
2554 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005

The Smallest Grammar Problem
Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai, and abhi shelat

Abstract—This paper addresses the smallest grammar problem:
What is the smallest context-free grammar that generates exactly
one given string ?

This is a natural question about a fundamental object connected
to many fields such as data compression, Kolmogorov complexity,
pattern identification, and addition chains.

Due to the problem’s inherent complexity, our objective is to
find an approximation algorithm which finds a small grammar for
the input string. We focus attention on the approximation ratio of
the algorithm (and implicitly, the worst case behavior) to establish
provable performance guarantees and to address shortcomings in
the classical measure of redundancy in the literature.

Our first results are concern the hardness of approximating
the smallest grammar problem. Most notably, we show that
every efficient algorithm for the smallest grammar problem
has approximation ratio at least 8569 8568 unless P = NP.
We then bound approximation ratios for several of the best
known grammar-based compression algorithms, including
LZ78, BISECTION, SEQUENTIAL, LONGEST MATCH, GREEDY, and
RE-PAIR. Among these, the best upper bound we show is (1 2).
We finish by presenting two novel algorithms with exponentially
better ratios of (log3) and (log()), where is the
size of the smallest grammar for that input. The latter algorithm
highlights a connection between grammar-based compression and
LZ77.

Index Terms—Approximation algorithm, data compression,
hardness of approximation, LONGEST MATCH, LZ77, LZ78, mul-
tilevel pattern matching (MPM), RE-PAIR, SEQUITUR, smallest
grammar problem.

I. INTRODUCTION

THIS paper addresses the smallest grammar problem;
namely, what is the smallest context-free grammar that

generates exactly one given string? For example, the smallest
context-free grammar generating the string a rose is a rose is a
rose is as follows:

a rose

is

Manuscript received May 21, 2002; revised February 2, 2005. The mate-
rial in this paper was presented in part at the Symposium on Discrete Algo-
rithms (SODA ’02), San Francisco, CA, January 2002 and the Symposium on
the Theory of Computing (STOC ’02), Las Vegas, NV, January 2002.

M. Charikar, D. Liu, and M. Prabhakaran are with the Department of
Computer Science, Princeton University, Princeton, NJ 08540 USA (e-mail:
moses@cs.princeton.edu; dingliu@cs.princeton.edu; mp@cs.princeton.edu).

E. Lehman and a. shelat are with CSAIL, Massachusetts Institute of
Technology, Cambridge, MA 02139 USA (e-mail: e_lehman@csail.mit.edu;
abhi@csail.mit.edu).

R. Panigrahy is with the Department of Computer Science, Stanford Univer-
sity, Stanford, CA 94305 USA (e-mail: rinap@cs.stanford.edu).

A. Sahai is with the Department of Computer Science, University of Cali-
fornia, Los Angeles, Los Angeles, CA 90095 USA (e-mail: sahai@cs.ucla.edu).

Communicated by M. J. Weinberger, Associate Editor for Source Coding.
Digital Object Identifier 10.1109/TIT.2005.850116

The size of a grammar is defined to be the total number of
symbols on the right sides of all rules. In the example above,
the grammar has size . Because the decision version of this
problem is NP-complete, our objective is to find an approxima-
tion algorithm which finds a grammar that generates the given
string and is not much larger than the smallest such grammar.

This elegant problem has considerable interest in its own
right: it is a simple question about a basic mathematical object,
context-free grammars. By virtue of this simplicity and the wide
applicability of context-free grammars, the smallest grammar
problem has interesting connections to many fields of study,
including data compression, Kolmogorov complexity, pattern
identification, and approximation algorithms.

A. Data Compression

Instead of storing a long string, one can store a small
grammar that generates the string. The original string can be
easily reconstructed from the grammar when needed. Many data
compression procedures use this idea, and therefore amount to
approximation algorithms for the smallest grammar problem
[1]–[9]. Most of these procedures are analyzed in detail in
Section VI.

Empirical results indicate that the grammar-based approach
to compression is competitive with other techniques in practice
[4], [9], [6], [7], [10], [11], and some grammar-based compres-
sors are known to be asymptotically optimal on input strings
generated by finite-state sources. But in Section VI we show
that, surprisingly, many of the best known compressors of this
type can fail dramatically; that is, there exist input strings gen-
erated by small grammars for which these compressors pro-
duce large grammars. Consequently, they turn out not to be very
effective approximation algorithms for the smallest grammar
problem.

B. Complexity

The size of the smallest context-free grammar generating
a given string is also a natural, but more tractable variant of
Kolmogorov complexity [12]. The Kolmogorov complexity of
a string is the length of the shortest pair where is
a Turing machine description, is a string, and outputs
on input . This Turing machine model for representing strings
is too powerful to be exploited effectively; in general, the
Kolmogorov complexity of a string is incomputable. However,
weakening the string representation model from Turing ma-
chines to context-free grammars reduces the complexity of the
problem from the realm of undecidability to mere intractability.
Moreover, we show that one can efficiently approximate the
“grammar complexity” of a string.

0018-9448/$20.00 © 2005 IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

CHARIKAR et al.: THE SMALLEST GRAMMAR PROBLEM 2555

C. Pattern Recognition

The smallest grammar problem is also relevant to identifying
important patterns in a string, since such patterns naturally cor-
respond to nonterminals in a compact grammar. In fact, an orig-
inal and continuing motivation for work on the problem was to
identify regularities in DNA sequences [6], [8]. (Interestingly,
[8] espouses the goal of determining the entropy of DNA. This
amounts to upper-bounding the Kolmogorov complexity of a
human being.) In addition, smallest grammar algorithms have
been used to highlight patterns in musical scores [13] and un-
cover properties of language from example texts [9]. All this is
possible because a string represented by a context-free grammar
remains relatively comprehensible. This comprehensibility is an
important attraction of grammar-based compression relative to
otherwise competitive compression schemes. For example, the
best pattern matching algorithm that operates on a string com-
pressed as a grammar is asymptotically faster than the equiva-
lent for the well-known LZ77 compression format [14].

D. Hierarchical Approximation

Finally, work on the smallest grammar problem qualitatively
extends the study of approximation algorithms. Prior work on
approximation algorithms has focused on “flat” objects such
as graphs, Boolean formulas in conjunctive normal form, bins,
weights, etc. In contrast, context-free grammars as well as many
real-world problems such as circuit design and image compres-
sion have a hierarchical nature. Moreover, standard approxima-
tion techniques such as linear and semidefinite programming are
not easily transferred to this new domain.

II. PREVIOUS WORK

The smallest grammar problem was articulated explicitly by
two groups of authors at about the same time. Nevill-Manning
and Witten stated the problem and proposed the SEQUITUR algo-
rithm as a solution [6], [13]. Their main focus was on extracting
patterns from DNA sequences, musical scores, and even the
Church of Latter-Day Saints genealogical database, although
they evaluated SEQUITUR as a compression algorithm as well.

The other group, consisting of Kieffer, Yang, Nelson, and
Cosman, approached the smallest grammar problem from a
traditional data compression perspective [5], [4], [3]. First,
they presented some deep theoretical results on the impossi-
bility of having a “best” compressor under a certain type of
grammar compression model for infinite length strings [15].
Then, they presented a host of practical algorithms including
BISECTION, multilevel pattern matching (MPM), and LONGEST

MATCH. Furthermore, they gave an algorithm, which we refer
to as SEQUENTIAL, in the same spirit as SEQUITUR, but with
significant defects removed. All of these algorithms are de-
scribed and analyzed in Section VI. Interestingly, on inputs
with power-of-two lengths, the BISECTION algorithm of Nelson,
Kieffer, and Cosman [16] gives essentially the same repre-
sentation as a binary decision diagram [17]. Binary decision
diagrams have been used widely in digital circuit analysis
since the 1980s and also recently exploited for more general
compression tasks [18], [19].

While these two lines of research led to the first clear artic-
ulation of the smallest grammar problem, its roots go back to
much earlier work in the 1970s. In particular, Lempel and Ziv
approached the problem from the direction of Kolmogorov com-
plexity [20]. Over time, however, their work evolved toward data
compression, beginning with a seminal paper [21] proposing the
LZ77 compression algorithm. This procedure does not repre-
sent a string by a grammar. Nevertheless, we show in Section
VII that LZ77 is deeply entwined with grammar-based compres-
sion. Lempel and Ziv soon produced another algorithm, LZ78,
which did implicitly represent a string with a grammar [1]. We
describe and analyze LZ78 in detail in Section VI. In 1984,
Welch increased the efficiency of LZ78 with a new procedure,
now known as LZW [2]. In practice, LZW is much preferred
over LZ78, but for our purposes the difference is small.

Also in the 1970s, Storer and Szymanski explored a wide
range of “macro-based” compression schemes [22]–[24]. They
defined a collection of attributes that such a compressor might
have, such as “recursive,” “restricted,” “overlapping,” etc. Each
combination of these adjectives described a different scheme,
many of which they considered in detail and proved to be
NP-hard.

Recently, the smallest grammar problem has received in-
creasing interest in a broad range of communities. For example,
de Marcken’s thesis [9] investigated whether the structure of
the smallest grammar generating a large, given body of English
text could lead to insight about the structure of the language
itself. Lanctot, Li, and Yang [8] proposed using the LONGEST

MATCH algorithm for the smallest grammar problem to estimate
the entropy of DNA sequences. Apostolico and Lonardi [11],
[25], [10] suggested a scheme that we call GREEDY and applied
it to the same problem. Larsson and Moffat proposed RE-PAIR

[7] as a general, grammar-based algorithm. Most of these
procedures are described and analyzed in Section VI.

There has also been an effort to develop algorithms that ma-
nipulate strings that are in compressed form. For example, Kida
[14] and Shibata, et al. [26] have proposed pattern matching al-
gorithms that run in time related not to the length of the searched
string, but rather to the size of the grammar representing it. The
relatively good performance of such algorithms represents a sig-
nificant advantage of grammar-based compression over other
compression techniques such as LZ77.

In short, the smallest grammar problem has been considered
by many authors in many disciplines for many reasons over a
span of decades. Given this level of interest, it is remarkable
that the problem has not attracted greater attention in the general
algorithms community.

III. SUMMARY OF OUR CONTRIBUTIONS

This paper makes four main contributions, enumerated below.
Throughout, we use to denote the length of an input string, and

to denote the size of the smallest grammar generating that
same input string.

1) We show that the smallest grammar generating a given
string is hard to approximate to within a small constant
factor. Furthermore, we show that an
approximation would require progress on a well-studied
problem in computational algebra.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

2556 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005

2) We bound approximation ratios for several of the best
known grammar-based compression algorithms. These
results are summarized as follows:

The bounds for LZ78 hold for some variants, including
LZW. Results for MPM mirror those for BISECTION. The
lower bound for SEQUENTIAL extends to SEQUITUR.

3) We give new algorithms for the smallest grammar
problem with exponentially better approximation ratios.
First, we give a simple approximation. Then
we provide a more complex approxima-
tion based on an entirely different approach.

4) We bring to light an intricate connection between
grammar-based compression and the well-known LZ77
compression scheme.

