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Abstract. An important problem in VLSI design is distributing a clock signal to synchronous
elements in a VLSI circuit so that the signal arrives at all elements simultaneously. The signal is
distributed by means of a clock routing tree rooted at a global clock source. The difference in length
between the longest and shortest root-leaf path is called the skew of the tree. The problem is to
construct a clock tree with zero skew (to achieve synchronicity) and minimal sum of edge lengths (so
that circuit area and clock tree capacitance are minimized).

We give the first constant-factor approximation algorithms for this problem and its variants
that arise in the VLSI context. For the zero skew problem in general metric spaces, we give an
approximation algorithm with a performance guarantee of 2e. For the L1 version on the plane, we
give an (8/ ln 2)-approximation algorithm.
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1. Introduction. A fundamental problem in VLSI design is clock routing, i.e.,
distributing a clock signal to synchronous elements in a VLSI circuit so that the
signal arrives at all elements simultaneously. The signal is distributed by means of a
clock routing tree rooted at a global clock source. The difference in length between
the longest and shortest root-leaf path is called the skew of the tree. To achieve
synchronicity, the skew should be zero. This is a significant issue in VLSI design,
as nonzero clock skew has been estimated to account for over 10% of overall system
cycle time in some high-performance systems [3]. Though it is easy to produce zero
skew clock routing trees (see, e.g., [4]), naive algorithms may produce trees that are
expensive in terms of total wirelength (i.e., sum of the edge lengths in the tree),
thereby increasing circuit area and clock tree capacitance. Thus, the ideal clock tree
routing algorithm would produce a zero skew clock tree with minimal total wirelength.

This problem, well studied in the VLSI community [14, 13, 7, 6, 23, 17, 25, 5, 15,
19, 8], is precisely the following variant of the classical Steiner tree problem:

Find a Steiner tree, with a distinguished root, so that the lengths of
all the root-leaf paths are the same and the sum of the lengths of
edges in the tree is minimized.
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While there are many proposed heuristics for attacking this problem and its variants
(see, for instance, the papers cited above), there are no algorithms with nontrivial
worst-case performance guarantees known. In this paper we give the first (constant-
factor) approximation algorithms for constructing clock trees with zero skew (or a
skew of at most a fixed bound), and wirelength as small as possible.

1.1. Clock routing problems. We focus on the following three versions of the
(zero or bounded skew) clock routing problem.

1. L1 clock routing. A clock signal must be distributed using horizontal and
vertical wires on the plane from a source to a set of terminal points. The
most common model of delay along a wire is the linear model, in which delay
corresponds to length. Therefore the distance between points is exactly the
L1 distance. This is the standard formulation of the problem.

2. Planar L1 clock routing. In general, the embedding of a clock tree may
have intersecting wires since the terminals are usually placed first, and then
two layers of metal are available for the horizontal and vertical wires of the
clock tree. This crossing of wires, however, may necessitate the introduction
of many vias, or connections between layers, which causes both additional
unmodeled delay and attenuation of the clock signal. Therefore one requires
a planar-embeddable clock tree [14]. We therefore consider a second version of
the routing problem (under the L1 metric on the plane) with the requirement
that the resulting clock tree be a planar embedding.

3. General metric space clock routing. The above two versions model the
clock routing problem for standard-cell or gate-array design methodologies,
which have many small functional modules. In contrast to this, building-block
design methodologies use larger functional blocks. These blocks are treated
as obstacles and routing must be done in the spaces between blocks. The
routing problem is formulated with respect to a graph, called the channel
intersection graph (CIG) that represents the available routing area. In this
model we can think of the terminals V as embedded in a metric space induced
by the topology of the CIG. Therefore the third variant of the problem we
study is routing a clock tree in an arbitrary metric space.

1.2. Preliminaries. We are given a metric space M with distance function d,
and a set V of points in M that are designated as terminals. As is standard, we
define a Steiner tree for V to be a tree in M that contains each terminal in V as a
vertex. (The vertices of the tree other than the terminals are referred to as Steiner
vertices.) We say that a clock tree T for V is a Steiner tree with a distinguished vertex
r called the root, such that every terminal v ∈ V occurs as a leaf of T . The tree has
an associated length function dT that assigns a length to every edge in T , subject to
the restriction that dT (u, v) ≥ d(u, v) (i.e., the tree is allowed to stretch distances).

