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Abstract. Informally, an obfuscator O is an efficient, probabilistic “compiler”
that transforms a program P into a new program O(P ) with the same functional-
ity as P , but such that O(P ) protects any secrets that may be built into and used
by P . Program obfuscation, if possible, would have numerous important cryp-
tographic applications, including: (1) “Intellectual property” protection of secret
algorithms and keys in software, (2) Solving the long-standing open problem of
homomorphic public-key encryption, (3) Controlled delegation of authority and
access, (4) Transforming Private-Key Encryption into Public-Key Encryption,
and (5) Access Control Systems. Unfortunately however, program obfuscators
that work on arbitrary programs cannot exist [1]. No positive results for program
obfuscation were known prior to this work.
In this paper, we provide the first positive results in program obfuscation. We
focus on the goal of access control, and give several provable obfuscations for
complex access control functionalities, in the random oracle model. Our results
are obtained through non-trivial compositions of obfuscations; we note that gen-
eral composition of obfuscations is impossible, and so developing techniques for
composing obfuscations is an important goal. Our work can also be seen as mak-
ing initial progress toward the goal of obfuscating finite automata or regular ex-
pressions, an important general class of machines which are not ruled out by the
impossibility results of [1]. We also note that our work provides the first formal
proof techniques for obfuscation, which we expect to be useful in future work in
this area.

1 Introduction

Software Obfuscation is an important cryptographic concept with wide applications.
However until recently there was little theoretical investigation of obfuscation, despite
the great success theoretical cryptography has had in tackling other challenging notions
of security.

Roughly speaking, the goal of (program) obfuscation is to hide the secrets inside
a program while preserving its functionality. Ideally, an obfuscated program should
be a “virtual black box,” in the sense that anything one can compute from it could
also be computed from the input-output behavior of the program. To be clear (but still
informal), an obfuscator O is an efficient, probabilistic “compiler” that transforms a
program P into a new programO(P ) such that:
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– (Functionality Preservation.) The input/output behavior of O(P ) is the same
as P .

– (Secrecy.) “Anything that can be efficiently computed fromO(P ) can be efficiently
computed given oracle access to P .”

This second property seeks to formalize the notion that all aspects of P which are not
obvious from its input/output behavior should be hidden by O(P ). By considering the
problem of obfuscation restricted to specific classes of interesting programs, one can
further specify exactly what needs to be hidden by the obfuscation, and what doesn’t
need to be3.

Program obfuscation, if possible, would have numerous important cryptographic
applications, including: (1) “Intellectual property” protection of secret algorithms and
keys in software, (2) Solving the long-standing open problem of homomorphic public-
key encryption, (3) Controlled delegation of authority and access, and (4) Transforming
Private-Key Encryption into Public-Key Encryption. (See [1] for more discussion.) We
discuss another important application, access control, in more detail below.

Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang [1] initiated the
formal cryptographic study of obfuscation, and established several important impos-
sibility results (which we discuss further below). There have been many ad-hoc ap-
proaches to program obfuscation (see e.g. [3]); Many of these have been broken (e.g. [4]
broken by [7]), and none of these have proofs of their security properties. Proven results
are known only in models where the adversary has only partial access to the obfuscated
program or circuit [5,6].

In this paper, we provide the first positive results in program obfuscation. We fo-
cus on the goal of access control, and give several provable obfuscations for complex
access control functionalities, in the random oracle model. Our results are obtained
through non-trivial compositions of obfuscations; we note that general composition of
obfuscations is impossible, and so developing techniques for composing obfuscations
is an important goal. Our work can also be seen as making initial progress toward the
goal of obfuscating finite automata or regular expressions, an important general class of
machines which are not ruled out by the impossibility results of [1]. We also note that
our work provides the first formal proof techniques for obfuscation, which we expect to
be useful in future work in this area.
Context for our work. In order to understand the challenge of program obfuscation, we
first recall the impossibility results of [1]. Their central construction demonstrates the
existence of a particular family F of programs, for which no obfuscator can exist. More
precisely, every function in F has an associated secret key such that: (1) no efficient
algorithm can extract the secret key given the input/output functionality of a random
function from F ; (2) however, there exists an adversary which can always extract the

3 In general, one can define a class of programs parametrized by the secrets which are meant
to be protected by the obfuscation. For instance, for a program P which sorts the input and
then signs it using a secret signature key sk, one can define a program class F = {Psk :
P using key sk}. An obfuscator for F would then only be required to protect the secret key;
it would not be required, for example, to protect the exact nature of the sorting algorithm, since
this is the same for all programs in F .
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secret key given any program which implements a function in F . There are several
important observations to be made:

– The program family F consists of programs which have inputs and outputs of
bounded length. Under a widely believed complexity assumption (factoring Blum
integers is hard), F can implemented by constant-depth polynomial-size threshold
circuits (i.e. F ⊂ TC0). Furthermore, F can be embedded into specific construc-
tions of most cryptographic primitives, thus ruling out obfuscators that work on,
say, any signature scheme.

– If the obfuscated program runs in time T , the adversary which extracts the secret
key runs in time roughly only Õ(T 2). Note also that the adversary’s probability of
success is 1.

– The impossibility result (with all the properties above) extends to the random oracle
model.

The above properties highlight the difficulty of obtaining any general methods for ob-
fuscation: Because the adversary runs quickly and always succeeds in extracting the
secret key (and the impossibility result holds in the random oracle model), there seems
little hope to relax our security requirement: General purpose obfuscation under any
meaningful relaxed secrecy definition4 would seem to find a counterexample in F .

This has consequences for the techniques we can hope to develop to build and prove
obfuscations. One of the most useful techniques we could hope for is composition.
However, note that any single logic gate is trivially obfuscatable; indeed even a depth 1
threshold circuit (TC0

1) is trivially obfuscatable since it is learnable with oracle queries.
Obviously, an arbitrary circuit can be built from a composition of logic gates; and any
TC0 circuit can be built from just a constant number of compositions of TC0

1 cir-
cuits. Thus, no general theorem showing how to compose even a constant number of
obfuscations is possible (under reasonable complexity assumptions).
Our Results. We now describe our results in more detail. The starting point for our
work is the simple observation that a commonly used practice for hiding passwords
can be viewed as a provably secure obfuscation of a “point function” under the random
oracle model. That is, consider the family of functions {fα} where fα(x) = 1 if x =
α, and fα(x) = 0 otherwise. If R is a random oracle5 (with a large enough range),
then the program which stores ρ = R(α), and on input x outputs 1 iff R(x) = ρ

4 There is one intriguing, if limited, possibility that we can imagine: There is nothing known
to rule out a general purpose obfuscator that takes circuits of size s, and outputs circuits of
size, say, O(sk), such that no adversary running in time Ω(sk2) could obtain meaningful
information. If k were large enough, this could conceivably provide enough of a slowdown to
be useful in some cases. No such transformation is known to exist.