The remainder of this paper is organized as follows.
Section IV contains definitions and notational conventions,
together with some basic lemmas. In Section V, we establish
the hardness of the smallest grammar problem in two different
and complementary senses. Then, in Section VI, we analyze
the most widely known algorithms for the smallest grammar
problem. Following this, we propose new algorithms in Section
VII with approximation ratios that are exponentially better.
Finally, Section VIII presents some of the many interesting
lines of research radiating from this problem.

IV. PRELIMINARIES

This section introduces terminology, notation, and some basic
lemmas about grammars that are used in later sections.

A. Grammars and Strings

A grammar is a -tuple in which is a finite
alphabet whose elements are called terminals, is a disjoint set
whose elements are called nonterminals, and is a spe-
cial nonterminal called the start symbol. All other nonterminals
are called secondary. In general, the word symbol refers to any
terminal or nonterminal. The last component of a grammar, de-
noted , is a set of rules of the form , where is
a nonterminal and is a string of symbols referred
to as the definition of .

The left side of a rule is the symbol , and the right
side of the rule or definition of is the string . Similarly, the
left side of a grammar consists of all nonterminals on the left
sides of rules, and the right side of a grammar consists of all
strings on the right sides of rules.

In the grammars we consider, there is exactly one rule
in for each nonterminal . Furthermore, all grammars

are acyclic; that is, there exists an ordering of the nonterminals
such that each nonterminal precedes all the nonterminals in its

definition. These properties guarantee that a grammar generates
exactly one finite-length string.

A grammar naturally defines an expansion function of the
form . The expansion of a string is obtained
by iteratively replacing each nonterminal by its definition until
only terminals remain. We denote the expansion of a string by

, and the length of the expansion of a string by ; that is,
. (In contrast, denotes the length of the string

in the traditional sense; that is, the number of symbols in the
string.) For the example grammar on the first page, we have

a rose and . The expansion of the start symbol
is the string generated by the grammar, and we typically

refer to as a grammar for the string .
The size of a grammar is the total number of symbols in all

definitions

We use several notational conventions to compactly express
strings. The symbol represents a terminal that appears only
once in a string. (For this reason, we refer to as a unique
symbol.) When is used several times in the same string, each
appearance represents a different symbol. For example,
contains five distinct symbols and seven symbols in total.1

Product notation is used to express concatenation, and paren-
theses are used for grouping. For example

The input to the smallest grammar problem is never specified
using such shorthand; we use it only for clarity of exposition in
proofs, counterexamples, etc.

Finally, we observe the following variable-naming conven-
tions throughout: terminals are lower case letters or digits, non-
terminals are upper case letters, and strings of symbols are lower
case Greek letters. In particular, denotes the input to a com-
pression algorithm, and denotes its length; that is, .
The size of a particular grammar for is , and the size of the
smallest grammar is . Unless otherwise stated, all logarithms
are base two.

B. Approximation Ratio

Our focus is on the approximation ratio of algorithms for the
smallest grammar problem. The approximation ratio of an algo-
rithm is a function defined by

grammar size for produced by
size of the smallest grammar for

Thus, our focus is on the performance of algorithms in the worst
case. The focus on worst case analysis is motivated by the goal

1For the lower bounds on LONGEST MATCH and RE-PAIR and in our hardness
results, the use of unique symbols in the input implies that the alphabet size for
these classes of examples grows unbounded. For the rest of the lower bounds,
however, the alphabet sizes are fixed.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

CHARIKAR et al.: THE SMALLEST GRAMMAR PROBLEM 2557

of establishing provable guarantees on performance, and there-
fore establishing a fair basis for comparing algorithms. In ad-
dition, the worst case analysis addresses an inherent problem
with characterizing compression performance on low-entropy
strings. Kosaraju and Manzini [27] point out that the standard
notions of universality and redundancy are not meaningful mea-
sures of a compressor’s performance on low-entropy strings.
Our approximation ratio measure handles all cases and there-
fore sidesteps this issue.

C. Basic Lemmas

In this subsection, we give some easy lemmas that highlight
basic points about the smallest grammar problem. In proofs here
and elsewhere, we ignore the possibility of degeneracies where
they raise no substantive issue, e.g., a nonterminal with an empty
definition or a secondary nonterminal that never appears in a
definition.

Lemma 1: The smallest grammar for a string of length has
size .

Proof: Let be an arbitrary grammar of size . We show
that generates a string of length , which implies the
claim. Define a sequence of nonterminals recursively as follows.
Let be the start symbol of grammar . Let be the non-
terminal in the definition of that has the longest expansion.
(Break ties arbitrarily.) The sequence ends when a nonterminal

, defined only in terms of terminals, is reached. Note that the
nonterminals in this sequence are distinct, since the grammar is
acyclic.

Let denote the length of the definition of . Then the
length of the expansion of is upper-bounded by times the
length of the expansion of . By an inductive argument, we
find

On the other hand, we know that the sum of the sizes of the
definitions of is at most the size of the entire grammar

It is well known that a set of positive integers with sum at most
has product at most . Thus, the length of the string

generated by is as claimed.

Next we show that certain highly structured strings are gen-
erated by small grammars.

Lemma 2: Let be the string generated by grammar , and
let be the string generated by grammar . Then we have the
following.

1) There exists a grammar of size that gen-
erates the string .

2) There exists a grammar of size that gen-
erates the string .

Proof: To establish 1), create a grammar containing all
rules in , all rules in , and the start rule , where

is the start symbol of and is the start symbol of .
For 2), begin with the grammar , and call the start symbol
. We extend this grammar by defining nonterminals with

expansion for various . The start rule of the new grammar is

. If is even (say,), define and define
recursively. If is odd (say,), define
and again define recursively. When , we are done.
With each recursive call, the nonterminal subscript drops by a
factor of at least two and at most three symbols are added to the
grammar. Therefore, the total grammar size is .

Lemma 2 is helpful in lower-bounding the approximation ra-
tios of certain algorithms when it is necessary to show that there
exist small grammars for strings such as .

The following lemma is used extensively in our analysis of
previously proposed algorithms. Roughly, it upper-bounds the
complexity of a string generated by a small grammar.

Lemma 3 (Lemma): If a string is generated by a
grammar of size , then contains at most distinct sub-
strings of length .

Proof: Let be a grammar for of size . For each rule
in , we upper-bound the number of length- substrings

of that are not substrings of the expansion of a nonterminal
in . Each such substring either begins at a terminal in , or else
begins with between and terminals from the expansion
of a nonterminal in . Therefore, the number of such strings is
at most . Summing over all rules in the grammar gives the
upper bound .

All that remains is to show that all substrings are accounted
for in this calculation. To that end, let be an arbitrary length-
substring of . Find the rule such that is a substring
of , and is as short as possible. Thus, is a substring of

and is not a substring of the expansion of a nonterminal in
. Therefore, was indeed accounted for above.

V. HARDNESS

We establish the hardness of the smallest grammar problem
in two ways. First, we show that approximating the size of
the smallest grammar to within a small constant factor is
NP-hard. Second, we show that approximating the size to
within would require progress on an ap-
parently difficult computational algebra problem. These two
hardness arguments are curiously complementary, as we dis-
cuss in Section V-C.

A. NP-Hardness

Theorem 1: There is no polynomial-time algorithm for the
smallest grammar problem with approximation ratio less than

unless P NP.
Proof: We use a reduction from a restricted form of vertex

cover based closely on arguments by Storer and Szymanski [23],
[24]. Let be a graph with maximum degree three
and . We can map the graph to a string over
an alphabet that includes a distinct terminal (denoted) corre-
sponding to each vertex as follows:

#

There is a natural correspondence between vertex covers of the
graph and grammars for the string . In particular, we will
show that the smallest grammar for has size ,

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

2558 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005

where is the size of the minimum vertex cover for . How-
ever, the size of the minimum cover for this family of graphs is
known to be hard to approximate below a ratio of un-
less P NP [28]. Therefore, it is equally hard to approximate
the size of the smallest grammar for below the ratio

Since all vertices in have degree at most three, .
Furthermore, since each vertex can cover at most three edges,
the size of the minimum vertex cover, , must exceed

. The expression above achieves its minimum when
is large and is small. From the constraints and

, we get the lower bound

Now we show that the minimal grammars for must assume a
particular structure related to the vertex cover of . Let be
an arbitrary grammar that generates . Suppose that there ex-
ists a nonterminal with an expansion of some form other than
or #. Then that nonterminal either appears at most
once in or else expands to a single character, since no other
substring of two or more characters appears multiple times in

. Replacing each occurrence of this nonterminal by its defini-
tion and deleting its defining rule can only decrease the size of

. Thus, in searching for the smallest grammar for , we need
only consider grammars in which every nonterminal has an ex-
pansion of the form # # or # #.

Next, suppose grammar does not contain a nonterminal
with expansion # . Then this string must appear at least twice
in the start rule, since the two occurrences generated by the first
product term cannot be written another way. Adding a nonter-
minal with expansion # costs two symbols, but also saves at
least two symbols, and consequently gives a grammar no larger
than . Similar reasoning applies for strings of the form #.
Thus, we need only consider grammars in which there are non-
terminals with expansions # and # for all vertices in the
graph .

Finally, let denote the set of vertices such that
contains a rule for the substring # #. Now suppose that is
not a vertex cover for . Then there exists an edge
such that does not contain rules for either # # or # #. As a
result, the occurrences of these strings generated by the second
product term of must be represented by at least four symbols
in the start rule of . Furthermore, the string # # # generated
by the third product term must be represented by at least three
symbols. However, defining a nonterminal with expansion # #
costs two symbols (since there is already a nonterminal with
expansion #), but saves at least two symbols as well, giving
a grammar no larger than before. Therefore, we need only con-
sider grammars such that the corresponding set of vertices is
a vertex cover.

The size of a grammar with the structure described above is
for the first section of the start rule, plus for

the second section, plus for the third section, plus
for rules for strings of the form # and #, plus for rules
for strings of the form # #, which gives .
This quantity is minimized when is a minimum vertex cover.

In that case, the size of the grammar is as
claimed.

B. Hardness Via Addition Chains

This subsection demonstrates the hardness of the smallest
grammar problem in an alternative sense: a procedure with an
approximation ratio would imply progress
on an apparently difficult algebraic problem in a well-studied
area.

Consider the following problem. Let be posi-
tive integers. How many multiplications are required to compute

, where is a real number? This problem has a
convenient, alternative formulation. An addition chain is an in-
creasing sequence of positive integers starting with and with
the property that every other term is the sum of two (not nec-
essarily distinct) predecessors. The connection between addi-
tion chains and computing powers is straightforward: the terms
in the chain indicate the powers to be computed. For example,

is an addition chain which computes
and using seven multiplications. The problem of computing,
say, and using the fewest multiplications is closely tied
to the problem of finding the smallest grammar for the string

. Roughly speaking, a grammar for can be re-
garded as an algorithm for computing and and vice versa.
The following theorem makes these mappings precise.