Existing algorithms for clock routing in the L1 plane make use of snaking, or
wiggling an edge in order to lengthen it. Our definition of clock tree incorporates
snaking by allowing dT (u, v) > d(u, v). Without this extension, no zero skew tree
may exist. In our model, feasibility is no longer a concern—any tree whose leaves are
exactly the terminals can be “snaked” to a higher-cost zero skew tree.

If the metric space is the L1 plane, for instance, the length of an edge (u, v) in
T is at least the L1 distance between u and v. The cost of the tree T is the sum
of the lengths of all the edges of T . For v ∈ V , let the length of the path from the
root to v be �v = dT (r, v). The skew of T is maxu,v∈V |�u − �v|. If T has skew = 0,
we call it a zero skew (clock) tree (ZST) and if T has skew at most s, we call it an
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s-skew tree. (Note that, if necessary, this definition can be modified to allow terminals
to be internal vertices of the tree; in the plane, we can instead slightly displace the
internal vertex from the terminal. For general possibly discrete metric spaces, we
allow multiple points in the tree to correspond to the same point of the metric space.)

Formally, the zero (resp., bounded) skew clock tree problem is stated as follows.
Given a set V of terminals in a metric space M , find the minimum
cost zero skew tree (resp., tree with skew at most s for a given bound
s) for V .

When M is the L1 plane, we refer to the L1 variants of these problems. As discussed
earlier, intersecting wires in the embedding might cause additional unmodeled delays.
This motivates the planar variants of the above problem, where the tree T must be
planar-embeddable (i.e., have no crossing edges).

The bounded skew clock tree problem is easily seen to be NP-complete by setting
the skew to infinity so that the problem becomes the classical Steiner tree problem.
The same reduction implies that the problem has no approximation scheme in general
metrics unless P = NP. The zero skew problem is also NP-complete for general
metric spaces. To our best knowledge, the hardness question of the planar zero skew
problem is yet unsolved.

We will also refer to these problems as the zero or bounded skew clock routing
problems.

1.3. Our results. For the ZST problem in general metric spaces, we give an
approximation algorithm with a performance guarantee of 2e ≈ 5.44. We then give
an approximation algorithm for the bounded skew clock routing problem in general
metric spaces with a performance guarantee of 16.1065. Finally we give an (8/ ln 2)-
approximation algorithm for the planar ZST problem and a constant-factor approxi-
mation algorithm for the planar-embeddable bounded skew clock routing problem.1

1.4. Organization. Section 2 discusses some related work in clock routing. Sec-
tion 3 presents a general lower bound for the optimal solution to the problem. This is
used to obtain approximation guarantees for our algorithms. Section 4 (resp., section
5) gives the approximation algorithms for the zero (resp., bounded) skew clock routing
problems. Section 6 presents an approximation algorithm for the planar ZST prob-
lem, and section 7 presents an approximation algorithm for the planar-embeddable
bounded skew clock routing problems. Section 8 discusses the hardness of the ZST
problem.

2. Related work. Algorithms for clock tree constructions come in two flavors—
those that guarantee zero skew and others that attempt to minimize the skew. Notice,
however, that the aim is typically to minimize total wirelength.

The book by Kahng and Robins [14] contains a detailed account of many of the
algorithms for clock tree constructions and several experimental results. The main
emphasis on many of the algorithms, however, is to obtain practical solutions (which
perform well on standard benchmarks, which in turn may or may not represent the
average-case problem instance) rather than obtain solutions which have worst-case
performance guarantees. We review the most relevant algorithms below.

2.1. Minimizing clock skew. In [19], given a floor plan of modules, a scheme
to identify an entry point is presented. The optimal layout of the clock lines from

1Since the appearance of this paper, the approximation factors for the zero and bounded skew
clock routing problems in general metric spaces have been improved to 4 and 14, respectively [24].
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the source to the entry points is determined by an exhaustive search (of course, with
some pruning). No theoretical guarantees on the performance of the algorithm are
given.