5 The work of [2] on “perfectly one-way hash functions” can be seen as a way to implement the
random oracle within this obfuscation in certain models. By considering an extension of such
models, it is possible to apply the techniques of [2] to remove the random oracles from all
our constructions. However, these models are not satisfactory, because in general [2] cannot
deal with partial information being available to the adversary, which is an important part of the
obfuscation model we consider. Extending [2] to deal with partial information is an important
open problem. Progress there would lead to progress toward removing the random oracle in our
constructions. However, since we seek to give the first positive results regarding obfuscation,
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is an obfuscation of fα with high probability over R. Starting with this most basic of
access control functionalities, we give a number of novel reduction and composition
techniques for obfuscation, and use these to build obfuscations of much more complex
access control functionalities.

We show how to obfuscate a functionality we call an Access Automaton. Consider
a large organization (such as a government) that wishes to implement a complex hier-
archical access control system for a large collection of private information. In such a
system, a single piece of information may need to accessible by persons with a variety
of different credentials (e.g. the co-chair of one subcommittee and the secretary of an
unrelated working group may need access to the same piece of secret information). In
our setting, we allow for an exponential number of sets of credentials to give access to a
common piece of information. We model this framework as an arbitrary directed graph,
where each edge is labeled with a password/credential, and each node is attached to a
secret. At the start, the structure of the graph is completely unknown to a user, but by
supplying passwords/credentials, the user can explore and learn as much of the graph
as she has access to, given the set of passwords/credentials she has. We show how to
provably obfuscate this functionality in the random oracle model. We also show that
our obfuscation can be dynamically updated, such that secrecy is preserved even if the
adversary observes the entire history of obfuscated programs.

A potential drawback of the above functionality concerns weak passwords. Suppose
there is a document which is accessible by giving a sequence of 5 passwords, but the
adversary has partial information allowing him to narrow each password to a (different)
set of 104 possibilities. The adversary could efficiently “break” each password one by
one, and access the document, even though the document itself had log(1020) “bits”
of security. We show how to address this problem: Suppose we have a public regular
expression over hidden strings (e.g. the expression “x1(x1|x4)∗(x2|x3)x3x4)”, where
x1, x2, x3, x4 are unknown strings). Then we show how to essentially obfuscate this
expression in a way that preserves the natural security inherent in the expression. In the
example above, the adversary would not gain any partial information even if he knew
that x3 was one of only two possibilities – without knowing x1 and x4, he cannot re-
solve his uncertainty about x3. The main difference between this case and the Access
Automaton is that the overall structure of the regular expression is not hidden by the ob-
fuscation. We also give another obfuscation for public regular expressions over “black
boxes” – this does not have the security property above, but can be seen as providing a
nontrivial obfuscation of a composition of individually obfuscatable functions. We also
show how to go beyond just “equality checking” by giving an obfuscation for proximity
checking in tree metrics.

We believe that the proof techniques we introduce are as important as the results we
obtain. In particular, we give a new notion of reduction between classes of functions
which implies that if one is obfuscatable, then so is the other. The significance of this
is that this allows obfuscations of complex functions to be built using obfuscations of
simpler functions. The latter may be implemented in anyway, possibly in the hardware.
From a theoretical perspective, this is important because obfuscations built this way

we do not concern ourselves with removing the random oracle in this work. We stress that it is
indeed an important problem to address in the future.
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need not be based on the random-oracle model, but can be in a model where the simpler
obfuscations are available as primitives. We also make many observations about the
possibility of putting together multiple obfuscations. We believe our techniques and
observations will be of further use in the nascent field of program obfuscation.

2 Preliminaries

Following Barak et al. [1] we define obfuscation of a family of functions F as follows.

Definition 1. A family of functions F is obfuscatable if there exists an algorithm O
which takes a Turing Machine (or circuit) that computes F ∈ F and outputs a Tur-
ing Machine (circuit, respectively) such that the following conditions hold (the TM or
circuit is also denoted by F ).

1. (Functionality) For all F ∈ F and all inputs x ∈ {0, 1}∗ we have O(F )(x) =
F (x)

2. (Polynomial Slowdown) There exists a polynomial p such that for all F ∈ F we
have |O(F )| ≤ p(|F |) and (in the case of Turing Machines) if F takes t time steps
on an input x ∈ {0, 1}∗, O(F ) takes at most p(t) time steps.

3. (Virtual Blackbox) For all PPTA, there exists a PPT S and a negligible function ν
such that for all F ∈ F we have

|Pr [A(O(F ))) = 1]−Pr [SF (1|F |) = 1]| ≤ ν(|M |).
Here the probabilities are taken over the randomness of A and S (andO and F if they
are randomized).
O is called an obfuscator for F , and O(F ) an obfuscation of F . O is said to be

efficient if it runs in polynomial time, in which case we say F is efficiently obfuscatable.

Now we extend this definition so that random oracles are taken into account.
We consider a parameter k associated with the family Fk of functions being obfus-

cated. The size of F ∈ Fk is polynomial in k, and the random oracle that can be used
in the obfuscation will be a random member of Rk, the set of all functions from {0, 1}∗
to {0, 1}�(k) for some polynomial �. We shall refer to k as the feasibility parameter.

Definition 2. (Obfuscation in the Random Oracle Model) An oracle algorithm O
which takes as input a Turing Machine (or circuit) and produces an oracle Turing Ma-
chine (or oracle circuit) is said to be an obfuscator of the family F = ∪kFk if we have
that

1′. (Approximate Functionality) There exists a negligible function ν such that, for all
k, for all F ∈ Fk we have Pr [∃x ∈ {0, 1}∗ : OR(F )(x) �= F (x)] ≤ ν(k).6

2′. (Polynomial Slowdown) There exists a polynomial p such that for all k, for all
F ∈ Fk we have |O(F )| ≤ p(k) and (in the case of Turing Machines) if F takes t
time steps on an input x ∈ {0, 1}∗, O(F ) takes at most p(t) time steps.

6 A weaker requirement would be that for all F ∈ Fk and x ∈ {0, 1}∗, we have
Pr [OR(F )(x) �= F (x)] ≤ ν(k).
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3′. (Virtual Blackbox) For all PPTA, there exists a PPT S and a negligible function ν
such that for all k, for all F ∈ Fk we have

|Pr [AR(OR(F ))) = 1]−Pr [SF (1k) = 1]| ≤ ν(k)

Here the probabilities are taken over R ∈ Rk as well as the randomness of A and S
(andO if it is randomized).
O is called an obfuscator for F , and O(F ) an obfuscation of F . O is said to be

efficient if it runs in polynomial time, in which case we say F is efficiently obfuscatable.

