional formulas whose atoms are statements
about membership in some problem inSZK, and the statistical zero-knowledge
proofs we exhibit have complexity that is polynomial in the size of these formulas.
These results strengthen earlier ones of De Santis et al. [1994] and Damg˚ard and
Cramer [1996], which held for monotone formulas and various subclasses ofSZK,
such as random self-reducible problems.

By the Completeness Theorem, the closure properties we establish are equivalent
to the existence of efficient transformations that manipulate the statistical difference
between samplable distributions in various ways. Indeed, it is by exhibiting such
transformations that we prove the closure properties ofSZK. The transformations
we give (and their application to closure properties) are inspired by the techniques
of De Santis et al. [1994].

Simpler Proofs of Previous Results.Many of the previous results aboutSZK can
be deduced as immediate corollaries of our Completeness Theorem and its proof.
For example, the result of Okamoto [2000] thatSZK is closed under complement
follows directly from our proof of the Completeness Theorem. Then, using the fact
that our proof system for STATISTICAL DIFFERENCEis a constant-round one, we
deduce thatSZK ⊂ AM ∩ co-AM, as originally proven by Fortnow [1989] and
Aiello and Håstad [1991]. In addition, the result of Ostrovsky [1991] that one-way
functions exist ifSZK contains a hard-on-average problem follows immediately
by combining our Completeness Theorem with a result of Goldreich [1990] on
computational indistinguishability.

Knowledge Complexity. In addition to introducing zero-knowledge proofs, the
conference version of the paper of Goldwasser et al. [1989] proposed a more gen-
eral idea of measuring the amount of knowledge leaked in an interactive proof.
Goldreich and Petrank [1999] suggested several definitions ofknowledge complex-
ity to accomplish this, and relationships between these various types of knowledge
complexity were explored by Goldreich and Petrank [1999], Bellare and Petrank
[1992], Goldreich et al. [1998], Aiello et al. [1995], and Petrank and Tardos [1996].
Loosely speaking, the definitions of (statistical) knowledge complexity measure
the “amount of help” a verifier needs to generate a distribution that is statistically
close to its real interaction with the prover. There are several ways of formaliz-
ing the “amount of help” the verifier needs and each leads to a different notion of
knowledge complexity.
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Our work onSZK turns out to have consequences for (nonzero) knowledge
complexity as well. First, we show that for the weakest of the various measures of
knowledge complexity, namely statistical knowledge complexity in the “hint sense,”
the corresponding hierarchy collapses by logarithmic additive factors at all levels,
and in particular, knowledge complexity logn equals statistical zero knowledge.
No collapse was previously known for any of the variants of knowledge complexity
suggested by Goldreich and Petrank [1999]. Our results are obtained by combining
our results onSZK with a general lemma relating knowledge complexity in the hint
sense to zero knowledgefor promise problems.

As with zero knowledge,perfectknowledge complexity can also be defined. This
measures the number of bits of help the verifier needs to simulate the interaction
exactly, rather than statistically closely. Using our complete problem forSZK, we
improve some results of Aiello et al. [1995] on the perfect knowledge complexity
of statistical zero knowledge.

Reversing Statistical Difference.One interesting result that follows from the
completeness of STATISTICAL DIFFERENCEand the closure ofSZK under comple-
ment is the existence of an efficient mapping which “reverses” statistical difference.
That is, for every pair of efficiently samplable distributions, we can construct another
pair of efficiently samplable distributions such that when the former are statistically
close, the latter are statistically far apart, and when the former are far apart, the latter
are close.

This motivated us to search for a more explicit description of such a transforma-
tion. By extracting ideas from the work of Okamoto [2000] and our proof of the
Completeness Theorem, we have obtained such a description (which we give in
Section 3.4).

WeakSZK and Expected Polynomial-Time Simulators.The original definition
of SZK by Goldwasser et al. [1989] allows the simulator to run inexpectedpolyno-
mial time, whereas we insist on strict polynomial time, following Goldreich [2001].
Actually, our proof of the Completeness Theorem shows that the two definitions are
equivalent forpublic-coinproof systems. That is, if a problem possesses a public-
coin SZK proof system with an expected polynomial-time simulator, then it also
possesses anSZK proof system with a strict polynomial-time simulator (which can
be made public coin by Okamoto [2000]). In fact, the equivalence extends to an even
weaker definition ofSZK, in which it is only required that for every polynomial
p(n), there exists a simulator achieving simulator deviation 1/p(n).

Perfect and Computational Zero Knowledge.Our techniques can also be used
to analyze public-coin perfect and computational zero-knowledge proofs. Although
we do not obtain complete problems in these cases, we do obtain some novel insights
into the corresponding complexity classes. Specifically, in Section 3.2, we show that
every problem possessing a public-coin perfect zero-knowledge proof (essentially)
reduces to a restricted version of STATISTICAL DIFFERENCE. We also show that for
any problem possessing a public-coin computational zero-knowledge proof, there
exist ensembles of samplable distributions indexed by instances of the problem
such that onYES instances, the distributions are computationally indistinguishable
and onNO instances, the distributions are statistically far apart.

Cheating-Verifier Zero Knowledge.Although, in this article, we primarily fo-
cus on honest-verifier statistical zero knowledge, there have been a number of
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works examining “cheating-verifier” statistical zero knowledge, and in particular
relating the honest and cheating-verifier definitions. Some of these works exhibited
transformations from honest-verifierSZK proofs to cheating-verifier ones under
(successively weaker) complexity assumptions [Bellare et al. 1990; Ostrovsky et al.
1993; Okamoto 2000], and others gave unconditional transformations for restricted
subclasses ofSZK [Damgård 1993; Damg˚ard et al. 1995]. Finally, subsequent to our
article, it was proven by Goldreich et al. [1998] that honest-verifier and cheating-
verifierSZK are equal, unconditionally and with no restrictions.

Following the paradigm advocated by Bellare et al. [1990], we use the above
transformations to translate our results about honest-verifierSZK, namely the Com-
pleteness Theorem and its corollaries, to the cheating-verifier class. In Section 3.4,
we precisely state the results thereby obtained for cheating-verifier statistical zero
knowledge.

1.4. SUBSEQUENT WORK. Subsequent to the conference version of this arti-
cle [Sahai and Vadhan 1997], there have a been a number of other works improving
our understanding ofSZK, many of which make use of the complete problem
methodology advocated here. As mentioned above, Goldreich et al. [1998] show
that honest-verifier statistical zero knowledge equals cheating-verifier statistical
zero knowledge. Goldreich and Vadhan [1999] use the complete problem method-
ology to give a simpler proof of Okamoto’s theorem that private-coinSZK equals
public-coinSZK (on which our work relies). In the process, they exhibit another
complete problem forSZK, called ENTROPYDIFFERENCE, which amounts to decid-
ing which of two given distributions (specified by circuits that sample from them)
has noticeably higher entropy than the other. Di Crescenzo et al. [2000] consider
two variants of (honest-verifier) statistical zero-knowledge proofs, namely “proofs
of decision power” and “proofs of decision,” and exhibit such proof systems for
all of SZK. Their construction makes use of the complete problems forSZK given
here and in [Goldreich and Vadhan 1999] and special properties of their proof sys-
tems. Goldreich et al. [2001] study the complexity of interactive proofs with low
prover-to-verifier communication. Using our complete problem, they show that the
class of problems with interactive proofs in which the prover sends only one bit
to the verifier is exactlySZK (modulo some constraints on the completeness and
soundness probabilities).

De Santis et al. [1998] extend the use of complete problems to study “non-
interactive” statistical zero knowledge; they exhibit a complete problem for the
corresponding complexity classNISZK and use it to prove some general results
about the class. Goldreich et al. [1999], exhibit two more complete problems for
NISZK. These problems are natural restrictions of the complete problems forSZK
given here and in Goldreich et al. [1999] and thus they are able to use the complete
problems to relateSZK andNISZK. Gutfreund and Ben-Or [2000] examine weaker
models of noninteractive zero knowledge proofs, and, using our complete problem
and reversal mapping, show that every problem inSZK has a noninteractive statis-
tical zero-knowledge proof in one of their models.

Finally, Vadhan [2000] examines the blow-up in the prover’s complexity incurred
by transformations from private-coin proof systems to public-coin proof systems,
such as those in Goldwasser and Sipser [1989] and Okamato [2000], and shows
that this inefficiency is inherent in the fact that the transformations use the original
prover and verifier strategies as “black boxes”. In fact, it is shown that any black-box
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transformation which preserves the prover’s complexity must fail on our proof
system for STATISTICAL DIFFERENCE.

Unified presentations of many of the above results, together with the results in
this article, can be found in the Ph.D. dissertations of the authors [Vadhan 1999;
Sahai 2000].

2. Preliminaries

2.1. PROMISE PROBLEMS AND COMPLETENESS. The problem we prove to be
complete forSZK is not a language, but rather apromise problem[Even et al.
1984]. Formally, a promise problem5 consists of two disjoint sets of strings5Y
and5N , where5Y is the set ofYES instancesand5N is the set ofNO instances. A
promise problem5 is associated with the following computational problem: Given
an input which is “promised” to lie in5Y ∪ 5N , decide whether it comes from
5Y or5N . Thecomplementof5 is the promise problem5, where5Y = 5N and
5N = 5Y. Note that languages are a special case of promise problems.

We say that promise problem5 reducesto promise problem0 if there is a
polynomial-time computable functionf such that

x ∈ 5Y ⇒ f (x) ∈ 0Y

x ∈ 5N ⇒ f (x) ∈ 0N .

That is, we work with polynomial-time many-one (or Karp) reductions, unless
otherwise specified. We say thatC is closed under reductionsif [5 reduces
to 0 and0 ∈ C] ⇒ 5 ∈ C.

If C is a class of promise problems, we say that promise problem5 is complete
for C if 5 ∈ C and every promise problem inC reduces to5.

If C is a class of promise problems, the correspondinglanguage classClang ⊂ C
is the class of languages inC. It should be noted thatC andClang do not always have
the same complexity-theoretic properties, particular when allowing reductions that
can violate the promise. For example, the promise-problem version ofNP∩co-NP
contains a problem that isNP-hard with respect to Cook reductions, whereas this
does not hold for the language classNP ∩ co-NP assumingNP 6= co-NP [Even
et al. 1984]. (See also Goldreich and Goldwasser [2000]).

Nevertheless, in this article, the study of a promise classC (namely,C = SZK)
proves to be very useful in understanding the corresponding language class. There
are two main reasons for this. First, ifC is closed under reductions (as we will prove
for C = SZK) and5 is complete forC, then5 also meaningfully characterizes
Clang in thatClang = {L : L reduces to5}. Second, many of our results are of the
form “For every problem5 ∈ C, . . . ”. Clearly, all such results will also apply to
Clang becauseClang ⊂ C.

2.2. PROBABILITY DISTRIBUTIONS. If X is a probability distribution (or random
variable), we writex← X to indicate thatx is a sample taken fromX. If S is a set,
we writex∈RS to indicate thatx is uniformly selected fromS.

In this article, we will consider probability distributions defined both by cir-
cuits and by probabilistic algorithms (i.e., Turing machines). IfA is a probabilistic
algorithm, we useA(x) to denote the output distribution ofA on inputx. A PPTal-
gorithm (for “probabilistic polynomial time”) is a probabilistic algorithm that runs
in strict polynomial time. IfC is a circuit mappingm-bit strings ton-bit strings,
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then choosing an inputu uniformly at random from{0, 1}m defines a probability
distribution on{0, 1}n given byC(u). For notational convenience, we also denote
this probability distribution byC. These definitions capture the idea of an “(effi-
ciently) samplable” distribution, as to sample from the distribution one need only
run the algorithm or evaluate the circuit.

2.3. THE STATISTICAL DIFFERENCEMETRIC. For probability distributions (or
random variables)X andY on a discrete setD, thestatistical differencebetween
X andY is defined to be

‖X − Y‖ = max
S⊂D
|Pr[X ∈ S] − Pr[Y ∈ S]|. (1)

This is often also called thevariation distancebetweenX andY. Removing the
absolute values in (1) does not change the definition because replacingS by its
complement changes the sign (but not magnitude) of Pr[X ∈ S]−Pr[Y ∈ S]. The
maximum in (1) can be achieved by takingS= {x : Pr[X = x] > Pr[Y = x]} (or
its complement); this can be seen directly or in the proof of Fact 2.1 below.

There is an equivalent formulation of statistical difference in terms of the`1 norm
|·|1 that will sometimes be more convenient for us. To every probability distribution
X on a discrete setD, themass functionof X is a vector inRD whosexth coordinate
is Pr[X = x]. For the sake of elegance, we also denote this vector byX. With this
notation, we can state the following well-known fact.

FACT 2.1. ‖X − Y‖ = 1
2 |X − Y|1 .

The proof of this fact and others in this section are deferred to Appendix 6. It is
immediate from this characterization of statistical difference that it is a metric (as
long as we identify random variables that are identically distributed). In particular,
it satisfies the Triangle Inequality.

FACT 2.2 (TRIANGLE INEQUALITY ). For any probability distributions X, Y ,
and Z,

‖X − Y‖ ≤ ‖X − Z‖ + ‖Z − Y‖ .
Recall that for any two vectorsv ∈ Rm andw ∈ Rn, their tensor product v⊗ w

is the vector inRnm, whose (i, j )th component isvi w j . Now, if we have a pair of
random variables (X,Y) (on the same probability space) taking values inD × E,
thenX is independent fromY iff the mass function of (X,Y) is the tensor product
of the mass functions ofX andY (which are elements ofRD andRE, respectively).
For this reason, if we have random variablesX andY taking values in setsD and
E, respectively, we writeX ⊗ Y for the random variable taking values inD × E
which consists of independent samples ofX andY. Similarly,⊗k X denotes the
random variable taking values inDk consisting ofk independent copies ofX, that
is, X ⊗ X ⊗ · · · ⊗ X.

Now, for any two vectorsv andw, |v ⊗ w|1 = |v|1 · |w|1. In addition, for any
mass functionX, |X|1 = 1. These facts enable one to show that the statistical
difference behaves well with respect to independent random variables:

FACT 2.3. Suppose X1 and X2 are independent random variables on one
probability space and Y1 and Y2 are independent random variables on another
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probability space. Then,∥∥(X1, X2)− (Y1,Y2)
∥∥ ≤ ∥∥X1− Y1

∥∥+ ∥∥X2− Y2

∥∥.
One basic fact about statistical difference is that it cannot be created out of noth-

ing. That is, for any procedureA, even if it is randomized, the statistical difference
betweenA(X) andA(Y) is no greater than the statistical difference betweenX and
Y. Formally, if D is any set, arandomized procedureon D is a a pairA = ( f, R),
whereR is a probability distribution on some setE and f is a function fromD×E
to any setF . Think of the distributionR as providing a “random seed” to the pro-
cedureA. If X is a probability distribution onD, thenA(X) denotes the probability
distribution onF obtained by samplingX ⊗ R and applyingf to the result. Note
that applying afunctionis a special case of applying a randomized procedure.

FACT 2.4. If X and Y are random variables and A is any randomized procedure,
then

‖A(X)− A(Y)‖ ≤ ‖X − Y‖.
The next fact is useful when arguing that the statistical difference between dis-

tributions is small.

FACT 2.5. Suppose X= (X1, X2) and Y= (Y1,Y2) are probability distribu-
tions on a set D× E such that

(1) X1 and Y1 are identically distributed, and
(2) With probability greater than(1− ε) over x← X1 (equivalently, x← Y1),∥∥X2|X1=x − Y2|Y1=x

∥∥ < δ,

(where B|A=a denotes the conditional distribution of B given that A= a for
jointly distributed random variables A and B).

Then‖X − Y‖ < ε + δ.
The next fact says that if two distributions have small statistical difference, then

their mass functions must be close at most points.

FACT 2.6. If X and Y are any two distributions such that‖X − Y‖ < ε, then
with probability>1− 2

√
ε over x← X,(

1−√ε)Pr[X = x] < Pr[Y = x] <
(
1+√ε)Pr[X = x].

2.4. ZERO-KNOWLEDGEPROOFS. Before defining zero knowledge, we need to
introduce some more terminology. Recall that aPPT algorithm is a probabilistic
algorithm which runs instrict polynomial time. A functionf (n) is negligibleif for
all polynomialsp(n), f (n) ≤ 1/p(n) for all sufficiently largen.

We follow Goldwasser et al. [1989] and Goldreich [2001] in defining interactive
proofs and zero-knowledge. The original definitions in Goldwasser et al. [1989]
were given for languages. We generalize these definitions to promise problems in
the natural way, as previously done in Goldreich and Kushilevitz [1993]. That is,
conditions previously required for inputs in the language are now required forYES
instances of a promise problem and conditions previously required for inputs not
in the language are now required forNO instances.

Informally, an interactive proof is a protocol in which a computationally un-
bounded prover attempts to convince a polynomial-time verifierV that an assertion
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is true, that is, that a stringx is aYESinstance of a promise problem. More formally,
an interactive protocol (P,V) between a computationally unbounded proverP and a
PPT verifierV is said to be aninteractive proof systemfor a promise problem5with
completeness error c(n) andsoundness error s(n) if the following conditions hold:

(1) If x ∈ 5Y, then Pr [(P,V)(x) = accept] ≥ 1− c(|x|).
(2) If x ∈ 5N , then for allP∗, Pr [(P∗,V)(x) = accept] ≤ s(|x|).

