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Abstract. We present the first complete problem3@K, the class of promise problems possess-
ing statistical zero-knowledge proofs (against an honest verifier). The problem, caffed®cAL
DIFFERENCE is to decide whether two efficiently samplable distributions are either statistically close
or far apart. This gives a new characterizationSZK that makeso reference to interaction or
zero knowledge

We propose the use of complete problems to unify and extend the study of statistical zero knowl-
edge. To this end, we examine several consequences of our Completeness Theorem and its proof,
such as:

—A way to make every (honest-verifier) statistical zero-knowledge proof very communication effi-
cient, with the prover sending only one bit to the verifier (to achieve soundness gzjor 1
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—Simpler proofs of many of the previously known results about statistical zero knowledge, such as
the Fortnow and Aiello—#Stad upper bounds on the complexitys@K and Okamoto’s result that
SZK is closed under complement.

—Strong closure properties 8ZK that amount to constructing statistical zero-knowledge proofs for
complex assertions built out of simpler assertions already shown to%iéKn

—New results about the various measures of “knowledge complexity,” including a collapse in the
hierarchy corresponding to knowledge complexity in the “hint” sense.

—Algorithms for manipulating the statistical difference between efficiently samplable distributions,
including transformations that “polarize” and “reverse” the statistical relationship between a pair
of distributions.

Categories and Subject Descriptors: F.Lafnputation by Abstract Deviceg: Modes of Computa-
tion—interactive and reactive computatipf 1.3 [Computation by Abstract Deviceg: Complexity
Measures Classes

General Terms: Security, Theory

Additional Key Words and Phrases: Knowledge complexity, proof systems, statistical difference, zero
knowledge

1. Introduction

A revolution in theoretical computer science occurred when it was discovered that
NP has complete problems [Cook 1971; Levin 1973; Karp 1972]. Most often,
these theorems and other completeness results are viewed as negative statements,
as they provide evidence of a problem’s intractability. These same results, viewed
as positive statements, enable one to study an entire class of problems by focus-
ing on a single problem. For example, all languageblihwere shown to have
computational zero-knowledge proofs when such a proof was exhibitedrigri
3-COLORABILITY [Goldreich et al. 1991]. Similarly, the result th& = PSPACE

was shown by giving an interactive proof foltuBNTIFIED BOOLEAN FORMULA,

which is complete foPSPACE [Lund et al. 1992; Shamir 1992]. More recently,

the celebrate®CP theorem characterizingP was proven by designing efficient
probabilistically checkable proofs for a specNiP-complete language [Arora et al.
1998; Arora and Safra 1998].

In this article, we present a complete problem 82K, the class of promise
problems possessing statistical zero-knowledge proofs (against an honest veri-
fier). This problem provides a new and simple characterizati®@Zéf—one which
makes no reference to interaction or zero knowledge. We propose the use of com-
plete problems as a tool to unify and extend the study of statistical zero knowledge.
To this end, we use our complete problem to both establish a number of new results
aboutSZK and easily deduce nearly all previous results algxK.

1 A promise problenis a decision problem given by a pair of disjoint sets of strings, corresponding
to YES andNo instances. In contrast to languages, there may be strings that are meghestances
nor No instances. A formal definition of promise problems is given in Section 2.1.

Although our complete problem is not a language, it still provides a meaningful characterization of
the class of languages possessing statistical zero-knowledge proofs. Moreover, essentially all of the
applications of our Completeness Theorem to prove results about the promis8£#aatso imply
the analogous results for the language class. Thus, throughout the article, all discussion refers to
promise problems rather than languages (except where otherwise noted). Section 2.1 contains further
elaborates on the issue of promise problems vs. languages.
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1.1. SATISTICAL ZERO KNOWLEDGE. Zero knowledge was introduced in the
seminal paper of Goldwasser et al. [1989] within the context of their new notion
of interactive proof systems. Informally, anteractive proofis a protocol in
which a computationally unbounded provattempts to convince a probabilistic
polynomial-time verifielV of an assertion, namely that a strings aYESinstance
of some (promise) problem. Theero knowledggroperty requires that, during
this process, the verifier learns nothing beyond the validity of the assertion being
proven. To formalize this seemingly impossible notion, two probability distribu-
tions are considered:

(1) The interaction o andV from V's point of view.

(2) The output of a probabilistic polynomial-time machine not interacting with
anyone, called theimulator, on inputx.

An interactive proof systemR, V) is said to bezero knowledgd, for every YES
instancex, the two distributions above are “alike.” Intuitively, the verifier gains
no knowledge by interacting with the prover except th& avYES instance, since

it could have run the simulator instead. The specific variants of zero knowledge
differ by the interpretation given to “alike.” The most strict interpretation, leading
to perfect zero knowledgeequires that the distributions be identical. A slightly re-
laxed interpretation, leading ftatistical zero knowledgsometimes calledimost
perfect zero knowledgeequires that the distributions have negligible statistical dif-
ference from one another. The most liberal interpretation, leadiogrputational
zero knowledgerequires that samples from the two distributions be indistinguish-
able by any polynomial-time machine.

In this work, we focus on the class of problems possesstatjstical zero-
knowledge proof systems, which we den8#K. We remark that we concentrate
on zero-knowledge proofs against honest verifierthat is, the verifier that fol-
lows the specified protocol. In cryptographic applications, one usually wants the
zero-knowledge condition to hold for all (even cheating) verifier strategies. How-
ever, subsequent to this work, it has been shown that one can transform any proof
system that is statistical zero knowledge against an honest verifier into one that is
statistical zero knowledge against all verifiers [Goldreich et al. 1998], so restricting
our attention to honest verifiers causes no loss of generality.

One reason for interest BZK is that it contains a number of important compu-
tational problems. These include problems not known to béHAnsuch as GAPH
NONISOMORPHISM[Goldreich et al. 1991] andERMUTATION GROUPNONISOMOR
PHISM[Kannan 1989]. It also contains problems with cryptographic application and
significance that are believed to be hard on average, sucl/asRATIC RESIDU-
osITY (and its complement) [Goldwasser et al. 1989], a problem equivalent to the
DISCRETELOGARITHM problem [Goldreich and Kushilevitz 1993], and approxi-
mate versions of thelRTESTVECTORanNd Q. OSESTVECTORproblems in lattices
[Goldreich and Goldwasser 2000]. At the same time, the statistical zero knowledge
property has several strong consequences. Unlike a computational zero-knowledge
protocol, a statistical zero-knowledge protocol typically remains zero know-
ledge even against a computationally unbounded vefifieladdition, a problem

2 A rare exception are the results of Bellare et al. [1990], which yield protocols that are only zero
knowledge for polynomial-time verifiers.
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that has a statistical zero-knowledge proof must lie low in the polynomial-time hi-
erarchy. In fact, such a problem cannotNj@-complete unless the polynomial-time
hierarchy collapses [Fortnow 1989; Aiello ana$tad 1991; Boppana et al. 1987].
BecauseSZK contains problems believed to be hard yet cannot coritir
complete problems, it holds an intriguing position in complexity theory.

1.2. THE COMPLETEPROBLEM. The promise problem we show to be complete
for SZK is STATISTICAL DIFFERENCE An instance of $ATISTICAL DIFFERENCE
consists of a pair of probability distributions, specified by circuits that sample from
them. Roughly speaking, the problem is to decide whether the distributions defined
by the two circuits are statistically “close” or “far apart”. (The gap between “close”
and “far apart”is what makesita promise problem and not just alanguage.) Our main
theorem is that 8ATISTICAL DIFFERENCEIS complete foiSZK. This Completeness
Theorem gives a new characterizatiors@K. Informally, it says that the assertions
that can be proven in statistical zero knowledge are exactly those that can be cast as
deciding whether a pair of efficiently samplable distributions are statistically close
or far apart.

The starting point for our proof of the Completeness Theorem is a powerful the-
orem of Okamoto [2000], which states that all languages4dK havepublic-coin
(also known as Arthur—Merlin [Babai and Moran 1988]) statistical zero-knowledge
proofs. Using the approach pioneered by Forthow and others [Fortnow 1989; Aiello
and Histad 1991; Ostrovsky 1991], we analyze the simulator of such a proof sys-
tem and show that statistical properties of the simulator’s output distribution can be
used to distinguish betweengs andNo instances of the problem in consideration.
Our key new observation is that, forpaiblic-coinproof system, these statistical
properties can be captured by the statistical difference between efficiently sam-
plable distributions. We thereby conclude that every problelf84K reduces to
STATISTICAL DIFFERENCE

To show that $SATISTICAL DIFFERENCEHS in SZK, we exhibit a simple 2-message
proof system for it, generalizing the well-known proof systems foRQRATIC
NONRESIDUOSITY [Goldwasser et al. 1989], and RGPH NONISOMORPHISM
[Goldreich et al. 1991]. One ingredient in our proof system is a new “Polarization
Lemma” for statistical difference, which may be of independent interest. Roughly
speaking, this lemma gives an efficient transformation that takes as input a pair
of probability distributions (specified by circuits that sample from them) and pro-
duces a new pair of distributions such that if the original pair is statistically close
(respectively, far apart), the new pair is statistically much closer (respectively, much
further apart).

1.3. GONSEQUENCES We propose using complete problems, suchagSTi-
CAL DIFFERENCE to unify and extend the study 8ZK. We also use the connection
betweernSZK and statistical properties of samplable distributions to establish new
techniques for manipulating such distributions. The results we obtain along these
lines are summarized below.

The Relationship betwee®ZK and BPP. Our complete problem illustrates
that statistical zero knowledge is a natural generalizatidR#?. In the definition
of STATISTICAL DIFFERENCE the circuits can output strings of any length. If we
restrict the circuits to have output of logarithmic length, the resulting problem is
easily shown to be complete f8PP.



200 A. SAHAI AND S. VADHAN

Efficient SZK Proof Systems. The zero-knowledge proof system we exhibit
for STATISTICAL DIFFERENCEhas many attractive properties (which we describe
shortly); by the Completeness Theorem, it follows that every proble®zi also
has a proof system with such properties. First, the protocol is very communication
efficient—only two messages are exchanged between the prover and verifier, and
the prover only sendsne bitto the verifier (to achieve soundness errgg)l In
addition, we will show that when the input isras instance, the verifier's view of
the interaction can be simulated by a polynomial-time simulator @dffonentially
smallstatistical deviation.

Closure Properties. Using the complete problem, we demonstrate SiaK
has some very strong closure properties. These can be informally described as as-
serting the existence of statistical zero-knowledge proofs for complex assertions
built out simpler assertions already known to beSAK. These complex asser-
tions take the form of arbitrary propositional formulas whose atoms are statements
about membership in some problemSZK, and the statistical zero-knowledge
proofs we exhibit have complexity that is polynomial in the size of these formulas.
These results strengthen earlier ones of De Santis et al. [1994] andabsany
Cramer [1996], which held for monotone formulas and various subclas§2of
such as random self-reducible problems.

By the Completeness Theorem, the closure properties we establish are equivalent
to the existence of efficient transformations that manipulate the statistical difference
between samplable distributions in various ways. Indeed, it is by exhibiting such
transformations that we prove the closure properti€SZK. The transformations
we give (and their application to closure properties) are inspired by the techniques
of De Santis et al. [1994].

Simpler Proofs of Previous ResultsMany of the previous results abdsZK can
be deduced as immediate corollaries of our Completeness Theorem and its proof.
For example, the result of Okamoto [2000] tIsxK is closed under complement
follows directly from our proof of the Completeness Theorem. Then, using the fact
that our proof system for®TISTICAL DIFFERENCEIS a constant-round one, we
deduce thaBZK c AM N co-AM, as originally proven by Fortnow [1989] and
Aiello and Hastad [1991]. In addition, the result of Ostrovsky [1991] that one-way
functions exist ifSZK contains a hard-on-average problem follows immediately
by combining our Completeness Theorem with a result of Goldreich [1990] on
computational indistinguishability.

Knowledge Complexity. In addition to introducing zero-knowledge proofs, the
conference version of the paper of Goldwasser et al. [1989] proposed a more gen-
eral idea of measuring the amount of knowledge leaked in an interactive proof.
Goldreich and Petrank [1999] suggested several definitioksaf/ledge complex-
ity to accomplish this, and relationships between these various types of knowledge
complexity were explored by Goldreich and Petrank [1999], Bellare and Petrank
[1992], Goldreich et al. [1998], Aiello et al. [1995], and Petrank and Tardos [1996].
Loosely speaking, the definitions of (statistical) knowledge complexity measure
the “amount of help” a verifier needs to generate a distribution that is statistically
close to its real interaction with the prover. There are several ways of formaliz-
ing the “amount of help” the verifier needs and each leads to a different notion of
knowledge complexity.
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Our work onSZK turns out to have consequences for (nonzero) knowledge
complexity as well. First, we show that for the weakest of the various measures of
knowledge complexity, namely statistical knowledge complexity in the “hint sense,”
the corresponding hierarchy collapses by logarithmic additive factors at all levels,
and in particular, knowledge complexity logequals statistical zero knowledge.

No collapse was previously known for any of the variants of knowledge complexity
suggested by Goldreich and Petrank [1999]. Our results are obtained by combining
our results orsZK with a general lemma relating knowledge complexity in the hint
sense to zero knowledder promise problems

As with zero knowledgegyerfectknowledge complexity can also be defined. This
measures the number of bits of help the verifier needs to simulate the interaction
exactly rather than statistically closely. Using our complete problenSioiK, we
improve some results of Aiello et al. [1995] on the perfect knowledge complexity
of statistical zero knowledge.

Reversing Statistical Difference.One interesting result that follows from the
completeness of ATISTICAL DIFFERENCEand the closure d6ZK under comple-
ment is the existence of an efficient mapping which “reverses” statistical difference.
Thatis, for every pair of efficiently samplable distributions, we can construct another
pair of efficiently samplable distributions such that when the former are statistically
close, the latter are statistically far apart, and when the former are far apart, the latter
are close.

This motivated us to search for a more explicit description of such a transforma-
tion. By extracting ideas from the work of Okamoto [2000] and our proof of the
Completeness Theorem, we have obtained such a description (which we give in
Section 3.4).

WeakSZK and Expected Polynomial-Time Simulatord he original definition
of SZK by Goldwasser et al. [1989] allows the simulator to ruexpectegbolyno-
mial time, whereas we insist on strict polynomial time, following Goldreich [2001].
Actually, our proof of the Completeness Theorem shows that the two definitions are
equivalent forpublic-coinproof systems. That is, if a problem possesses a public-
coin SZK proof system with an expected polynomial-time simulator, then it also
possesses @YK proof system with a strict polynomial-time simulator (which can
be made public coin by Okamoto [2000]). In fact, the equivalence extends to an even
weaker definition ofSZK, in which it is only required that for every polynomial
p(n), there exists a simulator achieving simulator deviatipp(h).

Perfect and Computational Zero KnowledgeOur techniques can also be used
to analyze public-coin perfect and computational zero-knowledge proofs. Although
we do not obtain complete problems in these cases, we do obtain some novel insights
into the corresponding complexity classes. Specifically, in Section 3.2, we show that
every problem possessing a public-coin perfect zero-knowledge proof (essentially)
reduces to a restricted version afASISTICAL DIFFERENCE We also show that for
any problem possessing a public-coin computational zero-knowledge proof, there
exist ensembles of samplable distributions indexed by instances of the problem
such that orves instances, the distributions are computationally indistinguishable
and onNo instances, the distributions are statistically far apart.

Cheating-Verifier Zero Knowledge.Although, in this article, we primarily fo-
cus on honest-verifier statistical zero knowledge, there have been a number of
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works examining “cheating-verifier” statistical zero knowledge, and in particular
relating the honest and cheating-verifier definitions. Some of these works exhibited
transformations from honest-verifi&ZK proofs to cheating-verifier ones under
(successively weaker) complexity assumptions [Bellare et al. 1990; Ostrovsky et al.
1993; Okamoto 2000], and others gave unconditional transformations for restricted
subclasses @ZK [Damgard 1993; Damard et al. 1995]. Finally, subsequent to our
article, it was proven by Goldreich et al. [1998] that honest-verifier and cheating-
verifier SZK are equal, unconditionally and with no restrictions.

Following the paradigm advocated by Bellare et al. [1990], we use the above
transformations to translate our results about honest-vesifis, namely the Com-
pleteness Theorem and its corollaries, to the cheating-verifier class. In Section 3.4,
we precisely state the results thereby obtained for cheating-verifier statistical zero
knowledge.