In [13], the authors obtain a clock routing scheme consisting of Manhattan seg-
ments with constraints (like blockages) on the routing layers. They obtain a divide-
and-conquer algorithm which produces total wirelength of 1.5

√
n for n terminals dis-

tributed randomly on a uniform grid. Contrasting this with the largest possible wire-
length of

√
n+1 for a rectilinear Steiner tree for the same distribution, they conclude

that, on average, their algorithm is a 3/2-approximation algorithm when compared
to the minimum rectilinear Steiner tree.

Another algorithm for minimizing skew and wirelength based on matching is given
in [5, 15]. They construct a binary tree using geometric matching and show that for
cell-based designs, the total wirelength of their routing tree is on average, within
a constant factor of the wirelength in an optimal Steiner tree. Their experiments
suggest that the skew is near-zero on average.

2.2. Zero clock skew. An exact zero skew clock routing algorithm using the
Elmore delay model is presented in [21, 22]. The zero skew is obtained by a bottom-up
hierarchical approach via a zero skew merging of the recursive solutions. The main
emphasis is on experimental results.

A two-step approach to obtaining zero skew while simultaneously minimizing
wirelength is pioneered in [4]. In this, the authors present the Deferred Merge Embed-
ding (DME) algorithm, which embeds any given connection topology to create a zero
skew clock tree. The wirelength is optimal for linear delay. The connection topology
is generated by a top-down balanced bipartition (BB) approach. Though the DME
algorithm can be shown to produce the optimal tree for a given topology, the BB
approach is essentially a heuristic and has no performance guarantees.

3. A lower bound. We first demonstrate a lower bound on the cost of the
s-skew tree in any metric space. Let T be any rooted s-skew tree on the set V of
terminals, with root-leaf path length (i.e., the radius) R′. Since T has skew at most
s, the length of every root-leaf path is at least R′ − s.

We define the level of a vertex p ∈ T to be its distance in the tree from the root
(so the root is at level 0). Consider some level x ∈ [0, R′ − s]. If there are m vertices
at level x in T , then the m spheres of radius R′ − x centered at these vertices must
cover all the terminals of V . This observation can be converted into a lower bound as
follows. Let nV (R) be the minimum number of spheres of radius R needed to cover
the terminals V . When the set is apparent from context, we suppress the subscript
V .

Let ∆ be the diameter of the set of terminals V , and let R∗ be the minimum
value of x such that n(x) = 1 (thus R∗ > ∆/2). Note that R′ ≥ R∗. Then the cost of
the minimum cost s-skew tree must be at least

∫ R′−s

0

n(R′ − x)dx =

∫ R′

s

n(R)dR ≥
∫ R∗

s

n(R)dR.

This lower bound, and the special case for s = 0, will be essential to analyzing our
algorithms.

4. An approximation algorithm for general metric spaces. In this section,
we present a 2e-approximation algorithm for the ZST problem in general arbitrary
metric spaces (assuming that snaking is valid). The algorithm is randomized but can
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Algorithm Connect-Centers:
Initialize: R := R0;u0 := s;U0 := V ; Ū := {U0}; Ḡ := ∅;T := ∅; i := 0;Rold := ∆/2.
repeat until i = |V |

S := V ; i = 0.
repeat until S = ∅

pick gi arbitrarily from S.
let Gi be all vertices in S within distance 2R from gi.
let S := S \Gi; i := i + 1.

for j = 0 to i− 1 do

let k be such that gj ∈ Uk.

add an edge from gj to uk of cost exactly 2Rold to T.
Rold := R;R := R/r; Ū := Ḡ; Ḡ := ∅.

Output T.

Fig. 1. Algorithm Connect-Centers.

be derandomized easily. We place Steiner vertices on top of terminals from V . For
ease of language, when we talk of using a terminal as an internal point in the tree,
we mean to place a Steiner vertex at that terminal and use the Steiner vertex as the
internal vertex in the tree.