In the sequel, all our results will apply to the definition presented here (in the random
oracle model). For notational convenience we shall often abbreviate OR,AR etc. to
simply O,A etc.

3 Reductions and Composition

3.1 Reductions

Definition 3. A class of Turing Machines (or circuits) F is said to be polynomial-time
black-box implementable relative to G (denoted F � G ) if there exist polynomial time
TMs (circuits) M and N such that for every F ∈ F there is a G ∈ G , such that MG

computes the same function as F , and NF computes the same function as G.

So, if F � G , for every F ∈ F , G contains a function G which is “equivalent” to
F in some extended sense. Now we give the main tool which lets us reuse results on
obfuscatability.

Lemma 1. If F � G and G is obfuscatable (when every G ∈ G is given as NF for
an F ∈ F ),7 then so is F . Further if G is efficiently obfuscatable, then F is efficiently
obfuscatable too.

Proof: Given F ∈ F , let G ∈ G be such that MG ≡ F and G ≡ NF . Since G is
obfuscatable, let O′ be an obfuscator for G . We claim that O(F ) = MO′(G) (i.e., the
code of M and the codeO′(G)) is an obfuscation of F .

Clearly, conditions 1′ and 2′ of Definition 2 are satisfied. To prove condition 3′, con-
sider any adversary A which accepts the code O(F ) = MO′(G). We need to demon-
strate a PPT S as required by condition 3′. First, we build an adversaryA′ which accepts
the codeO′(G), adds the code ofM to it to getO(F ), passes it on to an internally sim-
ulated copy ofA, and outputs whateverA outputs. Now, sinceO′(G) is an obfuscation
of G, there exists a simulator S′ such that

|Pr [S′G(|O′(G)|) = 1]−Pr [A′(O′(G)) = 1]| ≤ ε (1)

for some negligible function ε(|O′(G)|).
7 If G ∈ G is obfuscatable only when represented in some other format, still this Lemma holds,

but now the obfuscator for F takes F as MG with G specified in that obfuscatable format.
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We use S′ to build S, as follows. Note that S gets oracle access to F and receives
|O(F )| as input. SF can implement an oracle equivalent to G as NF , using its oracle
access to F . It runs S′ with oracle access to G implemented in this way, and input
|O′(G)| calculated from |O(F )| (by subtracting the size of M ). S outputs whatever S′
outputs.

Clearly, by construction,

Pr [A(O(F )) = 1] = Pr [A′(O′(G)) = 1]

Pr [SF (|O(F )|) = 1] = Pr [S′G(|O′(G)|) = 1]

and so by Equation (1), |Pr [SF (|O(F )|) = 1] − Pr [A(O(F )) = 1]| ≤ ε. Finally
|O(F )| ≥ |O′(G)|, so that ε is still negligible when considered a function of O(F ),
completing the proof.

Note that in building O(F ) = MO′(G), the obfuscator O needs to obtain O′(G),
given F . Since G can be specified as NF to O′, if O′ is efficient so is O. �

3.2 Extending Lemma 1

We extend Definition 3, and Lemma 1 to allow reductions to probabilistic families of
functions. We do this for proving Theorem 3. In fact, somewhat more general extensions
are possible. But for the sake of simplicity we restrict ourselves more or less to the
minimum extensions we will need. The reader may skip this section, and return to it
while reading Section 5. The other results in this paper do not need these extensions.

Definition 4. Suppose G̃ is a family of probabilistic Turing Machines (or circuits), and
F a family of deterministic TMs (circuits). We say F�∗ G̃ if there exist probabilistic
polynomial time TMs (circuits) M andN such that for every F ∈ F there is a G ∈ G̃ ,
such that the distributions of outputs of MG and F are computationally indistinguish-
able, and those of NF and G are computationally indistinguishable.

Note that unlike Definition 3, the above definition is not information theoretic. It
involves the notion of computational indistinguishability, and hence inherently all the
results which use the following lemma requires the adversary (A and S) to be PPT
machines or circuits. The proof of the lemma closely follows that of Lemma 1. It is
given in the extended version [8].

Lemma 2. Suppose F�∗ G̃ . Let G be the family of deterministic TMs (circuits) ob-
tained by fixing in all possible ways the random-tapes of the TMs (circuits) in G̃ . Then,
if G is obfuscatable, so is F .

3.3 Composition of Obfuscations

An obfuscated program can be idealized as oracle access to the corresponding function.
We ask if obfuscations compose: can we put together different obfuscations and expect
them to behave ideally as the corresponding collection of oracles. Note that here we
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use the term compose in the same way as one refers to composition of cryptographic
protocols- to ask whether having multiple instances in the system breaks the security or
not. It does not necessarily refer to composition of functions in the usual mathematical
sense, something which we will address later in this section. We make the following
definition to define a simple composition of obfuscations, where there is no interaction
between the different instances.

Definition 5. An array of t functions F1, . . . , Ft is defined as follows:

�F1, . . . , Ft�(i, x) = Fi(x) if i ∈ {1, . . . , t}; else ⊥
Let �O(F ),O(G)�, by abuse of notation stands for the code which consists of the

codesO(F ) and O(G) as modules, and a small driving unit which directs the calls to
one of the modules as appropriate.

Definition 6. (Simply Composing Obfuscations) An obfuscator O for a family F is
said to produce simply t-self-composing obfuscations if

O∗(�F1, . . . , Ft�) = �O(F1), . . . ,O(Ft)�

is an obfuscation of the family {�F1, . . . , Ft�|Fi ∈ F}.8
This can be extended to multiple families of obfuscatable functions to define a set of

simply composing obfuscations.

In fact, in the random oracle model we have the following claim (which we conjecture
to extend to the plain model too):

Claim 1. There exists a class of functions F , and an obfuscatorO for F in the random
oracle model, such that obfuscations produced by O are not simply 2-self-composing.

Proof: We consider the class of point functions P (defined later, in Section 4). By
Lemma 4, this class is obfuscatable in the random oracle model. Note that when F
and G are identical (randomly chosen) functions, oracle access to the function �F,G�
does not reveal the fact that they are identical, to a PPT machine. On the other hand
the obfuscation given in Lemma 4 does reveal this. (Of course, it is easy to modify
the obfuscation, in order to avoid this problem.) Thus no simulator can simulate the
behaviour of an adversary A (which has access to these obfuscations) which outputs 1
if F = G and 0 otherwise. �

Conjecture 1. If there are non-trivial obfuscations in the plain model, Claim 1 holds in
the plain model too. Indeed, in that case, we conjecture that there exists an obfuscatable
family F , such that A = {�F,G� : F,G ∈ F} is unobfuscatable.