1.4. SIBSEQUENTWORK. Subsequent to the conference version of this arti-
cle [Sahai and Vadhan 1997], there have a been a number of other works improving
our understanding o6ZK, many of which make use of the complete problem
methodology advocated here. As mentioned above, Goldreich et al. [1998] show
that honest-verifier statistical zero knowledge equals cheating-verifier statistical
zero knowledge. Goldreich and Vadhan [1999] use the complete problem method-
ology to give a simpler proof of Okamotao’s theorem that private-&4i# equals
public-coinSZK (on which our work relies). In the process, they exhibit another
complete problem foBZK, called ENTROPY DIFFERENCE Which amounts to decid-
ing which of two given distributions (specified by circuits that sample from them)
has noticeably higher entropy than the other. Di Crescenzo et al. [2000] consider
two variants of (honest-verifier) statistical zero-knowledge proofs, namely “proofs
of decision power” and “proofs of decision,” and exhibit such proof systems for
all of SZK. Their construction makes use of the complete problemSZdt given
here and in [Goldreich and Vadhan 1999] and special properties of their proof sys-
tems. Goldreich et al. [2001] study the complexity of interactive proofs with low
prover-to-verifier communication. Using our complete problem, they show that the
class of problems with interactive proofs in which the prover sends only one bit
to the verifier is exacth5ZK (modulo some constraints on the completeness and
soundness probabilities).

De Santis et al. [1998] extend the use of complete problems to study “non-
interactive” statistical zero knowledge; they exhibit a complete problem for the
corresponding complexity clad$lSZK and use it to prove some general results
about the class. Goldreich et al. [1999], exhibit two more complete problems for
NISZK. These problems are natural restrictions of the complete probler8&r
given here and in Goldreich et al. [1999] and thus they are able to use the complete
problems to relat8ZK andNISZK. Gutfreund and Ben-Or [2000] examine weaker
models of noninteractive zero knowledge proofs, and, using our complete problem
and reversal mapping, show that every problei84K has a noninteractive statis-
tical zero-knowledge proof in one of their models.

Finally, Vadhan [2000] examines the blow-up in the prover’s complexity incurred
by transformations from private-coin proof systems to public-coin proof systems,
such as those in Goldwasser and Sipser [1989] and Okamato [2000], and shows
that this inefficiency is inherent in the fact that the transformations use the original
prover and verifier strategies as “black boxes”. In fact, itis shown that any black-box
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transformation which preserves the prover’s complexity must fail on our proof
system for SATISTICAL DIFFERENCE

Unified presentations of many of the above results, together with the results in
this article, can be found in the Ph.D. dissertations of the authors [Vadhan 1999;
Sahai 2000].

2. Preliminaries

2.1. RROMISE PROBLEMS AND COMPLETENESS The problem we prove to be
complete forSZK is not a language, but ratherpgomise probleniEven et al.
1984]. Formally, a promise problei consists of two disjoint sets of strin@sy
andITy, wherelly is the set ofrEs instancesindIy is the set oo instancesA
promise problendl is associated with the following computational problem: Given
an input which is “promised” to lie ifly U [Ty, decide whether it comes from
Iy or ITy. Thecomplemendf IT is the promise problerl, wherelly = Ty and
TIy = Iy. Note that languages are a special case of promise problems.

We say that promise problei reducesto promise problent” if there is a
polynomial-time computable functioh such that

xelly = f(x)ely
xelly = f(x)ely.

That is, we work with polynomial-time many-one (or Karp) reductions, unless
otherwise specified. We say th@ét is closed under reductiong [IT reduces
toTandl" e C] = IT € C.

If Cis a class of promise problems, we say that promise prolbléascomplete
for Cif T1 € C and every promise problem @ reduces tdT.

If Cis aclass of promise problems, the correspontlinguage clas€ang C C
is the class of languages@ It should be noted th&t andCiang do not always have
the same complexity-theoretic properties, particular when allowing reductions that
can violate the promise. For example, the promise-problem versigR ofco-NP
contains a problem that P-hard with respect to Cook reductions, whereas this
does not hold for the language cld$B N co-NP assuming\NP # co-NP [Even
et al. 1984]. (See also Goldreich and Goldwasser [2000]).

Nevertheless, in this article, the study of a promise daésamely,C = SZK)
proves to be very useful in understanding the corresponding language class. There
are two main reasons for this. First(fis closed under reductions (as we will prove
for C = SZK) andIl is complete forC, thenII also meaningfully characterizes
Clang in thatCang = {L : L reduces td1}. Second, many of our results are of the
form “For every problendI € C, ...". Clearly, all such results will also apply to
Clang becaus&€,ng C C.

2.2. RROBABILITY DISTRIBUTIONS. If X is a probability distribution (or random
variable), we writex < X to indicate thak is a sample taken frorK. If Sis a set,
we write xe g Sto indicate thak is uniformly selected fron®.

In this article, we will consider probability distributions defined both by cir-
cuits and by probabilistic algorithms (i.e., Turing machinesp 1§ a probabilistic
algorithm, we use\(x) to denote the output distribution éfon inputx. A PPTal-
gorithm (for “probabilistic polynomial time”) is a probabilistic algorithm that runs
in strict polynomial time. IfC is a circuit mappingn-bit strings ton-bit strings,
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then choosing an input uniformly at random from{0, 1}™ defines a probability
distribution on{0, 1}" given byC(u). For notational convenience, we also denote
this probability distribution byC. These definitions capture the idea of an “(effi-
ciently) samplable” distribution, as to sample from the distribution one need only
run the algorithm or evaluate the circuit.

2.3. THE STATISTICAL DIFFERENCEMETRIC. For probability distributions (or
random variablesX andY on a discrete sdD, the statistical differencéetween
X andY is defined to be

||X—Y||:rgc%x|Pr[XeS]—Pr[YeS]|. D

This is often also called theariation distancebetweenX andY. Removing the

absolute values in (1) does not change the definition because repBbingts

complement changes the sign (but not magnitude) pXRs S| — Pr[Y € §]. The

maximum in (1) can be achieved by takiSg= {x : Pr[X = x] > Pr[Y = x]} (or

its complement); this can be seen directly or in the proof of Fact 2.1 below.
There is an equivalent formulation of statistical difference in terms aoftherm

|-|1 that will sometimes be more convenient for us. To every probability distribution

X on adiscrete sdd, themass functionf X is a vector ifrRP whosexth coordinate

is Pr[ X = Xx]. For the sake of elegance, we also denote this vectdt.biyith this

notation, we can state the following well-known fact.

FACT 2.1. [X—Y[=3IX—-YI;.

The proof of this fact and others in this section are deferred to Appendix 6. Itis
immediate from this characterization of statistical difference that it is a metric (as
long as we identify random variables that are identically distributed). In particular,
it satisfies the Triangle Inequality.

FACT 2.2 (TRIANGLE INEQUALITY). For any probability distributions X, Y,
and Z,

IX=YI<IX=Z+IZ-Y].

Recall that for any two vectors € R™ andw € R", theirtensor product \Q w
is the vector inR"™, whose {, j)th component is;w;j. Now, if we have a pair of
random variablesX, Y) (on the same probability space) taking value®irx E,
thenX is independent fronY iff the mass function ofX, Y) is the tensor product
of the mass functions of andY (which are elements &P andRE, respectively).
For this reason, if we have random variab}sndY taking values in set® and
E, respectively, we writeX ® Y for the random variable taking valuesih x E
which consists of independent samplesXofindY. Similarly, ®“X denotes the
random variable taking values DX consisting ok independent copies of, that
IS, X®X®- - ® X.

Now, for any two vectory andw, [v ® w|; = |v|; - |w|;. In addition, for any
mass functionX, |X|; = 1. These facts enable one to show that the statistical
difference behaves well with respect to independent random variables:

FACT 2.3. Suppose X and X are independent random variables on one
probability space and Yand Y; are independent random variables on another
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probability space. Then,
1(X1, X2) = (Y1, Yo)|| < [|[ X2 = Y1 + | X2 = Yz].

One basic fact about statistical difference is that it cannot be created out of noth-
ing. That s, for any procedur&, even if it is randomized, the statistical difference
betweenA(X) and A(Y) is no greater than the statistical difference betwkemnd
Y. Formally, if D is any set, aandomized proceduren D is a a pairA = (f, R),
whereR is a probability distribution on some setand f is a function fromD x E
to any setr. Think of the distributionR as providing a “random seed” to the pro-
cedureA. If X is a probability distribution o, thenA(X) denotes the probability
distribution onF obtained by sampling ® R and applyingf to the result. Note
that applying dunctionis a special case of applying a randomized procedure.

FACT 2.4. If XandY arerandom variablesand A is any randomized procedure,
then

IAX) = AMI < IX =Y.

The next fact is useful when arguing that the statistical difference between dis-
tributions is small.

FACT 2.5. Suppose X= (X1, X2) and Y = (Y1, Y>) are probability distribu-
tions on a set Dx E such that

(1) X; and Y, are identically distributed, and
(2) With probability greater tharfl — €) over x <— X3 (equivalently, x< Y1),
| X2lx,=x — Yalv,=x]| <8,

(where Ba—a denotes the conditional distribution of B given that=Aa for
jointly distributed random variables A and)B

Then|| X = Y| <€ +3.

The next fact says that if two distributions have small statistical difference, then
their mass functions must be close at most points.

FACT 2.6. If X and Y are any two distributions such theX — Y| < ¢, then
with probability >1 — 2,/€ over x < X,

(1—Ve)Pr[X =x] < Pr[Y =x] < (1+ €) Pr[X = x].

2.4. ZERO-KNOWLEDGEPROOFS Before defining zero knowledge, we need to
introduce some more terminology. Recall tha®RT algorithm is a probabilistic
algorithm which runs irstrict polynomial time. A functionf (n) is negligibleif for
all polynomialsp(n), f(n) < 1/p(n) for all sufficiently largen.

We follow Goldwasser et al. [1989] and Goldreich [2001] in defining interactive
proofs and zero-knowledge. The original definitions in Goldwasser et al. [1989]
were given for languages. We generalize these definitions to promise problems in
the natural way, as previously done in Goldreich and Kushilevitz [1993]. That is,
conditions previously required for inputs in the language are now requireatfor
instances of a promise problem and conditions previously required for inputs not
in the language are now required fap instances.

Informally, an interactive proof is a protocol in which a computationally un-
bounded prover attempts to convince a polynomial-time venfidrat an assertion
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is true, that is, that a stringis avesinstance of a promise problem. More formally,
aninteractive protocoK, V) between a computationally unbounded prdvemnd a
PPT verifielV is said to be amteractive proof systeffior a promise problerfil with
completeness error(n) andsoundness error(g) if the following conditions hold:

(Q) If x € Ty, then Pr[P, V)(X) = accept] > 1 — c(|Xx|).
(2) If x € Iy, then for allP*, Pr[(P*, V)(X) = accept] < s(|X]).

We always require that X c(n) > s(n) 4+ 1/poly(n) and that both can be com-
puted in time poly(); under this assumption, parallel repetition can be used to
obtain a new interactive proof fdi with completeness error and soundness er-
ror 2=, for any constank. We say that P, V) exchanges (m) messages the
prover and verifier exchange at maostn) messages on any input of lengthAn
interactive proof system is said to peblic coinif, on every input, the verifier's
random coing can be written as a concatenation of strings - - - r; such that the
ith message sent from the verifier to the prover is simply

Roughly speaking, an interactive proof is said to be zero knowledge if, when
the input is ares instance, the verifier can simulate its view of the interaction on
its own. To formalize this, letR, V) be an interactive proof system for a promise
problemII. Let Viewp v (X) be a random variable describing the random coins of
V and the messages exchanged betweamndV during their interaction on input
x. (P, V) is said to be &tatistical zero-knowledgeroof system against thenest
verifier if there exists a PPT simulat@® and a negligible functiom (called the
simulator deviatiohsuch that

if X € Iy, then||S(x) — Viewp v (X)| < a(Ix]). (2)

A perfect zero-knowledgeroof system is defined in the same way, except that (2)
is replaced by S(x) — Viewp v (x)|| = 0, whereSis allowed to outputfail’ with
probability at most 12 andS(x) denotes the conditional distribution 8fiven that
the output is notail.® A computational zero-knowledgeoof system replaces
(2) with the requirement th&8(x) }xcri, and{Viewp v (X)}xer, arecomputationally
indistinguishabldGoldwasser and Micali 1984; Yao 1982] ensembles of distribu-
tions. That s, for evermonuniformpolynomial-time algorithnD, there is a negli-
gible functiona such that Pr[D(x, S(x)) = 1] — Pr[D(x, Viewp v (X))]| < a(|x])
for all x € Iy.

We let SZK (respectivelyPZK, CZK) denote the class of promise problems
with statistical (respectively perfect, computational) zero-knowledge proof systems
against the honest verifier.

Remarks on the Definitions

(1) (Honestverifiers We only require that the zero-knowledge condition to hold
against the honest verifier, that is, the verifier that follows the protocol as speci-
fied. The usual definition requires the zero-knowledge property to hold against
any polynomial-time verifier strategy. However, subsequent to this work, it has

3 A failure probability can also be allowed in the definition of statistical zero-knowledge, but this can
easily be reduced to arr'? for any constank by repeated trials and absorbed into the simulator
deviation.
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been shown that any proof system that is statistical zero knowledge against
the honest verifier can be transformed into one that is zero knowledge against
cheating verifiers [Goldreich et al. 1998]. Via this transformation, many of our
results directly translate to the class of promise problems possessing statistical
zero-knowledge proofs against cheating verifiers. This is discussed in detail in
Section 3.4.

(2) (Error probabilities). The completeness and soundness error probabili-
ties can be made exponentially small without increasing the number of
rounds, because zero-knowledagminst an honest verifies preserved under
parallel repetition.

(3) (Strict polynomial-time simulatign Following Goldreich [2001], we work
with the variant of zero knowledge in which the simulator is required to run
in strict polynomial time, with some probability of failure in the perfect case.
The original definition by Goldwasser et al. [1989] allows the simulator to
run in expected polynomial time, but with zero probability of failure. Our
choice is not very restrictive, because we are only discussing honest-verifier
statistical zero-knowledge and we do not know of any problems that require
an expected polynomial-time simulator for the honest verifier. In addition,
as shown in Section 3.1, our techniques can be used to prove that expected
polynomial-time simulators and strict polynomial-time simulators are actu-
ally equivalentfor public-coin statistical zero-knowledge proofs against an
honest verifier.

(4) (Promise problems vs. languages Our definitions above generalize the origi-
nal definitions of Goldwasser et al. [1989] from languages to promise problems,
and we focus on the “promise clas®ZK rather than the class of languages pos-
sessing statistical zero-knowledge proofs. As this was discussed in Section 2.1,
here we simply reiterate the main justifications for this extension. First, for
essentially all of our results, the fact that we prove them for the promise class
only makes them stronger, by virtue of the fact that the promise class contains
the language class. Second, several of the most important natural problems
known to be inSZK, such as those in Goldreich and Kushilevitz [1993] and
Goldreich and Goldwasser [2000], are not languages, but promise problems,
so it may actually be preferable to study the promise class.

Our only result that requires new interpretation for the language class is
the Completeness Theorem (Thm. 3.1 below). As the complete problem is
a promise problem, it is not complete for the language class in the usual
sense. Nevertheless, it still gives a characterization of the language class, in
that a language has a statistical zero-knowledge pf@wfd only ifit reduces
to the complete problem. (This requires tlK is closed under reductions
(Corollary 4.3), which we will prove using the Completeness Theorem.)

We refer the reader to Goldreich [2001] for a more detailed discussion of
the definitional issues with zero-knowledge proofs and a wider perspective on
the subject.

3. The Completeness Theorem

3.1. THE COMPLETEPROBLEM. The main aim of this article is to demonstrate
that SZK consists exactly of the problems that involve deciding whether two
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efficiently samplable distributions are either far apart or close together. This can
be formally captured by the following promise problem$ISTICAL DIFFERENCE
(abbreviated SD):

2
SDy = {(Co, C1) : ICo = C4ll > é}

1
SDn = {(Co, C1) 1 IC = Call < é}-

In the above definitionzy andC; are circuits; these define probability distributions
as discussed in Section 2. The thresholds/&f dnd 2 3 in this definition are not
completely arbitrary; it is important for the Polarization Lemma of Section 3.2 that
(2/3)% > 1/3.

We can now state the main theorem of the article.

THEOREM 3.1 (COMPLETENESSTHEOREM).
STATISTICAL DIFFERENCEIS complete folSZK.

The most striking thing about Theorem 3.1 is that it characterizes statistical zero
knowledgewith no reference to interaction or zero knowledgature investigation
of the classSZK can focus on the single problem SD, instead of dealing with
arbitrarily complicated protocols, problems, and simulafors.

We emphasize that the novelty of this result lies in the specific complete prob-
lem we present and not merely thristenceof a complete promise problem. For
example, it is fairly straightforward to construct a complete promise problem for
PZK involving descriptions of Turing machines for the verifier and simulator. (See
Appendix 6.) However, in contrast to SD, a complete problem constructed in this
manner is essentially restatement of the definition of the class and therefore does
not simplify the study of the class at all.

The proof of Theorem 3.1 comes in Sections 3.3 and 3.4 via two lemmas and
a theorem of Okamoto [2000]. But first, we observe that a statement analogous to
Theorem 3.1 can be made BPP, if we generalizeBPP to promise problems in
the obvious way.