Our algorithm repeatedly partitions the set of vertices to construct the tree. The
partitioning proceeds by greedily placing balls of a certain radius 2R and grouping all
vertices in the same ball together. To obtain more and more refined partitions, the
process repeats with balls of smaller radii. We denote by r the factor by which the
radii of balls decrease in each successive refinement of the partitioning process. We
will describe our algorithm for any value of r and choose a specific (optimal) value
for r at the end.

Algorithm Connect-Centers. Let ∆ be the diameter of V . The algorithm first
picks an arbitrary vertex s to be the root of the tree, and then chooses an initial
partitioning radius 2R0 as follows. Let t be chosen uniformly at random from [0, 1],
and set R0 = (∆/2)·exp(−t ln r). The algorithm then proceeds as in Figure 1. At each
point in the construction, we take an existing partition of the vertices Ū and refine it to
Ḡ. (Ḡ is not necessarily a strict refinement of Ū .) Each set Gi ∈ Ḡ has a distinguished
member gi with the property that every v ∈ Gi has d(v, gi) ≤ 2R. Similarly each
Ui ∈ Ū has a member ui such that every v ∈ Ui has d(v, ui) ≤ 2Rold = 2rR. The tree
we construct is denoted by T .

Remark. The algorithm as presented in Figure 1 is only weakly polynomial. But,
by constraining R to be ≤ R0/n

2, we can obtain a strongly polynomial algorithm at
the expense of O(1/n) additive factor in the performance ratio.

Analysis. It is immediate from the description of the algorithm that it will return
a ZST, since each vertex is reached after the same number of levels, and the edges
in each level are of identical cost. To analyze the cost of the tree produced by this
algorithm, we observe the following lemma.

Lemma 4.1. Each time a new partition G is created the number of sets returned
in the partition is at most nV (R).

Proof. Let G = {G0, . . . , Gm−1}. We induct on m. If m = 1, there is nothing
to prove. Otherwise, consider the n = nV (R) sets S1, S2, . . . , Sn of radius R that
cover all the terminals V . Let Sj be the set that contains g0. Since G0 contains all
vertices within radius 2R from g0, it must contain all of Sj . Let V ′ = V \G0. Now,
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certainly, nV (R) ≥ 1 + nV ′(R). But by induction, since the sets G1, G2, . . . , Gm−1

are the result of a valid execution of the partitioning algorithm on V ′, it follows that
m− 1 ≤ nV ′(R), and so the claim follows. Note that the claim also follows from the
standard analysis for the p-center problem [10, 11, 12].

Thus, the total cost of connecting each gi to some uj is at most 2Rold · n(R) ≤
2rR · n(R). The expected cost of the tree, therefore, can be seen as bounded by the
integral

∫
2rR · n(R)dµ.

Here, µ is the probability measure of the algorithm using balls of radius 2R. Now,
recall that once the initial value R0 for R is chosen, we know that all balls used in
the algorithm will have radius 2R0/r

i for some integer i. Note that R0 is a random
variable given by (∆/2)r−t, where t is chosen uniformly in [0, 1]. By inverting the
expression for R0 as a function to t, note that the probability that R0 lies in a small
range [x, x + dx] is

ln(x + dx) − ln(x)

ln(r)
=

ln(1 + dx/x)

ln(r)
=

dx

x ln(r)
.

Thus, the integral above is

∫ ∆/2

0

2r

ln(r)
· n(R)dR.

By our lower bound, the algorithm produces a tree that is at most 2r/ ln(r) times
the optimal cost. A simple calculation shows that this is minimized when r = e, and
hence we have the following theorem.

Theorem 4.2. The above algorithm achieves an expected approximation ratio of
2e.

The basic randomization technique we employed in the algorithm for choosing R0

has been used previously in [9, 18].
Relative costs of minimum Steiner trees and zero skew trees. Using the lower

bound we developed above, one can show that for n equally spaced terminals on a
line, the optimal zero skew tree has Θ(log n) times the cost of the minimum Steiner
tree. We now give a short proof that this is, asymptotically, the largest possible gap.
For purposes of simplicity, we do not attempt to optimize the constants in the proof.