The difficulty in attempting to prove this conjecture is that it requires a non-trivial obfus-
catable family F , and we have virtually nothing known beyond what is being presented
in this work (which is in the random oracle model).

On the other hand, an obfuscatable function composes with any trivially obfuscat-
able function (defined below).

8 We can have t constant, or polynomial in the feasibility parameter k.
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Definition 7. A family of functions F is learnable as polynomial time circuits if there
exists an oracle circuit P such that for all F ∈ F , PF outputs a polynomial sized
circuit CF which computes F .

If F is learnable it is obfuscatable: the obfuscator O takes a circuit for F and runs
P with oracle access to that circuit; it outputs CF produced by P as O(F ). This is
clearly an obfuscation, because for every adversary A, a simulator S simply runs P
with the oracle for F , obtains CF and runsA on it.

Definition 8. A family of learnable functions is called a family of trivially obfuscat-
able functions. The obfuscation obtained via learning the function is called the trivial
obfuscation of the function.

Simple as the following lemma is, it is interesting that its intuitive extension from
trivially obfuscatable family to any obfuscatable family is an open problem.

Lemma 3. Let F be a trivially obfuscatable family of functions. Then, G is obfuscat-
able, if and only if the family of functions A = {�F,G� : F ∈ F , G ∈ G } is
obfuscatable.

Proof: First, we show that G � A . Then it follows from Lemma 1 that G is obfuscat-
able if A is.

To see that G � A , for each G ∈ G we choose A = �F,G� ∈ A , where F ∈ F
is a fixed function for all G. Then a machine M which internally implements F can
implement A with access to only G. On the other hand a machine N which has access
to A can clearly implement G.

Now we show that A is obfuscatable if G is. Intuitively, an obfuscation of A does
not “hide” the F component (which is easily learnable). So it is sufficient if we are able
to obfuscate the G part. Formally, we show that forA = �F,G� ∈ A , the following is a
valid obfuscation:O(A) = �O′(F ),O′(G)�, whereO′(F ) is the trivial obfuscation of
F andO′(G) is the obfuscation ofG given by the assumption that G is obfuscatable. As
earlier the notation �O′(F ),O′(G)� refers to the code which hasO′(F ) andO′(G) as
internal modules, plus a small control module to activate the appropriate one depending
on the input.

To show that O(A) is a valid obfuscation, for every adversary A which accepts
O(A), we show a simulator S such that |Pr [SA(|O(A)|) = 1]−Pr [A(O(A)) = 1]|
is negligible. The structure of the argument is similar to that in the proof of Lemma 1.

FromA, we first build an adversaryA′ which takes as inputO′(G), uses it to build
the codeO(A) =�O′(F ),O′(G)�, passes it on to an internally simulated copy ofA, and
outputs whatever A′ outputs. Using the fact that O′(G) is an obfuscation of G, there
exists a simulator S′ such that

|Pr [S′G(|O′(G)|) = 1]−Pr [A′(O′(G)) = 1]| ≤ ε (2)

for some negligible function ε(|O′(G)|).
We use S′ to build a simulator S as follows. Note that S gets oracle access to A

and receives |O(A)| as input. Oracle access to A in particular gives oracle access to F .
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Since F is trivially obfuscatable, it is possible to obtain the trivial obfuscation O′(F )
just using this oracle access to F . So S first computes O′(F ). Next, note that given
oracle access to A, oracle access to G can also be implemented. So S runs S′ with
oracle access to G implemented in this way, and input |O′(G)| calculated from |O(A)|
(by subtracting the size of O′(F )). S outputs whatever S′ outputs.

By construction,

Pr [A(O(A)) = 1] = Pr [A′(O′(G)) = 1]

Pr [SA(|O(A)|) = 1] = Pr [S′G(|O′(G)|) = 1]

and so by Equation (2), |Pr [SF (|O(F )|) = 1] − Pr [A(O(F )) = 1]| ≤ ε. Finally to
complete the proof, we note that |O(A)| ≥ |O′(G)| and so ε is still negligible when
considered a function ofO(A). �

Now we consider the question of more complex composition of obfuscations. We
ask if obfuscations of composed functions can be obtained by using obfuscations of
the component functions. In particular we look at function compositions (in the usual
mathematical sense, of one function invoking another).

Conjecture 2. Conjecture on Obfuscatability of Function Compositions: Given two
classes F and G of obfuscatable programs, the family A = {A(x) = F (G(x)) :
F ∈ F , G ∈ G } is obfuscatable.

Theorem 1. The Conjecture on Obfuscatability of Function Compositions is false, if
factoring Blum integers is hard or the DDH assumption is true.

Proof Sketch: The Conjecture on Obfuscatability of Function Compositions, if true,
could be applied any constant number of times: if F is obfuscatable, then ∪t{A(x) =
F1(F2(· · · (Ft(x)) · · · ))|Fi ∈ F} is obfuscatable. However, it is known that if the
assumptions of the theorem hold, then there exists a family of functions A ⊂ TC0

that is unobfuscatable. On the other hand it is not hard to see that F = TC0
1, the

family of depth 1 threshold circuits, is trivially obfuscatable, because they can be easily
learned from input/output queries. Noting that A is obtained by a constant number of
compositions of functions from F completes the contradiction, and the proof. �

4 Point Functions and Extensions

In this section we define a few basic functions which can be obfuscated under the ran-
dom oracle model. The proofs are easy and we include a couple of them.

Definition 9. (Class of Point Functions) A point function Pα : {0, 1}k → {0, 1} is
defined by Pα(x) = 1 if x = α and 0 otherwise. Define Pk = {Pα : α ∈ {0, 1}k}
and P = ∪kPk.

We observe that the following simple obfuscation heuristic is indeed an obfuscation
in the random oracle model (Definition 2).
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Lemma 4. For random oracles R : {0, 1}∗ → {0, 1}2k, let OR(Pα) be a program
which stores r = R(α), and on input x ∈ {0, 1}k, checks if R(x) = r; if so it outputs
1, else 0.

Then,O is an obfuscator of P as defined in Definition 2.