We always require that 1− c(n) > s(n)+ 1/poly(n) and that both can be com-
puted in time poly(n); under this assumption, parallel repetition can be used to
obtain a new interactive proof for5 with completeness error and soundness er-
ror 2−nk

, for any constantk. We say that (P,V) exchanges m(n) messagesif the
prover and verifier exchange at mostm(n) messages on any input of lengthn. An
interactive proof system is said to bepublic coin if, on every input, the verifier’s
random coinsr can be written as a concatenation of stringsr1r2 · · · rl such that the
i th message sent from the verifier to the prover is simplyri .

Roughly speaking, an interactive proof is said to be zero knowledge if, when
the input is aYES instance, the verifier can simulate its view of the interaction on
its own. To formalize this, let (P,V) be an interactive proof system for a promise
problem5. Let ViewP,V (x) be a random variable describing the random coins of
V and the messages exchanged betweenP andV during their interaction on input
x. (P,V) is said to be astatistical zero-knowledgeproof system against thehonest
verifier if there exists a PPT simulatorS and a negligible functionα (called the
simulator deviation) such that

if x ∈ 5Y, then
∥∥S(x)− ViewP,V (x)

∥∥ ≤ α(|x|). (2)

A perfect zero-knowledgeproof system is defined in the same way, except that (2)
is replaced by‖S(x)−ViewP,V (x)‖ = 0, whereS is allowed to output ‘fail’ with
probability at most 1/2 andS(x) denotes the conditional distribution ofSgiven that
the output is notfail.3 A computational zero-knowledgeproof system replaces
(2) with the requirement that{S(x)}x∈5Y and{ViewP,V (x)}x∈5Y arecomputationally
indistinguishable[Goldwasser and Micali 1984; Yao 1982] ensembles of distribu-
tions. That is, for everynonuniformpolynomial-time algorithmD, there is a negli-
gible functionα such that|Pr[D(x, S(x)) = 1]−Pr [D(x,ViewP,V (x))]| ≤ α(|x|)
for all x ∈ 5Y.

We let SZK (respectively,PZK, CZK) denote the class of promise problems
with statistical (respectively perfect, computational) zero-knowledge proof systems
against the honest verifier.

Remarks on the Definitions

(1) (Honest verifiers). We only require that the zero-knowledge condition to hold
against the honest verifier, that is, the verifier that follows the protocol as speci-
fied. The usual definition requires the zero-knowledge property to hold against
any polynomial-time verifier strategy. However, subsequent to this work, it has

3 A failure probability can also be allowed in the definition of statistical zero-knowledge, but this can
easily be reduced to an 2−nk

for any constantk by repeated trials and absorbed into the simulator
deviation.
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been shown that any proof system that is statistical zero knowledge against
the honest verifier can be transformed into one that is zero knowledge against
cheating verifiers [Goldreich et al. 1998]. Via this transformation, many of our
results directly translate to the class of promise problems possessing statistical
zero-knowledge proofs against cheating verifiers. This is discussed in detail in
Section 3.4.

(2) (Error probabilities). The completeness and soundness error probabili-
ties can be made exponentially small without increasing the number of
rounds, because zero-knowledgeagainst an honest verifieris preserved under
parallel repetition.

(3) (Strict polynomial-time simulation). Following Goldreich [2001], we work
with the variant of zero knowledge in which the simulator is required to run
in strict polynomial time, with some probability of failure in the perfect case.
The original definition by Goldwasser et al. [1989] allows the simulator to
run in expected polynomial time, but with zero probability of failure. Our
choice is not very restrictive, because we are only discussing honest-verifier
statistical zero-knowledge and we do not know of any problems that require
an expected polynomial-time simulator for the honest verifier. In addition,
as shown in Section 3.1, our techniques can be used to prove that expected
polynomial-time simulators and strict polynomial-time simulators are actu-
ally equivalentfor public-coin statistical zero-knowledge proofs against an
honest verifier.

(4) (Promise problems vs. languages). Our definitions above generalize the origi-
nal definitions of Goldwasser et al. [1989] from languages to promise problems,
and we focus on the “promise class”SZK rather than the class of languages pos-
sessing statistical zero-knowledge proofs. As this was discussed in Section 2.1,
here we simply reiterate the main justifications for this extension. First, for
essentially all of our results, the fact that we prove them for the promise class
only makes them stronger, by virtue of the fact that the promise class contains
the language class. Second, several of the most important natural problems
known to be inSZK, such as those in Goldreich and Kushilevitz [1993] and
Goldreich and Goldwasser [2000], are not languages, but promise problems,
so it may actually be preferable to study the promise class.

Our only result that requires new interpretation for the language class is
the Completeness Theorem (Thm. 3.1 below). As the complete problem is
a promise problem, it is not complete for the language class in the usual
sense. Nevertheless, it still gives a characterization of the language class, in
that a language has a statistical zero-knowledge proofif and only if it reduces
to the complete problem. (This requires thatSZK is closed under reductions
(Corollary 4.3), which we will prove using the Completeness Theorem.)

We refer the reader to Goldreich [2001] for a more detailed discussion of
the definitional issues with zero-knowledge proofs and a wider perspective on
the subject.

3. The Completeness Theorem

3.1. THE COMPLETEPROBLEM. The main aim of this article is to demonstrate
that SZK consists exactly of the problems that involve deciding whether two
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efficiently samplable distributions are either far apart or close together. This can
be formally captured by the following promise problem STATISTICAL DIFFERENCE
(abbreviated SD):

SDY =
{

(C0,C1) : ‖C0− C1‖ > 2

3

}
SDN =

{
(C0,C1) : ‖C0− C1‖ < 1

3

}
.

In the above definition,C0 andC1 are circuits; these define probability distributions
as discussed in Section 2. The thresholds of 1/3 and 2/3 in this definition are not
completely arbitrary; it is important for the Polarization Lemma of Section 3.2 that
(2/3)2 > 1/3.

We can now state the main theorem of the article.

THEOREM3.1 (COMPLETENESSTHEOREM).
STATISTICAL DIFFERENCEis complete forSZK.

The most striking thing about Theorem 3.1 is that it characterizes statistical zero
knowledgewith no reference to interaction or zero knowledge.Future investigation
of the classSZK can focus on the single problem SD, instead of dealing with
arbitrarily complicated protocols, problems, and simulators.4

We emphasize that the novelty of this result lies in the specific complete prob-
lem we present and not merely theexistenceof a complete promise problem. For
example, it is fairly straightforward to construct a complete promise problem for
PZK involving descriptions of Turing machines for the verifier and simulator. (See
Appendix 6.) However, in contrast to SD, a complete problem constructed in this
manner is essentially restatement of the definition of the class and therefore does
not simplify the study of the class at all.

The proof of Theorem 3.1 comes in Sections 3.3 and 3.4 via two lemmas and
a theorem of Okamoto [2000]. But first, we observe that a statement analogous to
Theorem 3.1 can be made forBPP, if we generalizeBPP to promise problems in
the obvious way.

PROPOSITION 3.2. If SD′ is the promise problem obtained by modifying the
definition ofSD so that C0 and C1 only have1 bit of output, thenSD′ is complete
for BPP.

PROOF. To see that SD′ is in BPP, first observe that for circuitsC0 andC1 (or
any random variables) that always output either 0 or 1,

‖C0− C1‖ = |Pr[C0 = 1] − Pr[C1 = 1] |.
Thus, an estimate on‖C0 − C1‖ that is correct within an additive factor of 1/3
can be obtained by samplingC0 andC1 polynomially many times and counting the
number of ones that occur for each. This is sufficient to decide SD′.

Now we show that every promise problem5 in BPP reduces to SD′. Let A be
the PPT machine that outputs 1 with probability greater than 2/3 whenx ∈ 5Y, but

4 It should be noted that completeness is most meaningful for classes that are closed under reductions,
which is not a priori clear forSZK. Later, we prove thatSZK is indeed closed under reductions, as a
corollary of the Completeness Theorem itself (Corollary 4.3).



A Complete Problem for Statistical Zero Knowledge 209

outputs 1 with probability less than 1/3 whenx ∈ 5N . Let p(n) be a polynomial
bound on the running time ofA. Given an inputx, we can, by standard techniques,5

produce in polynomial time a circuitCx describing the computation ofA on x for
p(|x|) steps. The input toCx is the firstp(|x|) bits on the random tape ofA and the
output is the first bit on the output tape. LetD be a circuit that always outputs 0.
Then‖Cx − D‖ = Pr[ A(x) = 1], sox 7→ (Cx, D) is a polynomial-time reduction
from5 to SD′.

Proposition 3.2 remains true even if we allowC0 andC1 to output strings of
logarithmic length. Other classes such asP andco-RP can be obtained by modi-
fying the definition of SD in a similar fashion (and changing the thresholds). This
demonstrates thatSZK is a natural generalization of these well-known classes.

3.2. A POLARIZATION LEMMA. In this section, we exhibit a transformation that
“polarizes” the statistical relationship between two distributions. That is, pairs of
distributions that are statistically close become much closer and pairs of distribu-
tions that are statistically far apart become much further apart.

LEMMA 3.3 (POLARIZATION LEMMA ).6 There is a polynomial-time-
computable function that takes a triple(C0,C1, 1k), where C0 and C1 are
circuits, and outputs a pair of circuits(D0, D1) such that

‖C0− C1‖ < 1

3
⇒ ‖D0− D1‖ < 2−k

‖C0− C1‖ > 2

3
⇒ ‖D0− D1‖ > 1− 2−k.

The usefulness of the Polarization Lemma comes from the fact that the two dis-
tributions it produces can be treated almost as if they were identically distributed or
disjoint (i.e., statistical difference 0 and 1, respectively). Indeed, it will be essential
in proving that SD (with thresholds of 2/3 and 1/3, as we’ve defined it) is inSZK
and we will make further use of it in deriving consequences of Theorem 3.1.

Superficially, it may seem that a Chernoff-bound argument is all that is needed
to prove Lemma 3.3. However, Chernoff bounds are primarily useful for distin-
guishing between two events. This corresponds toincreasingstatistical difference,
as formalized in the following “direct product” lemma:

LEMMA 3.4 (DIRECT PRODUCTLEMMA ). Let X and Y be distributions such
that‖X − Y‖ = ε. Then for all k,

kε ≥ ∥∥⊗k X −⊗kY
∥∥ ≥ 1− 2 exp(−kε2/2)

PROOF. The upper bound ofkε follows immediately from Fact 2.3, so we
proceed to the proof of the lower bound. Recall, from the definition of statistical
difference, that there must exist a setSsuch that

Pr[X ∈ S] − Pr[Y ∈ S] = ε.

5 See, for example, [Papadimitriou 1994, Thms. 8.1 and 8.2].
6 The Polarization Lemma stated here is called the Amplification Lemma in [Sahai and Vadhan
1997]. We change the name here to stress that the Polarization Lemma does not merely increase
statistical difference.
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Let p = Pr[Y ∈ S], so Pr[X ∈ S] = p+ ε. Hence, ink independent samples
of X, the expected number of samples that lie inS is (p + ε)k, whereas ink
independent samples ofY, the expected number of samples that lie inS is pk.
The Chernoff bound7 tells us that the probability thatat least(p+ (ε/2))k com-
ponents of⊗kY lie in S is at most exp(−kε2/2), whereas the probability thatat
most(p+ (ε/2))k components of⊗k X lie in S is at most exp(−kε2/2). Let S′ be
the set of allk-tuples that contain more than (p+ (ε/2))k components that lie in
S. Then,∥∥⊗k X −⊗kY

∥∥ ≥ Pr
[⊗k X ∈ S′

]− Pr
[⊗kY ∈ S′

] ≥ 1− 2 exp (−kε2/2).

Note the gap between the upper and lower bounds in Lemma 3.4; the lower
bound says that takingO(1/ε2) copies is sufficient to increase statistical difference
from ε to a constant, while the upper bound says thatÄ(1/ε) copies are necessary.
This gap is inherent, as the following example illustrates: TakingX andY to be
distributions on{0, 1} that are 1 with probability 1 and 1− ε, respectively, we
see that the statistical difference between⊗k X and⊗kY is exactly 1− (1− ε)k,
which is a constant fork = 2(1/ε). On the other hand, whenX andY are 1 with
probability (1+ ε)/2 and (1− ε)/2, respectively, it can be shown thatk = 2(1/ε2)
copies are necessary to increase the statistical difference to a constant. Furthermore,
in this latter example,‖X ⊗ X−Y ⊗ Y‖= ε=‖X−Y‖, so we cannot even hope
to show that statistical difference always increases for everyk> 1 (as pointed out
to us by Madhu Sudan).

Notice that the Direct Product Lemma 3.4 isnotsufficient to prove the Polariza-
tion Lemma, because it only increases statistical difference, whereas we would like
to increase statistical difference in some cases and decrease it in others. However,
it does drive larger values of the statistical difference to 1 more quickly than it
drives smaller values to 1, so it is a step in the right direction. The following lemma
provides a complementary technique that decreases the statistical difference to 0,
with small values going to 0 faster than large values.

LEMMA 3.5 (XOR LEMMA ). There is a polynomial-time computable function
that maps a triple(C0,C1, 1k), where C0 and C1 are circuits, to a pair of circuits
(D0, D1) such that‖D0− D1‖ = ‖C0− C1‖k. Specifically, D0 and D1 are defined
as follows:

D0: Uniformly select(b1, . . . ,bk) ∈ {0, 1}k such that b1 ⊕ · · · ⊕ bk = 0, and
output a sample of Cb1 ⊗ · · · ⊗ Cbk.
D1: Uniformly select(b1, . . . ,bk) ∈ {0, 1}k such that b1 ⊕ · · · ⊕ bk = 1, and
output a sample of Cb1 ⊗ · · · ⊗ Cbk.

In order to prove this lemma, we employ a generalization of the technique used
in De Santis et al. [1994] to represent the logical AND of statements about GRAPH
NONISOMORPHISM. This tool is described in the following Proposition.

7 For the formulation of the Chernoff bound we use, see, for example, the formulation of Hoeffding’s
inequality in Hofri [1995, Sect. 7.2.1].
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PROPOSITION 3.6. Let X0, X1,Y0,Y1 be any random variables, and define the
following pair of random variables:

Z0 : Choose a, b∈R{0, 1} such that a⊕ b = 0. Output a sample of Xa ⊗ Yb.
Z1 : Choose a, b∈R{0, 1} such that a⊕ b = 1. Output a sample of Xa ⊗ Yb.

Then‖Z0− Z1‖ = ‖X0− X1‖ · ‖Y0− Y1‖.
The statistical difference betweenX0 andX1 (or Y0 andY1) measures the advan-

tage a computationally unbounded party has, over random guessing, in guessingb
given a sample fromXb, whereb is selected uniformly from{0, 1}. (This view of
statistical difference will become more apparent in the subsequent section.) Intu-
itively, the above Proposition says that the advantage one has in guessing the XOR
of two independent bits is the product of the advantages one has for guessing each
individual bit.

PROOF.

‖Z0− Z1‖ = 1

2
|Z0− Z1|1

= 1

2

∣∣∣∣(1

2
X0⊗ Y0+ 1

2
X1⊗ Y1

)
−
(

1

2
X1⊗ Y0+ 1

2
X0⊗ Y1

)∣∣∣∣
1

= 1

4
|(X0− X1)⊗ (Y0− Y1)|1

=
(

1

2
|X0− X1|1

)
·
(

1

2
|Y0− Y1|1

)
= ‖X0− X1‖ · ‖Y0− Y1‖

Recall that the penultimate equality above follows because|v⊗w| = |v| · |w|.
Proposition 3.6 and an induction argument establish Lemma 3.5. Yao’s

XOR Lemma [1982] (cf., Goldreich et al. [1995]) can be seen as an ana-
logue of Lemma 3.5 in the computational setting, where the analysis is much
more difficult.8

Now we combine the Direct Product and XOR constructions of Lemmas 3.4
and 3.5 to prove Lemma 3.3. The Direct Product Lemma gives a way to increase
statistical difference with large values going to 1 faster than small values. Similarly,
the XOR Lemma shows how to decrease statistical difference with small values
going to 0 faster than large values. Intuitively, alternating these procedures should
“polarize” large and small values of statistical difference, pushing them closer to 1
and 0, respectively. A similar alternation between procedures with complementary
effects was used by Ajtai and Ben-Or [1984] to amplify the success probability of
randomized constant-depth circuits.

8 To see the analogy, recall that Yao’s XOR Lemma considers the maximum advantage anefficient
algorithm has, over random guessing, in computing a bitb from string x when they are selected
according to some distribution (b, x)← (B, X) (e.g.,X is uniform andB is a hardcore bit off −1(X)
for some one-way permutationf .). It states that the maximum advantage an efficient algorithm has
in computing the XORb1⊕· · ·⊕bk from (x1, . . . , xk) decreases exponentially withk when the pairs
(bi , xi ) are independently distributed according to (B, X).
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PROOF. Let ` = dlog4/3 6ke. Apply Lemma 3.5 to the triple (C0,C1, 1`) to
produce (C′0,C

′
1) such that if

‖C0− C1‖ < 1

3
⇒ ‖C′0− C′1‖ <

(
1

3

)`
‖C0− C1‖ > 2

3
⇒ ‖C′0− C′1‖ >

(
2

3

)`
.