Theorem 4.3. For a set V of n points in a metric space M , let St(V ) denote
the cost of the minimum Steiner tree for V , and let ZST(V ) denote the minimum cost
of a zero skew tree for V . Then ZST(V ) ≤ (4e lnn + e) · St(V ).

Proof. Recall that for a number R, n(R) denotes the minimum number of balls
of radius R needed to cover the terminals in V . We claim that for any R, n(R) ≤
2St(V )/R.

To prove the claim, begin with an optimal Steiner tree and convert it into a trav-
eling salesperson tour {vi1 , . . . , vin} of length at most 2St(V ), by doubling the edges
and finding an Eulerian tour. We now construct a set S ⊆ V as follows. We initially
include vi1 . Proceeding inductively, suppose S currently consists of {vi1 , . . . , vip}.
Let q denote the minimum index greater than p for which the length of the subtour
from vip to viq is strictly greater than R; we add viq to S and continue. At the
end of this procedure, we observe that |S| ≤ 2St(V )/R, since the distance along the
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traveling salesperson tour between consecutive elements of S is at least R. Moreover,
an arbitrary element vij ∈ V is within distance R of vit , where t is the maximum
index less than or equal to j for which vit ∈ S; thus if we center a ball of radius R at
each element of S, the resulting collection of balls covers V . The claim follows, since
n(R) ≤ |S| ≤ 2St(V )/R.

Applying the claim, and using the fact that St(V ) ≥ ∆, we have

ZST(V ) ≤ 2e

∫ ∆/2

0

n(R)dR

= 2e

∫ ∆/2n

0

n(R)dR + 2e

∫ ∆/2

∆/2n

n(R)dR

≤ 2e

(
∆

2n

)
n + 4e

∫ ∆/2

∆/2n

St(V )

R
dR

≤ e∆ + 4e · St(V )

∫ ∆/2

∆/2n

dR

R

= e∆ + 4e · St(V ) · lnn

≤ (4e lnn + e) · St(V ).

Derandomizing the algorithm. We briefly explain how the algorithm can be de-
randomized. Note that the only randomization used by the algorithm is in the initial
choice of t, while setting R0 = (∆/2) · exp(−t ln r). In the description of Algorithm
Connect-Centers, the step where gi is picked from S may be implemented arbitrar-
ily; assume that this is implemented by some arbitrary, but fixed rule. We claim
that the algorithm produces at most O(n2) combinatorially distinct trees and each
of these can be produced by running the algorithm for O(n2) carefully chosen values
of t. In order to see this, consider the kth iteration of Algorithm Connect-Centers
(where iterations are numbered from 0 onwards). In this iteration, the value of
R = (∆/2) · exp(−(t + k) ln r). Note that the choices of the algorithm depend only
on which distances are at most 2R = ∆ · exp(−(t + k) ln r). If for two values of t,
the set of distances that are less than 2R is the same for all iterations, then the trees
produced must have the same structure (since the choices made by the algorithm are
exactly the same). Consider the distance between two vertices u and v. There is a
unique value tuv ∈ [0, 1) such that d(u, v) = ∆ · exp(−(tuv + k) ln r), where k is an
integer. Consider the set T of tuv values for every pair of vertices u, v. (We also add
0 and 1 to T .) T can be easily determined and has O(n2) values. Further, for any
t strictly between any two consecutive values (t1, t2) in T , the structure of the tree
produced by the algorithm is exactly the same. It follows that the structure of the
tree can be determined by running the algorithm for any t ∈ (t1, t2). The edge costs
can be set to the lowest possible value for t in this range, i.e., by pretending that we
ran the algorithm for t = t2. If we run this procedure for every pair of consecutive
values in T , the best tree produced is at least as good as the expected cost of the
randomized algorithm.