Proof: Polynomial Slowdown is evident (by convention oracle queries are answered in
one time step). The Approximate Functionality condition is true since

PrR[∃x ∈ {0, 1}k\{α} : R(x) = R(α)]

≤
∑

x∈{0,1}k\{α}
PrR[R(x) = R(α)] = (2k − 1)/22k

which is negligible in k.
To show the Virtual Black-Box property (3′), for any adversary A, define the sim-

ulator S (with oracle access to Pα which does the following. Pick a random string
r ← {0, 1}2k, prepare a purported obfuscation of Pα with this r and hand it to an inter-
nally simulated copy of A. Recall that A can make queries to a random oracle, which
in this case will be simulated by S. W.l.o.g we assume A’s queries to the oracle are
distinct, since oracle replies can be cached. When A makes a query q to the random
oracle, S queries the Pα oracle with q. If Pα answers 1, it answers A’s query with r.
Else it picks a random string in {0, 1}2k and sends it to A. Finally S outputs whatever
A outputs. It is easy to see that the view of this internally simulated A is identical to
that of an A which receives the obfuscation and access to the random oracle. Thus the
Virtual Black-box requirement is satisfied (with ν(k) = 0). �

Though we defined the point function as Pα : {0, 1}k → {0, 1} with α ∈ {0, 1}k,
it is easy to see that it can be modified to Pα : ∪k

i=0{0, 1}i → {0, 1} with α ∈
∪k

i=0{0, 1}i

4.1 Composable Obfuscations of Point Functions with General Output

Definition 10. (Class of Point Functions with General Output) A point function with
general output Q(α,β) : {0, 1}k → {0, 1}s(k) is defined by Qα,β(x) = β if x = α and
⊥ otherwise. Define Qk = {Pα : α ∈ {0, 1}k} and Q = ∪kQk .

We omit the proof of the following theorem, as it is similar to the proof of Lemma 4.

Theorem 2. For random oraclesR : {0, 1}∗ → {0, 1}2k+s(k), letOR(Pα,β) be a pro-
gram as follows: LetR1(·) denote the first 2k bits ofR(·), andR2(·) denote the remain-
ing bits. Choose ψ at random from {0, 1}k. Let a = R1(ψ, α) and b = R2(ψ, α). The
program stores ψ, a and c = β ⊕ b. On input x ∈ {0, 1}k, it computes a′ = R1(ψ, x)
and b′ = R2(ψ, x); if a′ = a it outputs b′ ⊕ c; else it outputs⊥.

Then,O is an obfuscator of P as defined in Definition 2.

We further observe that the above obfuscation self-composes according to Defini-
tion 6. As long as there only polynomially many (polynomial in k) obfuscations in the
system, the probability that two of the obfuscations will have the same value of ψ is
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negligible. Conditioned on this (negligible probability) event not happening, a simula-
tor with black-box access to all the (polynomially many) Qα,β functions can perfectly
simulate the behavior of an adversary with access to the obfuscations. Note that here
the obfuscator is a randomized algorithm.

4.2 Multi-point Functions with General Output

Finally, we define a multi-point function with general output as follows.

Definition 11. (Class of Multi-Point Functions with General Output) A multi-point

function Q(α1,β1)...,(αt,βt) : {0, 1}k → ({0, 1}s(k)
)t

is defined as follows: On input

x, output b ∈ ({0, 1}s(k)
)t

where bi = βi if x = αi, and else bi = ⊥. Define Qt
k =

{Q(α1,...,αt(k)) : αi ∈ {0, 1}k} and Qt = ∪kQt
k. Define Q∗ = ∪polynomials tQt.

Since from last section we have a self-composable obfuscation for the single point
function with general output, we simply put together the t programs O(Qαi,βi), i =
1, . . . , t to obtain an obfuscation for Q(α1,β1)...,(αt,βt).

Lemma 5. The family of functions Q∗ is efficiently obfuscatable in the random oracle
model, in a self-composable manner.

Proof Sketch: It is easy to see that Qt � {�F1, . . . , Ft� : Fi ∈ Q}. Since the obfusca-
tion in Theorem 2 is self-composable, {�F1, . . . , Ft� : Fi ∈ Q} is obfuscatable, and by
Lemma 1, so is Qt (and hence Q∗). To see that this composition is self-composable,
note that the obfuscation of an array of functions from Q∗ is identical to the obfuscation
of a (much larger) array of functions from Q. �

5 Obfuscating a Complex Access Control Mechanism

Consider the following (interactive) access control task. There are multiple access points
to various functions or secrets. There is an underlying directed multi-graph (possibly
with multiple edges between nodes, and self-loops), with each node representing an
access point. The user starts at a predefined access point, or “start node” and proceeds
to establish her access privileges which allows her to move from one access point to
another, through the edges of the graph. The access control task is the following:

– The user can reach an access point only by presenting credentials that can take her
from the start node to that point.

– The user gains complete access to a function or secret available at an access point
if and only if the user has reached that access point.

– The user does not learn anything about the structure of the graph, except what is
revealed by the secrets at the access points she reached and the edges she traversed.

We specify this task as access to a black-box with which the user interacts, giv-
ing her credentials at various points and receiving the secrets; the black-box internally
maintains the current access point of the user. But we would like to implement this task



32 Benjamin Lynn, Manoj Prabhakaran, and Amit Sahai

as a program which we then hand over to the user. To maintain the security of the task,
we need to obfuscate this program.

In this section we explore this obfuscation problem. We show that in the random
oracle model this access control mechanism can indeed be obfuscated. We model the
interactive task as a non-interactive function (formulated below) which takes the “his-
tory” of interaction and gives a response to the last query.

Definition 12. A graph-based access control problem XG with parameters k and d is
defined by the following:

1. Directed multi-graph G on k vertices. Each node u ∈ k has at most d ordered
neighbors µ(1)

u , . . . , µ
(d)
u . LetE = {(u, v, i) : v = µ

(i)
u for some i ∈ [d] } be the set

of all edges (i is used to differentiate between the multiple edges possible between
the same pair of nodes).

2. A set of passwords on the edges {πe|e ∈ E}, and
3. A set of secrets at the nodes {σv|v ∈ [k]}.

Then,

XG((i1, x1), . . . , (in, xn)) =






(vn, σvn) if ∃v0, . . . , vn,∈ [k] and e0, . . . , en−1∈ E
such that v0 = 1, ej = (vj , vj+1, ij), and

xj = πej

⊥ otherwise.

We define the family of functions X as the set of allXG with parameters (k, d) over
all multi-graphsG, sets of edge-passwords and sets of node-secrets.

Above, (i, x) is a query in which the user provides a purported password x for the i-th
edge going out of the “current” node. For later notational convenience we shall assume
that there is no secret available at node 1: i.e., σ1 = ⊥.