PROPOSITION3.2. If SD' is the promise problem obtained by modifying the
definition ofSD so that G and G, only havel bit of output, therSD' is complete
for BPP.

PrOOF.  To see that SOs in BPP, first observe that for circuit€y andC; (or
any random variables) that always output either 0 or 1,

[Co — Cull = |Pr[Co = 1] — Pr[Cy = 1] |.

Thus, an estimate ojiCy, — C4|| that is correct within an additive factor of/3
can be obtained by samplitiy andC; polynomially many times and counting the
number of ones that occur for each. This is sufficient to decide SD

Now we show that every promise probldmin BPP reduces to SDLet A be
the PPT machine that outputs 1 with probability greater th@whenx e ITy, but

41t should be noted that completeness is most meaningful for classes that are closed under reductions,
which is not a priori clear fo6ZK. Later, we prove thabZK is indeed closed under reductions, as a
corollary of the Completeness Theorem itself (Corollary 4.3).
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outputs 1 with probability less thary3 whenx € ITy. Let p(n) be a polynomial
bound on the running time @& Given an inpuk, we can, by standard techniguies,
produce in polynomial time a circultx describing the computation & on x for
p(Ix]) steps. The input t€ is the firstp(|x|) bits on the random tape & and the
output is the first bit on the output tape. LBtbe a circuit that always outputs O.
Then||Cx — D|| = Pr{A(x) = 1], sox + (Cy, D) is a polynomial-time reduction
fromI1to SD. [

Proposition 3.2 remains true even if we all@y and C; to output strings of
logarithmic length. Other classes suchPaandco-RP can be obtained by modi-
fying the definition of SD in a similar fashion (and changing the thresholds). This
demonstrates th&ZK is a natural generalization of these well-known classes.

3.2. APOLARIZATION LEMMA. Inthis section, we exhibit a transformation that
“polarizes” the statistical relationship between two distributions. That is, pairs of
distributions that are statistically close become much closer and pairs of distribu-
tions that are statistically far apart become much further apart.

LEMMA 3.3 (POLARIZATION LEMMA)®  There is a polynomial-time-
computable function that takes a tripkCo, C1, 1¥), where G and G, are
circuits, and outputs a pair of circuitDg, D;) such that

1
ICo— Cill < 3 = IIDo— Dl < 27k

2
1Co — Call > 3= |Dg— Dy > 1—27%

The usefulness of the Polarization Lemma comes from the fact that the two dis-
tributions it produces can be treated almost as if they were identically distributed or
disjoint (i.e., statistical difference 0 and 1, respectively). Indeed, it will be essential
in proving that SD (with thresholds of/3 and ¥/3, as we've defined it) is i8ZK
and we will make further use of it in deriving consequences of Theorem 3.1.

Superficially, it may seem that a Chernoff-bound argument is all that is needed
to prove Lemma 3.3. However, Chernoff bounds are primarily useful for distin-
guishing between two events. This correspondedeeasingstatistical difference,
as formalized in the following “direct product” lemma:

LEMMA 3.4 (DRECTPRODUCTLEMMA). Let X and Y be distributions such
that|| X — Y| = €. Then for all k,

ke > [@X — ®*Y| > 1 — 2exp(ke?/2)

PrROOF. The upper bound oke follows immediately from Fact 2.3, so we
proceed to the proof of the lower bound. Recall, from the definition of statistical
difference, that there must exist a Stuch that

Pr[X e § — Pr[Y € § =e.

5 See, for example, [Papadimitriou 1994, Thms. 8.1 and 8.2].

6 The Polarization Lemma stated here is called the Amplification Lemma in [Sahai and Vadhan
1997]. We change the name here to stress that the Polarization Lemma does not merely increase
statistical difference.
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Let p = Pr[Y € §, so P[X € §] = p+e¢€. Hence, ink independent samples
of X, the expected number of samples that lieSns (p + €)k, whereas irk
independent samples of, the expected number of samples that lieSis pk.
The Chernoff bounfitells us that the probability thait least(p + (¢/2))k com-
ponents ofRXY lie in Sis at most exp{ke?/2), whereas the probability that
most(p + (¢/2))k components o®* X lie in Sis at most exp{ke?/2). LetS be
the set of allk-tuples that contain more thap ¢ (¢/2))k components that lie in
S. Then,

|8X — &Y = Pr[@*X e S]—Pr[@"Y € S]>1-2exptke?/2). O

Note the gap between the upper and lower bounds in Lemma 3.4; the lower
bound says that takin@(1/€?) copies is sufficient to increase statistical difference
from € to a constant, while the upper bound says tlt/¢) copies are necessary.

This gap is inherent, as the following example illustrates: TakingndY to be
distributions on{0, 1} that are 1 with probability 1 and % ¢, respectively, we

see that the statistical difference betwegfX and®XY is exactly 1— (1 — €)X,

which is a constant fok = ®(1/¢). On the other hand, wheX andY are 1 with
probability (14 €)/2 and (1— €)/2, respectively, it can be shown that ©(1/€?)

copies are necessary to increase the statistical difference to a constant. Furthermore,
in this latter example| X @ X — Y ® Y| =€ = || X — Y|, SO we cannot even hope

to show that statistical difference always increases for ekeryl (as pointed out

to us by Madhu Sudan).

Notice that the Direct Product Lemma 3.4ist sufficient to prove the Polariza-
tion Lemma, because it only increases statistical difference, whereas we would like
to increase statistical difference in some cases and decrease it in others. However,
it does drive larger values of the statistical difference to 1 more quickly than it
drives smaller values to 1, soiitis a step in the right direction. The following lemma
provides a complementary technique that decreases the statistical difference to 0,
with small values going to O faster than large values.

LEMMA 3.5 (XOR LEMMA). There is a polynomial-time computable function
that maps a triplgCo, C1, 1), where G and G, are circuits, to a pair of circuits
(Do, D) such that|Dg — D;|| = ||Co — Cul. Specifically, [@ and D, are defined
as follows:

Do: Uniformly select(by, ..., b) € {0,1}* such thatb @ --- @ by = 0, and
outputa sample of L ® - - - ® Cy, .
D;: Uniformly select(by, ..., b) € {0,1}* such thatb @ --- @ by = 1, and
output a sample of G ® - - - ® C,.

In order to prove this lemma, we employ a generalization of the technique used
in De Santis et al. [1994] to represent the logical AND of statements alrariG
NONISOMORPHISM This tool is described in the following Proposition.

7 For the formulation of the Chernoff bound we use, see, for example, the formulation of Hoeffding's
inequality in Hofri [1995, Sect. 7.2.1].
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PrROPOSITION3.6. Let Xy, X1, Yo, Y1 be any random variables, and define the
following pair of random variables:

Zy: Choose abeg{0, 1} such that ab b = 0. Output a sample of X® Yp.
Z1: Choose abegr{0, 1} such that ad b = 1. Output a sample of X® Yp.

Then||Zo — Za|l = X0 — Xall - [IYo — Yal|.

The statistical difference betweety and Xy (or Yo andY;) measures the advan-
tage a computationally unbounded party has, over random guessing, in guessing
given a sample fronX,, whereb is selected uniformly fronf0, 1}. (This view of
statistical difference will become more apparent in the subsequent section.) Intu-
itively, the above Proposition says that the advantage one has in guessing the XOR
of two independent bits is the product of the advantages one has for guessing each
individual bit.

PROOF

1
1Zo — Z4|| = > |Zo — Z1I1

1|1/71 1 1 1
= -l =X Yo+ =X Y1) ==X Yo+ =X Y-
2‘(2 0® o-i-2 1® 1) (2 1® o+2 0® 1>

1

1
=2 |(Xo — X1) ® (Yo — Y1)I1

= 1|X X4l 1|Y Y1l
= (3 Xo=Xaly 5> Yo —Yaly

= [[Xo — Xall - Yo — Yal|
Recall that the penultimate equality above follows becdusew| = |v| - |w|. [

Proposition 3.6 and an induction argument establish Lemma 3.5. Yao’s
XOR Lemma [1982] (cf., Goldreich et al. [1995]) can be seen as an ana-
logue of Lemma 3.5 in the computational setting, where the analysis is much
more difficult®

Now we combine the Direct Product and XOR constructions of Lemmas 3.4
and 3.5 to prove Lemma 3.3. The Direct Product Lemma gives a way to increase
statistical difference with large values going to 1 faster than small values. Similarly,
the XOR Lemma shows how to decrease statistical difference with small values
going to O faster than large values. Intuitively, alternating these procedures should
“polarize” large and small values of statistical difference, pushing them closer to 1
and 0, respectively. A similar alternation between procedures with complementary
effects was used by Ajtai and Ben-Or [1984] to amplify the success probability of
randomized constant-depth circuits.

8 To see the analogy, recall that Yao’s XOR Lemma considers the maximum advanteffieiant
algorithm has, over random guessing, in computing éliom string x when they are selected
according to some distributiob,(x) < (B, X) (e.g.,X is uniform andB is a hardcore bit of ~%(X)

for some one-way permutatiof.). It states that the maximum advantage an efficient algorithm has
in computing the XORy, & - - - @ by from (X, . . ., Xx) decreases exponentially wikhwhen the pairs

(bi, x;) are independently distributed according B ).
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PrROOF. Let ¢ = [log, ;6k]. Apply Lemma 3.5 to the tripleCp, C1, 1°) to
produce C;, C) such that if ,
, 1
= [IC, —Cyll < (é)

ICo— Cull <
/ / 2 e

Letm = 3~L LetC{ = ®™C; and letC; = ®™C;}. Then, by Fact 2.3 and the
Direct Product Lemma,

1Co — Cyll >

WIN Wk

1 7 " 1
ICo—Call <3 = IG —Cill < 3

2 " " _36_1 2 3 2¢
ICo—Call > 5 = G~ CllI>1- 2e><p<#
Finally, apply the transformation of Lemma 3.5 one more timedg C/, 1¥) to

produce Do, D) such that

) > 1—2expk).

1
[Co—Cull < 3> IDg— Dy|| < 37K < 27K

2
ICo—Cull > 5 = [1Do— Dal > (1 - 2 expk))¥
>1—2kexp(k) > 1—27% O

Notice that the above analysis relies on the fact tha8)2> (1/3), so it will
not work if 2/3 and %3 are replaced by, sayp1 and.49. We do not know how
to prove such a Polarization Lemma for arbitrary constant thresholds. We can
however extend it to thresholdsandg, wherea?® > 8, and the running time will
be polynomial in ¥(« — B) and exp(%8), wheres is defined by?t® = 8, along
with the input size. See Sahai and Vadhan [1999] for more details.

3.3. A RRoTocoL FORSTATISTICAL DIFFERENCE In this section, we show
that SD has a simple two-message statistical zero-knowledge proof system, which
is a generalization of the standard protocols farAQRATIC NONRESIDUOSITY
Goldwasser et al. [1989], andrR&PH NONISOMORPHISM[Goldreich et al. 1991].
Intuitively, if two distributions are statistically far apart, then, when given a random
sample from one of the distributions, a computationally unbounded party should
have a good chance of guessing from which distribution it came. However, if the
two distributions are statistically very close, even a computationally unbounded
party should not have much better than a 50% chance of guessing correctly. This
suggests the following two-message protocol for SD (note that this protooot is
a public-coin protocol):

Zero-knowledge Proof System forSD
Input: (Cp, C1) (such that eithelfCy — C1]| > 2/3 or||Cy — C4|| < 1/3)

1. V, P: Compute Do, D;) = Polarize(Cop, Cy, 1"), wheren = |(Co, Cy)|.

2. V: Flip one random coin <« {0, 1}. Let z be a sample ob;,. Sendzto P.
3. P:IfPr[Dg = 7] > Pr[D; = Z], answer 0, otherwise answer 1.

4. V: Accept if P’s answer equals, reject otherwise.
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LEMMA 3.7. The above is a statistical zero-knowledge proof systenSiyr
with soundness errdil/2)+ 2", and completeness error and simulator deviation
both2~". Thus,SD € SZK.

PROOF. We observe thatthe prover strategy givenin the protocol is optimal (that
is, maximizes the verifier's acceptance probability), and use this to bound both the
soundness and completeness error. The simulator deviation will then follow easily.

Indeed the optimality of the given prover strategy follows from a standard argu-
ment: Consider any provd?*. Suppose for some the proverP* fails to follow
the strategy we present. If By} = z] +# Pr[D; = Z], this means that with nonzero
probability, P* chooses the distribution in whichis less likely to occur. Then,
conditioned org, the success probability d®* will certainly be lower than that
of the prover in our protocol. If Py = z] = Pr[D; = Z], the prover has no
information about, so no matter what strategy it uses, it has exactly even odds
of guessing correctly. Since these observations hold for,athe given prover
is optimal.

We now analyze the probability of success of the optimal prover. Recall that
Do — D1]| = Pr[Dg € §] — Pr[D; € S]for S= {z: Pr[Do = Z] > Pr[D;1 = Z]}.

The probability that the optimal prover guesses correctly is exactly

1 1 1

EPr[Doe S]+§Pr[D1¢ S = E(Pr[Doe S|+1—-Pr[D; € §])
_ 1+ Do — Dy
=

By Lemma 3.3)|Dg — D4|| > 1 — 27" when Cq, C,) is aYES instance of SD,
and||Dg — D4|| < 2 " when Cy, C;) is aNo instance. Hence, the probability that
the prover convinces the verifier to accept is greater thari(3 2-")/2 > 1—-27"
for YES instances, and less than{127")/2 < 1/2 + 27" for NO instances. This
immediately gives the completeness error; the soundness error also follows because
we considered the optimal prover strategy.

Now, notice that when the prover answers correctly, all the verifier receives
from the prover is the value af, which the verifier already knew. Thus, since
we have shown that the prover is answering correctly with all but exponentially
small probability, intuitively the verifier learns nothing. To turn this intuition
into a proof of statistical zero knowledge, we consider the following probabilis-
tic polynomial-time simulator: On inputQy, C,), the simulator first computes
(Do, D1) = Polarize(Cop, Cy, 1"), wheren = |(Cp, C1)|. The simulator then flips
one random coin € {0, 1}. If r = 0, it samplez from Dy; otherwise, it samples
from D;. The simulator then outputs a conversation in which the verifier setals
the prover, and the prover responds witiT he simulator also outputs the random
coins it used to generateandz as the coins of the verifier. Thus, the simulator
presented here always outputs conversations in which the prover responds correctly.
Except for the prover’s response, all other components of the simulator’s output
distribution are distributed identically to the verifier's view of the real interaction.
Hence, the simulator deviation is bounded by the probability that the prover re-
sponds incorrectly in the real interaction, which we have already argued is at most
27" in the case o¥Es instances. []
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Note that the above proof system remains complete and sound even without
polarization, but for the zero-knowledge property, we need to make the statistical
difference very close to 1 ores instances.

By using a security paramet&rrather tham in the call toPolarize, both the
completeness error and simulator deviation can be reduced tdBus, even very
short assertions about SD can be proven with very high security. Contrast this with
the original definition ofSZK [Goldwasser et al. 1989], which only requires that
the simulator deviation vanish as argligiblefunction of theinput length This
property has obvious cryptographic significance, so we formulate it more precisely
in Section 3.1.

3.4. SZK-HARDNESS OFSD. The other main lemma we prove to show that SD
is complete foISZK follows:

LEMMA 3.8. Suppose promise problef has a public coin statistical zero-
knowledge proof system. Then there exist PPTs A and B and a negligible function
a such that

X eIy = [AX) = BX)Il < «(lx]), and
x ey = [[AKX) — B(x)|| > 1— 27X,

We defer the proof of this lemma to Section 3.5, and first observe how it gives a
reduction to SD for problems with public-coin statistical zero-knowledge proofs.

COROLLARY 3.9. Suppose promise proble has a public-coin statistical
zero-knowledge proof system. ThHaénmeduces taSD. (Equivalently,IT is reduces
to SD.)

PrROOF.  First, apply Lemma 3.8 to obtaiA and B, with p(|x|) being a poly-
nomial bound on the running times 8{x) andB(x). Given a stringk, we can, by
standard techniquésproduce in polynomial-time circuit€, andC; simulating
the computation oA and B, respectively, orx for p(|x|) steps. The inputs t€g
andC; are the firstp(|x|) bits on the random tapes é&fandB and the outputs are
the first p(]x|) positions on the output tapes. The@y — Cy1|| = || A(X) — B(X)|l,
which is at mostr(|x|) < 1/3 if x € Iy and at least - 2-*I > 2/3'if x e Ty
(for all sufficiently longx). Sox +— (Cyp, C;) is a reduction fronil to SD (for all
but finitely manyx). [

The final ingredient in the proof of Theorem 3.1 is a theorem of Okamoto [2000],
which we state in terms of promise probleffis.

THEOREM 3.10 [OxAMOTO 2000, THM. 1].  If a promise problenil has a sta-
tistical zero-knowledge proof system, thBnhas apublic-coin statistical zero-
knowledge proof system.