Theorem 2: Let be a set of distinct positive
integers, and define the string . Let
be the length of the shortest addition chain containing and let

be the size of the smallest grammar for the string . Then
the following relationship holds:

Proof: We translate the grammar of size for string
into an addition chain containing with length at most .
This will establish the left inequality . For clarity, we
accompany the description of the procedure with an example
and some intuition. Let be the set . Then .
The smallest grammar for this string has size

We begin converting the grammar to an addition chain by or-
dering the rules so that their expansions increase in length. Then
we underline symbols in the grammar according to the following
two rules.

1) The first symbol in the first rule is underlined.
2) Every symbol preceded by a nonterminal or an is un-

derlined.
Thus, in the example, we would underline as follows:

Each underlined symbol generates one term in the addition
chain as follows. Starting from the underlined symbol, work
leftward until the start of the definition or a unique symbol is

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

CHARIKAR et al.: THE SMALLEST GRAMMAR PROBLEM 2559

encountered. This span of symbols defines a substring which
ends with the underlined symbol. The length of the expansion
of this substring is a term in the addition chain. In the example,
we would obtain the substrings

and the addition chain .
Intuitively, the terms in the addition chain produced above are

the lengths of the expansions of the secondary nonterminals in
the grammar. But these alone do not quite suffice. To see why,
note that the rule implies that .
If we ensure that the addition chain contains , and ,
then we still cannot immediately add because is the sum
of three preceding terms, instead of two. Thus, we must also
include, say, the term , which is itself the sum of and

. The creation of such extra terms is what the elaborate un-
derlining procedure accomplishes. With this in mind, it is easy
to verify that the construction detailed above gives an addition
chain of length at most that contains .

All that remains is to establish the second inequality
. We do this by translating an addition chain of length into a

grammar for the string of size at most . As before, we carry
along an example. Let . The shortest addition chain
containing has length .

We associate the symbol with the first term of the sequence
and a distinct nonterminal with each subsequent term. Each non-
terminal is defined using the symbols associated with two pre-
ceding terms, just as each term in the addition sequence is the
sum of two predecessors. The start rule consists of the nonter-
minals corresponding to the terms in , separated by uniques.
In the example, this gives the following grammar:

The start rule has length , and the secondary
rules each have exactly two symbols on the right. Thus, the total
size of the grammar is at most .

Addition chains have been studied extensively for decades
(see surveys in Knuth [29] and Thurber [30]). In order to find
the shortest addition chain containing a single, specified integer

, a subtle algorithm known as the -ary method gives a
approximation. (This is apparently folklore.)

One writes in a base , which is a power of

The addition chain begins . Then one puts ,
doubles it times, adds to the result, doubles that
times, adds to the result, etc. The total length of the addition
chain produced is at most

In the expression on the left, the first term counts the first
terms of the addition chain, the second counts the doublings,
and the third counts the increments of . The equality follows

by choosing to be the smallest power of two which is at least
.

The -ary method is very nearly the best possible. Erdös
[31] showed that, in a certain sense, the shortest addition chain
containing has length at least for al-
most all . Even if exponentially more time is allowed, no exact
algorithm (and apparently even no better approximation algo-
rithm) is known.

The general addition chain problem, which consists of
finding the shortest addition chain containing a specified set of
integers , is known to be NP-hard if the integers are
given in binary [32]. There is an easy approx-
imation algorithm. First, generate all powers of two less than
or equal to the maximum of the input integers . Then form
each independently by summing a subset of these powers
corresponding to ’s in the binary representation of . In 1976,
Yao [33] pointed out that the second step could be tweaked in
the spirit of the -ary method. Specifically, he groups the bits
of into blocks of size and tackles
all blocks with the same bit pattern at the same time. This im-
proves the approximation ratio slightly to .

Yao’s method retains a frustrating aspect of the naive algo-
rithm: there is no attempt to exploit special relationships be-
tween the integers ; each one is treated independently. For ex-
ample, suppose for to . Then there exists a short
addition chain containing all of the .
But Yao’s algorithm effectively attempts to represent powers of
three in base two.

However, even if the are written in unary, apparently no
polynomial time algorithm with a better approximation ratio
than Yao’s is known. Since Theorem 2 links addition chains
and small grammars, finding an approximation algorithm for the
smallest grammar problem with ratio would
require improving upon Yao’s method.

C. An Observation on Hardness

We have demonstrated that the smallest grammar problem
is hard to approximate through reductions from two different
problems. Interestingly, there is also a marked difference in the
types of strings involved.

Specifically, Theorem 1 maps graphs to strings with large al-
phabets and few repeated substrings. In such strings, the use of
hierarchy does not seem to be much of an advantage. Thus, we
show the NP-completeness of the smallest grammar problem
by analyzing a class of input strings that specifically avoids the
most interesting aspect of the problem: hierarchy.

On the other hand, Theorem 2 maps addition chain problems
to strings over a unary alphabet (plus unique symbols). The
potential for use of hierarchy in representing such strings is
enormous; in fact, the whole challenge now is to construct
an intricate hierarchy of rules, each defined in terms of the
others. Thus, this reduction more effectively captures the most
notable aspect of the smallest grammar problem.

Taken together, these two reductions show that the smallest
grammar problem is hard in both a “combinatorial packing”
sense and a seemingly orthogonal “hierarchical structuring”
sense.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

2560 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005

VI. ANALYSIS OF PREVIOUS ALGORITHMS

In this section, we establish upper and lower bounds on
the approximation ratios of six previously proposed algo-
rithms for the smallest grammar problem: LZ78, BISECTION,
SEQUENTIAL, LONGEST MATCH, GREEDY, and RE-PAIR. In
addition, we discuss some closely related algorithms: LZW,
MPM, and SEQUITUR.

Although most of the algorithms in this section were orig-
inally designed as compression algorithms, we view them as
approximation algorithms for the smallest grammar problem.
Generally speaking, a good grammar-based compression algo-
rithm should attempt to find the smallest possible grammar gen-
erating the input string. Nonetheless, there do exist disconnects
between our theoretical study of the smallest grammar problem
and practical data compression.

First, our optimization criteria is grammar size, whereas the
optimization criteria in data compression is the bit length of the
compressed string. A grammar with a smaller size does not nec-
essarily translates into a smaller compression rate as described
in [4]. However, a grammar of size can be represented with
at most bits by assigning each distinct symbol a unique

-bit representation. Such a factor is small by the
standards of our worst case theoretical analyses, but enormous
by practical data compression standards.

Perhaps more importantly, data compression algorithms are
typically designed with an eye toward universality (asymptoti-
cally optimal compression of strings generated by a finite-state
source) and low redundancy (fast convergence to that optimum).
Informally, strings generated by a finite-state source have high
entropy; that is, they are compressible by only a constant factor.
Thus, the main focus in the design of a data compressor is on
high-entropy strings. In fact, Kosaraju and Manzini [27] point
out that universality and redundancy are not meaningful mea-
sures of a compressor’s performance on low-entropy strings.
Consequently, performance on low-entropy strings is typically
neglected completely.

The situation is quite different when one studies the worst
case approximation ratio instead of universality and redun-
dancy. If the smallest grammar for a high-entropy input string
of length has size, say, , then any compressor can
approximate the smallest grammar to within a factor. The
low-entropy strings, however, present a serious challenge. If an
input string is generated by a grammar of size, say, , then a
carelessly designed algorithm could exhibit an approximation
ratio as bad as . There is little hope that mapping the
grammar to a binary string in a clever manner could offset
such a failure. Thus, grammar-based data compressors and
approximation algorithms can both be viewed as approaches to
the smallest grammar problem, but they target different ranges
of inputs.

Finally, practical data compression mandates linear running
time in the length of the input string, with particular attention to
the specific constants hidden by asymptotic notation. Ideally, a
compressor should also be on-line; that is, a single left-to-right
pass through the input string should suffice. Space consump-
tion throughout this pass should, preferably, be a function of the

size of the compressed string, not the size of the string being
compressed.

As a result of these disconnects, one must take the results
in the remainder of this section with a caveat: while we show
that many grammar-based data compression algorithms ex-
hibit mediocre approximation ratios, the designers of these
algorithms were concerned with slightly different measures,
different inputs, and many practical issues that we ignore.

A. LZ78

The well-known LZ78 compression scheme was proposed by
Lempel and Ziv [1]. In traditional terms, the LZ78 algorithm
represents a string by a sequence of pairs. Each pair repre-
sents a substring of , and is of the form , where is an
integer and is a symbol in . If is zero, then the expansion
of the pair is simply . Otherwise, the expansion is equal to the
expansion of the th pair followed by the symbol . The con-
catenation of the expansions of all pairs is . For example, the
following sequence:

represents the string , where spaces are added
to clarify the correspondence.

The sequence-of-pairs representation of a string is generated
by LZ78 in a single left-to-right pass as follows. Begin with
an empty sequence of pairs. At each step, while there is input
to process, find the shortest, nonempty prefix of the remaining
input that is not the expansion of a pair already in the sequence.
There are two cases.

1) If this prefix consists of a single symbol , then append
the pair to the sequence.

2) Otherwise, this prefix must be of the form , where is
the expansion of some pair already in the sequence (say,
the th one) and is a symbol. In this case, append the pair

to the sequence.
For a cleaner analysis, we assume that an implicit “end-of-

file” character is appended to the string in order to guarantee that
one of the above two cases always applies. This special character
is omitted from the examples below for clarity.

1) LZ78 in Grammar Terms: An LZ78 pair sequence maps
naturally to a grammar. Associate a nonterminal with each
pair . If is zero, define the nonterminal by . Oth-
erwise, define the nonterminal to be , where is the
nonterminal associated with the th pair. The right side of the
start rule contains all the nonterminals associated with pairs. For
example, the grammar associated with the example sequence is
as follows:

Given this easy mapping, hereafter we simply regard the output
of LZ78 as a grammar rather than as a sequence of pairs.

Note that the grammars produced by LZ78 are of a restricted
form in which the right side of each secondary rule contains at
most two symbols and at most one nonterminal. Subject to these
restrictions, the smallest grammar for even the string has size

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

CHARIKAR et al.: THE SMALLEST GRAMMAR PROBLEM 2561

. (On the other hand, grammars with such a regular form
can be more efficiently encoded into bits.)

The next two theorems provide nearly matching upper and
lower bounds on the approximation ratio of LZ78 when it is
interpreted as an approximation algorithm for the smallest
grammar problem.

Theorem 3: The approximation ratio of LZ78 is
.

Proof: The lower bound follows by analyzing the be-
havior of LZ78 on input strings of the form

where . The length of this string is . Repeated
application of Lemma 2 implies that there exists a grammar for

of size .
The string is processed by LZ78 in two stages. During the

first, the leading ’s are consumed and nontermi-
nals with expansions are created. During the
second stage, the remainder of the string is consumed and a non-
terminal with expansion is created for all and between

and . For example, is represented by nonterminals with
expansions as indicated as follows:

The pattern illustrated above can be shown to occur in general
with an induction argument. As a result, the grammar produced
by LZ78 has size . Dividing by our upper
bound on the size of the smallest grammar proves the claim.