5. Bounded skew clock routing. We now present a constant-factor approx-
imation algorithm for the bounded skew clock routing problem. The algorithm pro-
ceeds in two phases. First, we construct a Steiner tree spanning V which we fragment
into subtrees. Second, we connect these subtrees using a modification of Algorithm
Connect-Centers.
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We first construct a Steiner tree T ′ spanning V . To do this, we use the currently
best known approximation algorithm for Steiner trees in general metric spaces due to
[20]. In case the terminals are in the plane, we can use a polynomial time approxima-
tion scheme (PTAS) for Steiner trees [1], with an approximation ratio of 1+ ε for any
ε > 0. Let W ⊆ V be a maximal subset of terminals such that the distance between
any two of them in T ′ is at least s. W can be chosen by a greedy algorithm.

Lemma 5.1.

|W | ≤ 2cost(T ′)/s.

Proof. For v ∈ W , let Bv be a ball of radius s/2 about v, distances being computed
in the metric induced by the tree T ′. Then, for u, v ∈ W , Bu ∩ Bv = ∅. Now, the
Steiner tree T ′ has a path Pv of length s/2 within each ball Bv. (Here, Pv could
include a fractional part of an edge.) The sum of the lengths of the paths Pv is at
most cost(T ′). Hence, the number of paths (and therefore, the number of vertices in
W ) is at most 2cost(T ′)/s.

For each v ∈ W , we construct a tree Tv rooted at v, such that the distance from v
to every vertex in Tv is at most s. To do this, we order the vertices in W arbitrarily,
say W = {v1, . . . , vk}. Now, we assign every vertex in V to the closest vertex in W ,
breaking ties in favor of vertices with smaller indices. Here distances are computed
in T ′. Note that every vertex in V is within a distance of at most s from some vertex
in W (by the maximality of W ). For v ∈ V , let c(v) denote the vertex in W that it is
assigned to; let Pv denote the path in T ′ from v to c(v). The length of Pv is at most
s.

Lemma 5.2. For v1 	= v2, if c(v1) 	= c(v2), the paths Pv1
and Pv2

are edge
disjoint.

Proof. Suppose Pv1
and Pv2

share an edge. An easy case analysis shows that this
contradicts the choice of either c(v1) or c(v2).

For vertex v ∈ W , let S(v) denote the set of vertices assigned to it. Let Tv be
the subtree of T ′ that spans S(v); in other words, Tv = ∪u∈S(v)Pu. Then Lemma 5.2
implies that the subtrees Tv are disjoint. Clearly, we also have the following lemma.

Lemma 5.3. ∑
v∈W

cost(Tv) ≤ cost(T ′).

Also, the distance from v to every vertex in Tv is at most s.
Now we describe how to modify Algorithm Connect-Centers using the subtrees

Tv constructed above to produce the final tree with skew at most s. We execute
Algorithm Connect-Centers, but stop the process of construction of the tree at the
last step when R < s for the first time (i.e., we stop before a value for R smaller
than s is used to create a partition). Let Rf be the final value of R (so Rf < s). At
this time, Ū is a partition of V such that every vertex in Ui is at a distance at most
2rRf from ui. Let T be the partial tree constructed by the algorithm so far. We will
connect each of the subtrees Tv to the tree T in the following way: For v ∈ W , let iv
be such that v ∈ Uiv . Connect Tv to the tree T by adding an edge of weight 2rRf

from v to uiv . It is easy to see that the tree so constructed has skew at most s.
Now, we shall analyze the cost of the tree we obtain. Let C1 be the cost of the

tree that the algorithm constructs until R < s for the first time. Let C2 be the total
cost of all the edges from vertices v ∈ W to uiv . Let C3 be the total cost of the trees
Tv for v ∈ W .
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Then, by the previous analysis,

E[C1] ≤
2r

ln r

∫ ∆/2

s

n(R)dR.

Also,

C3 ≤ cost(T ′).

Now,

E[2rRf ] = 2

∫ rs

s

1

ln r
dx

=
2(r − 1)s

ln r
.

Hence,

E[C2] = |W | · E[2rRf ]

= |W |2(r − 1)s

ln r

≤ 4(r − 1)

ln r
cost(T ′).

Let OPTST be the cost of the optimal Steiner tree on the set of terminals. Since
the Steiner tree T ′ is constructed using the algorithm of [20], this guarantees that

cost(T ′) ≤
(

1 +
ln 3

2

)
OPTST .