Let m = 3`−1. Let C′′0 = ⊗mC′0 and letC′′1 = ⊗mC′1. Then, by Fact 2.3 and the
Direct Product Lemma,

‖C0− C1‖ < 1

3
⇒ ‖C′′0 − C′′1‖ <

1

3

‖C0−C1‖ > 2

3
⇒ ‖C′′0 −C′′1‖> 1− 2 exp

(−3`−1(2/3)2`

2

)
> 1− 2 exp(−k).

Finally, apply the transformation of Lemma 3.5 one more time to (C′′0,C
′′
1, 1

k) to
produce (D0, D1) such that

‖C0− C1‖ < 1

3
⇒ ‖D0− D1‖ < 3−k < 2−k

‖C0− C1‖ > 2

3
⇒ ‖D0− D1‖ > (1− 2 exp(−k))k

> 1− 2k exp(−k) > 1− 2−k.

Notice that the above analysis relies on the fact that (2/3)2 > (1/3), so it will
not work if 2/3 and 1/3 are replaced by, say,.51 and.49. We do not know how
to prove such a Polarization Lemma for arbitrary constant thresholds. We can
however extend it to thresholdsα andβ, whereα2 > β, and the running time will
be polynomial in 1/(α − β) and exp(1/δ), whereδ is defined byα2+δ = β, along
with the input size. See Sahai and Vadhan [1999] for more details.

3.3. A PROTOCOL FORSTATISTICAL DIFFERENCE. In this section, we show
that SD has a simple two-message statistical zero-knowledge proof system, which
is a generalization of the standard protocols for QUADRATIC NONRESIDUOSITY
Goldwasser et al. [1989], and GRAPH NONISOMORPHISM[Goldreich et al. 1991].
Intuitively, if two distributions are statistically far apart, then, when given a random
sample from one of the distributions, a computationally unbounded party should
have a good chance of guessing from which distribution it came. However, if the
two distributions are statistically very close, even a computationally unbounded
party should not have much better than a 50% chance of guessing correctly. This
suggests the following two-message protocol for SD (note that this protocol isnot
a public-coin protocol):

Zero-knowledge Proof System forSD

Input: (C0,C1) (such that either‖C0− C1‖ > 2/3 or‖C1− C1‖ < 1/3)

1. V, P: Compute (D0, D1) = Polarize(C0,C1, 1n), wheren = |(C0,C1)|.
2. V : Flip one random coinr ← {0, 1}. Let z be a sample ofDr . Sendz to P.
3. P: If Pr [D0 = z] > Pr[D1 = z], answer 0, otherwise answer 1.
4. V : Accept if P’s answer equalsr , reject otherwise.
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LEMMA 3.7. The above is a statistical zero-knowledge proof system forSD,
with soundness error(1/2)+2−n, and completeness error and simulator deviation
both2−n. Thus,SD∈ SZK.

PROOF. We observe that the prover strategy given in the protocol is optimal (that
is, maximizes the verifier’s acceptance probability), and use this to bound both the
soundness and completeness error. The simulator deviation will then follow easily.

Indeed the optimality of the given prover strategy follows from a standard argu-
ment: Consider any proverP∗. Suppose for somez the proverP∗ fails to follow
the strategy we present. If Pr[D0 = z] 6= Pr[D1 = z], this means that with nonzero
probability, P∗ chooses the distribution in whichz is less likely to occur. Then,
conditioned onz, the success probability ofP∗ will certainly be lower than that
of the prover in our protocol. If Pr[D0 = z] = Pr[D1 = z], the prover has no
information aboutr , so no matter what strategy it uses, it has exactly even odds
of guessing correctly. Since these observations hold for allz, the given prover
is optimal.

We now analyze the probability of success of the optimal prover. Recall that
‖D0− D1‖ = Pr[D0 ∈ S] − Pr[D1 ∈ S] for S= {z : Pr[D0 = z] > Pr[D1 = z]}.
The probability that the optimal prover guesses correctly is exactly

1

2
Pr[D0 ∈ S] + 1

2
Pr[D1 /∈ S] = 1

2
(Pr[D0 ∈ S] + 1− Pr[D1 ∈ S])

= 1+ ‖D0− D1‖
2

.

By Lemma 3.3,‖D0 − D1‖ > 1− 2−n when (C0,C1) is aYES instance of SD,
and‖D0− D1‖ < 2−n when (C0,C1) is aNO instance. Hence, the probability that
the prover convinces the verifier to accept is greater than (1+1−2−n)/2> 1−2−n

for YES instances, and less than (1+ 2−n)/2 < 1/2+ 2−n for NO instances. This
immediately gives the completeness error; the soundness error also follows because
we considered the optimal prover strategy.

Now, notice that when the prover answers correctly, all the verifier receives
from the prover is the value ofr , which the verifier already knew. Thus, since
we have shown that the prover is answering correctly with all but exponentially
small probability, intuitively the verifier learns nothing. To turn this intuition
into a proof of statistical zero knowledge, we consider the following probabilis-
tic polynomial-time simulator: On input (C0,C1), the simulator first computes
(D0, D1) = Polarize(C0,C1, 1n), wheren = |(C0,C1)|. The simulator then flips
one random coinr ∈ {0, 1}. If r = 0, it samplesz from D0; otherwise, it samplesz
from D1. The simulator then outputs a conversation in which the verifier sendsz to
the prover, and the prover responds withr . The simulator also outputs the random
coins it used to generater andz as the coins of the verifier. Thus, the simulator
presented here always outputs conversations in which the prover responds correctly.
Except for the prover’s response, all other components of the simulator’s output
distribution are distributed identically to the verifier’s view of the real interaction.
Hence, the simulator deviation is bounded by the probability that the prover re-
sponds incorrectly in the real interaction, which we have already argued is at most
2−n in the case ofYES instances.
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Note that the above proof system remains complete and sound even without
polarization, but for the zero-knowledge property, we need to make the statistical
difference very close to 1 onYES instances.

By using a security parameterk rather thann in the call toPolarize, both the
completeness error and simulator deviation can be reduced to 2−k. Thus, even very
short assertions about SD can be proven with very high security. Contrast this with
the original definition ofSZK [Goldwasser et al. 1989], which only requires that
the simulator deviation vanish as annegligible function of theinput length. This
property has obvious cryptographic significance, so we formulate it more precisely
in Section 3.1.

3.4. SZK-HARDNESS OFSD. The other main lemma we prove to show that SD
is complete forSZK follows:

LEMMA 3.8. Suppose promise problem5 has a public coin statistical zero-
knowledge proof system. Then there exist PPTs A and B and a negligible function
α such that

x ∈ 5Y ⇒ ‖A(x)− B(x)‖ ≤ α(|x|), and
x ∈ 5N ⇒ ‖A(x)− B(x)‖ ≥ 1− 2−Ä(|x|).

We defer the proof of this lemma to Section 3.5, and first observe how it gives a
reduction to SD for problems with public-coin statistical zero-knowledge proofs.

COROLLARY 3.9. Suppose promise problem5 has a public-coin statistical
zero-knowledge proof system. Then5 reduces toSD. (Equivalently,5 is reduces
to SD.)

PROOF. First, apply Lemma 3.8 to obtainA andB, with p(|x|) being a poly-
nomial bound on the running times ofA(x) andB(x). Given a stringx, we can, by
standard techniques,9 produce in polynomial-time circuitsC0 andC1 simulating
the computation ofA andB, respectively, onx for p(|x|) steps. The inputs toC0
andC1 are the firstp(|x|) bits on the random tapes ofA andB and the outputs are
the first p(|x|) positions on the output tapes. Then‖C0− C1‖ = ‖A(x)− B(x)‖,
which is at mostα(|x|) < 1/3 if x ∈ 5Y and at least 1− 2−|x| > 2/3 if x ∈ 5N

(for all sufficiently longx). Sox 7→ (C0,C1) is a reduction from5 to SD (for all
but finitely manyx).

The final ingredient in the proof of Theorem 3.1 is a theorem of Okamoto [2000],
which we state in terms of promise problems.10

THEOREM 3.10 [OKAMOTO 2000, THM. 1]. If a promise problem5 has a sta-
tistical zero-knowledge proof system, then5 has apublic-coin statistical zero-
knowledge proof system.

Now it will be easy to show that SD is complete forSZK.

9 See, for example, Papadimitriou [1994, Thms. 8.1 and 8.2].
10 Okamoto stated his result in terms of languages, but the proof readily extends to promise problems
(cf., Goldreich and Vadhan [1999]).



A Complete Problem for Statistical Zero Knowledge 215

PROOF OFTHEOREM3.1. Lemma 3.7 tells us that SD∈ SZK, so we only need
to show that every problem inSZK reduces to SD. Corollary 3.9 and Theorem 3.10
imply that every problem5 ∈ SZK reduces toSD. In particular, SD reduces toSD,
or, equivalently,SD reduces to SD. Composing reductions, it follows that every
problem5 ∈ SZK reduces to SD.

3.5. PROOF OFLEMMA 3.8

Intuition. Recall that we wish to construct a pair of probabilistic polynomial-
time machinesA andB such that ifx ∈ 5Y, the distributionsA(x) andB(x) are
statistically very close, but whenx ∈ 5N , A(x) and B(x) are far apart. We are
given that5 has apublic-coinstatistical zero-knowledge proof system. A natu-
ral place to search for the desired distributions is in the output of the simulator
for this proof system. We wish to find properties of the simulator’s output that
(1) distinguish the casex ∈ 5Y from x ∈ 5N and (2) are captured by the sta-
tistical difference between samplable distributions. Following Aiello and H˚astad
[1991], we think of the simulator as describing the moves of avirtual proverand a
virtual verifier.

In the case thatx ∈ 5Y, we have strong guarantees on the simulator’s output.
Namely, its output distribution is statistically very close to the real interaction. In
particular, it outputs accepting conversations with high probability and the virtual
prover and verifier “behave” similarly to the real prover and verifier.

Whenx ∈ 5N , there are two cases. If the simulator outputs accepting conver-
sations with low probability, this easily distinguishes it from the simulator output
when x ∈ 5Y. However, it is possible that the simulator will output accepting
conversations with high probability even whenx ∈ 5N . This means that the virtual
prover is doing quite well in fooling the virtual verifier. This naturally suggests a
strategy for a real prover–imitate the virtual prover’s behavior. Such a prover, called
asimulation-based prover, was introduced by Fortnow [1989] and is a crucial con-
struct in our proof.

The soundness of the proof system tells us that the simulation-based prover cannot
hope to convince thereal verifier with high probability. There must be a reason for
this discrepancy between the success rates of the virtual prover and the simulation-
based prover. Since the virtual prover behaves exactly like the simulation-based
prover, it must be that the virtual verifier does not behave like the real verifier. Note
that, in apublic-coinproof system, the behavior of the real verifier is extremely
simple: it chooses each of its messages independently and uniformly at random. If
the virtual verifier does not behave as the real verifier, then it must be that either
the virtual verifier’s messages arefar from uniform, or that they aredependent on
previous messages.

We therefore exhibit two efficiently samplable distributions, one describing the
messages of the real verifier and the other describing the messages of the virtual
verifier. We show that ifx ∈ 5Y, these two distributions must be nearly identical;
whereas ifx ∈ 5N , they must be far apart.

The basic approach described above is quite similar to the approaches developed
in previous work onSZK, such as that of Fortnow [1989], Aiello and H˚astad [1991],
and Ostrovsky [1991]. However, by focusing on public-coin proofs (thanks to
Theorem 3.10 [Okamoto 2000]), we are able to carry out a cleaner analysis and
reach a novel conclusion (namely, the Completeness Theorem).
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Notation. Let (P,V) be a public-coin interactive proof system for a promise
problem5, which is (honest-verifier) statistical zero knowledge, and letS be a
simulator for this proof system. Without loss of generality, we may assume that the
interaction ofP andV on inputx always has 2r (|x|) exchanged messages, with
V sending the first message and each message consisting of exactlyq(|x|) bits, for
some polynomialsq andr . Moreover, it may be assumed thatS’s output always
consists of 2r (|x|) strings of lengthq(|x|). The output ofS and the conversation
betweenP andV on inputx will be written in the formS(x) = (c1, p1, . . . , cr , pr )S
and (P,V)(x) = (c1, p1, . . . , cr , pr )(P,V), respectively, wherec1, . . . , cr represent
the messages (equivalently coin tosses, since we are in the public-coin setting) of
V, p1, . . . , pr represent the prover messages, andr = r (|x|). (Dependence onx
will often be omitted in this manner for notational convenience.) We use notation
such as (ci )S for the random variable obtained by runningS once and taking the
ci -component of its output. More generally, partial conversation transcripts will be
written like (c1, p1, c2, p2)S. We call a conversation transcript (c1, p1, . . . , cr , pr )
that would makeV accept (respectively, reject) anaccepting conversation(re-
spectively,rejecting conversation). We denote byU (n) the uniform distribution on
strings of lengthn.

The Proof. In order to formalize the above intuition, a definition of the
simulation-based prover needs to be given. This is the proverP∗ that imitates
the virtual prover, that is,P∗ does the following to compute its next message when
the current conversation transcript is (c1, p1, . . . , ci ):

If S(x) outputs conversations that begin with (c1, p1, . . . , ci ) with prob-
ability 0, then output 0q(|x|).

Else outputy ∈ {0, 1}q(|x|) with probability

py = Pr[S(x) begins with (c1, p1, . . . , ci , y)|S(x) begins with (c1, p1, . . . , ci )].

In order to analyze the success probability ofP∗, we first compare the output
of S to the actual conversations betweenP∗ andV . For i = 1, . . . , r , consider the
distributionsAi = (c1, p1 . . . , ci−1, pi−1, ci )S andBi = (c1, p1 . . . , ci−1, pi−1)S⊗
U (q(|x|)), and letεi = ‖Ai −Bi ‖. The last component ofAi is a move of the virtual
verifier whereas the last component ofBi is chosen uniformly and independently of
the history, just like a move of the real verifier. Thus, theεi ’s measure the similarity
between the behavior of the virtual verifier and the real verifier.

The following claim formalizes our intuition that, if the virtual verifier and real
verifier have similar behavior, then the interaction between the simulation-based
prover P∗ and the real verifierV is similar to the interaction between the virtual
prover and virtual verifier (as described by the simulator).

CLAIM 3.11.
∥∥S(x)− (P∗,V)(x)

∥∥ ≤∑r
i=1 εi .

PROOF OFCLAIM . LetCS
i = (c1, p1, . . . , ci )S be the random variable of partial

simulator transcripts ending with thei th coins of the virtual verifier. LetPS
i =

(c1, p1, . . . , ci , pi )S be the random variable of partial transcripts ending with the
i th virtual prover response. Similarly defineC∗i and P∗i as partial conversation
transcripts of (P∗,V). The aim is to show that at roundk, the statistical difference
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TABLE I. THE COMPONENTS OFA AND B

Algorithm A Algorithm B
A0(x) RunS(x) for |x| repetitions. B0(x) Output 1.

Output ‘1’ if the majority are
accepting conversations and ‘0’
otherwise. Bi (x) RunS(x) and flipq(|x|) more coins to output

Ai (x) RunS(x) to output (c1, p1, . . . , ci )S(x). (c1, p1, . . . , ci−1, pi−1)S(x) ⊗U (q(|x|)).

grows by at mostεk. Formally, it will be shown by induction onk that∥∥PS
k − P∗k

∥∥ ≤ k∑
i=1

εi

The casek = 0 is trivial. For generalk, first note that sinceP∗ gives a response
chosen according to the same distribution as the virtual prover, adding these re-
sponses to the conversations cannot increase the statistical difference (by Fact 2.4).
That is, ∥∥PS

k+1− P∗k+1

∥∥ = ∥∥CS
k+1− C∗k+1

∥∥.
The idea now is to extract the parts of‖CS

k+1 − C∗k+1‖ corresponding toεk+1 and
observe that what is left is simply the error from the previous round. Note that
C∗k+1 = P∗k ⊗ U (q(|x|)), since the real verifier’s coins are always uniform and
independent from what came before.

Then, applying Fact 2.3 and the Triangle Inequality,∥∥CS
k+1− C∗k+1

∥∥ ≤ ∥∥CS
k+1− PS

k ⊗U (q(|x|))∥∥+∥∥PS
k ⊗U (q(|x|)) −P∗k ⊗U (q(|x|))∥∥

≤ εk+1+
∥∥PS

k − P∗k
∥∥+ ‖U (q(|x|))−U (q(|x|))‖

≤ εk+1+
k∑

i=1

εi .

This completes the induction. SincePS
r = S(x) and P∗r = (P∗,V)(x), the Claim

is proved.