We are interested in cases where the inputs toXG are of size polynomial in k and d.
We point out that there may be exponentially many valid inputs for whichXG outputs a
secret (though the number of distinct secrets is only k). So it is not possible to obfuscate
XG directly using Lemma 5.

Instead we proceed in the following manner: each node is represented by the tuple
(v, σv, e1, . . . , ed, πe1 , . . . , πed

) where ei ∈ E (if there are less than d outgoing edges
pick dummy values for the remaining edges). For each node 1 < u ≤ k pick a random
“key” κu from {0, 1}�; let κ1 = 0� (recall that 1 is the start node). Define the function
W κ̄

G as follows:

W κ̄
G(u, z, i, x) =






(v, σv, κv) if z = κu and

∃v ∈ [k] such that πu,v,i = x

⊥ otherwise.

The obfuscation consists of an obfuscation ofW κ̄
G (which is a multi-point function with

at most kd input points where the output is not ⊥, and hence can be obfuscated).
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Intuitively, this is a good obfuscation because the adversary cannot find the ran-
domly chosen key of a node κv , unless it was given out by the (obfuscated) function
W κ̄

G. But the only way to obtain that is to give πe for an edge leading to v from a node
u to which the adversary already has the key. Since, to start with, the only key the ad-
versary knows is κ1, it must indeed traverse a path from 1 to v by providing the all the
edge-passwords in order to get to v.

Formally, we first define a probabilistic program W̃G which picks the random keys
above to get a particular deterministic function W κ̄

G. Then we show that the family

X �∗ W̃ , where W̃ is the family of all W̃G as above.

Definition 13. Define the randomized algorithm W̃G as follows: for v ∈ [k], pick ran-
dom keys κv ← {0, 1}k. On input (u, z, i, x) return W κ̄

G(u, z, i, x).
We define the family of functions W̃ as the set of all W̃G (with parameters (k, d))

over all multi-graphsG, sets of edge-passwords and sets of node-secrets.

Lemma 6. X �∗ W̃ .

Proof: For XG ∈ X we pick W̃G ∈ W̃ and demonstrate M and N as required by the
definition of the relation�∗.

M such thatM W̃
G ≡ XG : On input (i1, x1), . . . , (in, xn) query W̃G with (1, 0�, i1, x1);

if W̃G returns (v2, σv2), query it with (v2, σv2 , i2, x2) and so on, until it either returns⊥
or we reach the end of the input and receive (vn, σvn). In either case output this value.

N such that NXG ≈ W̃G : N internally maintains two tables: one table is for keys
κi, and one for paths to each node v from node 1, with edge passwords for each edge
appearing on the edge. Initially it sets κ1 = 0k and all other keys as ⊥, and does not
have any paths recorded for any node. On input (u, z, i, x)N checks if z = κu �= ⊥. If
not it returns ⊥. Else it will have recorded a path (v1 = 1, v2, i1, x1), . . . , (vt, vt+1 =
u, it, xt) such that xj = π(vj ,vj+1,ij). It makes a query (i1, x1), . . . , (it, xt), (i, x) to
XG. If XG responds with ⊥, N outputs⊥. Else, it receives (v, σv) from XG. It checks
if a key has been already assigned to v; if not it picks a random key and assigns that to
v. Then it returns (v, σv , κv).

It is not hard to see that for any PPT S′ interacting with W̃G or NXG , the output
distribution ofNXG is the same as that of W̃G, but both distributions conditioned on the
event that S′ never makes a query with a valid key which it did not receive as answer to
a previous query. But that event is of negligible probability, and so NXG ≈ W̃G. �

Note that W̃ is a family of probabilistic machines, such that if we consider the
family obtained by fixing the random-tapes of machines in W̃ in all possible ways, we
get a sub-family of Q∗ (Definition 11). This sub-family is obfuscatable (because Q∗ is
obfuscatable, by Lemma 5). Then, from the above lemma and Lemma 2, we conclude
the following.

Theorem 3. The family X is efficiently obfuscatable in the random oracle model.
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6 Regular Expressions and Obfuscations

Let Σ be an alphabet (of constant size). We consider regular expressions over Σ ∪
{ζL1 , . . . , ζLt}, where ζLi are formal symbols corresponding to languages Li. We de-
fine whether or not a string s ∈ Σ∗ matches such a regular expression ρ(L1, . . . , Lt) as
follows: s matches a symbol ζLi if s ∈ Li. The rest of the rules are the usual ones: a
single character a ∈ Σ matches itself; s ∈ Σ∗ matches ρ1|ρ2 if it matches either ρ1 or
ρ2; s matches ρ1 · ρ2 if s = s1 · s2 such that s1 matches ρ1 and s2 matches ρ2; finally
s matches ρ∗ if s is the null-string, or s = s1 · s2 · · · sk where each si matches ρ. If
s matches a regular expression ρ, we write s ∼ ρ. Below Lρ(L1,...,Lt) stands for the
language defined as the set of all strings matching ρ(L1, . . . , Lt).

6.1 Obfuscating Lρ(Pα1 ,...,Pαt)

Consider the case when the languagesLi above are the point functions Pαi . In this sec-
tion we consider a family of functions Uρ = ∪kUρk where for all k and all Uα1,...,αt

ρ ∈
Uρk there is a single fixed regular expression ρ. However, for each k, the point func-
tions Pαi belong to the Pk, the family of point functions on ∪k

j=0{0, 1}j. For brevity
we denote Lρ(Pα1 ,...,Pαt ) by Lρ(α1,...,αt).

Definition 14. Define the function Uα1,...,αt
ρ as follows: on input x ∈ {0, 1}∗, check if

x ∈ Lρ(α1,...,αt). If so return α1, . . . , αt; else return ⊥. Let Uρk = {Uα1,...,αt
ρ : αi ∈

∪k
j=0{0, 1}j}, and Uρ = ∪kUρk.

Unless a string in the languageLρ(α1,...,αt) is given as input Uα1,...,αt
ρ reveals noth-

ing beyond the fact that the string is not in the language. We show that this function can
be completely obfuscated.

Theorem 4. For any regular expression ρ, the family Uρ is efficiently obfuscatable in
the random oracle model.

To prove this, we introduce another family of functions Vρ, and show that Uρ � Vρ.
Then, we show that Vρ can be obfuscated (in the random oracle model).

Recall that ρ is a regular expression over the symbols Σ ∪ {ζα1 , . . . , ζαt}. We can
convert this to a deterministic finite-state automaton (DFA), with some of the edges
labeled with ζαi . Define a set Zρ ⊆ 2[t] of subsets of [t] as follows. If there is a path
in the above DFA from the start state to some accept state, in which the set of non-Σ
symbols appearing are {ζαi : i ∈ Z ⊆ [t]}, then Z ∈ Zρ. In other words, Zρ is the set
of all subsets of αi’s, such that knowing αi’s in any of these subsets will enable one to
construct a string in Lρ(α1,...,αt). Note that Zρ can be constructed from ρ, independent
of α1, . . . , αt.