Let OPT be the cost of the optimal clock tree with skew at most s. Then, we have
two lower bounds for OPT. Using the lower bound given in section 3,

OPT ≥
∫ ∆/2

s

n(R)dR.

OPT ≥ OPTST .

Now, we can bound the expected cost of the tree we obtain in terms of OPT as
follows:

E[C1 + C2 + C3] ≤
(

2r

ln r
+

(
1 +

ln 3

2

)(
1 +

4(r − 1)

ln r

))
OPT.

The approximation ratio is optimized by choosing r ≈ 1.775, which gives an approxi-
mation ratio of at most 16.1065.

6. Planar zero skew clock routing. We now present a constant-factor ap-
proximation algorithm for the planar ZST problem. In the planar case we refer to
vertices as points.

Let R∗ be the smallest radius of an L1 ball that encloses all the terminals. We
first find a center point r such that every terminal is within an L1 distance of R∗ from
r. We now construct a square S of side 2R0 centered at r. The value R0 is chosen by
selecting t uniformly and at random from [0, 1] and setting R0 = R∗ · 2t. The square
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Fig. 2. The first few levels of an H-tree.

S is then subdivided into four equal-sized squares S1, S2, S3, S4. The squares Si are
called the children of S, and S is called the parent of each Si. The center of S is
connected to the centers of each Si by an H-shaped structure. We proceed recursively
in each Si, dividing each into four equal squares and so on, so long as there is at
least one point in the square. This produces a tree that we refer to as an H-tree (see
Figure 2.)

This tree spans all the terminals. In fact, we construct only the subtree of the
H-tree that spans all the terminals. To do this, we ensure that the tree construction
proceeds only inside squares that contain at least one terminal. At any point in
the execution of the algorithm, consider a square S produced by the algorithm and
subdivided into S1, S2, S3, S4. Then the center of S is connected to the center of Si,
and the tree construction proceeds recursively in Si only if Si contains a terminal.
Also, we stop the recursive subdivision when the squares that the algorithm constructs
have side lengths smaller than R∗/n2. At this stage, we connect the centers of all
squares to the terminals inside them by edges of length R∗/n2.

In order to analyze the cost of the tree returned by the algorithm, we associate,
with each square S constructed by the algorithm, the cost of the connection from the
center of S to the center of the parent of S. Thus, the charge to a square of side 2x is
2x. Note that when the algorithm terminates, the cost of connecting the n terminals
to the centers of their corresponding squares is n · R∗/n2 = R∗/n. Since the cost of
the optimal ZST is at least 2R∗, this is at most 1/n times the optimal cost. We ignore
this cost in our calculations, and in fact, the algorithm can be modified so that this
cost is not incurred.

Let n(x) be the minimum number of L1 balls of radius x required to cover the
terminals. Let n′(y) be the number of squares of radius y produced by the algorithm.
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Lemma 6.1.

n′(2x) ≤ 4n(x).

Proof. Consider a grid with the center point r as the origin, produced by
equispaced horizontal and vertical lines such that the distance between consecutive
lines is 2x. The squares of side 2x produced by the algorithm are precisely the squares
in this grid that contain at least one terminal. Consider the optimal partitioning of
the terminals into n(x) L1 balls of radius x. Each L1 ball in the partition intersects
at most four squares in the grid. Thus there can be at most 4n(x) squares in the grid
that contain at least one terminal.

Since the algorithm constructs squares of side lengths in the range [0, 2R∗], the
expected cost of the tree is bounded by

∫ 2R∗

0

n′(y) · y · dµ.

Here, dµ is the probability that the algorithm constructs squares with side length in
the range [y, y + dy]. Hence dµ = dy/(y ln 2). The expected cost is thus bounded by

∫ 2R∗

0

n′(y)

ln 2
dy =

∫ R∗

0

n′(2x)

ln 2
2dx

≤
∫ R∗

0

8

ln 2
n(x)dx.

Hence, the expected cost of the tree produced by the algorithm is at most 8/ ln 2 ≈
11.54 times the optimal cost.