Now it will be easy to show that SD is complete BZK.

% See, for example, Papadimitriou [1994, Thms. 8.1 and 8.2].
10 Okamoto stated his result in terms of languages, but the proof readily extends to promise problems
(cf., Goldreich and Vadhan [1999]).
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PROOF OFTHEOREM3.1. Lemma 3.7 tells us that S© SZK, so we only need
to show that every problem BZK reduces to SD. Corollary 3.9 and Theorem 3.10

imply that every problenil € SZK reduces t&D. In particular, SD reduces 8D,

or, equivalently,SD reduces to SD. Composing reductions, it follows that every
problemIT € SZK reduces to SD.

3.5. RROOF OFLEMMA 3.8

Intuition. Recall that we wish to construct a pair of probabilistic polynomial-
time machinesA and B such that ifx e Ty, the distributionsA(x) and B(x) are
statistically very close, but whex € Ty, A(x) and B(x) are far apart. We are
given thatIT has apublic-coin statistical zero-knowledge proof system. A natu-
ral place to search for the desired distributions is in the output of the simulator
for this proof system. We wish to find properties of the simulator’s output that
(1) distinguish the casr € ITy from x € Iy and (2) are captured by the sta-
tistical difference between samplable distributions. Following Aiello aadtbid
[1991], we think of the simulator as describing the moves wftal proverand a
virtual verifier.

In the case thax € ITy, we have strong guarantees on the simulator’s output.
Namely, its output distribution is statistically very close to the real interaction. In
particular, it outputs accepting conversations with high probability and the virtual
prover and verifier “behave” similarly to the real prover and verifier.

Whenx e Ty, there are two cases. If the simulator outputs accepting conver-
sations with low probability, this easily distinguishes it from the simulator output
whenx e Ily. However, it is possible that the simulator will output accepting
conversations with high probability even where TTy. This means that the virtual
prover is doing quite well in fooling the virtual verifier. This naturally suggests a
strategy for a real prover—imitate the virtual prover’s behavior. Such a prover, called
asimulation-based provewas introduced by Fortnow [1989] and is a crucial con-
struct in our proof.

The soundness of the proof system tells us that the simulation-based prover cannot
hope to convince theeal verifier with high probability. There must be a reason for
this discrepancy between the success rates of the virtual prover and the simulation-
based prover. Since the virtual prover behaves exactly like the simulation-based
prover, it must be that the virtual verifier does not behave like the real verifier. Note
that, in apublic-coinproof system, the behavior of the real verifier is extremely
simple: it chooses each of its messages independently and uniformly at random. If
the virtual verifier does not behave as the real verifier, then it must be that either
the virtual verifier's messages dia from uniform or that they are@ependent on
previous messages

We therefore exhibit two efficiently samplable distributions, one describing the
messages of the real verifier and the other describing the messages of the virtual
verifier. We show that ik € I1y, these two distributions must be nearly identical,
whereas ifx € Iy, they must be far apart.

The basic approach described above is quite similar to the approaches developed
in previous work or8ZK, such as that of Fortnow [1989], Aiello ancstad [1991],
and Ostrovsky [1991]. However, by focusing on public-coin proofs (thanks to
Theorem 3.10 [Okamoto 2000]), we are able to carry out a cleaner analysis and
reach a novel conclusion (namely, the Completeness Theorem).
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Notation Let (P, V) be a public-coin interactive proof system for a promise
problemTI, which is (honest-verifier) statistical zero knowledge, andSéte a
simulator for this proof system. Without loss of generality, we may assume that the
interaction of P andV on inputx always has £(|x|) exchanged messages, with
V sending the first message and each message consisting of e}aciiyits, for
some polynomialg] andr. Moreover, it may be assumed thas output always
consists of B(|x]|) strings of lengthg(|x|). The output ofS and the conversation
betweerP andV on inputx will be written in the formS(x) = (c¢1, p1, ..., G, Pr)s
and (P, V)(X) = (C1, p1, ..., Cr, Pr)(p,v), respectively, wherey, ..., ¢ represent
the messages (equivalently coin tosses, since we are in the public-coin setting) of
V, pi, ..., pr represent the prover messages, and r (|x|). (Dependence or
will often be omitted in this manner for notational convenience.) We use notation
such as ¢ )s for the random variable obtained by runniBgpnce and taking the
ci-component of its output. More generally, partial conversation transcripts will be
written like (1, p1, C2, p2)s. We call a conversation transcrigh( pa, ..., G, pr)
that would makeV accept (respectively, reject) atcepting conversatiofre-
spectivelyrejecting conversation We denote by (n) the uniform distribution on
strings of lengt.

The Proof In order to formalize the above intuition, a definition of the
simulation-based prover needs to be given. This is the pr&¥ethat imitates
the virtual prover, that isP* does the following to compute its next message when
the current conversation transcript &,(ps, ..., G):

If S(x) outputs conversations that begin with,(ps, . . ., ¢i) with prob-
ability 0, then output @,
Else outputy € {0, 1}9X) with probability

py = Pr[S(x) begins with €1, p1, ..., G, y)|S(X) begins with €1, p1, ..., G)].

In order to analyze the success probabilityRsf, we first compare the output
of Sto the actual conversations betweehandV. Fori = 1, ..., r, consider the
distributionsA; = (cy, p1...,C_1, Pi—1, G)sandBj = (C1, p1...,C_1, Pi_1)s®
U(g(]x])), and lete; = || Ai — Bi||. The last component & is a move of the virtual
verifier whereas the last componentfis chosen uniformly and independently of
the history, just like a move of the real verifier. Thus, ¢He measure the similarity
between the behavior of the virtual verifier and the real verifier.

The following claim formalizes our intuition that, if the virtual verifier and real
verifier have similar behavior, then the interaction between the simulation-based
prover P* and the real verifieW is similar to the interaction between the virtual
prover and virtual verifier (as described by the simulator).

CLam 3.11. ||S(x) — (P*, V)(X)| < Xi_; &

PROOF OFCLAIM . LetCiS = (Cy1, P1, ..., Gi)sbe the random variable of partial
simulator transcripts ending with thi¢h coins of the virtual verifier. LePS =
(1, p1, ..., Ci, pi)s be the random variable of partial transcripts ending with the
ith virtual prover response. Similarly defil@* and P* as partial conversation
transcripts of P*, V). The aim is to show that at rourkg the statistical difference
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TABLE I. THE COMPONENTS OFA AND B

Algorithm A Algorithm B
Ao(X)|Run §(x) for |x| repetitions. Bo(x)|[Output 1.
Output ‘1’ if the majority are
accepting conversations and ‘0’
otherwise. Bi (x) |Run §(x) and flipg(|x|) more coins to output
Ai (x) |Run §(x) to output €4, py, - - -, C)sx- (C1, P1, -, Gio1, Pi—1)spg ® U@(IX])).

grows by at mosty. Formally, it will be shown by induction ok that

K
[RE— P&l =D e
i1

The case&k = 0 is trivial. For generak, first note that sincd®* gives a response
chosen according to the same distribution as the virtual prover, adding these re-
sponses to the conversations cannot increase the statistical difference (by Fact 2.4).
That is,

P& — Péall = G — G-

The idea now is to extract the parts |t(tk5+l — Cg¢,1l corresponding tey, 1 and
observe that what is left is simply the error from the previous round. Note that
Cii1 = RS @ U(q(lx[)), since the real verifier's coins are always uniform and
independent from what came before.

Then, applying Fact 2.3 and the Triangle Inequality,

H CkS+1 - Clzk+1 H = HCI<S+1 - I:)kS ® U(C](|X|)) ” +
|PE @ U@(xIl) —P @ U@(ix))|
1+ [P = PI| + U @(xD) — U@(x[)ll

k
= €kt Zéi-
i=1

This completes the induction. Sin€&® = S(x) and P = (P*, V)(x), the Claim
is proved. [J

IA

We are now ready to construct the distributions we seek. The two distributions
A and B each consist of + 1 components, shown in TableA is the algorithm
whose output on inpwtis (Ag(X), Ai(X), ..., A (X)), all run independently, and
is the algorithm whose output i8¢(x), B1(X), ..., B/ (x)), all run independently.
Recall that, foii > 1, ¢ is the statistical difference betweén andB;.

We show that the statistical difference betwa®andB is negligible ifx € Iy
andis noticeable ¥ € ITy. Amplifying this gap by repetition will yield Lemma 3.8.

CLaim 3.12. There exists a negligible functian such that if xe Iy, then
IA(X) — BO)I < e(Ix]).

ProOOF OFCLAIM . The statistical difference betweéi(ix) andB(x) is bounded
above by the sum of the statistical differences betwégfx) and Bi(x) over
i = 0,...,r(]x]) (by Fact 2.3). First, let's examine = 0. SinceS(x) outputs
a conversation that makas accept with probability at least/2 — neg(x|), the
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Chernoff bound implies that PAy(X) = 1] = 1 —2-%X), so the statistical differ-
ence betweehy andBg is negligible. For > 1, recall that in the real conversations

of P andV, the verifier's coins are truly uniform and independent from prior rounds,
so|| Ai(x) — Bi(x)|| should essentially be bounded by the statistical difference be-
tween the simulator’s output and the real interaction. Thisis in fact true, as (omitting
x from the notation):

IA —Bill < IIA —(c1, p1,....C)pvIl+lI(C, P1,....GC)pv — Bill
IS=(P,V)I +IIS— (P, V)Il.

IA

Thus,
IAX) — BOII < 274D - 2r (1x]) - [1S(x) — (P, V)(X)I,

which is negligible since||S(x) — (P, V)(X)|| is negligible andr(x) is
polynomial. [

CLaM 3.13. If x € Iy, then||A(X) — B(X)|| = 1/12r (|x]).

PROOF OFCLAIM . It suffices to show that for somiee; = || A (X) — Bi(X)[| >
1/12 (|x]) (by Fact 2.4). We deal with two cases depending on the probability that
Soutputs an accepting conversation.

Case 1. Pr[S(x)accepts] < 5/12. Then, by the Chernoff bound,
PrlAo(x) = 1] < 2=, so the statistical difference betwedg(x) and By(x)
is at least - 2-%0X) > 1/12r (|x|).

Case2. Pr[S(x) accepts]> 5/12. Then, since Pr{*, V)(x) accepts] is at
most 1/ 3, we must have

5 1 1

;Ei > 180) = (P VI > 15— 3 = 15

Thus, at least ong must be greater thary12r (|x|). O

Now consider the samplable distributiodgx) = ®%X*)A(x) and B(x) =
@ B(x), wheres(n) = n-r(n)2 If x € My, [[AX) — BX)| < s(x]) -
| A(x) — B(X)|l, which is still negligible. Ifx € Iy, then, by the Direct Product
Lemma (Lemma 3.4)| A(x) — B(x)|| > 1 — 2-%(X)_This completes the proof of
Lemma 3.8. [

We illustrate the constructions in this lemma and the statistical zero-knowledge
proof system for SATISTICAL DIFFERENCE for the specific example of &PH
IsoMORPHISMIN Appendix C.

4. Applications

4.1. BFFICIENT STATISTICAL ZERO-KNOWLEDGE PROOFS The proof system
for STATISTICAL DIFFERENCEgiven in Section 3.3 has a number of desirable fea-
tures. Itis very efficient in terms of communication and interaction, and the simula-
tor deviation can be made exponentially small in a security parameter (that can be
varied independently of the input length). By the Completeness Theorem, it follows
that every problem i5ZK also has a proof system with these properties.
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We begin by formalizing one of these properties that was informally discussed
in Section 3.3.

Definition 4.1. Aninteractive protocoR, V) is called asecurity-parametrized
statistical zero-knowledge proof systémn a promise problenil if there exists a
PPT simulatorS, a negligible functionx(k) (called thesimulator deviatiol, and
completeness and soundness erofk3 ands(k) such that for all stringg and all
keN,

(1) If x e Ty, then Pr[P, V)(x, 1¥) = accept] > 1 — c(K).
(2) If x e My, then for allP*, Pr[(P*, V)(x, 1¥) = accept] < s(K).
(3) If x € My, then|| S(x, 1¥) — Viewp v (x, 1) < a(K).

As usual, we require thatk) ands(k) are computable in time pollfand 1—-c(k) >
s(k) + 1/poly(k)
We now describe the efficient proof systems inherited by a82K.

COROLLARY 4.2. Every problem inSZK possesses a security-parameterized
statistical zero-knowledge proof system with the following properties:

D) Sirlpulator deviatior2™*, completeness errd@ ¥, and soundness errdr/2 +
27K

(2) The prover and verifier exchange only 2 messages.

(3) The prover sends onlybit to the verifier.

(4) The prover is deterministic.

PROOF Let IT be any promise problem i8ZK. Let f be the reduction from
IT to SD guaranteed by the Completeness Theorem. A protocol with the desired
properties forIl can be obtained as follows: on input, (1), execute the proof
system for SD, given in Section 3.3, on inpiuix) and using rather tham in the
call toPolarize. [

4.2. Q0SUREPROPERTIES Inthis section, we prove several closure properties
of SZK. The first, closure under reductions, is a direct consequence of the “security
parametrization” property shown to hold f8ZK in the previous section.

COROLLARY 4.3. SZKis closed undetKarp) reductions. That is, ifT € SZK
andI reduces tdlI, thenl” € SZK.

ProOOF By Corollary 4.2,T1 has a security-parameterized statistical zero-
knowledge proof. A statistical zero-knowledge prooffocan be obtained as fol-
lows: On inputx, the prover, verifier, and simulator run the security-parameterized
proof for IT on input (f (x), 1), wheref is the reduction froni" to I1. [J

The security-parametrization property is necessary in the above proof, because
an arbitrary reductiorf could potentially shrink string lengths dramatically and
we want the simulator deviation to be negligible as a functiopxgfnot| f (x)].

Next, we show how Okamoto’s result th&ZK is closed under complement
follows immediately from our proof of Completeness Theorem.

COROLLARY 4.4 ([OkaMOTO 2000, THM. 2]). SZK is closed under comple-
ment, even for promise problems.
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__ PrROOF.  LetII be any problem ir§ZK. By Theorem 3.10 and Corollary 3.9,
IT reduces to SD, which is iBZK. By Corollary 4.3,IT € SZK. O

Before moving on to additional closure properties, we deduce the upper bounds
of Fortnow [1989] and Aiello and &stad [1991] on the complexity &ZK.

COROLLARY 4.5 ([FORTNOW 1989; AELLO AND HASTAD 1991]). SZK C
AM N co-AM, where AM denotes the class of problems possessing constant-
message interactive proofs.

ProoFr Immediate from Corollaries 4.2 and 4.4.]

Above, we have seen th&ZK satisfies a computational closure property
(Corollary 4.3) and a Boolean closure property (Corollary 4.4 [Okamoto 2000]).
Now we will exhibit a stronger closure property, which can be viewed as both a
computational one and a Boolean one: given an arbitrary Boolean formula whose
atoms are statements about membershgmirproblem inSZK, one can efficiently
construct a statistical zero-knowledge interactive proof for its validity. Note that
such a property does not follow immediately from the fact that a class is closed
under intersection, union, and complementation, because applying these more than
a constant number of times could incur a superpolynomial cost in efficiency, while
we ask that the construction can be done efficiently with respect to the size of the
formula. We achieve this by applying a construction of De Santis et al. [1994] to
STATISTICAL DIFFERENCE and then appealing to the Completeness Theorem.

We begin with some definitions describing precisely what kind of Boolean closure
properties we will achieve. (Later, we will see how it can also be interpreted as
closure under a certain class of polynomial-time reductions.) In order to deal with
instances of promise problems that violate the promise, we will work with an
extension of Boolean algebra that includes an additional“ambiguous” value

Definition 4.6. A partial assignmento variablesvs, ..., vk is ak-tuplea =
(a1, ...,a) € {0, 1, +}%. For a propositional formula (or circuit) on variables
V1, ..., Vk, the evaluatio () is recursively defined as follows:

1 ifg(@=1landy(@ =1

vi(@) =a (@pAy)@ =10 ifgp@=00ry(@=0

*= otherwise
1 if¢(@=0 1 ifg@=1ory(@) =1
(—¢)@=10 ifo@=1|(¢vy)@ =10 if¢@=0andy(@) =0
*x if p(@) =« x otherwise

Note thatp(a) equals 1 (respectively, 0) for some partial assignragtiteng(a’)
also equals 1 (respectively, 0) for every Bool@aabtained by replacing evewyjin
a with eithe a 0 or 1. The corerse, however, is not true: The formuyla= v v —=v
evaluates to 1 on every Boolean assignment, yet is not 1 when evaluated at
Thus, the “law of excluded middle} v —¢ = 1 no longer holds in this setting.
However, other identities in Boolean algebra, such as De Morgan’s laws (e.g.,
—(¢ Vv ¥) = —¢ A =), do remain true.
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Definition 4.7. For a promise probleri, the characteristic functiorof IT is
the mapyn : {0, 1}* — {0, 1, x} given by

lifxe ITy
XH(X): 0ifxelIly
= otherwise

Definition 4.8. For any promise probleiii, we define a new promise problem
®(11) as follows:

O(IMy = {(¢, X1, ..., X) - ¢(xr(Xa), - .., xn(Xk)) = 1}
S(IMN = {(¢, X1, ..., Xk) - p(xn(X1), - .., xn(X)) = O},

whereg is ak-ary propositional formula. Moii{) is defined analogously, except
that only monotone are consideredt

De Santis et al. [1994] show that Mdr) € SZK for any languagé. that is ran-
dom self-reducible, whose complement is self-reducible, or whose complement has
a noninteractive statistical zero-knowledge proof. They also give statistical zero-
knowledge proofs for some simple statements involving a random-self-reducible
language and its complement. Daandand Cramer [1996] extend these results
by showing that Mori() € SZK as long ad_ or its complement has a 3-message
public-coin statistical zero-knowledge proof, and also treat a larger class of mono-
tone functions.