Theorem 4: The approximation ratio of LZ78 is
.

Our techniques in the following Proof of Theorem 4 form the
basis for two other upper bounds presented in this section. The
core idea is that nonterminals must expand to distinct substrings
of the input. By the Lemma, however, there are very few
short distinct substrings of the input. Thus most nonterminals
expand to long substrings. However, the total expansion length
of all nonterminals must be equal to the size of the input. As a
result, there cannot be too many nonterminals in the grammar.

Proof: Suppose that the input to LZ78 is a string of
length , and that the smallest grammar generating has size

. Let be the start rule generated by LZ78.
First observe that the size of the LZ78 grammar is at most ,
since each nonterminal is used once in the start rule and
is defined using at most two symbols. Therefore, it suffices to
upper-bound , the number of nonterminals in the start rule.

To that end, list the nonterminals of the grammar in order of
increasing expansion length. Group the first of these nonter-
minals, the next , the next , and so forth. Let be the

number of complete groups of nonterminals that can be formed
in this way. By this definition of , we have

and so .
On the other hand, the definition of LZ78 guarantees that each

nonterminal expands to a distinct substring of . Moreover,
Lemma 3 states that contains at most distinct substrings
of length . Thus, there can be at most nonterminals which
have expansion length , and at most nonterminals which
have expansion length , and so on.

It follows that each nonterminal in the th group must expand
to a string of length at least . Therefore, we have

and so . The inequality follows since we are
ignoring the incomplete th group.

Substituting this bound on into the upper bound on ob-
tained previously gives

The second equality follows from Lemma 1, which says that the
smallest grammar for a string of length has size .

2) LZW: Some practical improvements on LZ78 are em-
bodied in a later algorithm, LZW [2]. The grammars implicitly
generated by the two procedures are not substantively different,
but LZW is more widely used in practice. For example, it is
used to encode images in the popular gif format. Interest-
ingly, the bad strings introduced in Theorem 3 have a natural
graphical interpretation. Below, is written in a grid
pattern using and for and , respectively.

Thus, an image with colors in this simple vertical stripe pat-
tern yields a worst case string in terms of approximation ratio.
This effect can be observed in practice on even small examples.
For example, a image consisting of four horizontal lines
spaced 16 pixels apart is stored by Corel PhotoPaint, a commer-
cial graphics program, in a 933-yte file. When the image is ro-
tated 90 to create vertical lines instead, the stored file grows to
1142 byte.

B. BISECTION

The BISECTION algorithm was proposed by Kieffer, Yang,
Nelson, and Cosman [3], [16]. For binary input strings of length

, the same technique was employed much earlier in binary
decision diagrams, a data structure used to represent and easily
manipulate Boolean functions.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

2562 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005

1) The Procedure: BISECTION works on an input string as
follows. Select the largest integer such that . Partition

into two substrings with lengths and . Repeat this
partitioning process recursively on each substring produced that
has length greater than one. Afterward, create a nonterminal for
every distinct string of length greater than one generated during
this process. Each such nonterminal can then be defined by a
rule with exactly two symbols on the right.

Example 1. Consider the string . We
recursively partition and associate a nonterminal with each
distinct substring generated as shown as follows:

2) Bounds: The following two theorems give nearly match-
ing lower and upper bounds on the approximation ratio of
BISECTION.

Theorem 5: The approximation ratio of BISECTION is
.

Proof: We analyze the behavior of BISECTION on input
strings of the form

where . This string has length . After bisec-
tions, is partitioned into distinct substrings of length .
In particular, each contains a single , which appears in the th
position in the th substring. For example, bisecting twice
gives four distinct strings: .

A routine induction argument shows that this pattern holds in
general for . Since each distinct substring generates a nonter-
minal, BISECTION produces a grammar of size
on input .

On the other hand, Lemma 2 implies that there exists a
grammar for of size . The approximation
ratio of follows.

Theorem 6: The approximation ratio of BISECTION is
.

Proof: Suppose that the input to BISECTION is a string of
length , and that the smallest grammar-generating has size

. Let be the largest integer such that . Note that the
size of the BISECTION grammar for is at most twice the number
of distinct substrings generated during the recursive partitioning
process. Thus, it suffices to upper-bound the latter quantity.

At most one string at each level of the recursion has a length
that is not a power of two; therefore, there are at most strings
with irregular lengths. All remaining strings have length for
some between and . We can upper-bound the number of
these remaining strings in two ways. On one hand, BISECTION

creates at most one string of length , at most two of length

, at most four of length , etc. On the other hand,
Lemma 3 says that contains at most distinct substrings
of length . The first observation gives a good upper bound on
the number of distinct long strings generated by the recursive
partitioning process, and the second is tighter for short strings.
Putting this all together, the size of the BISECTION grammar is
at most

In the second equation, we use the fact that by
Lemma 1.

3) MPM: BISECTION was generalized to an algorithm called
MPM [3], which permits a string to be split more than two ways
during the recursive partitioning process and allows that process
to terminate early. For reasonable parameters, performance
bounds are the same as for BISECTION.

C. SEQUENTIAL

Nevill–Manning and Witten introduced the SEQUITUR algo-
rithm [6], [13]. Kieffer and Yang subsequently offered a similar,
but improved algorithm that we refer to here as SEQUENTIAL [4].

1) The Procedure: SEQUENTIAL processes a string as fol-
lows. Begin with an empty grammar and make a single left-to-
right pass through the input string. At each step, find the longest
prefix of the unprocessed portion of the input that matches the
expansion of a secondary nonterminal, and append that nonter-
minal to the start rule. If no prefix matches the expansion of a
secondary nonterminal, then append the first terminal in the un-
processed portion of the input to the start rule. In either case, if
the newly created pair of symbols at the end of the start rule al-
ready appears elsewhere in the grammar without overlap, then
replace both occurrences by a new nonterminal whose defini-
tion is that pair. Finally, if some nonterminal occurs only once
after this substitution, replace it by its definition, and delete the
corresponding rule.

Example 2. As an example, consider the input string
. After three steps, the grammar

is: . When the next is appended to the start
rule, there are two copies of the substring . Therefore,
a new rule, , is added to the grammar and both
occurrences of are replaced by to produce the
following intermediate grammar:

During the next two steps, the start rule expands to
. At this point, the expansion of is a prefix of

the unprocessed part of , so the next two steps consume
and append to twice.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

CHARIKAR et al.: THE SMALLEST GRAMMAR PROBLEM 2563

Now the pair appears twice in , and so a new rule
is added and applied

In the next step, is consumed and now appears twice.
A new rule is created and substituted into .
Notice that the rule only appears once after this sub-
stitution. Therefore, the occurrence of in the definition
of is replaced with , and is removed from the
grammar. After the next step, we have the following final
output:

2) Bounds: The next two theorems bound the approxima-
tion ratio of SEQUENTIAL. Both the upper and lower bounds
are considerably more complex than the analysis for LZ78 and
BISECTION.

Theorem 7: The approximation ratio of SEQUENTIAL is
.

Proof: We analyze the behavior of SEQUENTIAL on strings
for , defined below, over an alphabet consisting of four

symbols:

As SEQUENTIAL processes the prefix , it creates nontermi-
nals for the strings for each from to , a non-
terminal with expansion , a nonterminal with expansion
for each from to , and some nonterminals with shorter ex-
pansions that are not relevant here. With regard to the third as-
sertion, note that SEQUENTIAL parses the first occurrence of the
string in some particular way. It then consumes the , and
proceeds to consume the second occurrence of in exactly the
same way as the first one. This process generates a nonterminal
with expansion . Notice that the and symbols are never
added to a secondary rule.

The remainder of the input, the string , is consumed in
segments of length . This is because, at each step, the leading

symbols of the unprocessed portion of the input string are of
the form or for some . Consequently, the corresponding
nonterminal is appended to the start rule at each step.

At a high level, this is the inefficiency that we exploit. The
length of is not a multiple of . As a result, each copy of

is represented by a different sequence of nonterminals.
Now we describe the parsing of in more detail. The first

copy of is parsed almost as it is written above. The only differ-
ence is that the final at the end of this first copy is combined
with the leading zero in the second copy of and read as a single

nonterminal. Thus, nonterminals with the following expansions
are appended to the start rule as the first copy of is processed:

SEQUENTIAL parses the second copy of differently, since the
leading zero of this second copy has already been processed.
Furthermore, the final in the second copy of is combined
with the two leading zeroes in the third copy and read as a single
nonterminal

With two leading zeros already processed, the third copy of is
parsed yet another way. In general, an induction argument shows
that the th copy (indexed from) is read as

No consecutive pair of nonterminals ever appears twice in this
entire process, and so no new rules are created. Since the input
string contains copies of and each is represented by about

nonterminals, the grammar generated by SEQUENTIAL has size
.

On the other hand, there exists a grammar for of size .
First, create a nonterminal with expansion for each up
to . Each such nonterminal can be defined in terms of
its predecessors using only two symbols: . Next,
define a nonterminal with expansion for each using three
symbols: . Now it is straightforward to define
nonterminals and which expand to and , respectively.
Finally, using Lemma 2, additional symbols suffice
to define a start symbol with expansion . In total, this
grammar has size . Therefore, the approximation ratio of
SEQUENTIAL is .

3) Irreducible Grammars: Our upper bound on the approxi-
mation ratio of SEQUENTIAL relies on a property of the output.
In particular, Kieffer and Yang [4] show that SEQUENTIAL

produces an irreducible grammar; that is, one which has the
following three properties.

(I1) All nonoverlapping pairs of adjacent symbols of the
grammar are distinct.

(I2) Every secondary nonterminal appears at least twice on
the right side of the grammar.

(I3) No two nonterminals in the grammar have the same
expansion.

In upper-bounding the approximation ratio of SEQUENTIAL,
we rely on properties of irreducible grammars established in the
following two lemmas.

Lemma 4: The sum of the lengths of the expansions of all
distinct nonterminals in an irreducible grammar is at most .

(This result also appears in [5, Appendix B, eq. (9.33)].)

Proof: Let be the start symbol of an irreducible
grammar for a string of length , and let be the
secondary nonterminals. Observe that the sum of the expansion
lengths of all symbols on the left side of the grammar must be
equal to the sum of the expansion lengths of all symbols on
the right side of the grammar. Furthermore, every secondary

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

2564 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005

nonterminal appears at least twice on the right side by (I2).
Therefore, we have

Adding to both side of this inequality
and noting that finishes the proof.

Lemma 5: Every irreducible grammar of size contains at
least distinct, nonoverlapping pairs of adjacent symbols.

Proof: For each rule, group the first and second symbols
on the right side to form one pair, the third and fourth for a
second pair, and so forth. If a rule has an odd number of symbols,
ignore the last one.

We must show that only a few symbols are ignored in this
process. In particular, we ignore at most lonely symbols,
which appear alone on the right side of a rule. Each such rule
accounts for three distinct symbols in the grammar: one in the
rule’s definition and at least two for the occurrences of the non-
terminal defined by the rule. Thus, there can be at most
such lonely symbols.