We are now ready to construct the distributions we seek. The two distributions
A and B each consist ofr + 1 components, shown in Table I.A is the algorithm
whose output on inputx is (A0(x), A1(x), . . . , Ar (x)), all run independently, andB
is the algorithm whose output is (B0(x), B1(x), . . . , Br (x)), all run independently.
Recall that, fori ≥ 1, εi is the statistical difference betweenAi andBi .

We show that the statistical difference betweenA andB is negligible ifx ∈ 5Y
and is noticeable ifx ∈ 5N . Amplifying this gap by repetition will yield Lemma 3.8.

CLAIM 3.12. There exists a negligible functionα such that if x∈ 5Y, then
‖A(x)− B(x)‖ ≤ α(|x|).

PROOF OFCLAIM . The statistical difference betweenA(x) andB(x) is bounded
above by the sum of the statistical differences betweenAi (x) and Bi (x) over
i = 0, . . . , r (|x|) (by Fact 2.3). First, let’s examinei = 0. SinceS(x) outputs
a conversation that makesV accept with probability at least 2/3− neg(|x|), the
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Chernoff bound implies that Pr[ A0(x) = 1] = 1− 2−Ä(|x|), so the statistical differ-
ence betweenA0 andB0 is negligible. Fori ≥ 1, recall that in the real conversations
of P andV , the verifier’s coins are truly uniform and independent from prior rounds,
so‖Ai (x)− Bi (x)‖ should essentially be bounded by the statistical difference be-
tween the simulator’s output and the real interaction. This is in fact true, as (omitting
x from the notation):

‖Ai − Bi ‖ ≤ ‖Ai − (c1, p1, . . . , ci )P,V‖ + ‖(c1, p1, . . . , ci )P,V − Bi ‖
≤ ‖S− (P,V)‖ + ‖S− (P,V)‖.

Thus,

‖A(x)− B(x)‖ ≤ 2−Ä(|x|) + 2r (|x|) · ‖S(x)− (P,V)(x)‖,
which is negligible since‖S(x) − (P,V)(x)‖ is negligible and r (x) is
polynomial.

CLAIM 3.13. If x ∈ 5N, then‖A(x)− B(x)‖ ≥ 1/12r (|x|).
PROOF OFCLAIM . It suffices to show that for somei , εi = ‖Ai (x)− Bi (x)‖ >

1/12r (|x|) (by Fact 2.4). We deal with two cases depending on the probability that
Soutputs an accepting conversation.

Case 1. Pr [S(x) accepts] ≤ 5/12. Then, by the Chernoff bound,
Pr[ A0(x) = 1] ≤ 2−Ä(|x|), so the statistical difference betweenA0(x) and B0(x)
is at least 1− 2−Ä(|x|) > 1/12r (|x|).

Case2. Pr [S(x) accepts]> 5/12. Then, since Pr [(P∗,V)(x) accepts] is at
most 1/3, we must have

r∑
i=0

εi ≥ ‖S(x)− (P∗,V)(x)‖ > 5

12
− 1

3
= 1

12
.

Thus, at least oneεi must be greater than 1/12r (|x|).
Now consider the samplable distributionŝA(x) = ⊗s(|x|) A(x) and B̂(x) =
⊗s(|x|) B(x), wheres(n) = n · r (n)2. If x ∈ 5Y, ‖Â(x) − B̂(x)‖ ≤ s(|x|) ·
‖A(x) − B(x)‖, which is still negligible. Ifx ∈ 5N , then, by the Direct Product
Lemma (Lemma 3.4),‖Â(x)− B̂(x)‖ ≥ 1− 2−Ä(|x|). This completes the proof of
Lemma 3.8.

We illustrate the constructions in this lemma and the statistical zero-knowledge
proof system for STATISTICAL DIFFERENCE for the specific example of GRAPH
ISOMORPHISMin Appendix C.

4. Applications

4.1. EFFICIENT STATISTICAL ZERO-KNOWLEDGE PROOFS. The proof system
for STATISTICAL DIFFERENCEgiven in Section 3.3 has a number of desirable fea-
tures. It is very efficient in terms of communication and interaction, and the simula-
tor deviation can be made exponentially small in a security parameter (that can be
varied independently of the input length). By the Completeness Theorem, it follows
that every problem inSZK also has a proof system with these properties.
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We begin by formalizing one of these properties that was informally discussed
in Section 3.3.

Definition 4.1. An interactive protocol (P,V) is called asecurity-parametrized
statistical zero-knowledge proof systemfor a promise problem5 if there exists a
PPT simulatorS, a negligible functionα(k) (called thesimulator deviation), and
completeness and soundness errorsc(k) ands(k) such that for all stringsx and all
k ∈ N,

(1) If x ∈ 5Y, then Pr [(P,V)(x, 1k) = accept] ≥ 1− c(k).
(2) If x ∈ 5N , then for allP∗, Pr [(P∗,V)(x, 1k) = accept] ≤ s(k).
(3) If x ∈ 5Y, then‖S(x, 1k)− ViewP,V (x, 1k)‖ ≤ α(k).

As usual, we require thatc(k) ands(k) are computable in time poly(k) and 1−c(k) >
s(k)+ 1/poly(k)

We now describe the efficient proof systems inherited by all ofSZK.

COROLLARY 4.2. Every problem inSZK possesses a security-parameterized
statistical zero-knowledge proof system with the following properties:

(1) Simulator deviation2−k, completeness error2−k, and soundness error1/2+
2−k.

(2) The prover and verifier exchange only 2 messages.
(3) The prover sends only1 bit to the verifier.
(4) The prover is deterministic.

PROOF. Let5 be any promise problem inSZK. Let f be the reduction from
5 to SD guaranteed by the Completeness Theorem. A protocol with the desired
properties for5 can be obtained as follows: on input (x, 1k), execute the proof
system for SD, given in Section 3.3, on inputf (x) and usingk rather thann in the
call toPolarize.

4.2. CLOSUREPROPERTIES. In this section, we prove several closure properties
of SZK. The first, closure under reductions, is a direct consequence of the “security
parametrization” property shown to hold forSZK in the previous section.

COROLLARY 4.3. SZK is closed under(Karp) reductions. That is, if5 ∈ SZK
and0 reduces to5, then0 ∈ SZK.

PROOF. By Corollary 4.2,5 has a security-parameterized statistical zero-
knowledge proof. A statistical zero-knowledge proof for0 can be obtained as fol-
lows: On inputx, the prover, verifier, and simulator run the security-parameterized
proof for5 on input (f (x), 1|x|), where f is the reduction from0 to5.

The security-parametrization property is necessary in the above proof, because
an arbitrary reductionf could potentially shrink string lengths dramatically and
we want the simulator deviation to be negligible as a function of|x|, not | f (x)|.

Next, we show how Okamoto’s result thatSZK is closed under complement
follows immediately from our proof of Completeness Theorem.

COROLLARY 4.4 ([OKAMOTO 2000, THM. 2]). SZK is closed under comple-
ment, even for promise problems.
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PROOF. Let5 be any problem inSZK. By Theorem 3.10 and Corollary 3.9,
5 reduces to SD, which is inSZK. By Corollary 4.3,5 ∈ SZK.

Before moving on to additional closure properties, we deduce the upper bounds
of Fortnow [1989] and Aiello and H˚astad [1991] on the complexity ofSZK.

COROLLARY 4.5 ([FORTNOW1989; AIELLO AND HÅSTAD 1991]). SZK ⊂
AM∩ co-AM, where AM denotes the class of problems possessing constant-
message interactive proofs.

PROOF. Immediate from Corollaries 4.2 and 4.4.

Above, we have seen thatSZK satisfies a computational closure property
(Corollary 4.3) and a Boolean closure property (Corollary 4.4 [Okamoto 2000]).
Now we will exhibit a stronger closure property, which can be viewed as both a
computational one and a Boolean one: given an arbitrary Boolean formula whose
atoms are statements about membership inanyproblem inSZK, one can efficiently
construct a statistical zero-knowledge interactive proof for its validity. Note that
such a property does not follow immediately from the fact that a class is closed
under intersection, union, and complementation, because applying these more than
a constant number of times could incur a superpolynomial cost in efficiency, while
we ask that the construction can be done efficiently with respect to the size of the
formula. We achieve this by applying a construction of De Santis et al. [1994] to
STATISTICAL DIFFERENCE, and then appealing to the Completeness Theorem.

We begin with some definitions describing precisely what kind of Boolean closure
properties we will achieve. (Later, we will see how it can also be interpreted as
closure under a certain class of polynomial-time reductions.) In order to deal with
instances of promise problems that violate the promise, we will work with an
extension of Boolean algebra that includes an additional“ambiguous” value?.

Definition 4.6. A partial assignmentto variablesv1, . . . , vk is a k-tuple a =
(a1, . . . ,ak) ∈ {0, 1, ?}k. For a propositional formula (or circuit)φ on variables
v1, . . . , vk, the evaluationφ(a) is recursively defined as follows:

vi (a) = ai (φ ∧ ψ)(a) =


1 if φ(a) = 1 andψ(a) = 1
0 if φ(a) = 0 orψ(a) = 0
? otherwise

(¬φ)(a) =


1 if φ(a) = 0
0 if φ(a) = 1
? if φ(a) = ?

(φ ∨ ψ)(a) =


1 if φ(a) = 1 orψ(a) = 1
0 if φ(a) = 0 andψ(a) = 0
? otherwise

Note thatφ(a) equals 1 (respectively, 0) for some partial assignmenta, thenφ(a′)
also equals 1 (respectively, 0) for every Booleana′ obtained by replacing every? in
a with either a 0 or 1. The converse, however, is not true: The formulaφ = v∨¬v
evaluates to 1 on every Boolean assignment, yet is not 1 when evaluated at?.
Thus, the “law of excluded middle”φ ∨ ¬φ ≡ 1 no longer holds in this setting.
However, other identities in Boolean algebra, such as De Morgan’s laws (e.g.,
¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ), do remain true.
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Definition 4.7. For a promise problem5, thecharacteristic functionof 5 is
the mapχ5 : {0, 1}∗ → {0, 1, ?} given by

χ5(x) =


1 if x ∈ 5Y

0 if x ∈ 5N

? otherwise

Definition 4.8. For any promise problem5, we define a new promise problem
8(5) as follows:

8(5)Y = {(φ, x1, . . . , xk) : φ(χ5(x1), . . . , χ5(xk)) = 1}
8(5)N = {(φ, x1, . . . , xk) : φ(χ5(x1), . . . , χ5(xk)) = 0},

whereφ is ak-ary propositional formula. Mon(5) is defined analogously, except
that only monotoneφ are considered.11

De Santis et al. [1994] show that Mon(L) ∈ SZK for any languageL that is ran-
dom self-reducible, whose complement is self-reducible, or whose complement has
a noninteractive statistical zero-knowledge proof. They also give statistical zero-
knowledge proofs for some simple statements involving a random-self-reducible
language and its complement. Damg˚ard and Cramer [1996] extend these results
by showing that Mon(L) ∈ SZK as long asL or its complement has a 3-message
public-coin statistical zero-knowledge proof, and also treat a larger class of mono-
tone functions.

Our result holds for all ofSZK and for all Boolean formulas, not just monotone
ones:

THEOREM 4.9. For any promise problem5 ∈ SZK,8(5) ∈ SZK.

This theorem can be generalized to work for all Boolean formulas whose atoms
are statements about membership in any finite set of languages inSZK, but we
omit the notationally cumbersome formal statement since it is immediate from the
completeness of STATISTICAL DIFFERENCE.

Our proof of Theorem 4.9 is based heavily on the work of De Santis et al.
[1994], which constructs a statistical zero-knowledge proof for Mon(L) for any
random self-reducible languageL. Their zero-knowledge proofs are constructed
by producing two distributions that are either disjoint or identical, depending on
whether or not the formula is true. Hence, their construction can be viewed as a
reduction to extreme instances of SD, in which the thresholds are 1 and 0. Here,
we begin by applying essentially the same construction to SD, but use the Direct
Product, XOR, and the Polarization Lemmas of Section 3.2 to analyze it for all
instances of SD (rather than just the extreme ones). This proves that Mon(SD)
is in SZK. Then, using the completeness of SD (Theorem 3.1) and closure under
complement (Corollary 4.4 [Okamoto 2000]), we deduce the result for general (i.e.,
nonmonotone) formulas and every promise problem inSZK.

As stated above, the main step in proving Theorem 4.9 is the following lemma:

LEMMA 4.10. Mon(SD)∈ SZK.

11 In De Santis et al. [1994], only monotone formulas are treated. What they call8(L) is what we
call Mon(L).



222 A. SAHAI AND S. VADHAN

Sample(ψ, b)
If ψ = vi , samplez← Di

b.
If ψ = τ ∨ µ,

Samplez1← Sample(τ, b);
Samplez2← Sample(µ, b);
Let z= (z1, z2).

If ψ = τ ∧ µ,
Choosec, d∈R{0, 1} subject toc⊕ d = b;
Samplez1← Sample(τ, c);
Samplez2← Sample(µ, d);
Let z= (z1, z2).

Outputz.

FIG. 1.

PROOF. For intuition, consider two instances of statistical difference (C0,C1)
and (D0, D1), both of which have statistical difference very close to 1 or very close
to 0 (which can be achieved by the Polarization Lemma). Then (C0⊗D0,C1⊗D1)
will have statistical difference very close to 1 if either of the original statistical
differences is very close to 1 and will have statistical difference very close to
0 otherwise. Thus, this Direct Product operation represents OR. Similarly, the XOR
operation in Proposition 3.6 represents AND. We will recursively apply these con-
structions to obtain a reduction from Mon(SD) to SD. By closure under reductions
(Corollary 4.3), Lemma 4.10 will follow.

Letw = (φ, (C1
0,C

1
1), . . . , (Ck

0,C
k
1)) be an instance of Mon(SD) and letn = |w|.

By applying the Polarization Lemma (Lemma 3.3), we can construct in polynomial
time pairs of circuits (D1

0, D1
1), . . . , (Dk

0, Dk
1) such that the statistical difference

betweenDi
0 andDi

1 is greater than 1− 2−n if (Ci
0,C

i
1) ∈ SDY and is less than 2−n

if (Ci
0,C

i
1) ∈ SDN .

Consider the randomized recursive procedure Sample(ψ, b) in Figure 1 which
takes a subformulaψ of φ = φ(v1, . . . , vn) and a bitb ∈ {0, 1} as input. Executing
Sample(φ, b) for b ∈ {0, 1} takes time polynomial inn, because the number of
recursive calls is equal to the number of subformulas ofφ. For a subformulaψ of
φ, define

Dif(ψ) = ‖Sample(ψ, 0)− Sample(ψ, 1)‖.
Then we can prove the following about Dif:

CLAIM 4.11. Let a = (χSD(C1
0,C

1
1), . . . , χSD(Ck

0,C
k
1)). For every subformula

ψ of φ, we have:

ψ(a) = 1 ⇒ Dif(ψ) > 1− |ψ |2−n

ψ(a) = 0 ⇒ Dif(ψ) < |ψ |2−n

Note that nothing is claimed whenψ(a) = ?.

PROOF OFCLAIM . The proof of the claim is by induction on subformulasψ
of φ. It holds for atomic subformulas (i.e., the variablesvi ) by the properties of
the Di

b’s.
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CaseI. ψ = τ ∨ µ.] If ψ(a) = 1, then eitherτ (a) = 1 orµ(a) = 1. Without
loss of generality, sayτ (a) = 1. Then, by Fact 2.4 and induction,

Dif(ψ) ≥ Dif(τ ) > 1− |τ |2−n > 1− |ψ |2−n.

If ψ(a) = 0, thenτ (a) = µ(a) = 0. By Fact 2.3 and induction,

Dif(ψ) ≤ Dif(τ )+ Dif(µ) < |τ |2−n + |µ|2−n ≤ |ψ |2−n.

CaseII. ψ = τ∧µ.] By Proposition 3.6, Dif(ψ) = Dif(τ )·Dif(µ). If ψ(a) = 1,
then, by induction,

Dif(ψ) ≥ (1− |τ |2−n)(1− |µ|2−n) > 1− (|τ | + |µ|)2−n ≥ 1− |ψ |2−n.

If ψ(a) = 0, then, without loss of generality, sayτ (a) = 0. By induction,

Dif(ψ) ≤ Dif(τ ) < |τ |2−n ≤ |ψ |2−n.

Now, let A and B be the circuits which sample from the distributions
Sample(φ, 0) and Sample(φ, 1), respectively. (The random bits each procedure
uses are the inputs to the circuits.) By the above claim,‖A−B‖ > 1−n2−n > 2/3
if φ(a) = 1, and‖A− B‖ < n2−n < 1/3 if φ(a) = 0. In other words, the construc-
tion of A andB from w is a reduction from Mon(SD) to SD. This reduction can be
computed in polynomial time because Sample runs in polynomial time. Thus, by
Corollary 4.3, Mon(SD)∈ SZK.

Now it is straightforward to deduce Theorem 4.9.