Our result holds for all 06ZK and for all Boolean formulas, not just monotone
ones:

THEOREM 4.9. For any promise problenil € SZK, ®(I1) € SZK.

This theorem can be generalized to work for all Boolean formulas whose atoms
are statements about membership in any finite set of languad&skn but we
omit the notationally cumbersome formal statement since it is immediate from the
completeness of ATISTICAL DIFFERENCE

Our proof of Theorem 4.9 is based heavily on the work of De Santis et al.
[1994], which constructs a statistical zero-knowledge proof for Mrior any
random self-reducible languade Their zero-knowledge proofs are constructed
by producing two distributions that are either disjoint or identical, depending on
whether or not the formula is true. Hence, their construction can be viewed as a
reduction to extreme instances of SD, in which the thresholds are 1 and 0. Here,
we begin by applying essentially the same construction to SD, but use the Direct
Product, XOR, and the Polarization Lemmas of Section 3.2 to analyze it for all
instances of SD (rather than just the extreme ones). This proves that Mon(SD)
is in SZK. Then, using the completeness of SD (Theorem 3.1) and closure under
complement (Corollary 4.4 [Okamoto 2000]), we deduce the result for general (i.e.,
nonmonotone) formulas and every promise problel84iK.

As stated above, the main step in proving Theorem 4.9 is the following lemma:

LEMMA 4.10. Mon(SD)e SZK.

11 |n De Santis et al. [1994], only monotone formulas are treated. What they¢h)lis what we
call Mon(L).
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Sample(, b) _
If y =v;, samplez < Dj,.
If ¥ =1tVvu,

Samplez; < Samplet, b);
Samplez, < Samplef, b);
Letz = (z, 2,).
If ¥ =1 AW,
Chooset, deg{0, 1} subjecttoc @ d = b;
Samplez; < Samplet, c¢);
Samplez, < Samplef, d);
Letz = (z, 2).
Outputz.

FiG. 1.

PROOF  For intuition, consider two instances of statistical differerCg C,)
and Do, D,), both of which have statistical difference very close to 1 or very close
to 0 (which can be achieved by the Polarization Lemma). TRg®(Dg, C1 ® D)
will have statistical difference very close to 1 if either of the original statistical
differences is very close to 1 and will have statistical difference very close to
0 otherwise. Thus, this Direct Product operation represents OR. Similarly, the XOR
operation in Proposition 3.6 represents AND. We will recursively apply these con-
structions to obtain a reduction from Mon(SD) to SD. By closure under reductions
(Corollary 4.3), Lemma 4.10 will follow.

Letw = (¢, (C3, C}), ..., (C&, C¥)) be an instance of Mon(SD) and fet= |w|.

By applylng the Polarlzatlon Lemma &Lemma 3.3), we can construct in polynomial
time pairs of circuits P, D DY) such that the statistical difference
betweenD0 andD} is greater than 1— 2 if (Cl, Cl) € SDy and is less than2

if (CL, C}) € SDy.

Consider the randomized recursive procedure Samipl&(in Figure 1 which
takes a subformulg of ¢ = ¢(v1, ..., vy) and a bitb € {0, 1} as input. Executing
Sampleg, b) for b € {0, 1} takes time polynomial im, because the number of
recursive calls is equal to the number of subformulag.dfor a subformulas of
¢, define

Dif(y) = |[Sample{r, 0) — Sample{, 1)].
Then we can prove the following about Dif:

CLAIM 4.11. Leta = (xsp(C}, C), ..., xso(C§, CX)). For every subformula
¥ of ¢, we have:
Y@ =1 = Dif(y) >1—|y|27"
¥(@) =0 = Dif(y) < [y|27"

Note that nothing is claimed whef(a) = .

PrROOF OFCLAIM. The proof of the claim is by induction on subformulés
of ¢. It holds for atomic subformulas (i.e., the variabig} by the properties of
the Dy's.
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Casel. ¢ =t v ul]lf ¥(@) = 1, then either(a) = 1 or u(a) = 1. Without
loss of generality, say(a) = 1. Then, by Fact 2.4 and induction,

Dif(y) > Dif(t) > 1 — 712" > 1 — |y |27 ".
If ¥(a) = 0, thent(@) = n(a) = 0. By Fact 2.3 and induction,
Dif(y) < Dif(7) + Dif() < |72 + |2 < [y|27".

Casdl. ¢ = 1 Au.]ByProposition 3.6, Dif(y) = Dif(7)-Dif(w).If v(a) = 1,
then, by induction,

Dif(y) > (1= [7127")(1 — [1|27") > 1= (|z] + uN)27" = 1 — |[y|27"
If ¢(@) = 0, then, without loss of generality, safa) = 0. By induction,
Dif(y) < Dif(t) < |t]27" < |y |27". O

Now, let A and B be the circuits which sample from the distributions
Sampleé, 0) and Samplef, 1), respectively. (The random bits each procedure
uses are the inputs to the circuits.) By the above clditn- B|| > 1—n2™" > 2/3
if (@) = 1,and|A—B| < n2™" < 1/3if ¢(a) = 0. In other words, the construc-
tion of AandB from w is a reduction from Mon(SD) to SD. This reduction can be
computed in polynomial time because Sample runs in polynomial time. Thus, by
Corollary 4.3, Mon(SD¥ SzZK. [

Now it is straightforward to deduce Theorem 4.9.

PROOF Let IT be any promise problem i8ZK. By closure under comple-
ment (Corollary 4.4 [Okamoto 2000]) and the completeness of SD (Theorem 3.1),
both IT and IT reduce to SD. Letf and g be these reductions, respectively.

Now, let @, X1, ..., Xk) be any instance ob(IT), wherep = ¢(vy, ..., V). Use
De Morgan’s laws to propagate all negationgdb its variables. Now replace all
occurrences of the literalv; with a new variablev;. Letyr(v1, ..., Vi, W1, ..., W)

be the resulting (monotone) formula. It is clear that

(P, X1, ..., %) = (¥, T(XD), ..., F(), g(X1), ..., (X))

is a reduction fromd(IT) to Mon(SD). Since Mon(SDg SZK (Lemma 4.10) and
SZK is closed under reductions (Corollary 4.3), Theorem 4.9 follows.

Theorem 4.9 can be also viewed as demonstrating3H#t is closed under a
type of polynomial-time reducibility, which is formalized by the following two
definitions.

Definition 4.12 (Truth-Table ReductioriLadner et al. 1975. We say a
promise problemIl truth-table reducedo a promise problent” if there exists
a (deterministic) polynomial-time computable functibnwhich on inputx pro-
duces atupley, ..., yk) and a Boolean circui€ (with k input gates) such that

xelly = C(xr(ys),.... xr(W) =1
x e ln = C(xr(ys), -, xr(¥)) = 0.
In other words, a truth-table reduction for promise problems is a nonadaptive

Cook reduction that is allowed to make queries that violate the promise, but still
must have an unambiguous output (in the strong sense formalized by Definition 4.6).
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We further consider the case where we restrict the complexity of computing the
output of the reduction from the queries:

Definition 4.13 (NC! Truth-Table Reductions A truth-table reductionf be-
tween promise problems is &C* truth-table reductiorif the circuitC produced
by the reduction on input has depth bounded lay log x|, wherec; is a constant
independent ok.

With these definitions, we can restate Theorem 4.9 as follows:
COROLLARY 4.14. SZK is closed undeNC? truth-table reductions.

PROOF.  Any circuit of sizes and depthd can be efficiently “unrolled” into a
formula of size 2 - s. Hence, alNC? truth-table reduction fronir to I gives rise
to a Karp reduction fronT" to ®(IT). SinceSZK is closed undem(-) and Karp
reductions, it is also closed unde€? truth-table reductions.]

It would be interesting to prove th&ZK is closed under general truth-table
reductions (or, even better, adaptive Cook reductions), or give evidence that this is
not the case.

4.3. KNOWLEDGE COMPLEXITY. Knowledge complexity [Goldwasser et al.
1989; Goldreich and Petrank 1999] is a generalization of zero knowledge which
attempts to quantify how much a verifier learns from an interactive proof. A number
of different measures have been proposed to accomplish this, most of which are
based on the intuition that a verifier gains at mosits of “knowledge” from an
interaction if it can simulate the interaction with at m&dbits of “help”. Below
we give terse definitions of the variants we consider. The first three definitions
come from Goldreich and Petrank [1999], and the last comes from [Aiello et al.
1995]. Let P, V) be an interactive proof system for a promise probldnirhen
the knowledge complexity off, V) in various senses is defined as follows:

—Hint Sense. We say thatP, V) has perfect (respectively, statistical) knowledge
complexityk(n) in the hint sense if there exists a PPT simulag®and a hint
functionh : Iy — {0, 1}* such that for allx € Ily, |h(X)] = k(]x]) and
| S(x, h(x))— Viewp v (X)| is O (respectively, is bounded by a negligible function
of |x].)

—Strict Oracle Sense. (P, V) is said to have perfect (respectively, statistical)
knowledge complexitk(n) in thestrict oraclesense if there exists a PPT oracle-
machineS and an oraclé€) such that on every inpwt € Iy, S queriesO at
mostk(|x|) times and|S”(x) — Viewp v (x)|| is O (respectively, is bounded by a
negligible function of/x|.)

—Oracle Sense. (P, V) is said to have perfect (respectively, statistical) knowledge
complexityk(n) in the oracle sense if there exists a PPT oracle-macttrend
an oracle? such that on every inpwt € TTy, SqueriesO at mostk(|x|) times,
Soutputs fail’ with probability at most ¥2, and||S°(x) — Viewp v (X)| is O
(respectively, is bounded by a negligible function|f), whereS®(x) denotes
the output distribution o§ conditioned on nonfailure.

—Average Oracle Sense (P, V) has perfect (respectively, statistical) knowledge
complexityk(n) in theaverage oracleense if there exists a PPT oracle-machine
Sand an oracl® such that for every inpwt € Ty, the average number of queries
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Smakes ta® is at mostk(|x|) and||S”(x) — Viewp v (X)|| is O (respectively, is
bounded by a negligible function ¢f].)

—Entropy Sense. (P, V) has perfect (respectively, statistical) knowledge com-
plexity k(n) in theentropysense if there exists a PPT oracle-mact8n&n oracle
O, and a PPT oracle-simulatdy such that for alk e ITy, Eg[log Py(R)™!] <
k(Ix|), wherePy(R) = Pr,[A(X, R; p) = S°(x; R)] and || S°(x) — Viewp v (X)||
is O (respectively, is bounded by a negligible functionxdj. Here, the notation
M(y; r) denotes the output of PPV on inputy and random coins.

The knowledge complexitfin some specified sense) of a promise problém
is k(n) if there exists an interactive proof system, /) for IT achieving negli-
gible error probability in both the completeness and soundness conditions such
that the knowledge complexity oP( V) is k(n). The class of languages possess-
ing perfect knowledge complexity(n) in the hint, strict oracle, average oracle,
and entropy senses are denotedP{Chint(k(n)), PKCstict(k(n)), PKCayg(k(n)),
and PKCegni(k(n)), respectively. Statistical knowledge complexity is denoted by
SKC(k(n)) with the appropriate subscript.

4.3.1 A Collapse for the Hint SenseQOur first result about knowledge com-
plexity is that theSKCpin¢ hierarchy collapses by logarithmic additive factors. Pre-
viously, Goldreich and Petrank [1999] have shown tBKC(poly(n)) ¢ AM
andSKChint(O(log(n))) c co-AM; the second of these results can be derived im-
mediately from our result and the res8ZK c co-AM (Corollary 4.5 [Fortnow
1989; Aiello and Histad 1991]).

THEOREM 4.15. For any polynomially bounded functiorri,
SKChint(k(n) + logn) = SKChint(k(n)).

For intuition, consider the case thqh) = 0. Loosely speaking, if the verifier is
given the hint along with the input (with the “promise” that the hint is correct), then
the original proof system becomesroknowledge, so we can apply the results of
the previous section. By the Boolean closure properties established in Theorem 4.9,
we can take the “union over all possible hints” (there are only polynomially many
of them) without leavingZK.

In order to turn this intuition into a proof, we first show that knowledge com-
plexity in the hint sense can be characterized in terms of zero-knowledge promise
problems, so that questions about 8KC,,; hierarchy are reduced to questions
about statistical zero knowledge. This is equivalence is obtained by providing the
hint along with the input and “promising” that the hint is correct.

LEMMA 4.16. Let k(n) be any polynomially bounded function. ThEh €
SKChint(k(n)) (respectively,PKCint(k(n))) iff there exists a promise problem
I' € SZK (respectivelyPZK) such that

(1) x € Iy = there exists a such th&| = k(|x|) and(x, a) € 'y, and
(2) x e Iy = forall a, (x,a) € .

PROOF.  We only give the proof for statistical knowledge complexity and zero
knowledge; the perfect case is identical.

= Let IT be a promise problem iB8KCyin¢(k(n)) and leth : Ty — {0, 1}*.
be a hint function corresponding to an appropriate interactive proof system and
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simulator forIl. Consider the following promise problem

Iy = {(x, h(x)) : x € My}
In = {(x,a): x € Iy}

By using the protocol and simulator fot, we see thai” € SZK (the verifier
and prover fol” should ignore the second component, whereas the simulator uses
it as a hint.) It is clear thdf satisfies the other conditions of Lemma 4.16.

< LetI" € SZK be the promise problem satisfying the stated conditions. Let
h: Iy — {0, 1}* be any function such that for atl € ITy,

(1) 1hGT = k(IxI),
(2) (x,h(x)) € T'y.

(Such a function is guaranteed by Condition 1.) We now give a proof systefh for
of knowledge complexitk(n). On inputx, the prover gives the verifidr(x) in the
first step, and then they execute the protocollfan (X, h(x)). The completeness
and soundness of this protocol follow from the properties oflth@oof system.
This proof system is easily seen to have knowledge compléxity in the hint
sense, using the hithi(x) with the zero-knowledge simulator for. [

We now prove Theorem 4.15.

PROOF. LetIT be a problem ir8KChint(k(n) + logn) and letl” be the promise
problem guaranteed by Lemma 4.16. By Theoremd(®,) € SZK. Now consider
a different, but related promise probldm defined by

I, = {(x,a)) : there existd such thatb| = log|x| and &, ab) € 'y}
I'y = {(x,a):forallb, (x,ab) € I'n} = {(X,a) : X € T}

For any stringx, letbs, ..., b, be all strings of length logk|, and letC be the
circuit of depthO(log |x|) computing the functiomp(vi, ..., vn) = \/;Vi. The
relationship betweell andI”” above implies that

(x,8) = (¢, (x,aby), ..., (x, aby))

is an NC? truth-table reduction froni to I". SinceSZK is closed under such
reductions (Corollary 4.14), we conclude thidte SZK.

Now, x € Ily, then there exists anof lengthk(|x|) + log(|x]) such thatx, a)
I'y. Takinga’ to be the firsk(|x|) bits ofa, we see that there exists ahof length
K(Ix|) such thatx, &) € I'{,. Moreover, ifx € Ily, then for alla, (x,a) € I'y.
Thus, by Lemma 4.16, we conclude thate SKCyni(k(n)). [

4.3.2 The Perfect Knowledge Complexity ®ZK. The next theorem estab-
lishes tighter bounds on the perfect knowledge complexit@0K. Aiello et al.
[1995] have previously demonstrated that every languag8€kihas perfect knowl-
edge complexityn—“@ (respectively, 1 n—“®)) in the entropy (respectively, av-
erage oracle) sense. Our results improve on these bounds, although the results of
Aiello etal. [1995] also apply to cheating-verifier classes and ours do not. Goldreich
et al. [1998] show thaBZK has logarithmic perfect knowledge complexity in the
oracle sense, so our results are incomparable to theirs. Our result for the strict oracle
sense is the first that we know of.
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THEOREM 4.1712

(1) For every polynomial-time computable (m=w(logn), SZK C
PKCstrict(m(n))-

(2) SZK C PKCayg(1+27").