Among rules with two or more symbols on the right, at least
of those symbols are in pairs. (The worst case is a rule of length

.) Thus at least symbols must have been
paired in our process. Putting this all together, there are at least

nonoverlapping pairs of adjacent symbols.

4) Upper Bound: We can now upper-bound the approxima-
tion ratio of SEQUENTIAL by using the fact that SEQUENTIAL

always produces an irreducible grammar.

Theorem 8: Every irreducible grammar for a string is
times larger than the size of the smallest

grammar for that string.

Corollary 1: The approximation ratio of SEQUENTIAL is
.

Proof (of Theorem 8): This argument closely follows the
one used in Theorem 4. As before, let be the size of an irre-
ducible grammar generating a string of length , and let
be the size of the smallest grammar.

Identify distinct, nonoverlapping pairs of adjacent
symbols in the irreducible grammar that are guaranteed to exist
by Lemma 5. Note that at most pairs can expand to the
same length- substring of . To see why, suppose there are

or more pairs that expand to represent the same length-
substring of . The first nonterminal in each such pair must
expand to a string with length between and . Hence, by
pigeonholing, there must exist two pairs and such that

and . Since all pairs are distinct, either
or . In either case, we have two distinct symbols

with the same expansion, which violates (I3).
List the pairs in order of increasing expansion length and

group the first of these pairs, the next , etc. Let
be the number of complete groups formed in this way. Then we
have

And so . Lemma 3 implies that contains at
most distinct substrings of length . As in Theorem 4, at

most pairs have an expansion of length . Conse-
quently, each pair in the th group expands to a string of length
at least . Thus, the total length of the expansions of all pairs
is at least .

The pairs constitute a subset of the symbols on the right
side of the grammar. The total expansion length of all symbols
on the right side of the grammar is equal to the total expansion
length of all symbols on the left. Lemma 4 upper-bounds the
latter quantity by . Therefore, we have

As a result, . As before, substituting this
upper bound on into the upper bound on obtained previ-
ously implies the theorem

D. Global Algorithms

The remaining algorithms analyzed in this section all be-
long to a single class, which we refer to as global algorithms.
We upper-bound the approximation ratio of every global algo-
rithm by with a single theorem. However, our
lower bounds are all different, complex, and weak. Moreover,
the lower bounds rely on strings over unbounded alphabets.
Thus, it may be that every global algorithm has an excellent ap-
proximation ratio. Because they are so natural and our under-
standing is so incomplete, global algorithms are one of the most
interesting topics related to the smallest grammar problem that
deserve further investigation.

1) The Procedure: A global algorithm begins with the
grammar . The remaining work is divided into rounds.
During each round, one selects a maximal string . (Global
algorithms differ only in the way they select a maximal string
in each round.) A maximal string has three properties.

(M1) It has length at least two.
(M2) It appears at least twice on the right side of the

grammar without overlap.
(M3) No strictly longer string appears at least as many times

on the right side without overlap.
After a maximal string is selected, a new rule is

added to the grammar. This rule is then applied by working
left-to-right through the right side of every other rule, replacing
each occurrence of by the symbol . The algorithm terminates
when no more maximal strings exist.

Example 3. An example illustrates the range of moves
available to a global algorithm. (Throughout this sec-
tion, we will use the input string
for our examples.) We initially create the grammar

where spaces are added for
clarity. The maximal strings are and . Sup-
pose that we select the maximal string , and introduce
the rule . The grammar becomes

Now the maximal strings are and . Suppose that
we select . Then we add the rule , and
the definition of becomes . Now the only

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

CHARIKAR et al.: THE SMALLEST GRAMMAR PROBLEM 2565

maximal string is . Adding the rule yields the
final grammar

2) Upper Bound: The approximation ratio of every global
algorithm is . This follows from the fact that
grammars produced by global algorithms are particularly well
conditioned; not only are they irreducible, but they also possess
an additional property described in the following lemma.

Lemma 6: Every grammar produced by a global algorithm
has the following property. Let and be strings of length at
least two on the right side. If , then .

Proof: We show that this is actually an invariant property
of the grammar maintained throughout the execution of a global
algorithm. The invariant holds trivially for the initial grammar

. So suppose that the invariant holds for grammar ,
and then grammar is generated from by introducing a new
rule . Let and be strings of length at least two on
the right side of such that . We must show that

.
There are two cases to consider. First, suppose that neither
nor appear in . Then and must be obtained from

nonoverlapping strings and in such that and
. Since the invariant holds for , we have .

But then and are transformed the same way when the rule
is added; that is, corresponding instances of the string

within and are replaced by the nonterminal . Therefore,
. Otherwise, suppose that at least one of or appears

in . Then neither nor can contain . Therefore, both
and appear in grammar , where the invariant holds, and so

again.

Lemma 7: Every grammar produced by a global algorithm is
irreducible.

Proof: We must show that a grammar produced by a
global algorithm satisfies the three properties of an irreducible
grammar.

Propoert (I1). First, note that all nonoverlapping pairs of
adjacent symbols on the right side are distinct since a global
algorithm does not terminate until this condition holds.

Property (I2). We must show that every secondary nonter-
minal appears at least twice on the right side of the grammar.
This property is also an invariant maintained during the execu-
tion of a global algorithm.

The property holds vacuously for the initial grammar .
Suppose that the property holds for a grammar which has
been generated by a global algorithm, and then we obtain a new
grammar by introducing a new rule where is a max-
imal string. By the definition of maximal string, the nonterminal

must appear at least twice on the right side of . If contains
only terminals or nonterminals which appear twice on the right
side of , then the invariant clearly holds for . Suppose, by
contradiction, that contains a nonterminal which appears
only once on the right side of . Let be the definition

of in . This implies that only appears in the definition of
, and therefore the string occurs exactly as many times as

in . Since is maximal, it must have length at least two, and
therefore . In particular, this implies that during the
step in which the rule for was introduced, the intermediate
grammar at that point contained a strictly longer string which
appeared exactly the same number of times, which contradicts
the assumption that has been produced by a global algorithm.

Property (I3). Finally, we must show that distinct symbols
have distinct expansions, unless the start symbol expands to a
terminal. Once again, we use an invariant argument. The fol-
lowing invariants hold for every secondary rule in the
grammar maintained during the execution of a global algorithm.

1) The string appears nowhere else in the grammar.
2) The length of is at least two.
Both invariants hold trivially for the initial grammar .

Suppose that the invariants hold for every rule in a grammar ,
and then we obtain a new grammar by introducing the rule

.
First, we check that the invariants hold for the new rule. The

string cannot appear elsewhere in the grammar; such an in-
stance would have been replaced by the nonterminal . Further-
more, the length of is at least two, since is a maximal string.

Next, we check that the invariant holds for each rule
in that corresponds to a rule in . If does not
contain , then both invariants carry over from . Suppose that

does contain . The first invariant still carries over from .
The second invariant holds unless . However, since is a
maximal string, that would imply that appeared at least twice
in , violating the first invariant.

The third property of an irreducible grammar follows from
these two invariants. No secondary nonterminal can expand to
a terminal, because the second invariant implies that each sec-
ondary nonterminal has an expansion of length at least two. No
two nonterminals can expand to the same string either; their def-
initions have length at least two by the second invariant, and
therefore their expansions are distinct by Lemma 6.

Theorem 9: The approximation ratio of every global algo-
rithm is .

Proof: This argument is similar to the upper bound on irre-
ducible grammars and LZ78. Suppose that on input of length

, a global algorithm outputs a grammar of size , but the
smallest grammar has size . First note that is irreducible
by Lemma 7.

As before, list distinct, nonoverlapping pairs of adja-
cent symbols in (guaranteed to exist by Lemma 5) in order
of increasing expansion length. This time, group the first
pairs, the next , and so forth, so that complete groups can
be formed. Therefore, we have

which implies .
Lemma 6 implies that every pair expands to a distinct sub-

string of . With Lemma 3, this implies every pair in the th
group expands to a string of length at least . As before, the
total length of the expansions of all pairs must be at least

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

2566 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005

The upper bound follows from Lemma 4. Therefore,
. Substituting this bound on into the upper

bound on and applying Lemma 1 gives the theorem

In the following sections, we describe three natural global
algorithms. The preceding theorem provides an upper bound
on the approximation ratio for all of them. In what follows, we
establish a weak lower bound on the approximation ratio for
each one individually.

E. LONGEST MATCH

Kieffer and Yang [5] proposed the LONGEST MATCH proce-
dure, a global algorithm in which one always selects the longest
maximal string. In our running example, the first rule added is

.
LONGEST MATCH has two elegant features that simplify anal-

ysis of its behavior.

1) No rule is ever introduced with a nonterminal on the right
side.

2) Each nonterminal created appears in the final grammar.
If the first principle were violated, and a rule with a nonter-
minal on the right was introduced, then the definition of the
nonterminal could not have been the longest maximal string
when it was created, which contradicts the definition of the al-
gorithm. The second principle follows from the first; since every
new rule has only terminals on the right, nonterminals are only
added to the grammar over the course the procedure and never
eliminated.

The second principle offers a simple way to lower-bound the
size of a grammar generated by LONGEST MATCH; we need only
sum up the number of nonterminals created over the course of
the procedure.

The first principle allows one to simplify the grammar main-
tained during the execution of LONGEST MATCH without altering
the subsequent behavior of the algorithm. During the execution
of LONGEST MATCH, we can replace each nonterminal on the
right by a unique symbol. This does not alter subsequent be-
havior, since no rule containing a nonterminal will ever be in-
troduced anyway. The example grammar from the start of this
section can be transformed in this way into the following:

Furthermore, we can append the definitions of secondary rules
to the end of the start rule (as long as they are separated by
unique symbols), and then delete all secondary rules. Segments
of the start rule that are between unique symbols can be rear-
ranged within the string as well. Finally, we can delete unique
symbols at the beginning and end of the start rule and merge
consecutive unique symbols. Transforming the example in this
way gives

We refer to this three-step simplification procedure as con-
solidating a grammar. In analyzing the behavior of LONGEST

MATCH on an input string, we are free to consolidate the

grammar at any point to simplify analysis; the subsequent
behavior of the procedure is unchanged.

1) Lower Bound:
Theorem 10: The approximation ratio of LONGEST MATCH

is .
Proof: We analyze the performance of LONGEST MATCH

on a string , which consists of segments that are sepa-
rated by uniques. First, define

if is even
otherwise.

For example, .
Now, for in the range to , define the th segment of
as where is the largest possible value such that

. The final two segments are and . For example

which expands to the following string (with indentation and line
breaks added for clarity):

We analyze how LONGEST MATCH processes this string.
Observe that in the example, the longest match is

. In general, the longest match in is
always the second largest segment of the form . After
this rule is added and the grammar rewritten, the next longest
match is the third longest segment of the form (
in our example), which is wholly contained in the first longest
match. In the next round, the longest match is the fourth longest
segment, and so forth. After rounds of this type, the next
two longest matches are and . At this point, the
grammar is as follows (abbreviations introduced above are used
for clarity):

and after consolidating the grammar, we obtain

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

CHARIKAR et al.: THE SMALLEST GRAMMAR PROBLEM 2567

The critical observation is that the consolidated grammar is
the same as the initial grammar for input string . After another
succession of rounds and a consolidation, the definition of the
start rule becomes , and then , and so forth. Reducing the
right side of the start rule from to entails the creation
of at least nonterminals. Since nonterminals created by
LONGEST MATCH are never eliminated, we can lower-bound the
total size of the grammar produced on this input by

On the other hand, there exists a grammar of size that gen-
erates . What follows is a sketch of the construction. First, we
create nonterminals and with expansions and ,
respectively, for all up to . We can define each such non-
terminal using two symbols, and so only symbols are re-
quired in total.