PROOF. Let 5 be any promise problem inSZK. By closure under comple-
ment (Corollary 4.4 [Okamoto 2000]) and the completeness of SD (Theorem 3.1),
both 5 and5 reduce to SD. Letf and g be these reductions, respectively.
Now, let (φ, x1, . . . , xk) be any instance of8(5), whereφ = φ(v1, . . . , vk). Use
De Morgan’s laws to propagate all negations ofφ to its variables. Now replace all
occurrences of the literal¬vi with a new variablewi . Letψ(v1, . . . , vk,w1, . . . ,wk)
be the resulting (monotone) formula. It is clear that

(φ, x1, . . . , xk) 7→ (ψ, f (x1), . . . , f (xk), g(x1), . . . , g(xk))

is a reduction from8(5) to Mon(SD). Since Mon(SD)∈ SZK (Lemma 4.10) and
SZK is closed under reductions (Corollary 4.3), Theorem 4.9 follows.

Theorem 4.9 can be also viewed as demonstrating thatSZK is closed under a
type of polynomial-time reducibility, which is formalized by the following two
definitions.

Definition 4.12 (Truth-Table Reduction[Ladner et al. 1975]). We say a
promise problem5 truth-table reducesto a promise problem0 if there exists
a (deterministic) polynomial-time computable functionf , which on inputx pro-
duces a tuple (y1, . . . , yk) and a Boolean circuitC (with k input gates) such that

x ∈ 5Y ⇒ C(χ0(y1), . . . , χ0(yk)) = 1
x ∈ 5N ⇒ C(χ0(y1), . . . , χ0(yk)) = 0.

In other words, a truth-table reduction for promise problems is a nonadaptive
Cook reduction that is allowed to make queries that violate the promise, but still
must have an unambiguous output (in the strong sense formalized by Definition 4.6).
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We further consider the case where we restrict the complexity of computing the
output of the reduction from the queries:

Definition 4.13 (NC1 Truth-Table Reductions). A truth-table reductionf be-
tween promise problems is anNC1 truth-table reductionif the circuitC produced
by the reduction on inputx has depth bounded bycf log |x|, wherecf is a constant
independent ofx.

With these definitions, we can restate Theorem 4.9 as follows:

COROLLARY 4.14. SZK is closed underNC1 truth-table reductions.

PROOF. Any circuit of sizes and depthd can be efficiently “unrolled” into a
formula of size 2d · s. Hence, anNC1 truth-table reduction from0 to5 gives rise
to a Karp reduction from0 to 8(5). SinceSZK is closed under8(·) and Karp
reductions, it is also closed underNC1 truth-table reductions.

It would be interesting to prove thatSZK is closed under general truth-table
reductions (or, even better, adaptive Cook reductions), or give evidence that this is
not the case.

4.3. KNOWLEDGE COMPLEXITY. Knowledge complexity [Goldwasser et al.
1989; Goldreich and Petrank 1999] is a generalization of zero knowledge which
attempts to quantify how much a verifier learns from an interactive proof. A number
of different measures have been proposed to accomplish this, most of which are
based on the intuition that a verifier gains at mostk bits of “knowledge” from an
interaction if it can simulate the interaction with at mostk bits of “help”. Below
we give terse definitions of the variants we consider. The first three definitions
come from Goldreich and Petrank [1999], and the last comes from [Aiello et al.
1995]. Let (P,V) be an interactive proof system for a promise problem5. Then
the knowledge complexity of (P,V) in various senses is defined as follows:

—Hint Sense. We say that (P,V) has perfect (respectively, statistical) knowledge
complexityk(n) in the hint sense if there exists a PPT simulatorS and a hint
function h : 5Y → {0, 1}∗ such that for allx ∈ 5Y, |h(x)| = k(|x|) and
‖S(x, h(x))−ViewP,V (x)‖ is 0 (respectively, is bounded by a negligible function
of |x|.)

—Strict Oracle Sense. (P,V) is said to have perfect (respectively, statistical)
knowledge complexityk(n) in thestrict oraclesense if there exists a PPT oracle-
machineS and an oracleO such that on every inputx ∈ 5Y, S queriesO at
mostk(|x|) times and‖SO(x)− ViewP,V (x)‖ is 0 (respectively, is bounded by a
negligible function of|x|.)

—Oracle Sense. (P,V) is said to have perfect (respectively, statistical) knowledge
complexityk(n) in theoraclesense if there exists a PPT oracle-machineS and
an oracleO such that on every inputx ∈ 5Y, S queriesO at mostk(|x|) times,
S outputs ‘fail’ with probability at most 1/2, and‖SO(x) − ViewP,V (x)‖ is 0
(respectively, is bounded by a negligible function of|x|), whereSO(x) denotes
the output distribution ofSconditioned on nonfailure.

—Average Oracle Sense.(P,V) has perfect (respectively, statistical) knowledge
complexityk(n) in theaverage oraclesense if there exists a PPT oracle-machine
Sand an oracleO such that for every inputx ∈ 5Y, the average number of queries
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S makes toO is at mostk(|x|) and‖SO(x) − ViewP,V (x)‖ is 0 (respectively, is
bounded by a negligible function of|x|.)

—Entropy Sense. (P,V) has perfect (respectively, statistical) knowledge com-
plexityk(n) in theentropysense if there exists a PPT oracle-machineS, an oracle
O, and a PPT oracle-simulatorA such that for allx ∈ 5Y, ER[log Px(R)−1] ≤
k(|x|), wherePx(R) = Prρ [ A(x, R; ρ) = SO(x; R)] and‖SO(x)− ViewP,V (x)‖
is 0 (respectively, is bounded by a negligible function of|x|). Here, the notation
M(y; r ) denotes the output of PPTM on inputy and random coinsr .

The knowledge complexity(in some specified sense) of a promise problem5
is k(n) if there exists an interactive proof system (P,V) for 5 achieving negli-
gible error probability in both the completeness and soundness conditions such
that the knowledge complexity of (P,V) is k(n). The class of languages possess-
ing perfect knowledge complexityk(n) in the hint, strict oracle, average oracle,
and entropy senses are denoted byPKChint(k(n)), PKCstrict(k(n)), PKCavg(k(n)),
and PKCent(k(n)), respectively. Statistical knowledge complexity is denoted by
SKC(k(n)) with the appropriate subscript.

4.3.1. A Collapse for the Hint Sense.Our first result about knowledge com-
plexity is that theSKChint hierarchy collapses by logarithmic additive factors. Pre-
viously, Goldreich and Petrank [1999] have shown thatSKChint(poly(n)) ⊂ AM
andSKChint(O(log(n))) ⊂ co-AM; the second of these results can be derived im-
mediately from our result and the resultSZK ⊂ co-AM (Corollary 4.5 [Fortnow
1989; Aiello and Håstad 1991]).

THEOREM 4.15. For any polynomially bounded function k(n),

SKChint(k(n)+ logn) = SKChint(k(n)).

For intuition, consider the case thatk(n) = 0. Loosely speaking, if the verifier is
given the hint along with the input (with the “promise” that the hint is correct), then
the original proof system becomeszeroknowledge, so we can apply the results of
the previous section. By the Boolean closure properties established in Theorem 4.9,
we can take the “union over all possible hints” (there are only polynomially many
of them) without leavingSZK.

In order to turn this intuition into a proof, we first show that knowledge com-
plexity in the hint sense can be characterized in terms of zero-knowledge promise
problems, so that questions about theSKChint hierarchy are reduced to questions
about statistical zero knowledge. This is equivalence is obtained by providing the
hint along with the input and “promising” that the hint is correct.

LEMMA 4.16. Let k(n) be any polynomially bounded function. Then5 ∈
SKChint(k(n)) (respectively,PKChint(k(n))) iff there exists a promise problem
0 ∈ SZK (respectively,PZK) such that

(1) x ∈ 5Y ⇒ there exists a such that|a| = k(|x|) and(x,a) ∈ 0Y, and
(2) x ∈ 5N ⇒ for all a, (x,a) ∈ 0N.

PROOF. We only give the proof for statistical knowledge complexity and zero
knowledge; the perfect case is identical.
⇒ Let 5 be a promise problem inSKChint(k(n)) and leth : 5Y → {0, 1}∗.

be a hint function corresponding to an appropriate interactive proof system and
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simulator for5. Consider the following promise problem0:

0Y = {(x, h(x)) : x ∈ 5Y}
0N = {(x,a) : x ∈ 5N}

By using the protocol and simulator for5, we see that0 ∈ SZK (the verifier
and prover for0 should ignore the second component, whereas the simulator uses
it as a hint.) It is clear that0 satisfies the other conditions of Lemma 4.16.
⇐ Let 0 ∈ SZK be the promise problem satisfying the stated conditions. Let

h : 5Y → {0, 1}∗ be any function such that for allx ∈ 5Y,

(1) |h(x)| = k(|x|),
(2) (x, h(x)) ∈ 0Y.

(Such a function is guaranteed by Condition 1.) We now give a proof system for5
of knowledge complexityk(n). On inputx, the prover gives the verifierh(x) in the
first step, and then they execute the protocol for0 on (x, h(x)). The completeness
and soundness of this protocol follow from the properties of the0 proof system.
This proof system is easily seen to have knowledge complexityk(n) in the hint
sense, using the hinth(x) with the zero-knowledge simulator for0.

We now prove Theorem 4.15.

PROOF. Let5 be a problem inSKChint(k(n)+ logn) and let0 be the promise
problem guaranteed by Lemma 4.16. By Theorem 4.9,8(0) ∈ SZK. Now consider
a different, but related promise problem0′, defined by

0′Y = {(x,a)) : there existsb such that|b| = log |x| and (x,ab) ∈ 0Y}
0′N = {(x,a) : for all b, (x,ab) ∈ 0N} = {(x,a) : x ∈ 5N}.

For any stringx, let b1, . . . ,bn be all strings of length log|x|, and letC be the
circuit of depthO(log |x|) computing the functionφ(v1, . . . , vn) = ∨

i vi . The
relationship between0 and0′ above implies that

(x,a) 7→ (φ, (x,ab1), . . . , (x,abn))

is an NC1 truth-table reduction from0′ to 0. SinceSZK is closed under such
reductions (Corollary 4.14), we conclude that0′ ∈ SZK.

Now,x ∈ 5Y, then there exists ana of lengthk(|x|)+ log(|x|) such that (x,a) ∈
0Y. Takinga′ to be the firstk(|x|) bits ofa, we see that there exists ana′ of length
k(|x|) such that (x,a′) ∈ 0′Y. Moreover, ifx ∈ 5N , then for alla, (x,a) ∈ 0′N .
Thus, by Lemma 4.16, we conclude that5 ∈ SKChint(k(n)).

4.3.2. The Perfect Knowledge Complexity ofSZK. The next theorem estab-
lishes tighter bounds on the perfect knowledge complexity ofSZK. Aiello et al.
[1995] have previously demonstrated that every language inSZK has perfect knowl-
edge complexityn−ω(1) (respectively, 1+ n−ω(1)) in the entropy (respectively, av-
erage oracle) sense. Our results improve on these bounds, although the results of
Aiello et al. [1995] also apply to cheating-verifier classes and ours do not. Goldreich
et al. [1998] show thatSZK has logarithmic perfect knowledge complexity in the
oracle sense, so our results are incomparable to theirs. Our result for the strict oracle
sense is the first that we know of.
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THEOREM 4.1712

(1) For every polynomial-time computable m(n)=ω(logn), SZK ⊂
PKCstrict(m(n)).

(2) SZK ⊂ PKCavg(1+ 2−n).
(3) SZK = PKCent(2−n).

Corollary 4.2 tells us that every problem inSZK has a simple two-message
proof system like the SD proof system of Section 3.3. Thus, in order to measure
the perfect knowledge complexity ofSZK and prove Theorem 4.17, it suffices to
analyze this protocol. Intuitively, since the prover is only sending the verifier one bit
and this bit is almost always a value the verifier knows, the knowledge complexity
of this protocol should be extremely small. However, this argument does not suffice,
because the knowledge complexity of a problem5 is determined only by proof
systems for5 that achievenegligibleerror probability in both the completeness
and soundness conditions. We can overcome this difficulty by performingω(logn)
parallel repetitions.

PROOF. Let 5 be any problem inSZK and let (P,V) be the proof system
for 5 constructed in Corollary 4.2 (from the SD proof system of Section 3.3)
with the security parameter set tok = 4n (so the completeness error is 2−4n). Let
m= m(n) be any function computable in time poly(n) such thatω(logn) ≤ m≤ n.
Consider the proof system (P′,V ′) obtained bym parallel repetitions of (P,V);
this has negligible completeness and soundness errors. We now analyze its perfect
knowledge complexity.

(1) The prover sends at mostmbits to the verifier on inputs of lengthn, so the perfect
knowledge complexity of this protocol in the strict oracle sense is bounded
by m.

(2) A perfect simulator for (P′,V ′) can be obtained as follows: On inputx of length
n, the simulator runsV(x) for m times independently and queries the oracle
onceto find out if any of these runs would result in an incorrect prover response.
If the oracle replies yes, the simulator queries the oraclem more times to find
out which runs would result in an incorrect response. The simulator then outputs
the random coins used for runningV and the appropriate prover responses.

In each subprotocol, the prover gives an incorrect response with probability
at most 2−4n. Thus, the simulator has to query the oracle for more than one
bit with probability at mostm2−4n. Thus, on average, the simulator queries the
oracle for at most 1+m22−4n < 1+ 2−n bits.

(3) LetSbe the simulator for (P′,V ′) that simply simulatesV ′ and queries the ora-
cleO for all prover responses. One possible oracle simulator would assume that
the prover is correct in all subprotocols. Unfortunately, this gives 1/Px(R) = ∞
for someR and yields infinite knowledge complexity. Thus, we instead have
our oracle simulatorA assume that the prover is right in each subprotocol inde-
pendently with probability 1−δ, whereδ = 2−2n. Thus,Px(R) = (1−δ)kδm−k,

12 The 2−Ä(n) in these results can be improved to 2−Ä(nk) for any constantk by polarizing with security
parameternk instead ofn in the SD proof system of Section 3.3.
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if R is a set of random coins forV ′ (equivalentlyS, sinceS mimics V ′) that
would elicit a correct prover response in exactlyk of the subprotocols. Letε be
the probability that the prover is incorrect in an individual subprotocol. Then,
ε ≤ δ2, and we have

ER
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log

1

Px(R)

]
=

m∑
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m

k

)
εm−k(1− ε)k log
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1

δ

)
≤ 2mδ < 2−n

for sufficiently largen. Note that the third equality above follows from the
identityk(m

k ) = m(m−1
k−1 ).

The opposite inclusion follows from the result of Aiello et al. [1995] that
PKCent(neg(n)) ⊂ SZK for any negligible function neg(n).

4.4. REVERSINGSTATISTICAL DIFFERENCE. By the completeness of SD (The-
orem 3.1) andSZK’s closure under complement (Corollary 4.4), it follows thatSD
reduces to SD. This is equivalent to the following surprising result:

COROLLARY 4.18 (REVERSAL MAPPING). There is a polynomial-time com-
putable function that maps pairs of circuits(C0,C1) to pairs of circuits(D0, D1)
such that

‖C0− C1‖ < 1

3
⇒ ‖D0− D1‖ > 2

3

‖C0− C1‖ > 2

3
⇒ ‖D0− D1‖ < 1

3
.

That is,SD reduces toSD.

This corollary motivated our search for a more explicit description of such a map-
ping. By extracting ideas used in the transformations of statistical zero-knowledge
proofs given in Okamoto [2000] and Sahai and Vadhan [1997], we obtained the
description of this transformation given below.

The Construction. Let (C0,C1) be any pair of circuits and letn = |(C0,C1)|.
By the Polarization Lemma (Lemma 3.3), we can produce in polynomial time
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a pair of circuits (̃C0, C̃1) such that

‖C0− C1‖ < 1

3
⇒ ‖C̃0− C̃1‖ > 1− 2−n

‖C0− C1‖ > 2

3
⇒ ‖C̃0− C̃1‖ < 2−n

Let q = poly(n) be the number of input gates of̃C0 and C̃1 (without loss of
generality, we may assume they have the same number) and let` = poly(n) be
the number of output gates. For notational convenience, letR = {0, 1}q andL =
{0, 1}`. Let m = n3q2 and define a new distributionEC: {0, 1}m × Rm → Lm as
follows:

EC(Eb, Er ) = (C̃b1(r1), . . . , C̃bm(rm)).

We use the notationEz← EC to denoteEz chosen according toEC, that is, selectEb and
Er uniformly and letEz= EC(Eb, Er ).

Let H be a 2-universal family of hash functions from{0, 1}m × Rm × Lm to
S= {0, 1}(q+1)m−21−n, where1 =

√
nmq2 = m/n. We can now describe the new

distributions:

D0: Choose (Eb, Er )∈R{0, 1}m×Rm, Ey← EC, andh∈RH.

Output
( EC(Eb, Er ), Eb, h, h(Eb, Er , Ey)

)
.

D1: Choose
(Eb, Er )∈R{0, 1}m× Rm, h∈RH, ands∈RS.

Output
( EC(Eb, Er ), Eb, h, s).

The important things to note about these distributions are thatEb is part of the
output, and thatD0 andD1 only differ in the last component, whereD0 has the value
of the hash function andD1 has a truly random element ofS. Also note that the
size ofS is chosen to be|{0, 1}m× Rm|/221+n, which is essentially|{0, 1}m× Rm|,
scaled down by a “slackness” factor of 221+n. The introduction of the sampleEy in
D0 may at first seem superfluous; we explain below.