(3) SZK = PKCent(27M).

Corollary 4.2 tells us that every problem 87K has a simple two-message
proof system like the SD proof system of Section 3.3. Thus, in order to measure
the perfect knowledge complexity &K and prove Theorem 4.17, it suffices to
analyze this protocol. Intuitively, since the prover is only sending the verifier one bit
and this bit is almost always a value the verifier knows, the knowledge complexity
of this protocol should be extremely small. However, this argument does not suffice,
because the knowledge complexity of a problBimis determined only by proof
systems for1 that achievenegligible error probability in both the completeness
and soundness conditions. We can overcome this difficulty by perfora(ing n)
parallel repetitions.

PROOF. Let IT be any problem ir5ZK and let P, V) be the proof system
for IT constructed in Corollary 4.2 (from the SD proof system of Section 3.3)
with the security parameter setko= 4n (so the completeness error is*). Let
m = m(n) be any function computable in time poh)(such thatv(logn) < m < n.
Consider the proof systenP(, V') obtained bym parallel repetitions of R, V);
this has negligible completeness and soundness errors. We now analyze its perfect
knowledge complexity.

(1) The prover sends at maabits to the verifier on inputs of length) so the perfect
knowledge complexity of this protocol in the strict oracle sense is bounded
by m.

(2) Aperfectsimulatorfor’, V') can be obtained as follows: On inpusbf length
n, the simulator rung/(x) for m times independently and queries the oracle
onceto find out if any of these runs would resultin an incorrect prover response.
If the oracle replies yes, the simulator queries the oracieore times to find
outwhich runs would resultin an incorrect response. The simulator then outputs
the random coins used for runnivgand the appropriate prover responses.

In each subprotocaol, the prover gives an incorrect response with probability
at most 2*". Thus, the simulator has to query the oracle for more than one
bit with probability at most2~4". Thus, on average, the simulator queries the
oracle for at most & m?2=%" < 1 + 27" bits.

(3) LetShe the simulator for’, V') that simply simulate¥’ and queries the ora-
cleO for all prover responses. One possible oracle simulator would assume that
the prover is correctin all subprotocols. Unfortunately, this givej {R) = co
for someR and yields infinite knowledge complexity. Thus, we instead have
our oracle simulatoA assume that the prover is right in each subprotocol inde-
pendently with probability & §, wheres = 2-2". Thus,P(R) = (1—8)ks™k,

12 The 2-2 in these results can be improved t6%" for any constank by polarizing with security
parameten® instead o in the SD proof system of Section 3.3.
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if Ris a set of random coins fof’ (equivalentlyS, sinceS mimicsV’) that
would elicit a correct prover response in exastiyf the subprotocols. Letbe

the probability that the prover is incorrect in an individual subprotocol. Then,
€ < 82, and we have

co[eogm] = & (k) 0= 0eo (i)

k=0

+ (Iog %) i; k(r:)em-k(l o)

1 8
= log o +m(l—¢) (Iog —)

1-6
m(log—— + ¢ log ==
= e € —_—
91—5 g 1)

1 5 1
m Iogl—_&-l—& Iogg

<2ms§ <2 "

A

for sufficiently largen. Note that the third equality above follows from the
identity k(") = m(}—;).

The opposite inclusion follows from the result of Aiello et al. [1995] that
PKCent(negf)) c SZK for any negligible function negj. [

4.4. REVERSING STATISTICAL DIFFERENCE By the completeness of SD (The-
orem 3.1) anéZK'’s closure under complement (Corollary 4.4), it follows tB&t
reduces to SD. This is equivalent to the following surprising result:

COROLLARY 4.18 (ReVERSAL MAPPING). There is a polynomial-time com-
putable function that maps pairs of circuif€, C,) to pairs of circuits(Dg, D)
such that

1 2
Co—C — Do— D -
1Co 1||<3=>||0 1||>3

2 1
Cyo—C - Do—D —.
1Co 1||>3=>||0 1||<3

That is,SD reduces t&SD.

This corollary motivated our search for a more explicit description of such a map-
ping. By extracting ideas used in the transformations of statistical zero-knowledge
proofs given in Okamoto [2000] and Sahai and Vadhan [1997], we obtained the
description of this transformation given below.

The Construction. Let (Cy, C;) be any pair of circuits and let = |(Co, Cy)|.
By the Polarization Lemma (Lemma 3.3), we can produce in polynomial time
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a pair of circuits 66, 61) such that
1 ~~ ~
1Co— Cull < 3 = [|Co—Cq >1-2T"
2 ~~ ~
ICo — Cyll > é = ||Co—Cq|l < 2N

Let g = poly(n) be the number of input gates @, and C; (without loss of
generality, we may assume they have the same number) aaddepoly(n) be
the number of output gates. For notational conveniencdi let {0, 1}9 andL =

{0, 1}*. Letm = n3g? and define a new distributio@: {0, 1} x R™ — LM as
follows:

C®,F) = (Co(r1), .- . Con(rm)).

We use the notatiod < C to denotez chosen according t6, that is, selecb and
7 uniformly and le = C(b, F).

Let H be a 2-universal family of hash functions frof, 1}™ x R™ x L™ to
S= {0, 1}@+hm-2A-n ‘whereA = ,/nma = m/n. We can now describe the new
distributions:

Do: Choose f, F)er{0, 1)™x R™, ¥ < C, andherH.
Output(C(b, F), b, h, h(b, T, ).

D;: ChOOSG(B, ?)GR{O, l}m x RM, herH, andsegrS.
Output(C(b, F), b, h, s).

The important things to note about these distributions areﬁh&tpart of the
output, and thabg andD, only differ in the last component, whebBy has the value
of the hash function an@®; has a truly random element & Also note that the
size ofSis chosen to bg0, 1}™ x R™M|/222+" which is essentially{0, 1}™ x R™|,
scaled down by a “slackness” factor 6f*2". The introduction of the samplgin
Dg may at first seem superfluous; we explain below.

Intuition. For intuition, consider the case th@tis aflat distribution; that is,
for everyz € rangeC), the size of the preimage sgtb, r): C(b, F) = 7}| is the
same valueN. Then the range of has sizd{0, 1}™ x RM|/N = 2@+Im/N_ Sp,
in Do, conditioned on a value faE (b, 7), the triple b, T, ) is selected uniformly
from a set of size @Y™, Since this is much greater th§|, the Leftover Hash
Lemma of Histad et al. [1999] implies that conditioned on any value for the first
component oDy, the last two componenti;l,(h(B, r,y)) are distributed close to
the uniform distribution ori{ x S, which is the distribution thab; has in its last
two components® Thus, if their second components were missiBg,and D,

13 Here we see the importance $f Without y, conditioned on some value @(b, 7), the pair
(b, ¥') would bg selected uniformly from a space of shtelf we were only hashing this pair, for the
distributionh(b, 1) to be uniform by the Leftover Hash Lemnfywould have had to be chosen so that
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would be statistically close. Now, consider the case ulﬁa)t Cl|| ~ 1. Then
b is essentially “determined” by?(b r). So the presence df can be ignored,
and the above argument says tfizf and D, are statistically very close. Now,
consider the case thCo — Cy|| ~ 0. Thenb is essentially “unrestricted” by
C(b r). Since there are™choices forb, conditioning orb in addition toC(b r),
cuts the number of triplesb(F, y) down from 2"@*D to roughly 2n@+1)/2m,
Since 2@+1)/2M is much smaller thats|, h(b, ¥, y) will cover only a small frac-
tion of |S| and thus will be far from uniform (conditioned on values b, r),
b, andh).

Direct Proof of Corollary4.18 First, we will argue thaC is close to being
flat (in a particular sense), so that we can apply arguments like those given above.
The fact thatC is close to flat will follow from the fact that it is composed of
many independent, identically distributed random variables. This is a form of the
Asymptotic Equipartition Property commonly used in Information Theory (cf.,
Cover and Thomas [1991]).

Forz e L™, we say thaveightof Z is the logarithm of the size of the preim-
age set ofz. Formally, let wtg) = log, |{(b,F) : C(b,F) = Z}|. Letw be the
expected weight of an image, that8,= E,_z[wt(Z)]. Then, we can show the
following:

LEMMA 4.19. Py _g[Iwt(Z) —w| > A] < 2740,

PROOF Forz e L, letwiy(z) = log, |{(b,r) : Cp(r) = z}|. Then, forz € L™,
Wt(Z) = wto(z1) + --- + Wio(zm). Observe that, whed is selected according
to C, z3, ..., Zy are independent and identically distributed. Moreover, for any
ze L, 0 < witp(2) <q. So, by the Hoeffding inequality [Hofri 1995, Sect. 7.2.1],
we have

Pr [Iwt(Z) — w| > A] < 2exp(-2A%/mcf) = 2 exp(-2n). O
72<C

It will be convenient toqeliminateqtllosfiee L™ that have weight far above or
belowthe mean. Let = {(b, ) : |wt(C(b, F))—w| < A}, whichwe will call the set
of typicalpairs , 7). The above Lemma says tHa& > (1—2-%M)|{0, 1}™x R™|.
Thus, | T — {0, 1})™ x R™|| < 2=, where for simplicity of notation, we let the
name of a set also refer to the unlform distribution on the same set. D@ffitee
be the distribution obtained by selectlr’ng () < T and outputtmg:(b r). Then,
sinceC is a function, Fact 2.4 tells us thm o4 | = 2-9M, Similarly, we define

|S| <« N. The value ofN, however, depends on the inner workings of the cir€yiand is in general
unknown. By includingy, which comes uniformly from a space of sizZ&2™/N, we balance the
arguments td so that they come from a space of sif& ™, a known quantity. This use of “dummy”
samples to form a space whose size is known is the “complementary usage of messages” technique
of Okamoto [2000].
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variants ofDg and D, that sample fronT instead of{0, 1}™ x R™:

Dy: Let (b, F)erT,y <~ C, andhegH.  Output(C(b, ), b, h, h(b, T, ¥)).
D/: Let (b, F)erT, hegH, andsergS. Output(é(B, r), b, h, s).

Since Dy (respectively,D;) is a randomized procedure applied to two (respec-
tively, one) independent samplings frdmFact 2.4 tells us thgtDo— Dj|| = 2~ %™

(respectively|| D; — Dj|| = 2-%M). Hence, it suffices to prove that these modified
distributions have the properties we want in each case. For the caseCylael
C, are statistically far, we prove the following claim:

CLAM 4.20. If |[Co— Cyf > 1— 27", then||D) — D}l < 2™,

PROOF OFCLAIM . First, we formalize the idea thatis “determined” byC.
Definef : L — {0, 1} by
0 if Pr{Co=2] > Pr[C; = 7]
1 otherwise

f(z)={

In other words, f is exactly the prover strategy from the proof system for
STATISTICAL DIFFERENCEgIiven in Section 3.3. The completeness of that proof
system (Lemma 3.7) says that,Pf(Cp(r)) = b] > 1 — 2". Now define
f:L™—= {0,2)™by f(2) = (f(z),..., f(zm). Then

PITE®. ) =b] > (1—2 )" =1— 2790,
b,r

SinceT is a 1— 2~ fraction of {0, 1}™ x R™, the same is true whef () is
selected uniformly fronT . Thus, if we define:

Dy: Let (b, F)erT, ¥ < C’, andhegH.
Output(C(b, T), T(C(b, 7)), h, h(b, T, V)).
D} Let (0, F)erT, herH, andserS. Output(q (b, 1), F(C(b, 7)), h, s).

Then, ||D; — Dgll = 2=%M and || D} — Dy|| = 2=%M. So it suffices to show
that||Dj — D7 || = 2~ Since the first components Bf, and D are identically
distributed and the second components are determined by the first ones, it suffices
to show (by Fact 2.5) that, conditioned on any value for the first coordinate, the third
and fourth components have statistical differenc&®. This will follow from the
Leftover Hash Lemma [BiStad et al. 1999]:

LEMMA 4.21 (LEFTOVERHASH LEMMA [HASTAD ET AL. 1999]). Let M be a
family of 2-universal hash functions from D to S. Let X by a probability distribu-
tion on D such that for all xe D, Pr[X = x] < €/|S|. Then the following two
distributions have statistical difference at me$ts.

(1) Choose x< X, herH. Output(h, h(x)).
(2) Choose lerH, serS. Outpui(h, s).

By the above argument apdqthe Leftover I-iash Lemma, it suffices to show that,
conditioned on any valugfor C'(b, 1), no triple (@, r, ¥) has probability more than
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2-90/|S|. The pair b, F) comes uniformly from a set of siz&¥) > 2"~2 andy
is selected independently accordingdq so the probability of any triplex( 1, V)

is at most
1 oW+A 22A zfﬂ(n)
<2WA> < [T] ) = (1 —2-9m) 2@+Hm B 1S

Thus,||D§ — D7|| < 2=%M, and the claim is established]
Now we treat the other case, wh€g andC; are statistically close.
CLAM 4.22. If |[Co— Cy| < 27", then|| D — D}l > 1 — 27M,

PROOF OFCLAIM . First, we formalize the idea théitis almost completely
“undetermined” byC(b r). Smce||Co — C1|| < 27", it follows from Fact 2.6 that,
with probability 1— 2~ overz « C,

(1-27) PrIC, = 7] < PriCo =7 < (1+27°) PIC, = 2.
In other words,

1— 279 < G =2 < 142790,
I{r Cir) =12} ~
The same is true with probability 4 2-%( when the roles ot:o andC; are
reversed. Thus, with probability 4 m2-M = 1 — 2790 overz « C, we have

for everypairb, ¢ € {0, 1}™,
|{F : C(b.7) = 2
F:C@ET) =2

Since there are™choices forc this, combined with Lemma 4.19, implies that,
with probability 1— 2-%M" overz < C, the following holds f0|everyb e {0, )™

1— 2—Q(n) (1 ZQ(n))m

< (14 279" = 1 4 279,

Lom e L 2Wt(2)
IF C(b, r) =7} < (1_|_ Z—Q(n)) . 2_m < (1+ 2—Q(n)) . wHA-m

Since this is true with probablllty% 2~ for Z selected according 0, itis also
true W|th probability 1— 2= for Z selected according 16/ Fix any suchz and
fix anyb € {0, 1}™ andh € 4. Then, inD}, conditioned orC’ (b, r) =2 b, andh,
there are at most

(1 + 2—Q(n)) . 2W+A—m (2\|NT_|A> < (1 + Z—Q(n)) . 22A—m . 2m(q+1)

(1 + ZfQ(n)) . 24A+nfm . |S|

possible values forr( y). Thus, with probablllty at least + 2= conditioned
on values for the first three componentdjf, the fourth componerit(B, r,y)can
cover at most a 2™ < 2-20 fraction of S. In contrast, conditioned on values
for the first three components Bf;, the fourth component is uniformly distributed
onS. Therefore||Dj — D}|| > 1— 279, ]



A Complete Problem for Statistical Zero Knowledge 233

In Vadhan [1999], it is shown that this Reversal Mapping can be better understood
as a composition of two reductions, going the two directions betwesniSrICAL
DIFFERENCEand ENTROPY DIFFERENCE(the complete problem fd8ZK given in
Goldreich and Vadhan [1999], which trivially reduces to its complement).

5. Other Forms of Zero Knowledge

3.1. WEAK-SZK AND EXPECTED POLYNOMIAL-TIME SIMULATORS. Recall
that, in this article, we defined statistical zero-knowledge with respestrict
polynomial-time simulators. As noted in Section 2, the original definition of sta-
tistical zero-knowledge permitexpectegolynomial-time simulators, but only al-
lowing strict polynomial-time simulators is not very restrictive when discussing
honest-verifier proofs, as we are.

However, our techniques do say something about expected polynomial-time sim-
ulators, and, in particular, show that expected polynomial-time simulators are no
more powerful than strict ones for public-coin statistical zero-knowledge. Thisisthe
first general equivalence between strict and expected polynomial-time simulators
for statistical zero knowledge that we know of.

Indeed, we are able to generalize further to an even weaker notion, thvetéf
statistical zero knowledge (as previously considered in Di Crescenzo et al. [1997],
where it was referred to as “nonuniform simulation”):

Definition 5.1. An interactive proof systenP( V) for a promise problenil
is weak statistical zero knowleddfdfor all polynomials p, there exists an efficient
probabilistic (strict) polynomial-time algorithr@, such that

1500 — (P. V)| < %uxn,

for all sufficiently longx € Iy.

We denote byveak-SZK the class of promise problems admitting weak statisti-
cal zero-knowledge proofs, and pyblic-coin weak-SZK the class corresponding
to such proofs that are also public coin. Note that any proof system admitting an
expected polynomial-time simulator (in the usual sense) certainly also satisfies
the requirements of weak statistical zero-knowledge. We show that in fact any
public-coin weak statistical zero-knowledge proof system can be transformed into
a statistical zero-knowledge proof system with a strict polynomial-time simula-
tor achieving negligible (in fact, exponentially small) simulator deviation. In other
words,public-coin weak-SZK = SZK.