Theorem 6.2. The above algorithm achieves an expected approximation ratio of
8/ ln 2.

The algorithm can be derandomized easily by carefully choosing a set of O(n2)
values of R0 in the range [R∗, 2R∗], running the algorithm for each of them, and
returning the best tree produced. The details are similar to those in the derandom-
ization of the algorithm in section 4.

7. Planar-embeddable bounded skew clock routing. We now give a con-
stant factor approximation algorithm for creating planar-embedded s-skew trees. We

apply the lower bound of section 3, namely, OPT ≥
∫ R∗

s
n(R)dR.

Our strategy will be similar to the bounded skew case for general metrics. We
construct the zero skew tree as in the previous section but stop when the sides of the
squares become smaller than s/2. We will then connect the points in each square to
the center using a tree whose cost is comparable to the minimum spanning tree (MST)
for the point set and has radius at most s. We will separately bound the cost of both
the truncated ZST and the trees within each square to within a constant factor of
OPT.

We present a deterministic version of the algorithm here. Let R0 be the unique
value in [R∗, 2R∗) of the form 2ts, where t is integral. Let Ri = 2t−is. Enclose the
point set in a box of side 2R0. We iteratively divide the square as before into four
squares, but we stop after t+1 iterations, when the side of the resulting square has size
s/2. We then build a zero skew H-tree terminating at the centers of every populated
square of size s/2. We will now connect the points within each square to the center.
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Fig. 3. New edges added to each box.

We first construct an MST connecting all the points in the point set. We divide
this MST into pieces using the ZST built above. Recall that the ZST includes a single
edge into the center of each square. We cut each edge in the MST at points where
it intersects existing edges in the ZST, or boundaries of the squares of side s/2. We
augment the MST edges within each square to produce a connected planar graph, by
adding the new edges shown in Figure 3. This results in a connected graph within
each square of side s/2, from which we take any spanning subtree.

We apply the following result (see [2, 16]).
Lemma 7.1. Given any ε > 0 and point set in the plane with radius r, and

spanning tree T with cost c rooted at p, there exists a polynomial time algorithm to
find a spanning tree T ′ with radius r′ ≤ (1 + ε)r and cost c′ ≤ (1 + 1/ε)c.

We run this algorithm for ε = 1 on each square of side s/2, and attach the resulting
spanning tree to the ZST at the center of the square.

Now, notice that the cost of the resulting structure has two components, each
of which we bound separately. First, the edges of the ZST and the additional edges
of Figure 3 are bounded by five times the cost of the ZST. We can bound the cost
of the ZST using techniques similar to those of the previous section, with the caveat
that rather than bounding n′(x) in terms of n(x/2), we instead bound it in terms of
n(x/4).

8. Hardness of zero skew clock routing.
Theorem 8.1. The zero skew clock routing problem for general metric spaces is

NP-hard.
Proof. The reduction is from set cover. Let [n] = {1, 2, . . . , n}. A set cover

instance consists of an integer k, and m sets S1, . . . , Sm such that each Si is a subset
of [n]. We are required to determine if there exist k sets Si1 , . . . , Sik such that

[n] ⊆
⋃k

j=1 Sij . Given an instance I of set cover, we define an instance of the zero
skew clock routing problem as follows. We first construct a weighted graph G from
the instance I: G has a vertex s, vertices x1, . . . , xm (one corresponding to each set),
and vertices y1, . . . , yn (one corresponding to each element of [n]) and an edge from
xi to yj iff j ∈ Si; such an edge has length 1. Also, every xi is connected to s by
an edge of length 1/n. Consider the zero skew clock routing problem for the set of
terminals {y1, . . . , yn} in the metric space induced by distances in G. If k′ is the
minimum number of sets in the instance I required to cover [n], it is easy to show
that the optimal solution to the zero skew clock routing problem is n + k′/n.

9. Open questions. The complexity of the planar ZST problem is still open.
We do not know if the problem is NP-hard.

Since our algorithm can be thought of yielding a clock tree topology, it will be
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interesting to see how it performs in practice, especially when combined with the
DME technique.
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