Intuition. For intuition, consider the case thatEC is a flat distribution; that is,
for everyEz ∈ range(EC), the size of the preimage set|{(Eb, Er ): EC(Eb, Er ) = Ez}| is the
same valueN. Then the range ofEC has size|{0, 1}m × Rm|/N = 2(q+1)m/N. So,
in D0, conditioned on a value forEC(Eb, Er ), the triple (Eb, Er , Ey) is selected uniformly
from a set of size 2(q+1)m. Since this is much greater than|S|, the Leftover Hash
Lemma of Håstad et al. [1999] implies that conditioned on any value for the first
component ofD0, the last two components (h, h(Eb, Er , Ey)) are distributed close to
the uniform distribution onH × S, which is the distribution thatD1 has in its last
two components.13 Thus, if their second components were missing,D0 and D1

13 Here we see the importance ofEy: Without Ey, conditioned on some value ofEC(Eb, Er ), the pair
(Eb, Er ) would be selected uniformly from a space of sizeN. If we were only hashing this pair, for the
distributionh(Eb, Er ) to be uniform by the Leftover Hash Lemma,Swould have had to be chosen so that
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would be statistically close. Now, consider the case that‖C̃0 − C̃1‖ ≈ 1. Then
Eb is essentially “determined” byEC(Eb, Er ). So the presence ofEb can be ignored,
and the above argument says thatD0 and D1 are statistically very close. Now,
consider the case that‖C̃0 − C̃1‖ ≈ 0. ThenEb is essentially “unrestricted” by
EC(Eb, Er ). Since there are 2m choices forEb, conditioning onEb in addition toEC(Eb, Er ),
cuts the number of triples (Eb, Er , Ey) down from 2m(q+1) to roughly 2m(q+1)/2m.
Since 2m(q+1)/2m is much smaller than|S|, h(Eb, Er , Ey) will cover only a small frac-
tion of |S| and thus will be far from uniform (conditioned on values forEC(Eb, Er ),
Eb, andh).

Direct Proof of Corollary4.18. First, we will argue thatEC is close to being
flat (in a particular sense), so that we can apply arguments like those given above.
The fact thatEC is close to flat will follow from the fact that it is composed of
many independent, identically distributed random variables. This is a form of the
Asymptotic Equipartition Property commonly used in Information Theory (cf.,
Cover and Thomas [1991]).

For Ez ∈ Lm, we say theweightof Ez is the logarithm of the size of the preim-
age set ofEz. Formally, let wt(Ez) = log2 |{(Eb, Er ) : EC(Eb, Er ) = Ez}|. Let w be the
expected weight of an image, that is,w = EEz←EC[wt(Ez)]. Then, we can show the
following:

LEMMA 4.19. PrEz←EC
[|wt(Ez)− w| > 1

]
< 2−Ä(n).

PROOF. For z ∈ L, let wt0(z) = log2 |{(b, r ) : C̃b(r ) = z}|. Then, forEz ∈ Lm,
wt(Ez) = wt0(z1) + · · · + wt0(zm). Observe that, whenEz is selected according
to EC, z1, . . . , zm are independent and identically distributed. Moreover, for any
z ∈ L, 0≤ wt0(z) ≤ q. So, by the Hoeffding inequality [Hofri 1995, Sect. 7.2.1],
we have

Pr
Ez←EC

[|wt(Ez)− w| > 1
]
< 2 exp(−212/mq2) = 2 exp(−2n).

It will be convenient to eliminate thoseEz ∈ Lm that have weight far above or
below the mean. LetT = {(Eb, Er ) : |wt( EC(Eb, Er ))−w| ≤ 1}, which we will call the set
of typicalpairs (Eb, Er ). The above Lemma says that|T | ≥ (1−2−Ä(n))|{0, 1}m×Rm|.
Thus,‖T − {0, 1}m × Rm‖ ≤ 2−Ä(n), where for simplicity of notation, we let the
name of a set also refer to the uniform distribution on the same set. DefineEC′ to
be the distribution obtained by selecting (Eb, Er )← T and outputtingEC(Eb, Er ). Then,
sinceEC is a function, Fact 2.4 tells us that‖ EC− EC′‖ = 2−Ä(n). Similarly, we define

|S| ¿ N. The value ofN, however, depends on the inner workings of the circuitC, and is in general
unknown. By includingEy, which comes uniformly from a space of size 2(q+1)m/N, we balance the
arguments toh so that they come from a space of size 2(q+1)m, a known quantity. This use of “dummy”
samples to form a space whose size is known is the “complementary usage of messages” technique
of Okamoto [2000].
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variants ofD0 andD1 that sample fromT instead of{0, 1}m× Rm:

D′0: Let (Eb, Er )∈RT , Ey← EC′, andh∈RH. Output
( EC(Eb, Er ), Eb, h, h(Eb, Er , Ey)

)
.

D′1: Let (Eb, Er )∈RT , h∈RH, ands∈RS. Output
( EC(Eb, Er ), Eb, h, s).

SinceD′0 (respectively,D′1) is a randomized procedure applied to two (respec-
tively, one) independent samplings fromT , Fact 2.4 tells us that‖D0−D′0‖ = 2−Ä(n)

(respectively,‖D1− D′1‖ = 2−Ä(n)). Hence, it suffices to prove that these modified
distributions have the properties we want in each case. For the case whenC0 and
C1 are statistically far, we prove the following claim:

CLAIM 4.20. If ‖C̃0− C̃1‖ > 1− 2−n, then‖D′0− D′1‖ < 2−Ä(n).

PROOF OFCLAIM . First, we formalize the idea thatEb is “determined” byEC.
Define f : L → {0, 1} by

f (z) =
{

0 if Pr [C̃0 = z] > Pr [̃C1 = z]
1 otherwise

In other words, f is exactly the prover strategy from the proof system for
STATISTICAL DIFFERENCEgiven in Section 3.3. The completeness of that proof
system (Lemma 3.7) says that Prb,r [ f (C̃b(r )) = b] > 1 − 2−n. Now define
Ef : Lm→ {0, 1}m by Ef (Ez) = ( f (z1), . . . , f (zm)). Then

Pr
Eb,Er

[ Ef ( EC(Eb, Er )) = Eb] > (1− 2−n)m = 1− 2−Ä(n).

SinceT is a 1− 2−Ä(n) fraction of {0, 1}m × Rm, the same is true when (Eb, Er ) is
selected uniformly fromT . Thus, if we define:

D′′0: Let (Eb, Er )∈RT , Ey← EC′, andh∈RH.
Output

( EC(Eb, Er ), Ef ( EC(Eb, Er )), h, h(Eb, Er , Ey)
)
.

D′′1: Let (Eb, Er )∈RT , h∈RH, ands∈RS. Output
( EC(Eb, Er ), Ef ( EC(Eb, Er )), h, s

)
.

Then,‖D′0 − D′′0‖ = 2−Ä(n) and‖D′1 − D′′1‖ = 2−Ä(n). So it suffices to show
that‖D′′0 − D′′1‖ = 2−Ä(n). Since the first components ofD′′0 andD′′1 are identically
distributed and the second components are determined by the first ones, it suffices
to show (by Fact 2.5) that, conditioned on any value for the first coordinate, the third
and fourth components have statistical difference 2−Ä(n). This will follow from the
Leftover Hash Lemma [H˚astad et al. 1999]:

LEMMA 4.21 (LEFTOVERHASH LEMMA [HÅSTAD ET AL. 1999]). Let H be a
family of2-universal hash functions from D to S. Let X by a probability distribu-
tion on D such that for all x∈ D, Pr[X = x] ≤ ε/|S|. Then the following two
distributions have statistical difference at mostε1/3.

(1) Choose x← X, h∈RH. Output(h, h(x)).
(2) Choose h∈RH, s∈RS. Output(h, s).

By the above argument and the Leftover Hash Lemma, it suffices to show that,
conditioned on any valueEz for EC′(Eb, Er ), no triple (Eb, Er , Ey) has probability more than
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2−Ä(n)/|S|. The pair (Eb, Er ) comes uniformly from a set of size 2wt(Ez) ≥ 2w−1, andEy
is selected independently according toEC′, so the probability of any triple (Eb, Er , Ey)
is at most (

1

2w−1

)(
2w+1

|T |
)
≤ 221(

1− 2−Ä(n)
)

2(q+1)m
= 2−Ä(n)

|S| .

Thus,‖D′′0 − D′′1‖ ≤ 2−Ä(n), and the claim is established.

Now we treat the other case, whenC0 andC1 are statistically close.

CLAIM 4.22. If ‖C̃0− C̃1‖ < 2−n, then‖D′0− D′1‖ > 1− 2−Ä(n).

PROOF OFCLAIM . First, we formalize the idea thatEb is almost completely
“undetermined” byEC(Eb, Er ). Since‖C̃0− C̃1‖ < 2−n, it follows from Fact 2.6 that,
with probability 1− 2−Ä(n) overz← C̃0,(

1− 2−Ä(n)
)

Pr[̃C1 = z] ≤ Pr[̃C0 = z] ≤ (1+ 2−Ä(n)
)

Pr[̃C1 = z].

In other words,

1− 2−Ä(n) ≤ |{r : C̃0(r ) = z}|
|{r : C̃1(r ) = z}| ≤ 1+ 2−Ä(n).

The same is true with probability 1− 2−Ä(n) when the roles of̃C0 and C̃1 are
reversed. Thus, with probability 1−m2−Ä(n) = 1− 2−Ä(n) overEz← EC, we have
for everypair Eb, Ec ∈ {0, 1}m,

1− 2−Ä(n) = (1− 2Ä(n))m ≤ |{Er : EC(Eb, Er ) = Ez}|
|{Er : EC(Ec, Er ) = Ez}| ≤

(
1+ 2−Ä(n)

)m = 1+ 2−Ä(n).

Since there are 2m choices forEc, this, combined with Lemma 4.19, implies that,
with probability 1− 2−Ä(n) overEz← EC, the following holds foreveryEb ∈ {0, 1}m:

|{Er : EC(Eb, Er ) = Ez}| ≤ (1+ 2−Ä(n)
) · 2wt(Ez)

2m
≤ (1+ 2−Ä(n)

) · 2w+1−m.

Since this is true with probability 1−2−Ä(n) for Ez selected according toEC, it is also
true with probability 1− 2−Ä(n) for Ez selected according toEC′. Fix any suchEz and
fix any Eb ∈ {0, 1}m andh ∈ H. Then, inD′0, conditioned onEC′(Eb, Er ) = Ez, Eb, andh,
there are at most(

1+ 2−Ä(n)
) · 2w+1−m

( |T |
2w−1

)
≤ (

1+ 2−Ä(n)
) · 221−m · 2m(q+1)

= (
1+ 2−Ä(n)

) · 241+n−m · |S|
= 2−Ä(m) · |S|

possible values for (Er , Ey). Thus, with probability at least 1− 2−Ä(n), conditioned
on values for the first three components ofD′0, the fourth componenth(Eb, Er , Ey) can
cover at most a 2−Ä(m) ≤ 2−Ä(n) fraction of S. In contrast, conditioned on values
for the first three components ofD′1, the fourth component is uniformly distributed
on S. Therefore,‖D′0− D′1‖ ≥ 1− 2−Ä(n).
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In Vadhan [1999], it is shown that this Reversal Mapping can be better understood
as a composition of two reductions, going the two directions between STATISTICAL
DIFFERENCEand ENTROPY DIFFERENCE(the complete problem forSZK given in
Goldreich and Vadhan [1999], which trivially reduces to its complement).

5. Other Forms of Zero Knowledge

3.1. WEAK-SZK AND EXPECTED POLYNOMIAL -TIME SIMULATORS. Recall
that, in this article, we defined statistical zero-knowledge with respect tostrict
polynomial-time simulators. As noted in Section 2, the original definition of sta-
tistical zero-knowledge permitsexpectedpolynomial-time simulators, but only al-
lowing strict polynomial-time simulators is not very restrictive when discussing
honest-verifier proofs, as we are.

However, our techniques do say something about expected polynomial-time sim-
ulators, and, in particular, show that expected polynomial-time simulators are no
more powerful than strict ones for public-coin statistical zero-knowledge. This is the
first general equivalence between strict and expected polynomial-time simulators
for statistical zero knowledge that we know of.

Indeed, we are able to generalize further to an even weaker notion, that ofweak
statistical zero knowledge (as previously considered in Di Crescenzo et al. [1997],
where it was referred to as “nonuniform simulation”):

Definition 5.1. An interactive proof system (P,V) for a promise problem5
is weak statistical zero knowledgeif for all polynomialsp, there exists an efficient
probabilistic (strict) polynomial-time algorithmSp such that∥∥Sp(x)− (P,V)(x)

∥∥ ≤ 1

p
(|x|),

for all sufficiently longx ∈ 5Y.

We denote byweak-SZK the class of promise problems admitting weak statisti-
cal zero-knowledge proofs, and bypublic-coin weak-SZK the class corresponding
to such proofs that are also public coin. Note that any proof system admitting an
expected polynomial-time simulator (in the usual sense) certainly also satisfies
the requirements of weak statistical zero-knowledge. We show that in fact any
public-coin weak statistical zero-knowledge proof system can be transformed into
a statistical zero-knowledge proof system with a strict polynomial-time simula-
tor achieving negligible (in fact, exponentially small) simulator deviation. In other
words,public-coin weak-SZK = SZK.

PROPOSITION 5.2. public-coin weak-SZK = SZK = public-coin SZK.

The only obstacle in generalizing Proposition 5.2 to all weak statistical zero-
knowledge proofs (instead of just public-coin ones) is that Okamoto’s [2000] private
to public-coin transformation is only given for strict polynomial-time simulators
achieving negligible simulator deviation. In fact, this generalization was accom-
plished in work (subsequent to ours) by Goldreich and Vadhan [1999].

In order to establish Proposition 5.2, it suffices to show that every problem in
public-coin weak-SZK reduces to SD, as the proposition follows by closure under
reductions (Corollary 4.3) and Okamoto’s theorem thatSZK = public-coin SZK
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(Theorem 3.10). Therefore, we need only establish the following generalization of
Lemma 3.8:

LEMMA 5.3. Suppose promise problem5 has a public-coin weak statistical
zero-knowledge proof. Then there exist probabilistic (strict) polynomial-time ma-
chines A and B such that

x ∈ 5Y ⇒ ‖A(x)− B(x)‖ < 1

3
, and

x ∈ 5N ⇒ ‖A(x)− B(x)‖ > 2

3
.

PROOF. The proof is identical to the proof of Lemma 3.8, except that wherever
the simulatorSis used in that proof, we replace it withSp, a simulator with deviation
1/p(n), wherep(n) = 7n · r (n)3. Then we replace Claim 3.12 with the following:

CLAIM 5.4. If x ∈ 5Y, then‖A(x)− B(x)‖ ≤ 1/(3|x| · r (|x|)2).

PROOF OFCLAIM . The proof is identical to the proof of Claim 3.12, except
that now we have

‖A(x)− B(x)‖ ≤ 2−Ä(|x|) + 2r (|x|) · ∥∥Sp(x)− (P,V)(x)
∥∥ < 1

3|x| · r (|x|)2
.

On the other hand, Claim 3.13 remains true, that is,x ∈ 5N implies‖A(x) −
B(x)‖ ≥ 1/12r (n). Then, as in the original proof, we consider the samplable
distributionsÂ(x) = ⊗s(|x|) A(x) and B̂(x) = ⊗s(|x|) B(x), wheres(n) = n · r (n)2.
If x ∈ 5Y, ‖Â(x)− B̂(x)‖ ≤ s(|x|)‖A(x)− B(x)‖ < 1/3, as desired. Ifx ∈ 5N ,
then by the Direct Product Lemma (Lemma 3.4),‖Â(x)− B̂(x)‖ ≥ 1−2−Ä(|x|).

3.2. PERFECT ANDCOMPUTATIONAL ZERO KNOWLEDGE. Although the focus
of this article is statistical zero knowledge, some of the techniques also apply
to perfect and computational zero knowledge. In particular, for public-coin proof
systems, we obtain variants of Lemma 3.8 for both perfect and computational zero
knowledge. In addition, a restricted version of STATISTICAL DIFFERENCEcan be
shown to have perfect zero-knowledge proof.

First, we define some variants of SD. For any two constantsα andβ with α > β,
define:

SDα,βY = {(C0,C1) : ‖C0− C1‖ ≥ α}
SDα,βN = {(C0,C1) : ‖C0− C1‖ ≤ β} .

SDα,β is interreducible with SD and hence complete forSZK whenever 1> α2 >
β > 0, because the Polarization Lemma generalizes to such thresholds. (See dis-
cussion at the end of Section 3.2.)

We canalmostshow that every problem that has a public-coin perfect zero-

knowledge proof reduces toSD1/2,0. The caveats are that either the original proof
system must have perfect completeness, or we obtain distributions that are sam-
plable inexpectedpolynomial time rather than circuits.