PROPOSITION5.2. public-coin weak-SZK = SZK = public-coin SZK.

The only obstacle in generalizing Proposition 5.2 to all weak statistical zero-
knowledge proofs (instead of just public-coin ones) is that Okamoto’s [2000] private
to public-coin transformation is only given for strict polynomial-time simulators
achieving negligible simulator deviation. In fact, this generalization was accom-
plished in work (subsequent to ours) by Goldreich and Vadhan [1999].

In order to establish Proposition 5.2, it suffices to show that every problem in
public-coin weak-SZK reduces to SD, as the proposition follows by closure under
reductions (Corollary 4.3) and Okamoto’s theorem BaAK = public-coin SZK
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(Theorem 3.10). Therefore, we need only establish the following generalization of
Lemma 3.8:

LEMMA 5.3. Suppose promise problef has a public-coin weak statistical
zero-knowledge proof. Then there exist probabilistic (strict) polynomial-time ma-
chines A and B such that

1
x € Iy = [|AKX) — BX)|l < 3 and

2
x € Iy = [|[AX) — B(X)|| > 3

PrROOF The proofis identical to the proof of Lemma 3.8, except that wherever
the simulatoSis used in that proof, we replace it wily, a simulator with deviation

1/ p(n), wherep(n) = 7n - r(n). Then we replace Claim 3.12 with the following:
CLAIM 5.4. Ifx e Iy, then||A(x) — B(X)|| < 1/(3Ix| - r(|x])?).

ProOOF OFCLAIM. The proof is identical to the proof of Claim 3.12, except
that now we have

1

_ < 2—(x)) ) _ -
IAG) = BN = 27559+ 2r (D) - [ S0 = (P VIO < s

On the other hand, Claim 3.13 remains true, thakig, [Ty implies || A(X) —

B(xX)|| = 1/12r(n). Then, as in the original proof, we consider the samplable
distributionsA(x) = @) A(x) and B(x) = ®@%*)B(x), wheres(n) = n - r (n)2.
If x € Iy, |AX) — B(X)II < s(IX])| A(X) — B(X)|| < 1/3, as desired. Ik € Ty,
then by the Direct Product Lemma (Lemma 3J@\(x) — B(x)|| > 1—2-%X), 7

3.2. FERFECT AND COMPUTATIONAL ZERO KNOWLEDGE.  Although the focus
of this article is statistical zero knowledge, some of the techniques also apply
to perfect and computational zero knowledge. In particular, for public-coin proof
systems, we obtain variants of Lemma 3.8 for both perfect and computational zero
knowledge. In addition, a restricted version afa3ISTICAL DIFFERENCEcan be
shown to have perfect zero-knowledge proof.

First, we define some variants of SD. For any two constamtisdg with « > 3,
define:

SD? = {(Co, C1) : ICo — Call > )
SDy” = {(Co,C1) : ICo — Call < B}

SD*# is interreducible with SD and hence complete $aK whenever 1> «? >
B > 0, because the Polarization Lemma generalizes to such thresholds. (See dis-
cussion at the end of Section 3.2.)

We canalmostshow that every problem that has a public-coin perfect zero-

knowledge proof reduces ®DY2°. The caveats are that either the original proof
system must have perfect completeness, or we obtain distributions that are sam-
plable inexpectegolynomial time rather than circuits.

PrROPOSITIONS.5. Every promise problem having a public-coin perfect zero-
knowledge proof with perfect completeness reduc&Did*°.
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ProOF. It suffices to show that the distributiodgx) and B(x) constructed in
the proof of Lemma 3.8 have statistical difference Ovas instances, when the
original proof system has perfect completeness and the simulator deviation is O.
Indeed, foi > 1, the distributiong\; (x) andB; (x) are identical if the simulator de-
viation is 0, and the distribution&y(x) andBy(x) are identical under the additional
assumption that the proof system has perfect completengss.

We remark that Proposition 5.5 holds more generally for problems possessing
public-coin perfect zero-knowledge proof systems for which the probability that
(P, V)(x) accepts can be computed in polynomial time¥es instancex. This is
the case sinc®; in the proof above can be changed to output 1 with the appropri-
ate probability.

PROPOSITION5.6. Suppose promise probleihhas a public-coin perfect zero-
knowledge proof. Then there exist probabilistic expected polynomial time machines
A and B such that

x €My = [IAX) - B(X)ll =0, and
x ey = [AX)— BX)| > 1— 27D,

PrROOF The proof is nearly identical to that of Proposition 5.5, except that
we must modifyAg(x) and By(X) to have statistical difference 0 (at the price of
Bo(x) becoming expected polynomial time). Le&n) be a polynomial bound on
the number of random coirSuses on inputs of length. Then we defined and
By as follows (in both descriptions, = |x|):

Ao(X): Run §(x) for n - c(n) repetitions. Output “1” if the majority are accepting
conversations and ‘0’ otherwise.

Bo(x): With probability 1— 2-¢", output “1”. Otherwise, calculate the probability
o that S(x) outputs an accepting conversation (by exhaustive search ovéfall 2
random seeds). Now calculate

ey

=) (”Ci(n)>ai(1— o)

i=0

If ¢ > 2=%" output “1.” Otherwise, output “0” with probability /2" and “1”
otherwise.

Note thatBo(x) runs in expected polynomial time, since, with probability®,
it runs in time polyf) - 2°™ and otherwise it runs in time poly). Also observe
thatt is exactly the probability thafy(x) outputs ‘O'.

Now we argue that, whexk e Ily, Ag(x) and By(x) have statistical difference
0, that is, output “1” with the same probability. SinS&x) outputs a conversation
that makesv accept with probability at least/3 — negf), the Chernoff bound
implies that PfAg(x) = 1] = 1 — 2=, This means that will always be
less than 2%M (for sufficiently largen), so By will output “0” with probability
2-°M . (¢/2-%M) = 7, which is the probability thaf\, outputs “0”. [

Now, if we could show that SB?° (or its complement) has a perfect zero-
knowledge proof system, we would have something like a completeness result for
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PZK. Although we do not know how to do this, we can instead show that'8n:

PZK. Indeed, consider the protocol of Section 3.3 with the modification that the
two parties use the XOR Lemma (Lemma 3.5) instead of the Polarization Lemma.
Then the proof of Lemma 3.7 tells us that this protocol, when used fét8has
completeness error 0, simulator deviation 0, and soundness ¢&arA™". Thus,

we have:

PROPOSITIONS.7. SO-Y2 € PZK.

Forcomputationakero knowledge, the techniques of Lemma 3.8 give us some-
thing significantly weaker:

PrROPOSITION5.8. Suppose promise problef has a public-coin computa-
tional zero-knowledge proof. Then there exist probabilistic polynomial-time ma-
chines A and B such that

(1) x € TIn = |A(X) — B(x)|| > 1 — 27D and
(2) {A(X)}xemn, and{B(x)}xen, are computationally indistinguishable ensembles
of probability distributions.

Note that, in contrast to perfect and statistical zero knowledge, the conditions
given in Proposition 5.8 do not give a way to distinguids andNo instances; it
is possible forA(x) and B(x) to have statistical difference greater than 2-<2(X)
even forx € ITy. Despite this, it still suffices to establish Theorem 5.13, which we
present in Section 3.3. We also remark that Proposition 5.8 holds even when the
simulator for the proof system runs in expected polynomial time, excepfthatl
B will also run in expected polynomial time.

ProOF  The proof follows Lemma 3.8 exactly, except for Claim 3.12, which
should be replaced with the following:

CLaiM 5.9. {A(X)}xen, and{B(x)}xem, are computationally indistinguishable
ensembles of probability distributions.

We omitx from the notation for readability; below all probability distributions
actually refer toensembletndexed byx € ITy. The proof in Claim 3.12 tha#g
and By have exponentially small statistical difference still holds. Let the distribu-
tions A’ and B’ be obtained fromA and B by removing the Oth components &f
and B, respectively. Sincé\, and By are independent oA’ and B’, it suffices to
show thatA” and B’ are computationally indistinguishable. To prove this, we first
note that a hybrid argument shows that the distributi@héP, V) and®'S are
computationally indistinguishable, sincB,(V) and S are computationally indis-
tinguishable. Note that this step uses the fact that our definition of computational
indistinguishability is with respect to nonuniform distinguishers, becaBs¥ | is
not a samplable distribution (cf., [Goldreich 2001, Ch. 3, Exercise 9]).

Now we introduce a new distributio@. DefineC; = (c1, p1, ..., C)p,v) for
l<i=<r,andletC =C;®---® C,. Then,C and A’ are computationally
indistinguishable since a distinguishBrbetween them could be used to make a
distinguisherD’ between®' (P, V) and®'S: Given a sequence of transcripts
(t,....t), D' truncated; = (cy, p1, ..., G, pr) to producet! = (c1, p1,...,Gi)
and feedst(, ..., t/) to D. When fed with®" S, D’ gives D a sample ofA’, and
when fed with®" (P, V), D’ givesD a sample ofC.
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Similarly, C andB’ are also computationally indistinguishable because a distin-
guisher between them could be to make a distinguishiebetween®" (P, V)
and ®"S: Given a sequence of transcripts {,...,t), D’ truncatest, =
(1, p1,---,Cr, Pr) and selects); according to the uniform distribution on strings
of lengthr (|x[) to producet/ = (¢, p1, ..., Pi—1, Ui) and feedst(, ..., t/) to D.
When fed with®" S, D’ givesD a sample oB’, and when fed witl®" (P, V), D’
givesD a sample ofC.

Now, because bothA" and B’ are computationally indistinguishable from
C, they must be computationally indistinguishable from each other, completing
the proof. [

3.3. HARD-ON-AVERAGE PROBLEMS AND ONE-WAY FUNCTIONS. Most, if not
all, of cryptography relies on the existence of computational problems that are hard-
on-average. However, the mere existence of a hard-on-average problem, even in
NP, is not known to imply even the most basic cryptographic primitive, namely a
one-way function. Ostrovsky [1991], however, showed that the existence of a hard-
on-average problem i8ZK doesimply the existence of one-way functions. This
result was subsequently generalizecC@K by Ostrovsky and Wigderson [1993].

In this section, we show how Ostrovsky’s result follows readily from our Com-
pleteness Theorem and a result of Goldreich [1990] on computational indistin-
guishability. Using the generalization of our technique€#K described in the
previous section, we also obtain a simpler proof of the Ostrovsky—Wigderson The-
orem restricted to public-coin proof systems.

In order to state these theorems precisely, we need to define what we mean for
a problemIT to be “hard.” Informally, we require that membershiplinis (very)
hard to decide under some samplable distribution of instances.

Definition 5.10. An ensemble of distributiod®, }nen is said to besamplable
if there is a probabilistic polynomial-time algorithm that, on inplitdutputs a
string distributed according tD,.

Definition 5.11. A promise problerl is hard-on-averagéd there exists a sam-
plable ensemble of distributiod®,}nen such that the following holds: For every
nonuniform probabilistic polynomial-time algorithid, there exists a negligible
functionu : N — [0, 1] such that

Pr[M(x) correctly decides whetheris aYES or NO instance off1]
1
=< > —+ u(n) vn e N,

where the probability is taken ov&r< D, and the coins oM. (If x violates the
promise, therM is considered to be correct no matter what it outputs.)

In this section, we give new proofs of the following results.

THEOREMS5.12 ([OsTROVSKY 1991]). If there is a hard-on-average promise
problem inSZK, then one-way functions exist.

THEOREM 5.13 ([OSTROVSKY AND WIGDERSON 1993] FOR PuBLIC-COIN
PrOOF9. If a hard-on-average promise problem possesses a public-coin com-
putational zero-knowledge proof system, then one-way functions exist.
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We only prove Theorem 5.13 as Theorem 5.12 then follows via
Theorem 3.10 [Okamoto 2000]. Our proof makes use of Proposition 5.8 in
conjunction with the following result of Goldreich [1990]:

PROPOSITIONS.14 ([GOLDREICH 1990]). Suppose there exist two samplable
ensembles of distribution§An}nen and {Bn}nen, such that

(1) {An} and{B,} are computationally indistinguishable.
(2) There is a polynomial pN — N such that for all n|| A, — Byl > 1/p(n).

Then one-way functions exist.

PROOF OFTHEOREM5.12. Supposdl is a hard-on-average problem with a
public-coin computational zero-knowledge proof and{Bt} be the ensemble of
distributions under whicHT is hard. By Proposition 5.8, there are probabilistic
polynomial-time algorithmsA and B such that

(1) x € Iy = [|AXX) — B(X)[| = 1 — 2~*), and
(2) {A(X)}xen, and{B(x)}xer, are computationally indistinguishable.

(Note that ifTT € SZK, the Completeness Theorem and Polarization Lemma yield
such A and B with the computational indistinguishability replaced by statistical
difference 2X1)

We show that the following ensembléa,} and{B,} meet the requirements of
Proposition 5.14:

An: Samplex according toD,,. Samplez from A(x). Output K, z).
Bn: Samplex according toD,,. Samplez from B(x). Output &, z).

The statistical farness of these ensembles will follow from the farnegg>9f
andB(x) onNo instances. The computational indistinguishability will follow from
the computational indistinguishability &(x) andB(x) onYESinstances, together
with the fact that it is hard to distinguistes instances ofT from NO instances.

To formalize this intuition, we make some observations which follow from the
fact thatIT is hard-on-average (where here and throughout this proof, we write
negf) to denote negligible functions):

(1) Pr[Dy ¢ Iy U TIN] = negf).
(2) Pr[Dn € Iy] — 3| = negf) and|Pr[D;, € Ty] — 3| = negh).

(3) The ensembleD !}, and{D)\},c obtained by conditionind, on being a
YES Or NO instance, respectively, are computationally indistinguishable.

Items (1) and (2) hold because otherwise the trivial algorithm that always outputs
YESor the one that always output® would decidd1 correctly with nonnegligible
advantage. Item (3) holds because a distinguisher bet@2&nand {D)} could
be used to decidH with nonnegligible advantage.

CLAamM 5.15. |JAn — Bnll = 1/2 — negh).

PrROOF OFCLAIM.  SinceD, must produce soinstance of1 with probability
atleast¥2—negf), || Av—Bnll > (1/2—negf)) - (1-2°") = 1/2—negf). [l

CLAM 5.16. {An}neny and{Bn}ney are computationally indistinguishable.
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ProOF OFCLAIM. Let M be any probabilistic polynomial-time algorithm.
From the fact thatA(x) and B(x) are computationally indistinguishable fges
instances, it follows that

| PrIM(x, A(x)) = 1|x € TTy] — Pr{M(x, B(x)) = 1|x € Tly] | = negf), (3)
where these probabilities (and all those to follow) are taken gver D,, and the

coins of all algorithms 1, A, andB). By the computational indistinguishability
of {DY} and{D)}, we also have

| PrM(x, A(x)) = 1]x € TTy] — Pr[M(x, A(x)) = 1|x € TTIx] | = negf)
| PrIM(x, B(x)) = 1|x € IIy] — Pr[M(x, B(x)) = 1|x € IIx] | = negh).

Combining these with Equation 3, we see that all four conditional probabilities
differ only by negligible amounts. Therefore,

PriM(x, A(x)) = 1] — Pr[M(x, B(x)) = 1]
< | Pr[M(x, A(x)) = 1x € TTy] — Pr[M(x, B(x)) = 1|x € TIy] |
+ | PrIM(x, A(X)) = 1x € TIn] — Pr{M(x, B(x)) = 1|x € ITn] |
+ 2Pr[x ¢ Iy U TIyN]
= negf).
This establishes the computational indistinguishabilityAf} and{B,}. [J

Given these claims, the result now follows from Proposition 5.14.

3.4. EXTENSIONS TO CHEATING-VERIFIER ZERO KNOWLEDGE. The focus of
study in this article has been the class of languages (or promise problems) pos-
sessing statistical zero-knowledge proafminst an honest verifieHowever, in
cryptographic applications, one usually wants the zero-knowledge condition to hold
even against cheating verifier strategies that deviate arbitrarily from the specified
protocol. There have been a number of results showing how to transform proof
system that are statistical zero knowledge against the honest-verifier into ones that
are statistical zero knowledge against cheating verifier strategies [Bellare et al.
1990; Ostrovsky et al. 1993; Daragf 1993; Damagrd et al. 1995; Okamoto 2000;
Goldreich et al. 1998]. As advocated by Bellare et al. [1990], one can use such
transformations to translate results like ours about honest-verifier statistical zero
knowledge to the cheating-verifier definition. In this section, we discuss which of
our results apply to the cheating-verifier class and the appropriate formulations in
each case.

Definition 5.17. Aninteractive protocol between a computationally unbounded
prover P and a PPT verifieV is said to be aheating-verifier statistical zero-
knowledgeproof system for a promise problemif the following holds.

(1) If x € Iy, then Pr[P, V)(x) = accept] > 1 — c(|X|).

(2) If x € Iy, then for allP*, Pr[(P*, V)(X) = accept] < s(|X|).