Then we define a nonterminal corresponding to each segment
of . We define these nonterminals in batches, where a batch
consists of all nonterminals corresponding to segments of
that contain the same number of terms. Rather than describe the
general procedure, we illustrate it with an example. Suppose that
we want to define nonterminals corresponding to the following
batch of segments in :

This can be done by defining the following auxiliary nontermi-
nals which expand to prefixes and suffixes of the string

:

Now we can define nonterminals corresponding to the desired
segments in terms of these “prefix” and “suffix” nontermi-
nals as follows:

In this way, each nonterminal corresponding to a in is
defined using a constant number of symbols. Therefore, defining
all such nonterminals requires symbols. We complete
the grammar for by defining a start rule containing another

symbols. Thus, the total size of the grammar is .
Therefore, the approximation ratio for LONGEST MATCH is

. Since the length of is , this ratio is
as claimed.

F. GREEDY

Apostolico and Lonardi [11], [25], [10] proposed a variety
of greedy algorithms for grammar-based data compression. The
central idea, which we analyze here, is to select the maximal
string that reduces the size of the grammar as much as possible.
For example, on our usual starting grammar, the first rule added

is , since this decreases the size of the grammar by five
symbols, which is the best possible.

Theorem 11: The approximation ratio of GREEDY is at least
.

Proof: We consider the behavior of GREEDY on an input
string of the form , where .

GREEDY begins with the grammar . The first rule
added must be of the form . The size of the grammar
after this rule is added is then where the
first term reflects the cost of defining , the second accounts for
the instances of itself, and the third represents extraneous ’s.
This sum is minimized when . The resulting grammar is

Since the definitions of and contain no common symbols,
we can analyze the behavior of GREEDY on each independently.
Notice that both subproblems are of the same form as the orig-
inal, but have size instead of . Continuing in this way,
we reach a grammar with nonterminals, each defined by
five copies of another symbol. Each such rule is transformed
as shown below in a final step that does not alter the size of the
grammar

Therefore, GREEDY generates a grammar for of size .
On the other hand, we show that for all has a grammar

of size . Substituting then proves
the theorem.

Write as a numeral in a base , where is a parameter
defined later: .

The grammar is constructed as follows. First, create a non-
terminal with expansion for each between and .
This can be done with symbols, using rules of
the form . Next, create a nonterminal with ex-
pansion via the rule . Create a nonterminal
with expansion by introducing intermediate nontermi-
nals which triples which triples , and so on times,
and then by appending

This requires symbols. Similarly, create with expan-
sion , and so on. The start symbol of the grammar
is . The total number of symbols used is at most

The second equality uses the fact that . Setting
makes the last expression

as claimed.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

2568 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005

G. RE-PAIR

Larsson and Moffat [7] proposed the RE-PAIR algorithm. (The
byte-pair encoding (BPE) technique of Gage [34] is based on
similar ideas.) Essentially, this is a global algorithm in which
the maximal string chosen at each step is the one which appears
most often. In our running example, the first rule added is

, since the string appears most often.
There is a small difference between the algorithm originally

proposed by Larsson and Moffat and what we refer to here as
RE-PAIR: the original algorithm always makes a rule for the pair
of symbols that appears most often without overlap, regardless
of whether that pair forms a maximal string. For example, on
input , the original RE-PAIR algorithm generates the fol-
lowing grammar:

This is unattractive, since one could replace the single occur-
rence of the nonterminal by its definition and obtain a smaller
grammar. Indeed, RE-PAIR, as described here, would give the
smaller grammar:

The original approach was motivated by implementation effi-
ciency issues.

Theorem 12: The approximation ratio of RE-PAIR is
.

Proof: Consider the performance of RE-PAIR on input
strings of the form

where is an integer that, when written as a -bit binary
number, has a at each position such that .
(Position corresponds to the least significant bit.) On such an
input, RE-PAIR creates rules for strings of ’s with lengths that
are powers of two: .

At this point, each run of ’s with length in is
represented using one nonterminal for each in the binary
representation of . For example, the beginning of and
the beginning of the resulting start rule are listed as follows:

Note that no other rules are introduced, because each pair of
adjacent symbols now appears only once. RE-PAIR encodes each
string of ’s using symbols. Since there are such
strings, the size of the grammar produced is .

On the other hand, there exists a grammar of size that
generates . First, we create a nonterminal with expansion

for all up to . This requires symbols. Then for
each , we create a nonterminal for using
of the nonterminals, just as RE-PAIR does. However, we can
then define a nonterminal for each remaining string of ’s using
only two symbols: , for a total of
additional symbols. Finally, we expend symbols on a start
rule, which consists of all the separated by unique symbols.
In total, the grammar size is as claimed.

To complete the argument, note that ,
and so the approximation ratio is no better than

.

VII. NEW ALGORITHMS

In this section, we present a simple approxima-
tion algorithm for the smallest grammar problem. We then
give a more complex algorithm with approximation ratio

based on an entirely different approach.

A. An Approximation Algorithm

To begin, we describe a useful grammar construction, prove
one lemma, and cite an old result that we shall use later.

The substring construction generates a set of grammar rules
enabling each substring of a string to be expressed
with at most two symbols.

The construction works as follows. First, create a nonter-
minal for each suffix of the string and each prefix of

, where . Note that each such nonter-
minal can be defined using only two symbols: the nonterminal
for the next shorter suffix or prefix together with one symbol

. Repeat this construction recursively on the two halves of the
original string and . The recursion termi-
nates when a string of length one is obtained. This recursion has

levels, and nonterminals are defined at each level. Since
each definition contains at most two symbols, the total cost of
the construction is at most .

Now we show that every substring of is equal
to , where and are nonterminals defined in the con-
struction. There are two cases to consider. If appears entirely
within the left-half of or entirely within the right-half, then we
can obtain and from the recursive construction on
or . Otherwise, let as before, and let
be the nonterminal for , and let be the nonterminal
for .

For example, the substring construction for the string
is given as follows:

With these rules defined, each substring of is express-
ible with at most two symbols. For example, .
In the next lemma, we present a variation of Lemma 3 needed
for the new algorithm.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

CHARIKAR et al.: THE SMALLEST GRAMMAR PROBLEM 2569

Lemma 8: Let be a string generated by a grammar of size
. Then there exists a string of length at most that

contains every length- substring of .
Proof: We can construct by concatenating strings ob-

tained from the rules of the grammar of size . For each rule,
, do the following.

1) For each terminal in , take the length- substring of
beginning at that terminal.

2) For each nonterminal in , take the length- sub-
string of consisting of the last character in the expan-
sion of that nonterminal, the preceding characters,
and the following characters.

In both cases, we permit the substrings to be shorter if they are
truncated by the start or end of .

Now we establish the correctness of this construction. First,
note that the string is a concatenation of at most strings
of length at most , giving a total length of at most as
claimed. Next, let be a length- substring of . Consider the
rule such that contains and is as short as
possible. Either begins at a terminal of , in which case it is
a string of type 1), or else it begins inside the expansion of a
nonterminal in and ends beyond, in which case it is contained
in a string of type 2). (Note that cannot be wholly contained
in the expansion of a nonterminal in ; otherwise, we would
have selected that nonterminal for consideration instead of .)
In either case, is a substring of as desired.

Our approximation algorithm for the smallest grammar
problem makes use of Blum, Jiang, Li, Tromp, and Yan-
nakakis’ -approximation for the shortest superstring problem
[35]. In this procedure, we are given a collection of strings and
want to find the shortest superstring; that is, the shortest string
that contains each string in the collection as a substring. The
procedure works greedily. At each step, find the two strings
in the collection with largest overlap. Merge these two into a
single string. (For example, and have overlap
and thus can be merged to form .) Repeat this process
until only one string remains. This is the desired superstring,
and Blum et al. proved that it is at most four times longer than
the shortest superstring.

B. The Algorithm

In this algorithm, the focus is on certain sequences of
substrings of . In particular, we construct sequences

, where the sequence consists of
some substrings of that have length at most . These se-
quences are defined as follows. The sequence is initialized
to consist of only the string itself. In general, the sequence

generates the sequence via the following operations,
which are illustrated in Fig. 1.

1) Use the greedy -approximation algorithm of Blum et al.
to form a superstring containing all the distinct strings
in .

2) Cut the superstring into small pieces. First, determine
where each string in ended up inside , and then cut

at the left endpoints of those strings.

Fig. 1.

3) Cut each piece of that has length greater than at
the midpoint. During the analysis, we shall refer to the
cuts made during this step as extra cuts.

The sequence is defined to be the sequence of pieces of
generated by this three-step process. By the nature of Blum’s
algorithm, no piece of can have length greater than after
step 2), and so no piece can have length greater than after
step 3). Thus, is a sequence of substrings of that have
length at most as desired.

Now we translate these sequences of strings into a grammar.
To begin, associate a nonterminal with each string in each se-
quence . In particular, the nonterminal associated with the
single string in (which is itself) is the start symbol of the
grammar.

All that remains is to define these nonterminals. In doing so,
the following observation is key: each string in is the con-
catenation of several consecutive strings in together with a
prefix of the next string in . This is illustrated in the figure
above, where the fate of one string in (shaded and marked

) is traced through the construction of . In this case, is
the concatenation of , and a prefix of . Similarly, the
prefix of is itself the concatenation of consecutive strings in

together with a prefix of the next string in . This prefix
is, in turn, the concatenation of consecutive strings in to-
gether with a prefix of the next string in , etc. As a result,
we can define the nonterminal corresponding to a string in
as a sequence of consecutive nonterminals from , followed
by consecutive nonterminals from , followed by consecu-
tive nonterminals from , etc. For example, the definition
of would begin and then contain sequences
of consecutive nonterminals from , etc. As a special
case, the nonterminals corresponding to strings in can be de-
fined in terms of terminals.

We can use the substring construction to make these defini-
tions shorter and hence the overall size of the grammar smaller.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

2570 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005

In particular, for each sequence of strings , we apply the sub-
string construction on the corresponding sequence of nontermi-
nals. This enables us to express any sequence of consecutive
nonterminals using just two symbols. As a result, we can define
each nonterminal corresponding to a string in using only two
symbols that represent a sequence of consecutive nonterminals
from , two more that represent a sequence of consecutive
nonterminals from , etc. Thus, every nonterminal can now
be defined with symbols on the right.