PROPOSITION 5.5. Every promise problem having a public-coin perfect zero-

knowledge proof with perfect completeness reduces toSD1/2,0.
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PROOF. It suffices to show that the distributionsA(x) andB(x) constructed in
the proof of Lemma 3.8 have statistical difference 0 onYES instances, when the
original proof system has perfect completeness and the simulator deviation is 0.
Indeed, fori ≥ 1, the distributionsAi (x) andBi (x) are identical if the simulator de-
viation is 0, and the distributionsA0(x) andB0(x) are identical under the additional
assumption that the proof system has perfect completeness.

We remark that Proposition 5.5 holds more generally for problems possessing
public-coin perfect zero-knowledge proof systems for which the probability that
(P,V)(x) accepts can be computed in polynomial time forYES instancesx. This is
the case sinceB0 in the proof above can be changed to output 1 with the appropri-
ate probability.

PROPOSITION 5.6. Suppose promise problem5 has a public-coin perfect zero-
knowledge proof. Then there exist probabilistic expected polynomial time machines
A and B such that

x ∈ 5Y ⇒ ‖A(x)− B(x)‖ = 0, and
x ∈ 5N ⇒ ‖A(x)− B(x)‖ ≥ 1− 2−Ä(|x|).

PROOF. The proof is nearly identical to that of Proposition 5.5, except that
we must modifyA0(x) and B0(x) to have statistical difference 0 (at the price of
B0(x) becoming expected polynomial time). Letc(n) be a polynomial bound on
the number of random coinsS uses on inputs of lengthn. Then we defineA0 and
B0 as follows (in both descriptions,n = |x|):
A0(x): Run S(x) for n · c(n) repetitions. Output “1” if the majority are accepting
conversations and ‘0’ otherwise.
B0(x): With probability 1−2−c(n), output “1”. Otherwise, calculate the probability
σ that S(x) outputs an accepting conversation (by exhaustive search over all 2c(n)

random seeds). Now calculate

τ =
b nc(n)

2 c∑
i=0

(
nc(n)

i

)
σ i (1− σ )nc(n)−i .

If τ > 2−c(n), output “1.” Otherwise, output “0” with probabilityτ/2−c(n), and “1”
otherwise.

Note thatB0(x) runs in expected polynomial time, since, with probability 2−c(n),
it runs in time poly(n) · 2c(n) and otherwise it runs in time poly(n). Also observe
thatτ is exactly the probability thatA0(x) outputs ‘0’.

Now we argue that, whenx ∈ 5Y, A0(x) and B0(x) have statistical difference
0, that is, output “1” with the same probability. SinceS(x) outputs a conversation
that makesV accept with probability at least 2/3− neg(n), the Chernoff bound
implies that Pr[ A0(x) = 1] = 1 − 2−Ä(nc(n)). This means thatτ will always be
less than 2−c(n) (for sufficiently largen), so B0 will output “0” with probability
2−c(n) · (τ/2−c(n)) = τ , which is the probability thatA0 outputs “0”.

Now, if we could show that SD1/2,0 (or its complement) has a perfect zero-
knowledge proof system, we would have something like a completeness result for
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PZK. Although we do not know how to do this, we can instead show that SD1,1/2 ∈
PZK. Indeed, consider the protocol of Section 3.3 with the modification that the
two parties use the XOR Lemma (Lemma 3.5) instead of the Polarization Lemma.
Then the proof of Lemma 3.7 tells us that this protocol, when used for SD1,1/2, has
completeness error 0, simulator deviation 0, and soundness error 1/2+ 2−n. Thus,
we have:

PROPOSITION 5.7. SD1,1/2 ∈ PZK.

Forcomputationalzero knowledge, the techniques of Lemma 3.8 give us some-
thing significantly weaker:

PROPOSITION 5.8. Suppose promise problem5 has a public-coin computa-
tional zero-knowledge proof. Then there exist probabilistic polynomial-time ma-
chines A and B such that

(1) x ∈ 5N ⇒ ‖A(x)− B(x)‖ ≥ 1− 2−Ä(|x|), and
(2) {A(x)}x∈5Y and {B(x)}x∈5Y are computationally indistinguishable ensembles

of probability distributions.

Note that, in contrast to perfect and statistical zero knowledge, the conditions
given in Proposition 5.8 do not give a way to distinguishYES andNO instances; it
is possible forA(x) andB(x) to have statistical difference greater than 1− 2−Ä(|x|)
even forx ∈ 5Y. Despite this, it still suffices to establish Theorem 5.13, which we
present in Section 3.3. We also remark that Proposition 5.8 holds even when the
simulator for the proof system runs in expected polynomial time, except thatA and
B will also run in expected polynomial time.

PROOF. The proof follows Lemma 3.8 exactly, except for Claim 3.12, which
should be replaced with the following:

CLAIM 5.9. {A(x)}x∈5Y and{B(x)}x∈5Y are computationally indistinguishable
ensembles of probability distributions.

We omitx from the notation for readability; below all probability distributions
actually refer toensemblesindexed byx ∈ 5Y. The proof in Claim 3.12 thatA0
andB0 have exponentially small statistical difference still holds. Let the distribu-
tions A′ andB′ be obtained fromA andB by removing the 0th components ofA
and B, respectively. SinceA0 and B0 are independent ofA′ and B′, it suffices to
show thatA′ andB′ are computationally indistinguishable. To prove this, we first
note that a hybrid argument shows that the distributions⊗r (P,V) and⊗r S are
computationally indistinguishable, since (P,V) andS are computationally indis-
tinguishable. Note that this step uses the fact that our definition of computational
indistinguishability is with respect to nonuniform distinguishers, because (P,V) is
not a samplable distribution (cf., [Goldreich 2001, Ch. 3, Exercise 9]).

Now we introduce a new distributionC. DefineCi = (c1, p1, . . . , ci )(P,V) for
1 ≤ i ≤ r , and letC = C1 ⊗ · · · ⊗ Cr . Then,C and A′ are computationally
indistinguishable since a distinguisherD between them could be used to make a
distinguisherD′ between⊗r (P,V) and⊗r S: Given a sequence ofr transcripts
(t1, . . . , tr ), D′ truncatesti = (c1, p1, . . . , cr , pr ) to producet ′i = (c1, p1, . . . , ci )
and feeds (t ′1, . . . , t

′
r ) to D. When fed with⊗r S, D′ gives D a sample ofA′, and

when fed with⊗r (P,V), D′ givesD a sample ofC.
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Similarly, C andB′ are also computationally indistinguishable because a distin-
guisher between them could be to make a distinguisherD′ between⊗r (P,V)
and ⊗r S: Given a sequence ofr transcripts (t1, . . . , tr ), D′ truncatesti =
(c1, p1, . . . , cr , pr ) and selectsui according to the uniform distribution on strings
of lengthr (|x|) to producet ′i = (c1, p1, . . . , pi−1, ui ) and feeds (t ′1, . . . , t

′
r ) to D.

When fed with⊗r S, D′ givesD a sample ofB′, and when fed with⊗r (P,V), D′
givesD a sample ofC.

Now, because bothA′ and B′ are computationally indistinguishable from
C, they must be computationally indistinguishable from each other, completing
the proof.

3.3. HARD-ON-AVERAGE PROBLEMS AND ONE-WAY FUNCTIONS. Most, if not
all, of cryptography relies on the existence of computational problems that are hard-
on-average. However, the mere existence of a hard-on-average problem, even in
NP, is not known to imply even the most basic cryptographic primitive, namely a
one-way function. Ostrovsky [1991], however, showed that the existence of a hard-
on-average problem inSZK doesimply the existence of one-way functions. This
result was subsequently generalized toCZK by Ostrovsky and Wigderson [1993].

In this section, we show how Ostrovsky’s result follows readily from our Com-
pleteness Theorem and a result of Goldreich [1990] on computational indistin-
guishability. Using the generalization of our techniques toCZK described in the
previous section, we also obtain a simpler proof of the Ostrovsky–Wigderson The-
orem restricted to public-coin proof systems.

In order to state these theorems precisely, we need to define what we mean for
a problem5 to be “hard.” Informally, we require that membership in5 is (very)
hard to decide under some samplable distribution of instances.

Definition 5.10. An ensemble of distributions{Dn}n∈N is said to besamplable
if there is a probabilistic polynomial-time algorithm that, on input 1n outputs a
string distributed according toDn.

Definition 5.11. A promise problem5 ishard-on-averageif there exists a sam-
plable ensemble of distributions{Dn}n∈N such that the following holds: For every
nonuniform probabilistic polynomial-time algorithmM , there exists a negligible
functionµ : N→ [0, 1] such that

Pr[M(x) correctly decides whetherx is aYES or NO instance of5]

≤ 1

2
+ µ(n) ∀n ∈ N,

where the probability is taken overx← Dn and the coins ofM . (If x violates the
promise, thenM is considered to be correct no matter what it outputs.)

In this section, we give new proofs of the following results.

THEOREM5.12 ([OSTROVSKY1991]). If there is a hard-on-average promise
problem inSZK, then one-way functions exist.

THEOREM 5.13 ([OSTROVSKY AND WIGDERSON 1993] FOR PUBLIC-COIN
PROOFS). If a hard-on-average promise problem possesses a public-coin com-
putational zero-knowledge proof system, then one-way functions exist.
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We only prove Theorem 5.13 as Theorem 5.12 then follows via
Theorem 3.10 [Okamoto 2000]. Our proof makes use of Proposition 5.8 in
conjunction with the following result of Goldreich [1990]:

PROPOSITION5.14 ([GOLDREICH 1990]). Suppose there exist two samplable
ensembles of distributions,{An}n∈N and{Bn}n∈N, such that

(1) {An} and{Bn} are computationally indistinguishable.
(2) There is a polynomial p: N→ N such that for all n,‖An − Bn‖ ≥ 1/p(n).

Then one-way functions exist.

PROOF OFTHEOREM5.12. Suppose5 is a hard-on-average problem with a
public-coin computational zero-knowledge proof and let{Dn} be the ensemble of
distributions under which5 is hard. By Proposition 5.8, there are probabilistic
polynomial-time algorithmsA andB such that

(1) x ∈ 5N ⇒ ‖A(x)− B(x)‖ ≥ 1− 2−Ä(|x|), and
(2) {A(x)}x∈5Y and{B(x)}x∈5Y are computationally indistinguishable.

(Note that if5 ∈ SZK, the Completeness Theorem and Polarization Lemma yield
such A and B with the computational indistinguishability replaced by statistical
difference 2−|x|.)

We show that the following ensembles{An} and{Bn} meet the requirements of
Proposition 5.14:

An : Samplex according toDn. Samplez from A(x). Output (x, z).
Bn : Samplex according toDn. Samplez from B(x). Output (x, z).

The statistical farness of these ensembles will follow from the farness ofA(x)
andB(x) onNO instances. The computational indistinguishability will follow from
the computational indistinguishability ofA(x) andB(x) onYES instances, together
with the fact that it is hard to distinguishYES instances of5 from NO instances.

To formalize this intuition, we make some observations which follow from the
fact that5 is hard-on-average (where here and throughout this proof, we write
neg(n) to denote negligible functions):

(1) Pr[Dn /∈ 5Y ∪5N ] = neg(n).

(2)
∣∣Pr[Dn ∈ 5Y] − 1

2

∣∣ = neg(n) and
∣∣Pr[Dn ∈ 5Y] − 1

2

∣∣ = neg(n).

(3) The ensembles{DY
n }n∈N and{DN

n }n∈N obtained by conditioningDn on being a
YES or NO instance, respectively, are computationally indistinguishable.

Items (1) and (2) hold because otherwise the trivial algorithm that always outputs
YESor the one that always outputsNO would decide5 correctly with nonnegligible
advantage. Item (3) holds because a distinguisher between{DY

n } and{DN
n } could

be used to decide5 with nonnegligible advantage.

CLAIM 5.15. ‖An − Bn‖ ≥ 1/2− neg(n).

PROOF OFCLAIM . SinceDn must produce aNOinstance of5with probability
at least 1/2−neg(n),‖An−Bn‖ ≥ (1/2−neg(n)) · (1−2−Ä(n)) = 1/2−neg(n).

CLAIM 5.16. {An}n∈N and{Bn}n∈N are computationally indistinguishable.
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PROOF OFCLAIM . Let M be any probabilistic polynomial-time algorithm.
From the fact thatA(x) and B(x) are computationally indistinguishable forYES
instances, it follows that∣∣Pr[M(x, A(x)) = 1|x ∈ 5Y] − Pr[M(x, B(x)) = 1|x ∈ 5Y]

∣∣ = neg(n), (3)

where these probabilities (and all those to follow) are taken overx← Dn and the
coins of all algorithms (M , A, andB). By the computational indistinguishability
of {DY

n } and{DN
n }, we also have∣∣Pr[M(x, A(x)) = 1|x ∈ 5Y] − Pr[M(x, A(x)) = 1|x ∈ 5N ]

∣∣ = neg(n)∣∣Pr[M(x, B(x)) = 1|x ∈ 5Y] − Pr[M(x, B(x)) = 1|x ∈ 5N ]
∣∣ = neg(n).

Combining these with Equation 3, we see that all four conditional probabilities
differ only by negligible amounts. Therefore,

Pr[M(x, A(x)) = 1] − Pr[M(x, B(x)) = 1]
≤ ∣∣Pr[M(x, A(x)) = 1|x ∈ 5Y] − Pr[M(x, B(x)) = 1|x ∈ 5Y]

∣∣
+ ∣∣Pr[M(x, A(x)) = 1|x ∈ 5N ] − Pr[M(x, B(x)) = 1|x ∈ 5N ]

∣∣
+ 2 Pr[x /∈ 5Y ∪5N ]

= neg(n).

This establishes the computational indistinguishability of{An} and{Bn}.
Given these claims, the result now follows from Proposition 5.14.

3.4. EXTENSIONS TO CHEATING-VERIFIER ZERO KNOWLEDGE. The focus of
study in this article has been the class of languages (or promise problems) pos-
sessing statistical zero-knowledge proofsagainst an honest verifier. However, in
cryptographic applications, one usually wants the zero-knowledge condition to hold
even against cheating verifier strategies that deviate arbitrarily from the specified
protocol. There have been a number of results showing how to transform proof
system that are statistical zero knowledge against the honest-verifier into ones that
are statistical zero knowledge against cheating verifier strategies [Bellare et al.
1990; Ostrovsky et al. 1993; Damg˚ard 1993; Damg˚ard et al. 1995; Okamoto 2000;
Goldreich et al. 1998]. As advocated by Bellare et al. [1990], one can use such
transformations to translate results like ours about honest-verifier statistical zero
knowledge to the cheating-verifier definition. In this section, we discuss which of
our results apply to the cheating-verifier class and the appropriate formulations in
each case.

Definition 5.17. An interactive protocol between a computationally unbounded
prover P and a PPT verifierV is said to be acheating-verifier statistical zero-
knowledgeproof system for a promise problem5 if the following holds.

(1) If x ∈ 5Y, then Pr [(P,V)(x) = accept] ≥ 1− c(|x|).
(2) If x ∈ 5N , then for allP∗, Pr [(P∗,V)(x) = accept] ≤ s(|x|).
(3) For all PPTV∗, there exists a PPTSand negligible functionα(·) such that for

all x ∈ 5Y, ‖S(x)− ViewP,V∗(x)‖ ≤ α(|x|).
As usual,c(·) is called thecompleteness error, s(·) thesoundness error, andα(·)

the simulator deviationfor V∗. cheating-ver SZK denotes the class of promise
problems possessing cheating-verifier statistical zero-knowledge proofs.



240 A. SAHAI AND S. VADHAN

Bellare et al. [1990] gave the first evidence thatcheating-ver SZK = SZK,
by proving it under the DISCRETELOGARITHM assumption. Following sequence of
subsequent works [Ostrovsky et al. 1993; Damg˚ard 1993; Damg˚ard et al. 1995],
the complexity assumption was recently completely removed:

THEOREM5.18 ([OKAMOTO 2000; GOLDREICH ET AL. 1998]).
cheating-ver SZK = SZK. Moreover, there is a transformation which converts
an honest-verifier statistical zero-knowledge proof(P,V) for a promise problem
5 into cheating-verifier statistical zero-knowledge proof(P′,V ′) for 5 such that:

(1) (P′,V ′) is public coin.
(2) (P′,V ′) has perfect completeness and soundness error2−n.
(3) (P′,V ′) has a universal black-box simulator S that works for all (even compu-

tationally unbounded) verifier strategies V∗.14

(4) If (P,V) has simulator deviationα(n), then(P′,V ′) has simulator deviation
poly(n) · α(n)+ 2−n for every V∗.

(5) If (P,V) is security-parameterized, then so is(P′,V ′).15

We now use this result to translate our results about honest-verifier statistical
zero knowledge to cheating-verifier statistical zero knowledge.

3.4.1. Class Properties. Since Theorem 5.18 asserts an equality of classes, all
of our results about theclassSZK also hold forcheating-ver SZK:

COROLLARY 5.19 (PROPERTIES OF THECLASS cheating-ver SZK).