(3) Forall PPTV*, there exists a PP¥ and negligible functiom(-) such that for
all x € Ty, [|S(x) — Viewp v+(X)| < a(Ix]).

As usualc(.) is called thecompleteness erros(-) thesoundness errgando(-)
the simulator deviatiorfor V*. cheating-ver SZK denotes the class of promise
problems possessing cheating-verifier statistical zero-knowledge proofs.
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Bellare et al. [1990] gave the first evidence teheating-ver SZK = SZK,
by proving it under the BCRETELOGARITHM assumption. Following sequence of
subsequent works [Ostrovsky et al. 1993; Damg1993; Damagrd et al. 1995],
the complexity assumption was recently completely removed:

THEOREM5.18 ([OkAmMOTO 2000; GOLDREICH ET AL. 1998]).
cheating-ver SZK = SZK. Moreover, there is a transformation which converts
an honest-verifier statistical zero-knowledge préf V) for a promise problem
IT into cheating-verifier statistical zero-knowledge préBf, V') for IT such that:

(2) (P’, V') is public coin.
(2) (P’, V') has perfect completeness and soundness @rror

(3) (P’, V') has a universal black-box simulator S that works for all (even compu-
tationally unbounded) verifier strategies' V*

(4) If (P, V) has simulator deviatiow(n), then(P’, V') has simulator deviation
poly(n) - «(n) + 27" for every V.
(5) If (P, V) is security-parameterized, then sq R, V').15

We now use this result to translate our results about honest-verifier statistical
zero knowledge to cheating-verifier statistical zero knowledge.

3.4.1 Class Properties. Since Theorem 5.18 asserts an equality of classes, all
of our results about thelassSZK also hold forcheating-ver SZK:

COROLLARY 5.19 (FROPERTIES OF THECLASS cheating-ver SZK).

(1) SraTisTICAL DIFFERENCEIS complete focheating-ver SZK.
(2) cheating-ver SZK is closed under Karp reductions, complemg@kamoto
2000, ®(-), andNC* truth-table reductions.

(3) If there is a hard-on-average problem gheating-ver SZK, then one-way
functions exist [Ostrovsky 1991].

PrRoOOF Combine Theorem 5.18 with Theorem 3.1, Corollary 4.3, Corol-
lary 4.4, Theorem 4.9, Corollary 4.14, and Theorem 5.12.

3.4.2 Protocol Properties. Unfortunately, Theorem 5.18 does not guarantee
that every property satisfied by the honest-verifier proof sysenw{ is also sat-
isfied by the cheating-verifier proof syste® (V’). Thus, although we have shown
in Corollary 4.2 that every problem BZK has a very efficient honest-verifier proof,
it does not follow that it also has a cheating-verifier proof of similar efficiency. In
particular, Theorem 5.18 does not preserve (even up to constant factors) the message
complexity, communication complexity, or deterministic prover of Corollary*4.2.
The only aspects of Corollary 4.2 that are maintained involve the error probabilities:

14 See Goldreich et al. [1998] for a definition.

15 This is not stated explicitly in Okamoto [2000] and Goldreich et al. [1998], but can be achieved
replacing the input length with max{k, n}, wherek is the security parameter, in their constructions.

16 |n fact it is necessary that some of these properties are not maintained: only probBR# rave
cheating-verifier statistical zero-knowledge proofs with deterministic provers [Goldreich and Oren
1994], and only problems iBPP have cheating-verifier statistical zero-knowledge proofs that are
constant round, public coin and have universal black-box simulators [Goldreich and Krawczyk 1996].



A Complete Problem for Statistical Zero Knowledge 241

COROLLARY 5.20. Every problem inSZK has a security-parameterized
cheating-verifier statistical zero-knowledge proof with perfect completeness, sound-
ness error2=¥, and simulator deviatio2 K.

PrRoOOF  Apply Theorem 5.18 to Corollary 4.2[]

We note that the transformation of Bellare et al. [199@¢gpreserve the message
complexity of the proof system up to a constant factor, but requires the assumption
that the DSCRETELOGARITHM problem is hard. Thus, under this assumption, their
transformation can be combined with Okamoto’s [2000] result that every problem
in SZK has a constant-message honest-verifier proof system (or Corollary 4.2)
and conclude that every problem$ZK has a constant-message cheating-verifier
proof system.

3.4.3 Knowledge Complexity.Since Theorem 5.18 only refers to statistical
zeraknowledge, we cannotimmediately apply it our results about (nonzero) knowl-
edge complexity. Below, we show how this nevertheless can be done for our results
about knowledge complexity in thent sense

First, for all the variants of knowledge complexity discussed in Section 4.3, we
can define cheating-verifier knowledge complexity analogously to Definition 5.17.
We denote the cheating-verifier variant of a cl&swith cheating-ver C. We
begin by showing that honest-verifier and cheating-verifier statistical knowledge
complexity in thehintsense coincide. To prove this, we observe one direction of the
characterization of knowledge complexity in the hint sense given by Lemma 4.16
also holds for the cheating-verifier classes:

LEMMA 5.21. LetII be any promise problem and letrR be any polynomially
bounded function. Suppose there exists a promise problencheating-ver SZK
(respectivelycheating-ver PZK) such that

(1) x € Iy = there exists a such th&| = k(|x|) and(x, a) € 'y, and
(2) x e Ty = for all a, (x,a) € T'y.

Then TI € cheating-ver SKCint(k(n)) (respectively, cheating-ver
PKChint(k(n))).

The proof of Lemma 5.21 is the same as the corresponding direction of
Lemma 4.16. The reason the other direction of Lemma 4.16 does not immedi-
ately apply to the cheating-verifier case is that the hint function may be different
for each verifier. However, we can deduce that direction from the following:

PrROPOSITION5.22. For every polynomially-bounded functioirg,
SKChint(k(n)) = cheating-ver SKCyint(k(n)).

ProoF.  Clearly,cheating-ver SKChint(k(n)) € SKChint(k(n)). Now suppose
IT is any language ilBKCint(k(n)), and letl" € SZK be the promise problem
guaranteed by Lemma 4.16. Then, by Theorem 5I18& cheating-ver SZK.
Applying Lemma 5.21, we see that € cheating-ver SKCynt(k(n)). O

Observe that we have actually proved something strongdr&afSKChint(k(n)),
then there is a proof system fd@t with cheating-verifier statistical knowledge
complexity k(n) for which thesame hint functiortan be used for every verifier.
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Unfortunately, analogues of Proposition 5.22 do not appear to follow immediately
from the fact thaSZK = cheating-ver SZK.

Given Proposition 5.22, it follows immediately that the collapse iNSKE
hierarchy (Theorem 4.15) also holds for the cheating-verifier classes:

PrROPOSITION5.23. For any polynomially bounded functiorr),
cheating-ver SKChin:(k(n) + logn) = cheating-ver SKChn:(k(n)).

In contrast, we do not know whether our results on the perfect knowledge com-
plexity of SZK hold for the analogous cheating-verifier classes. To apply the same
approach, one would have to analyze the (cheating-verifier) perfect knowledge com-
plexity of the protocols obtained by performing the transformations of Okamoto
[2000] and Goldreich et al. [1998] on the protocol for SD. These transformations
could conceivably increase the perfect knowledge complexity dramatically.

6. Open Problems

We recall some of the open problems we mentioned throughout the article, along
with some additional research problems raised by this work.

(1) Does SATISTICAL DIFFERENCEremain complete fo6ZK and the Polariza-
tion Lemma (Lemma 3.3) still hold when the thresholdscarg such that® <
B < a?

(2) 1sSZK closed under general Cook reductions (adaptive or nonadaptive)? (Re-
call thatin Corollary 4.14, we showed tH8ZK is closed undeNC, truth-table
reductions.)

(3) Dothe otherforms of statistical knowledge complexity collapse likS#&int
hierarchy (cf., Theorem 4.15)?

(4) Find natural complete problems fBZK or CZK. (The results of Section 3.2
are efforts in this direction.)

(5) Find additional natural complete problems$xK, for example, combinatorial
or number-theoretic problems. While we have uS&-completeness mainly
as a positive tool, it could also provide strong evidence of intractabilityZ#s
contains many problems believed to be hard.

(6) DoesSZK = PZK? It was this question, posed to us by Shafi Goldwasser, that
started us on this research, and unfortunately the answer remains a mystery.
However, our Completeness Theorem does imply$2a& = PZK if and only
if STATISTICAL DIFFERENCEIS in PZK.

Appendixes
A. The Statistical Difference Metric
PROOF OFFACT 2.1. For any se§ C D,

2|Pr[X € S| — Pr[Y € S|
= |Pr[X € S| — Pr[Y e §]| + |Pr[X ¢ S| — Pr[Y ¢ 9|
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=Y (PrIX =x] = Pr[Y = x])| + | Y (Pr[X = x] — Pr[Y = x])
xeS X¢S

<Y |PrIX=x] =PrlY =x]| + ) _[Pr[X =x] - Pr[Y = x]|
xeS X¢S

=X =Y.

Equality is achieved by takin§ = {x : Pr[X = x] > Pr[Y =x]}. O
PROOF OFFACT 2.3
(X1, X2) = (Y2, Y2)I = [[(X1, X2) = (Y2, Xl + (Y1, X2) — (Y1, Y2)ll

= %|X1 ® X2 — Y1 ® Xa|, + %|Y1® X2 —Y1® Y|,

1 1
= §|(X1 — Y1) ® Xo|, + §|Y1 ® (X2 - Y2)|,

1 1
= §|X1—Y1|1‘ |X2|1+§|Y1|1'|X2—Y2|1
= I Xe =Yl + [ X2 = Y2[l. [

PROOF OFFACT 2.4. LetA = (f, R) be any randomized procedure. Then, for
any setSc F,

| PrIA(X) € §] — Pr[A(Y) € 9 |
=|Prif(X®R) e —Prif(Y®R) € 9|
=|PriIX® Re (9] -Prly®Re f‘l(S)]\
<IX®R-Y®R]|
< |IX =Y]| + |IR— Rl (by Fact 2.3)
= [IX =Y.
Taking the maximum over all se&completes the proof.[]

PrOOF OFFACT 2.5. LetT < D be the set ofx’s for which || Xz|x,—x —
Yalv,=x|l < 8. Now, let S be an arbitrary subset @ x E and, for everyx € D,
defineS ={y € E: (X,y) € S}. Then,

Pr[X e g

A

PriXy ¢ TI+ Y Pr[Xz e S|X1=x] - Pr[X; = x]

xeT

< e+ (Pr[Yae S|Yy=xX]+6) PriYy=x]
xeT

< e+8+PrYeg.

By symmetry, we also have PY € §] < e+6+Pr[X € §]. SinceSwas arbitrary,
IX=Y|| <e+6 O

PROOF OFFACT 2.6. LetS= {x: (1—/€)Pr[X =x] > Pr[Y = x]}, thatis,
the set ofx’s for which the left-hand inequality in Fact 2.6 is violated. Then,
PriY € §] < (1 - Je)Pr[X e §
= Pr[Xe S —+e-Pr[Xe§g.
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Thus, /e - Pr[X e § < [[X = Y| < ¢, sowe must have PK € § < /e. A
similar argument shows that the right-hand inequality in Fact 2.6 is violated with
probability less than/e. [

B. A Generic Complete Problem f&ZK

In this appendix, we show how to obtain a complete promise problerPZat
directly from the definition of the class. However, in contrasttai$sTICAL DIF-
FERENCE this problem will be essentially a restatement of the definition of the class
and therefore of little use.

The complete promise problem BZK is PZK-GeNERIC, which we now define.
An instance of PZK-GNERICis a quadruple\(, S, x, 1'), whereV is a description
of an interactive probabilistic Turing machine a8 a description of a (noninter-
active) probabilistic Turing machine. ¥esinstance is such a quadruple for which
there exists a prover strate@ysuch that

(1) The interaction betweeR andV on x takes at most steps (including the
computation time folV) andV accepts in this interaction with probably at
least 23.

(2) The running time oS on inputx is at mostt.

(3) Soutputsfail with probability at most 12, and conditioned on not failing,
the output distribution oEis identicalto V's view of the interaction withP
onx.

A No instance is a quadruple such that for all prover stratelgies

(1) The interaction betweeR andV on x takes at most steps (including the
computation time fol) andV rejects in this interaction with probability at
least 23.

(2) The running time o5 on inputx is at mostt.
PROPOSITIONB.1. PZK-GENERICiS complete foPZK.

PrROOF.  First, we show that every promise probldmin PZK reduces to
PZK-GENERIC. Let (P, V) be the perfect zero-knowledge proof systemlfiowith
simulatorS. Lett(n) be a (polynomial) upper bound on both the running tim& of
and the number of steps of the interactiorPondV on inputs of lengtm. Then

x> (V, S, x, 1'00)

is a polynomial-time reduction frofl to PZK-GENERIC.
Now we argue that PZK-8\erIC € PZK. Consider the following descriptions
of a verifierV, a proverP, and a simulatot:

V(V, S x, 1Y): When interacting with any machine, simulateon inputx.

P(V, S, x, 1): Exhaustively search for a prover strateByfor which V's view
of (P, V)(x) is identical to the output distribution d(x) (conditioned on
S(x) # fail.) If one exists, follow that strategy, otherwise outpefi1.l’

SV, S, x, 1Y): SimulateS on inputx.

17 Alternatively, P can act as theimulation-based provesee Section 3.5).
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It is easy to see that these definitions provide a perfect zero-knowledge proof
system for PZK-ENERIC. []

The problem with extending this example88K is Condition 3 forvEsinstances.
“Identical” needs to be replaced by “negligible statistical difference,” but it is not
clear what negligible function to put there. We do not know how to get around
this difficulty without using our Completeness Theorem, which implies that every
problem inSZK has a statistical zero-knowledge proof with semesimulator
deviation 2" (cf., Corollary 4.2)8

Another observation worth mentioning, pointed out to us by Mihir Bellare, Oded
Goldreich, and Madhu Sudan, is that PZKME&ERIC can be modified to obtain
complete promise problems folneating-ver PZK (as long as we restrict to “black-
box” simulation) and also the various formsFKC.

C. An Example folGRAPH ISOMORPHISM

For illustrative purposes, here we explicitly describe what happens when the
reduction to and proof system for&risTiCAL DIFFERENCEare applied to the well-
known public-coin perfect zero-knowledge proof system farEH |SOMORPHISM
[Goldreich et al. 1991]:

Perfect zero-knowledge proof system fofGRAPH ISOMORPHISM
Input: (Gg, G1).

1. P sendsV a random isomorphic copy of Gg.

2. V picksb € {0, 1} at random and sends it .

3. P sendsv a random isomorphism betweenG, andH, if one exists.
4. V checks thatt G, = H.

SimulatorsS, on input Go, G1):

1. Pick randonb € {0, 1} and a random permutation
2. Output £ Gy, b, ).

Notice that the conversations output Byalways make/ accept.
If the reduction to SD from the proof of Lemma 3.8 is applied to the above
protocol, the following distributions are obtained:

Ao(Go, G1): Always output 1.
Bo(Go, G1): Always output 1.
A1(Go, G;): Output ¢t Gy, b) for a random permutation andb € {0, 1} chosen
at random.
B1(Go, G1): Output (r Gy, c) for a random permutationr andb and c chosen
uniformly and independently fror0, 1}.

Thus, || Ag(x) — Bo(X)|l always equals 0} A1(x) — B1(x)|| is easily seen to be 0
if Go = Gy and V2 if Gy Z G;. For the rest of this section, we ignofg and By
since they are irrelevant.

18 We do not know how to overcome this difficulty by using the result of Bellare [1997], which states
that anycountableset of negligible functions is “dominated” by a single negligible function. The
reason is that there are uncountably many problems in the promiseS2Kss
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If we now apply the protocol for SD from Section 3.3 to the distributidasand
B, (without first applying the Polarization Lemma), we obtain the following proof
system P’, V') for GRAPH NONISOMORPHISM

(1) V'’ picks a random bid < {0, 1}. If d = 0, V' chooses a random hite {0, 1}
and a random permutation and sends®Gy, b) to P’. If d = 1, V' chooses
random bitsb, ¢ € {0, 1} and a random permutation and sends# Gy, ¢)
to P'.

(2) P’ receives messageél( b) from V’. P attempts to guess as follows: IfH is
isomorphic toGy, thenP’ guesses 0, eldd’ guesses 1.

(3) V'’ accepts if theP’ guesses correctly.

Now, if Gg is notisomorphic tds1, thenP’ will guess correctly with probability
3/4. However, ifGq is isomorphic toG;, then no prover can guess correctly with
probability greater than 1/2. The above protocol is of the same spirit as the stan-
dard GRAPH NONISOMORPHISMprotocol [Goldreich et al. 1991]. In both cases, the
verifier randomly permutes one of the graphs to obtain a gkapimd in order for
the prover to succeed with probability greater than 1/2, the prover needs to be able
to identify from which grapfH came.
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