Theorem 13: The procedure described above is an
-approximation algorithm for the smallest grammar

problem.
Proof: We must determine the size of the grammar gen-

erated by the above procedure. In order to do this, we must
first upper-bound the number of strings in each sequence .
To this end, note that the number of strings in is equal to
the number of strings in plus the number of extra cuts made
in step 3). Thus, given that contains a single string, we can
upper-bound the number of strings in by upper-bounding the
number of extra cuts made at each stage.

Suppose that the smallest grammar generating has size .
Then Lemma 8 implies that there exists a superstring containing
all the strings in with length . Since we are using a

-approximation, the length of is at most . Therefore,
there can be at most pieces of with length greater than

after step 2). This upper-bounds the number of extra cuts
made in the formation of , since extra cuts are only made
into pieces with length greater than . It follows that every
sequence of strings has length , since step 2) is
repeated only times over the course of the algorithm.

On one hand, there are sequences , each con-
taining strings. Each such string corresponds to
a nonterminal with a definition of length . This gives

symbols in total. On the other hand, for each
sequence of strings , we apply the substring construction
on the corresponding sequence of nonterminals. Recall that
this construction generates symbols when applied to a
sequence of length . This creates an additional

symbols. Therefore, the total size of the grammar generated by
this algorithm is , which proves the claim.

C. An -Approximation Algorithm

We now present a more complex solution to the smallest
grammar problem with approximation ratio . The
description is divided into three sections. First, we introduce
a variant of the well-known LZ77 compression scheme. This
serves two purposes: it gives a new lower bound on the size
of the smallest grammar for a string and is the starting point
for our construction of a small grammar. Second, we introduce
balanced binary grammars, the variety of well-behaved gram-
mars that our procedure employs. In the same section, we also
introduce three basic operations on balanced binary grammars.
Finally, we present the main algorithm, which translates a string
compressed using our LZ77 variant into a grammar at most

times larger than the smallest.

D. An LZ77 Variant

We begin by describing a variant of LZ77 compression [21].
We use this both to obtain a lower bound on the size of the
smallest grammar for a string and as the basis for generating
a small grammar. In this scheme, a string is represented by a
sequence of characters and pairs of integers. For example, one
possible sequence is

An LZ77 representation can be decoded into a string by working
left-to-right through the sequence according to the following
rules.

• If a character is encountered in the sequence, then the
next character in the string is .

• Otherwise, if a pair is encountered in the sequence,
then the next characters of the string are the same as
the characters beginning at position of the string. (We
require that the characters beginning at position be
represented by earlier items in the sequence.)

The example sequence can be decoded as follows:

The shortest LZ77 sequence for a given string can be found
in polynomial time. Make a left-to-right pass through the string.
If the next character in the unprocessed portion of the string has
not appeared before, output it. Otherwise, find the longest prefix
of the unprocessed portion that appears in the processed portion
and output the pair describing that previous appearance.
It is easy to show (and well known) that this procedure finds the
shortest LZ77 sequence.

The following lemma states that this procedure implies a
lower bound on the size of the smallest grammar.

Lemma 9: The length of the shortest LZ77 sequence for a
string is a lower bound on the size of the smallest grammar for
that string.

Proof: Suppose that a string is generated by a grammar of
size . We can transform this grammar into an LZ77 sequence
of length at most as follows. Begin with the sequence of
symbols on the right side of the start rule. Select the nonterminal
with longest expansion. Replace the leftmost instance by its def-
inition and replace each subsequent instance by a pair referring
to the first instance. Repeat this process until no nonterminals
remain. Note that each symbol on the right side of the original
grammar corresponds to at most one item in the resulting se-
quence. This establishes the desired inequality.

A somewhat similar process was described in [36]. In con-
trast, our -approximation algorithm essentially
inverts the process and maps an LZ77 sequence to a grammar.
This other direction is much more involved.

E. Balanced Binary Grammars

In this subsection, we introduce the notion of a balanced bi-
nary grammar. The approximation algorithm we are developing

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

CHARIKAR et al.: THE SMALLEST GRAMMAR PROBLEM 2571

works exclusively with this restricted class of well-behaved
grammars.

A binary rule is a grammar rule with exactly two symbols on
the right side. A binary grammar is a grammar in which every
rule is binary. Two strings of symbols, and , are -balanced
if

for some constant between and . Intuitively, -balanced
means “about the same length.” Note that inverting the fraction

gives an equivalent condition. An -balanced rule is a bi-
nary rule in which the two symbols on the right are -balanced.
An -balanced grammar is a binary grammar in which every
rule is -balanced. For brevity, we use “balanced” to signify
“ -balanced.”

The remainder of this subsection defines three basic opera-
tions on balanced binary grammars: ADDPAIR, ADDSEQUENCE,
and ADDSUBSTRING. Each operation adds a small number of
rules to an existing balanced grammar to produce a new bal-
anced grammar that has a nonterminal with specified proper-
ties. For these operations to work correctly, we require that
be selected from the limited range , which is
about . These three operations are detailed in the following
paragraphs.

1) The ADDPAIR Operation: This operation begins with a
balanced grammar containing symbols and and produces
a balanced grammar containing a nonterminal with expansion

. The number rules added to the original grammar is

Suppose that ; the other case is symmetric. The
ADDPAIR operation is divided into two phases.

In the first phase, we decompose into a string of symbols.
Initially, this string consists of the symbol itself. Thereafter,
while the first symbol in the string is not in balance with ,
we replace it by its definition. A routine calculation, which we
omit, shows that balance is eventually achieved. At this point,
we have a string of symbols with expansion such
that is in balance with . Furthermore, note that
is in balance with for all by construction.

In the second phase, we build a balanced binary grammar for
the following sequence of nonterminals generated during the
first phase:

The analysis of the second phase runs for many pages, even
though we omit some routine algebra. Initially, we create a new
rule and declare this to be the active rule. The
remainder of the second phase is divided into steps. At the start
of the th step, the active rule has the form , and the
following three invariants hold.

(B1) .
(B2) is a substring of .
(B3) All rules in the grammar are balanced, including the

active rule.

The relationships between strings implied by the first two in-
variants are indicated in the following diagram:

After steps, the active rule defines a nonterminal with
expansion as desired, completing the
procedure.

The invariants stated above imply some inequalities that are
needed later to show that the grammar remains in balance. Since

is in balance with , we have

Since is a substring of by invariant (B2), we can
conclude

(1)

On the other hand, since is a superstring of by
invariant (B1), we can conclude

(2)

All that remains is to describe how each step of the second phase
is carried out. Each step involves intricate grammar transforma-
tions, and so for clarity, we supplement the text with diagrams.
In these diagrams, a rule is indicated with a wedge.

Pre-existing rules are indicated with shaded lines, and new
rules with dark lines.

At the start of the th step, the active rule is . Our
goal is to create a new active rule that defines while main-
taining the three invariants. There are three cases to consider.

Case 1: If and are in balance, then we create a new
rule.

This becomes the active rule. It is easy to check that the three
invariants are maintained.

If and are not in balance, this implies that

does not hold. Since the right inequality is (2), the left inequality
must be violated. Thus, hereafter we can assume

(3)

Case 2: Otherwise, if is in balance with , then we
create two new rules.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

2572 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005

The first of these becomes the active rule. It is easy to check
that the first two invariants are maintained. In order to check that
all new rules are balanced, first note that the rule
is balanced by the case assumption. For the rule
to be balanced, we must show

The left inequality is (1). For the right inequality, begin with (3)

The equality follows from the definition of by the rule
. The subsequent inequality uses the fact that this rule is

balanced, according to invariant (B3). The last inequality uses
only algebra and holds for all .

If case 2 is bypassed, then and are not in balance
which implies that

does not hold. Since is in balance with alone by invariant
(B3), the right inequality holds. Therefore, the left inequality
must not; hereafter, we can assume

(4)

Combining inequalities (3) and (4), one can use algebraic
manipulation to establish the following bounds, which hold
hereafter:

(5)

(6)

Case 3: Otherwise, suppose that is defined by the rule
. We create three new rules.

The first of these becomes the active rule. We must check that
all of the new rules are in balance. We begin with .
In one direction, we have

The first inequality uses the fact that is balanced.
The second inequality follows because . The final
inequality uses the fact that and are in balance. In the
other direction, we have

The first inequality uses the fact that is balanced,
and the second follows from (5). The last inequality holds for
all . The argument to show that is
balanced is similar.

Finally, we must check that is in balance. In
one direction, we have

The equality follows from the definitions of and . The first
inequality uses the fact that the rule is balanced.
The subsequent equality follows by dividing the top and bottom
by . In the next step, we use (5) on the top, and (1) on the
bottom. The final inequality holds for all . In the other
direction, we have

As before, the first inequality uses the definitions of and .
Then we use the fact that is balanced. We obtain
the second equality by dividing the top and bottom by . The
subsequent inequality uses the fact that and are in balance
on the top and (6) on the bottom. The final inequality holds for
all .

All that remains is to upper-bound the number of rules created
during the ADDPAIR operation. At most three rules are added in
each of the steps of the second phase. Therefore, it suffices
to upper-bound . This quantity is determined during the first
phase, where is decomposed into a string of symbols. In each
step of the first phase, the length of the expansion of the first
symbol in this string decreases by a factor of at least . When
the first symbol is in balance with , the process stops. There-
fore, the number of steps is . Since the string ini-
tially contains one symbol, is . Therefore,
the number of new rules is

Because we take the absolute value, this bound holds regardless
of whether or is larger.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

CHARIKAR et al.: THE SMALLEST GRAMMAR PROBLEM 2573

2) The ADDSEQUENCE Operation: The ADDSEQUENCE

operation is a generalization of ADDPAIR. Given a balanced
grammar with symbols , the operation creates a
balanced grammar containing a nonterminal with expansion

. The number of rules added is

The idea is to place the at the leaves of a balanced binary
tree. (To simplify the analysis, assume that is a power of two.)
We create a nonterminal for each internal node by combining
the nonterminals at the child nodes using ADDPAIR. Recall that
the number of rules that ADDPAIR creates when combining non-
terminals and is

Let denote the hidden constant on the right, and let equal
. Creating all the nonterminals on the bottom level

of the tree generates at most

rules. (The inequality follows from the concavity of .) Simi-
larly, the number of rules created on the second level of the tree
is at most , because we pair nonterminals, but
the sum of their expansion lengths is still . In general, on the
th level, we create at most

new rules. Summing from to , we find that the total
number of rules created is

as claimed.
3) The ADDSUBSTRING Operation: This operation takes

a balanced grammar containing a nonterminal with as a
substring and produces a balanced grammar containing a non-
terminal with expansion exactly while adding new
rules.

Let be the nonterminal with the shortest expansion such
that its expansion contains as a substring. Let be
its definition. Then we can write , where the prefix
lies in and the suffix lies in . (Note, is actually a
suffix of , and is a prefix of .) We generate a nonter-
minal that expands to the prefix , another that expands to the
suffix , and then merge the two with ADDPAIR. The last step
generates only new rules. So all that remains is to
generate a nonterminal that expands to the prefix ; the suffix
is handled symmetrically. This task is divided into two phases.