Definition 15. Define the function V α1,...,αt
ρ as follows: on input (β1, . . . , βt), βi ∈

{0, 1}∗, check if ∃Z ∈ Zρ such that ∀i ∈ Z , βi = αi. If so return α1, . . . , αt; else
return ⊥. Let Vρk = {V α1,...,αt

ρ : αi ∈ ∪k
j=0{0, 1}j}, and Vρ = ∪kVρk.

Lemma 7. Uρ � Vρ for all regular expressions ρ.
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Proof: Corresponding to Uα1,...,αt
ρ ∈ Uρ we pick V α1,...,αt

ρ ∈ Vρ.

Constructing M such that MV α1,...,αt
ρ ≡ Uα1,...,αt

ρ : As input MV α1,...,αt
ρ receives a

string x ∈ {0, 1}∗. It needs to check if x ∈ Lρ(α1,...,αt). M chooses t substrings of x as
guesses for α1, . . . , αt. If |x| = n there are O(n2t such choices. But by our convention,
since ρ is fixed, t is a constant and n2t is still polynomial in n, the size of input to M .
For each such guess (β1, . . . , βt), M queries V α1,...,αt

ρ on (β1, . . . , βt). If V α1,...,αt
ρ

returns ⊥ for all choices, M also outputs ⊥. If V α1,...,αt
ρ returns (α1, . . . , αt) for any

choice of (β1, . . . , βt), then M constructs the complete DFA (replacing the variables
ζαi with αi) and checks if x is accepted by the DFA. If so, M outputs α1, . . . , αt; if
not it outputs⊥.

If x ∈ Lρ(α1,...,αt), then there is some path in the DFA for ρ which accepts x.
Let Z be the set of all i such that ζαi appears on this accepting path. By the way
Zρ was constructed, Z ∈ Zρ. Further all these ζαi appear as part of x. Thus, for
some guess β1, . . . , βt, it will be the case that for all of i ∈ Z βi = αi. Thus if
x ∈ Lρ(α1,...,αt), M will obtain all of α1, . . . , αt from V α1,...,αt

ρ , and will be able to
verify that x ∈ Lρ(α1,...,αt). On the other hand if x �∈ Lρ(α1,...,αt) either α1, . . . , αt are
not revealed to M , or they are and M will discover that x �∈ Lρ(α1,...,αt). In either case
M will output⊥, as required.

Constructing N such that NUα1,...,αt
ρ ≡ V α1,...,αt

ρ : As input NUα1,...,αt
ρ receives t

strings (β1, . . . , βt). It needs to check if there is any Z ∈ Zρ such that ∀i ∈ Z αi = βi.
Associated with each Z is a path from the start state to an accept state in which the
variable ζαi appear for exactly those i ∈ Z . N chooses for each Z such a path, and
constructs a string xZ corresponding to that path, substituting βi for ζLi . It then submits
xZ to Uα1,...,αt

ρ (to which it has oracle access). If Uα1,...,αt
ρ responds with ⊥ for all xZ ,

Z ∈ Zρ then N outputs ⊥. If Uα1,...,αt
ρ responds with α1, . . . , αt for any xZ , then N

then checks if ∃Z ∈ Zρ ∀i ∈ Z αi = βi, and responds accordingly. It can be easily
verified that NUα1,...,αt

ρ ≡ V α1,...,αt
ρ . �

Next we observe that Vρ�Q∗, where Q∗ is the class of multi-point functions with
general output (Definition 11).

Lemma 8. Vρ�Q∗

Proof: Let Zρ = {Z1, . . . , Z�}, and for each Zi ∈ Zρ, let the string γi be (γ1
i , . . . , γ

t
i )

where if j ∈ Zi, γ
j
i = αj and else γj

i = 0.
For every V α1,...,αt

ρ ∈ Vρ, consider Q = Q(γ1,∆),...,(γ�,∆) ∈ Q∗ where ∆ =
(α1, . . . , αt) (i.e., if Q is given one of the strings γ1, . . . , γ�, it outputs ∆. It is easy to
verify that the following machines M and N are as required by Definition 4.

MQ, on input (β1, . . . , βt) does the following: for each Zi ∈ Zρ it constructs a
string δi = (δ1i , . . . , δ

t
i) where if j ∈ Zi, δ

j
i = βj and else δj

i = 0; then it queries Q
with δi; if for any i it receives ∆ from Q it outputs that and else ⊥.

NV α1,...,αt
ρ on input δ = (δ1, . . . , δt), queries V α1,...,αt

ρ with δ. If it receives ⊥ as
an answer, it also outputs⊥. Else it receives ∆, and can then can computeQ(δ), which
it outputs. �



36 Benjamin Lynn, Manoj Prabhakaran, and Amit Sahai

By Lemma 5, Q∗ is obfuscatable, thereby completing the proof of Vρ being ob-
fuscatable. To complete the proof of Theorem 4, we appeal to Lemma 1, along with
Lemma 7 and the above fact that Vρ is obfuscatable.

We remark that the construction above can easily be extended to also produce an
arbitrary secret output if the input matches the regular expression.

6.2 Obfuscating a Function Related to ρ(L1, . . . , Lt)

In this section we allow ρ to be part of the function (and therefore can have size polyno-
mial in k). We are interested in matching a given string against ρ(L1, . . . , Lt) without
compromising the black-box nature of �L1, . . . , Lt�. The family of functions we are
interested in is FC below.

Definition 16. Define GL1,...,Lt
ρ and FL1,...,Lt

ρ as follows:

GL1,...,Lt
ρ (a, x) =






ρ if a = 1
La−1(x) if a ∈ {2, . . . , t+ 1}
⊥ otherwise

FL1,...,Lt
ρ (a, x) =






1 if a = 0 and x matches ρ(L1, . . . , Lt)
0 if a = 0 and x does not match ρ(L1, . . . , Lt)
GL1,...,Lt

ρ (a, x) otherwise

GC = {GL1,...,Lt
ρ : ρ a regular expression and Li ∈ C}

FC = {FL1,...,Lt
ρ : ρ a regular expression and Li ∈ C}

In other words, both GL1,...,Lt
ρ and FL1,...,Lt

ρ provide access to the languages Li and to
(the description of) the regular expression ρ. In addition, FL1,...,Lt

ρ gives access to the
language defined by the regular expression ρ(L1, . . . , Lt).