(1) STATISTICAL DIFFERENCEis complete forcheating-ver SZK.
(2) cheating-ver SZK is closed under Karp reductions, complement[Okamoto

2000],8(·), andNC1 truth-table reductions.
(3) If there is a hard-on-average problem incheating-ver SZK, then one-way

functions exist [Ostrovsky 1991].

PROOF. Combine Theorem 5.18 with Theorem 3.1, Corollary 4.3, Corol-
lary 4.4, Theorem 4.9, Corollary 4.14, and Theorem 5.12.

3.4.2. Protocol Properties. Unfortunately, Theorem 5.18 does not guarantee
that every property satisfied by the honest-verifier proof system (P,V) is also sat-
isfied by the cheating-verifier proof system (P′,V ′). Thus, although we have shown
in Corollary 4.2 that every problem inSZK has a very efficient honest-verifier proof,
it does not follow that it also has a cheating-verifier proof of similar efficiency. In
particular, Theorem 5.18 does not preserve (even up to constant factors) the message
complexity, communication complexity, or deterministic prover of Corollary 4.2.16

The only aspects of Corollary 4.2 that are maintained involve the error probabilities:

14 See Goldreich et al. [1998] for a definition.
15 This is not stated explicitly in Okamoto [2000] and Goldreich et al. [1998], but can be achieved
replacing the input lengthn with max{k, n}, wherek is the security parameter, in their constructions.
16 In fact it is necessary that some of these properties are not maintained: only problems inBPP have
cheating-verifier statistical zero-knowledge proofs with deterministic provers [Goldreich and Oren
1994], and only problems inBPP have cheating-verifier statistical zero-knowledge proofs that are
constant round, public coin and have universal black-box simulators [Goldreich and Krawczyk 1996].
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COROLLARY 5.20. Every problem inSZK has a security-parameterized
cheating-verifier statistical zero-knowledge proof with perfect completeness, sound-
ness error2−k, and simulator deviation2−k.

PROOF. Apply Theorem 5.18 to Corollary 4.2.

We note that the transformation of Bellare et al. [1990]doespreserve the message
complexity of the proof system up to a constant factor, but requires the assumption
that the DISCRETELOGARITHM problem is hard. Thus, under this assumption, their
transformation can be combined with Okamoto’s [2000] result that every problem
in SZK has a constant-message honest-verifier proof system (or Corollary 4.2)
and conclude that every problem inSZK has a constant-message cheating-verifier
proof system.

3.4.3. Knowledge Complexity.Since Theorem 5.18 only refers to statistical
zero-knowledge, we cannot immediately apply it our results about (nonzero) knowl-
edge complexity. Below, we show how this nevertheless can be done for our results
about knowledge complexity in thehint sense.

First, for all the variants of knowledge complexity discussed in Section 4.3, we
can define cheating-verifier knowledge complexity analogously to Definition 5.17.
We denote the cheating-verifier variant of a classC with cheating-ver C. We
begin by showing that honest-verifier and cheating-verifier statistical knowledge
complexity in thehintsense coincide. To prove this, we observe one direction of the
characterization of knowledge complexity in the hint sense given by Lemma 4.16
also holds for the cheating-verifier classes:

LEMMA 5.21. Let5 be any promise problem and let k(n) be any polynomially
bounded function. Suppose there exists a promise problem0 ∈ cheating-ver SZK
(respectively,cheating-ver PZK) such that

(1) x ∈ 5Y ⇒ there exists a such that|a| = k(|x|) and(x,a) ∈ 0Y, and
(2) x ∈ 5N ⇒ for all a, (x,a) ∈ 0N.

Then 5 ∈ cheating-ver SKChint(k(n)) (respectively, cheating-ver
PKChint(k(n))).

The proof of Lemma 5.21 is the same as the corresponding direction of
Lemma 4.16. The reason the other direction of Lemma 4.16 does not immedi-
ately apply to the cheating-verifier case is that the hint function may be different
for each verifier. However, we can deduce that direction from the following:

PROPOSITION 5.22. For every polynomially-bounded function k(n),

SKChint(k(n)) = cheating-ver SKChint(k(n)).

PROOF. Clearly,cheating-ver SKChint(k(n)) ⊂ SKChint(k(n)). Now suppose
5 is any language inSKChint(k(n)), and let0 ∈ SZK be the promise problem
guaranteed by Lemma 4.16. Then, by Theorem 5.18,0 ∈ cheating-ver SZK.
Applying Lemma 5.21, we see that5 ∈ cheating-ver SKChint(k(n)).

Observe that we have actually proved something stronger: if5 ∈ SKChint(k(n)),
then there is a proof system for5 with cheating-verifier statistical knowledge
complexityk(n) for which thesame hint functioncan be used for every verifier.
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Unfortunately, analogues of Proposition 5.22 do not appear to follow immediately
from the fact thatSZK = cheating-ver SZK.

Given Proposition 5.22, it follows immediately that the collapse in theSKChint
hierarchy (Theorem 4.15) also holds for the cheating-verifier classes:

PROPOSITION 5.23. For any polynomially bounded function k(n),

cheating-ver SKChint(k(n)+ logn) = cheating-ver SKChint(k(n)).

In contrast, we do not know whether our results on the perfect knowledge com-
plexity of SZK hold for the analogous cheating-verifier classes. To apply the same
approach, one would have to analyze the (cheating-verifier) perfect knowledge com-
plexity of the protocols obtained by performing the transformations of Okamoto
[2000] and Goldreich et al. [1998] on the protocol for SD. These transformations
could conceivably increase the perfect knowledge complexity dramatically.

6. Open Problems

We recall some of the open problems we mentioned throughout the article, along
with some additional research problems raised by this work.

(1) Does STATISTICAL DIFFERENCEremain complete forSZK and the Polariza-
tion Lemma (Lemma 3.3) still hold when the thresholds areα, β such thatα2 <
β < α?

(2) IsSZK closed under general Cook reductions (adaptive or nonadaptive)? (Re-
call that in Corollary 4.14, we showed thatSZK is closed underNC1 truth-table
reductions.)

(3) Do the other forms of statistical knowledge complexity collapse like theSKChint
hierarchy (cf., Theorem 4.15)?

(4) Find natural complete problems forPZK or CZK. (The results of Section 3.2
are efforts in this direction.)

(5) Find additional natural complete problems forSZK, for example, combinatorial
or number-theoretic problems. While we have usedSZK-completeness mainly
as a positive tool, it could also provide strong evidence of intractability, asSZK
contains many problems believed to be hard.

(6) DoesSZK = PZK? It was this question, posed to us by Shafi Goldwasser, that
started us on this research, and unfortunately the answer remains a mystery.
However, our Completeness Theorem does imply thatSZK = PZK if and only
if STATISTICAL DIFFERENCEis in PZK.

Appendixes

A. The Statistical Difference Metric

PROOF OFFACT 2.1. For any setS⊂ D,

2 |Pr[X ∈ S] − Pr[Y ∈ S]|
= |Pr[X ∈ S] − Pr[Y ∈ S]| + |Pr[X /∈ S] − Pr[Y /∈ S]|
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=
∣∣∣∣∣∑

x∈S

(Pr[X = x] − Pr[Y = x])

∣∣∣∣∣+
∣∣∣∣∣∑

x/∈S

(Pr[X = x] − Pr[Y = x])

∣∣∣∣∣
≤
∑
x∈S

∣∣Pr[X = x] − Pr[Y = x]
∣∣+∑

x/∈S

∣∣Pr[X = x] − Pr[Y = x]
∣∣

= |X − Y|1 .
Equality is achieved by takingS= {x : Pr[X = x] > Pr[Y = x]}.
PROOF OFFACT 2.3

‖(X1, X2)− (Y1,Y2)‖ ≤ ‖(X1, X2)− (Y1, X2)‖ + ‖(Y1, X2)− (Y1,Y2)‖
= 1

2

∣∣X1⊗ X2− Y1⊗ X2

∣∣
1+

1

2

∣∣Y1⊗ X2− Y1⊗ Y2

∣∣
1

= 1

2

∣∣(X1− Y1)⊗ X2

∣∣
1+

1

2

∣∣Y1⊗ (X2− Y2)
∣∣
1

= 1

2
|X1− Y1|1 · |X2|1+

1

2
|Y1|1 · |X2− Y2|1

= ‖X1− Y1‖ + ‖X2− Y2‖.
PROOF OFFACT 2.4. Let A = ( f, R) be any randomized procedure. Then, for

any setS⊂ F , ∣∣Pr[ A(X) ∈ S] − Pr[ A(Y) ∈ S]
∣∣

= ∣∣Pr[ f (X ⊗ R) ∈ S] − Pr[ f (Y ⊗ R) ∈ S]
∣∣

= ∣∣Pr [X ⊗ R ∈ f −1(S)] − Pr [Y ⊗ R ∈ f −1(S)]
∣∣

≤ ‖X ⊗ R− Y ⊗ R‖
≤ ‖X − Y‖ + ‖R− R‖ (by Fact 2.3)
= ‖X − Y‖.

Taking the maximum over all setsScompletes the proof.

PROOF OFFACT 2.5. Let T ⊂ D be the set ofx’s for which ‖X2|X1=x −
Y2|Y1=x‖ < δ. Now, let S be an arbitrary subset ofD × E and, for everyx ∈ D,
defineSx = {y ∈ E : (x, y) ∈ S}. Then,

Pr[X ∈ S] ≤ Pr[X1 /∈ T ] +
∑
x∈T

Pr[X2 ∈ Sx|X1 = x] · Pr[X1 = x]

< ε +
∑
x∈T

(Pr[Y2 ∈ Sx|Y1 = x] + δ) · Pr[Y1 = x]

≤ ε + δ + Pr[Y ∈ S] .

By symmetry, we also have Pr[Y ∈ S] < ε+δ+Pr[X ∈ S]. SinceSwas arbitrary,
‖X − Y‖ < ε + δ.

PROOF OFFACT 2.6. LetS= {x : (1−√ε) Pr[X = x] ≥ Pr[Y = x]}, that is,
the set ofx’s for which the left-hand inequality in Fact 2.6 is violated. Then,

Pr[Y ∈ S] ≤ (1−√ε) Pr[X ∈ S]
= Pr[X ∈ S] −√ε · Pr[X ∈ S] .
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Thus,
√
ε · Pr[X ∈ S] ≤ ‖X − Y‖ < ε, so we must have Pr[X ∈ S] <

√
ε. A

similar argument shows that the right-hand inequality in Fact 2.6 is violated with
probability less than

√
ε.

B. A Generic Complete Problem forPZK

In this appendix, we show how to obtain a complete promise problem forPZK
directly from the definition of the class. However, in contrast to STATISTICAL DIF-
FERENCE, this problem will be essentially a restatement of the definition of the class
and therefore of little use.

The complete promise problem forPZK is PZK-GENERIC, which we now define.
An instance of PZK-GENERICis a quadruple (V, S, x, 1t ), whereV is a description
of an interactive probabilistic Turing machine andS is a description of a (noninter-
active) probabilistic Turing machine. AYES instance is such a quadruple for which
there exists a prover strategyP such that

(1) The interaction betweenP and V on x takes at mostt steps (including the
computation time forV) and V accepts in this interaction with probably at
least 2/3.

(2) The running time ofSon inputx is at mostt .
(3) S outputsfail with probability at most 1/2, and conditioned on not failing,

the output distribution ofS is identical to V ’s view of the interaction withP
on x.

A NO instance is a quadruple such that for all prover strategiesP,

(1) The interaction betweenP and V on x takes at mostt steps (including the
computation time forV) andV rejects in this interaction with probability at
least 2/3.

(2) The running time ofSon inputx is at mostt .

PROPOSITION B.1. PZK-GENERIC is complete forPZK.

PROOF. First, we show that every promise problem5 in PZK reduces to
PZK-GENERIC. Let (P,V) be the perfect zero-knowledge proof system for5 with
simulatorS. Let t(n) be a (polynomial) upper bound on both the running time ofS
and the number of steps of the interaction ofP andV on inputs of lengthn. Then

x 7→ (
V, S, x, 1t(|x|))

is a polynomial-time reduction from5 to PZK-GENERIC.
Now we argue that PZK-GENERIC∈ PZK. Consider the following descriptions

of a verifierV , a proverP, and a simulatorS:

V(V, S, x, 1t ) : When interacting with any machine, simulateV on inputx.

P(V, S, x, 1t ) : Exhaustively search for a prover strategyP for which V ’s view
of (P,V)(x) is identical to the output distribution ofS(x) (conditioned on
S(x) 6= fail.) If one exists, follow that strategy, otherwise outputfail.17

S(V, S, x, 1t ) : SimulateSon inputx.

17 Alternatively, P can act as thesimulation-based prover(see Section 3.5).
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It is easy to see that these definitions provide a perfect zero-knowledge proof
system for PZK-GENERIC.

The problem with extending this example toSZK is Condition 3 forYESinstances.
“Identical” needs to be replaced by “negligible statistical difference,” but it is not
clear what negligible function to put there. We do not know how to get around
this difficulty without using our Completeness Theorem, which implies that every
problem inSZK has a statistical zero-knowledge proof with thesamesimulator
deviation 2−n (cf., Corollary 4.2).18

Another observation worth mentioning, pointed out to us by Mihir Bellare, Oded
Goldreich, and Madhu Sudan, is that PZK-GENERIC can be modified to obtain
complete promise problems forcheating-ver PZK (as long as we restrict to “black-
box” simulation) and also the various forms ofPKC.

C. An Example forGRAPH ISOMORPHISM

For illustrative purposes, here we explicitly describe what happens when the
reduction to and proof system for STATISTICAL DIFFERENCEare applied to the well-
known public-coin perfect zero-knowledge proof system for GRAPHISOMORPHISM
[Goldreich et al. 1991]:

Perfect zero-knowledge proof system forGRAPH ISOMORPHISM.
Input: (G0,G1).

1. P sendsV a random isomorphic copyH of G0.
2. V picksb ∈ {0, 1} at random and sends it toP.
3. P sendsV a random isomorphismπ betweenGb andH , if one exists.
4. V checks thatπGb = H .

SimulatorS, on input (G0,G1):

1. Pick randomb ∈ {0, 1} and a random permutationπ .
2. Output (πGb, b, π ).

Notice that the conversations output bySalways makeV accept.
If the reduction to SD from the proof of Lemma 3.8 is applied to the above

protocol, the following distributions are obtained:

A0(G0,G1): Always output 1.
B0(G0,G1): Always output 1.
A1(G0,G1): Output (πGb, b) for a random permutationπ andb ∈ {0, 1} chosen
at random.
B1(G0,G1): Output (πGb, c) for a random permutationπ and b and c chosen
uniformly and independently from{0, 1}.

Thus,‖A0(x)− B0(x)‖ always equals 0.‖A1(x)− B1(x)‖ is easily seen to be 0
if G0

∼= G1 and 1/2 if G0 6∼= G1. For the rest of this section, we ignoreA0 andB0
since they are irrelevant.

18 We do not know how to overcome this difficulty by using the result of Bellare [1997], which states
that anycountableset of negligible functions is “dominated” by a single negligible function. The
reason is that there are uncountably many problems in the promise-classSZK.
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If we now apply the protocol for SD from Section 3.3 to the distributionsA1 and
B1 (without first applying the Polarization Lemma), we obtain the following proof
system (P′,V ′) for GRAPH NONISOMORPHISM:

(1) V ′ picks a random bitd ∈ {0, 1}. If d = 0, V ′ chooses a random bitb ∈ {0, 1}
and a random permutationπ and sends (πGb, b) to P′. If d = 1, V ′ chooses
random bitsb, c ∈ {0, 1} and a random permutationπ and sends (πGb, c)
to P′.

(2) P′ receives message (H, b) from V ′. P attempts to guessd as follows: If H is
isomorphic toGb, thenP′ guesses 0, elseP′ guesses 1.

(3) V ′ accepts if theP′ guessesd correctly.

Now, if G0 is not isomorphic toG1, thenP′ will guess correctly with probability
3/4. However, ifG0 is isomorphic toG1, then no prover can guess correctly with
probability greater than 1/2. The above protocol is of the same spirit as the stan-
dard GRAPH NONISOMORPHISMprotocol [Goldreich et al. 1991]. In both cases, the
verifier randomly permutes one of the graphs to obtain a graphH and in order for
the prover to succeed with probability greater than 1/2, the prover needs to be able
to identify from which graphH came.

ACKNOWLEDGMENTS. We are grateful to our advisor, Shafi Goldwasser, for getting
us started on the topic of statistical zero knowledge and providing direction and
advice throughout our work. We are indebted to Oded Goldreich for many enlight-
ening conversations and subsequent collaboration on this topic, and his extensive
help with the writing of this article. We also thank Mihir Bellare, Erez Petrank,
Tatsuaki Okamoto, Madhu Sudan, Luca Trevisan, Avi Wigderson, and the anony-
mous conference and journal reviewers for many helpful suggestions, clarifying
discussions, and/or encouragement.

REFERENCES

AIELLO, W., BELLARE, M., AND VENKATESAN, R. 1995. Knowledge on the average—perfect, statistical
and logarithmic. InProceedings of the 27th Annual ACM Symposium on the Theory of Computing(Las
Vegas, Nev., May 29–June 1). ACM, New York, pp. 469–478.
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