Theorem 5. FC is obfuscatable if and only if {�L1, . . . , Lt� : Li ∈ C} is. Further
this statement holds restricted to efficient obfuscations too.

First we prove the following lemma, which is the heart of the proof. It shows how
to evaluate the regular expressions involving Li’s just with access to GC .

Lemma 9. FC � GC and GC � FC , for all families C.

Proof: It is easy to see that GC � FC . For the other direction, we have to demonstrate
the polynomial time oracle machines M and N as in Definition 3. But N is trivial, and
so is M ’s behaviour when on input (a, x), it sees a �= 0. The non-trivial case is when
a = 0: M should match the input x with the regular expression ρ with only black-
box access to Li. We give a fairly efficient algorithm using dynamic programming to
achieve this.

First M obtains the regular expression ρ from G (by giving input (1, ε). It con-
structs a tree corresponding to ρ with leaf nodes corresponding to symbols from Σ ∪
{ζL1 , . . . , ζLn}. Each internal node corresponds to one of the three operators |, · and
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∗; in the first two cases the node will have two children and in the last case a sin-
gle child. The root node corresponds to the whole regular expression ρ. The algo-
rithm will consider the set S of all substrings of the input string x = x1 . . . xn; i.e.,
S = {xj

i : 1 ≤ i ≤ j ≤ n} ∪ {ε}. For each node it will try to find out all the strings in
S which match the regular expression at that node. This is done bottom-up in the tree.
To obtain this information at the leaf nodes, M makes O(n2) queries to each Li.

Given this information for the children of a node, the information for that node itself
can be obtained. In the case of a (|)-node (denoted by Q = Q1|Q2) this is simple: for
each string s ∈ S check if s ∼ Q1 or s ∼ Q2. If either case holds record that s ∼ Q.
For (·)-nodeQ = Q1 · Q2 we do the following:

for each s ∈ S do
for i = 0 to |s| do

if si
1 ∼ Q1 AND s

|s|
i+1 ∼ Q2 then

record s ∼ Q

The checks si
1 ∼ Q1 and s|s|i+1 ∼ Q2 are done by checking if those matchings have

already been recorded. The (∗)-nodes require a little more work. At a nodeQ = Q∗
1 we

do the following:

Let Q1
1 denote Q1

for k = 2 to n do
for each s ∈ S\{ε} do

for i = 0 to |s| do
if si

1 ∼ Qk−1
1 AND s

|s|
i+1 ∼ Q1 then

record s ∼ Qk
1

record ε ∼ Q
for each s ∈ S\{ε} do

if s ∼ Qk
1 for some k ∈ {1, . . . , n} then

record s ∼ Q
It is not hard to see that at each node the algorithm correctly records all s ∈ S which

match the node. Finally, it checks if x ∼ ρ by checking if it is recorded at the root node.
�

Proof: (of Theorem 5) By the above Lemma and Lemma 1, we can obfuscate FC , if
and only if we can obfuscate GC. We can view G ∈ GC as �〈ρ〉, �L1, . . . , Ln��, where
〈ρ〉 stands for the constant (and hence trivially obfuscatable) function which outputs ρ.
Then by Lemma 3, GC is obfuscatable if and only if {�L1, . . . , Ln� : Li ∈ C} is
obfuscatable. �

7 Obfuscating Neighborhoods in Tree Metrics

Point functions are identity checks- they check if the input is identical to a particu-
lar value. A natural relaxation thereof is a neighborhood check. Consider some metric
space from which the inputs are drawn. We would like to have a program which checks
if the input is “near” a hidden point.
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We work in a restricted metric space- the space of “tree metrics,” where the the
points are nodes in a (rooted, undirected) tree, and the distance between two points is
the length of the (unique) path between them. (We can allow a metric space that can be
decomposed as a collection of a constant number of tree metrics, but for simplicity we
stick to a single tree-metric.)

LetM stand for the metric space as well as (by abuse of notation) the tree defining
it. Let dM(·, ·) be the distance function inM.

Definition 17. Define the function TM
α :M→M∪ {⊥} as follows:

TM
α (x) =

{

α dM(α, x) ≤ δ
⊥ dM(α, x) > δ

Tk = {TM
α : M a tree-metric , |M| = 2O(k), α ∈ M} and T = ∪kTk.

Obfuscating δ-neighborhoods in general metric spaces (beyond what can be
achieved by exhaustively searching the entire δ-neighborhood of a point) is a chal-
lenging problem. But we show that for tree metrics this problem can be satisfactorily
solved using a simple technique. To obfuscate TM

α , traverse the treeM, starting at the
node α, towards the root of the tree, for a distance δ, and pick the node at which we
finish. (If we reach the root before δ steps pick the root.) Call this node β. We show
that obfuscating TM

α is essentially the same as obfuscating the point function on β with
output α (which as we have shown, can be efficiently obfuscated in the random oracle
model).

Lemma 10. T � Q (where Q is the point function with general output, as in Defini-
tion 10).

Proof: For TM ∈ T we pick Qβ,α ∈ Q. Qβ,α is the function which outputs α on
input β and ⊥ everywhere else.

NTM
α works as follows : On input x ∈M query TM

α with x. If x were indeed equal to
β then TM

α would respond with α. So if TM
α gives ⊥ return ⊥. If it gives α, locate β

by traversingM, and check if the x is indeed β or not and answer accordingly.

MQβ,α works as follows : on input x ∈ M, check the first 2δ ancestors of x for being
identical to β (using Qβ,α). If Qβ,α returns α on some query, check dM(x, α) and
answer appropriately. If it returns ⊥ in all 2δ queries, then it is easy to see that the
distance dM(x, α) > δ. In this case, output⊥. �

By Lemma 1 and Theorem 2, we get:

Theorem 6. T is obfuscatable in the random oracle model.

8 Conclusions and Open Problems

We have given the first positive results and techniques for program obfuscation, but
many important open problems remain. We are hopeful our reduction and composition



Positive Results and Techniques for Obfuscation 39

techniques will aid in resolving these problems. The most pressing open problem is to
extend our positive results beyond what we have. In particular, can regular languages
be obfuscated? Is there any example of a keyed cryptographic primitive (even a con-
trived one) other than password checking which can be obfuscated? Another important
problem to be resolved is to find any non-trivial obfuscation result without using the
random oracle model. Our approach, of reducing obfuscation of one family to obfus-
cating another, could then be used to produce more obfuscations in the plain model.
Also, such techniques are useful in a model where some basic functions may be obfus-
cated in hardware; so one direction to pursue is to explore developing these techniques
further.
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