In the first phase, we find a sequence of symbols
with expansion equal to . To do this, we begin with an empty
sequence and employ a recursive procedure. At each step, we
have a desired suffix (initially) of some current symbol (ini-
tially). During each step, we consider the definition of the
current symbol, say . There are two cases.

1) If the desired suffix wholly contains , then we
prepend to the nonterminal sequence. The desired
suffix becomes the portion of the old suffix that over-
laps , and the current nonterminal becomes .

2) Otherwise, we keep the same desired suffix, but the
current symbol becomes .

A nonterminal is only added to the sequence in case 1). But
in that case, the length of the desired suffix is scaled down by
at least a factor . Therefore, the length of the resulting
nonterminal sequence is .

This construction implies the following inequality, which we
use later:

(7)

This inequality holds because is a suffix of the ex-
pansion of a nonterminal in balance with . Consequently,

is not too long to be in balance with .
In the second phase, we merge the nonterminals in the se-

quence to obtain the nonterminal with expansion .
The process goes from left to right. Initially, we set .
Thereafter, at the start of the th step, we have a nonterminal
with expansion and seek to merge in symbol .
There are two cases, distinguished by whether or not the fol-
lowing inequality holds:

• If so, then and are in balance. (Inequality (7) sup-
plies the needed upper bound on .) Therefore,
we add the rule .

• If not, then is too small to be in balance with .
(It cannot be too large, because of inequality (7).) We
use ADDPAIR to merge the two, which generates

new rules. Since is at most a con-
stant times the size of its largest component , the
number of new rules is .

Summing the number of rules created during this process
gives

The second equality follows from the fact, observed previously,
that and from the fact that is a substring
of . Generating a nonterminal for the suffix requires

rules as well. Therefore, the total number of new
rules is as claimed.

F. The Algorithm

We now combine all the tools of the preceding two sections
to obtain an -approximation algorithm for the
smallest grammar problem.

We are given an input string . First, we apply the LZ77
variant described in Section VII-D. This gives a sequence

of terminals and pairs. By Lemma 9, the length of
this sequence is a lower bound on the size of the smallest
grammar for ; that is, . Now we employ the tools of

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

2574 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005

Section VII-E to translate this sequence to a grammar. We work
through the sequence from left-to-right and build a balanced
binary grammar as we go. Throughout, we maintain an active
list of grammar symbols.

Initially, the active list is , which must be a terminal. In
general, at the beginning of th step, the expansion of the active
list is the string represented by . Our goal for the step
is to augment the grammar and alter the active list so that the ex-
pansion of the symbols in the active list is the string represented
by .

If is a terminal, we can accomplish this goal by simply
appending to the active list. If is a pair, then it speci-
fies a substring of the expansion of the active list. If is con-
tained in the expansion of a single symbol in the active list, then
we use ADDSUBSTRING to create a nonterminal with expansion

using rules. This nonterminal is then appended to
the active list.

On the other hand, if is not contained in the expansion of
a single symbol in the active list, then it is the concatenation of
a suffix of , all of , and a prefix of , where

are consecutive symbols in the active list. We
then perform the following operations.

1) Construct a nonterminal with expansion
using ADDSEQUENCE. This produces
rules.

2) Replace in the active list by the single symbol
.

3) Construct a nonterminal with expansion equal to the
prefix of in using ADDSUBSTRING. Similarly,
construct a nonterminal with expansion equal to the
suffix of in using ADDSUBSTRING. This produces

new rules in total.
4) Create a nonterminal with expansion

using ADDSEQUENCE on , and . This creates
new rules. Append to the end of the active

list.
Thus, in total, we add new rules
during each step. The total number of rules created is

The first sum is upper-bounded by the total number of symbols
inserted into the active list. This is at most two per step (and

), which gives a bound of . To upper-bound
the second sum, we use the concavity inequality

and set to give

The latter inequality uses the fact that and that
. Note that the function is increasing for

up to , and so this inequality holds only if . This
condition is violated only when input string (length) turns out
to be only a small factor longer than the LZ77 sequence
(length). If we detect this special case, then we can output the
trivial grammar and achieve a constant approximation
ratio.

By concavity again, the third sum is upper-bounded by

The total grammar size is therefore

where we use the inequality and, again, the observation
that is increasing for . This proves the claim.

G. Grammar-Based Compression Versus LZ77

We have now shown that a grammar of size can be trans-
lated into an LZ77 sequence of length at most . In the reverse
direction, we have shown that an LZ77 sequence of length can
be translated to a grammar of size . Furthermore,
the latter result is nearly the best possible. Consider strings of
the form

where is the largest of the . This string can be represented
by an LZ77 sequence of length

Here, is the largest power of less than . If we set
, then the sequence has length .

On the other hand, Theorem 2 states that the smallest
grammar for is within a constant factor of the shortest addi-
tion chain containing . Pippinger [37] has shown, via
a counting argument, that there exist integers such
that the shortest addition chain containing them all has length

If we choose as before, then the above expression
boils down to

Putting this all together, we have a string of length
for which there exists an LZ77 sequence of

length , but for which the smallest grammar has size
. The ratio between the grammar size

and the length of the LZ77 sequence is therefore

Thus, our algorithm for transforming a sequence of LZ77 triples
into a grammar is almost optimal.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

CHARIKAR et al.: THE SMALLEST GRAMMAR PROBLEM 2575

The analysis in this section brings to light the relationship
between the best grammar-based compressors and LZ77. One
would expect the two to achieve roughly comparable compres-
sion performance since the two representations are quite similar.
Which approach achieves superior compression (over all cases)
in practice depends on many considerations beyond the scope
of our theoretical analysis. For example, one must bear in mind
that a grammar symbol can be represented by fewer bits than an
LZ77 pair. In particular, each LZ77 pair requires about
bits to encode, although this may be somewhat reduced by repre-
senting the integers in each pair with a variable-length code. On
the other hand, each grammar symbol can be naively encoded
using about bits, which could be as small as .
This can be further improved via an optimized arithmetic en-
coding as suggested in [4]. Thus, the fact that grammars are can
be somewhat larger than LZ77 sequences may be roughly offset
by the fact that grammars can also translate into fewer bits. Em-
pirical comparisons in [4] suggest precisely this scenario, but
they do not yet seem definitive one way or the other [4], [9], [6],
[7], [10], [11], especially in the low-entropy case.

The procedures presented here are not ready for immediate
use as practical compression algorithms. The numerous hacks
and optimizations needed in practice are lacking. Our algo-
rithms are designed not for practical performance, but for good,
analyzable performance. In practice, the best grammar-based
compression algorithm may yet prove to be a simple scheme
like RE-PAIR, which we do not yet know how to analyze.

VIII. FUTURE DIRECTIONS

A. Analysis of Global Algorithms

Our analysis of previously proposed algorithms for the
smallest grammar problem leaves a large gap of understanding
surrounding the global algorithms, GREEDY, LONGEST MATCH,
and RE-PAIR. In each case, we upper-bound the approxima-
tion ratio by and lower-bound it by some
expression that is . Elimination of this gap would be
significant for several reasons. First, these algorithms are im-
portant; they are simple enough to be practical for applications
such as compression and DNA entropy estimation. Second,
there are natural analogues to these global algorithms for other
hierarchically structured problems. Third, all of our lower
bounds on the approximation ratio for these algorithms are
well below the hardness implied by the
reduction from the addition chain problem. Either there exist
worse examples for these algorithms or else a tight analysis
will yield progress on the addition chain problem.

B. Algebraic Extraction

The need for a better understanding of hierarchical approx-
imation problems beyond the smallest grammar problem is
captured in the smallest AND-circuit problem. Consider a dig-
ital circuit which has several input signals and several output
signals. The function of each output is a specified sum-of-prod-
ucts over the input signals. How many two-input AND gates
must the circuit contain to satisfy the specification?

This problem has been studied extensively in the context of
automated circuit design. Interestingly, the best known algo-
rithms for this problem are closely analogous to the GREEDY and
RE-PAIR algorithms for the smallest grammar problem. (For de-
tails on these analogues, see [38], [39], and [40], respectively.)
No approximation guarantees are known.

C. String Complexity in Other Natural Models

One motivation for studying the smallest grammar problem
was to shed light on a computable and approximable variant of
Kolmogorov complexity. This raises a natural follow-on ques-
tion: can the complexity of a string be approximated in other
natural models? For example, the grammar model could be ex-
tended to allow a nonterminal to take a parameter. One could
then write a rule such as , and write the string

as . Presumably as model power increases,
approximability decays to incomputability. Good approxima-
tion algorithms for strong string-representation models could be
applied wherever the smallest grammar problem has arisen.

ACKNOWLEDGMENT

The authors sincerely thank Yevgeniy Dodis, Martin Farach-
Colton, Michael Mitzenmacher, Madhu Sudan, and the re-
viewers for helpful comments.

REFERENCES

[1] J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,” IEEE Trans. Inf. Theory, vol. IT-24, no. 5, pp.
530–536, Sep. 1978.

[2] T. A. Welch, “A technique for high-performance data compression,”
Computer Mag. Computer Group News of the IEEE Computer Group
Soc., vol. 17, no. 6, pp. 8–19, 1984.

[3] J. C. Kieffer, E. H. Yang, G. J. Nelson, and P. Cosman, “Universal
lossless compression via multilevel pattern matching,” IEEE Trans. Inf.
Theory, vol. 46, no. 5, pp. 1227–1245, Jul. 2000.

[4] E. H. Yang and J. C. Kieffer, “Efficient universal lossless data compres-
sion algorithms based on a greedy sequential grammar transform—Part
one: Without context models,” IEEE Trans. Inf. Theory, vol. 46, no. 3,
pp. 755–777, May 2000.

[5] J. C. Kieffer and E. H. Yang, “Grammar based codes: A new class of
universal lossless source codes,” IEEE Trans. Inf. Theory, vol. 46, no. 3,
pp. 737–754, May 2000.

[6] C. G. Nevill-Manning, “Inferring sequential structure,” Ph.D. disserta-
tion, University of Waikato, Hamilton, New Zealand, 1996.

[7] N. J. Larsson and A. Moffat, “Offline dictionary-based compression,”
Proc. IEEE, vol. 88, no. 11, pp. 1722–1732, Nov. 2000.

[8] J. K. Lanctot, M. Li, and E. H. Yang, “Estimating DNA sequence en-
tropy,” in Proc. Symp. Discrete Algorithms, San Francisco, CA, Jan.
2000, pp. 409–418.

[9] C. G. de Marcken, “Unsupervised language acquisition,” Ph.D. disser-
tation, MIT, Cambridge, MA, 1996.

[10] A. Apostolico and S. Lonardi, “Off-line compression by greedy textual
substitution,” Proc. IEEE, vol. 88, no. 11, pp. 1733–1744, Nov. 2000.

[11] , “Some theory and practice of greedy off-line textual substitution,”
in Proc. IEEE Data Compression Conf., DCC, Snowbird, UT, Mar. 1998,
pp. 119–128.

[12] A. N. Kolmogorov, “Three approaches to the quantitative definition of
information,” Probl. Inf. Transm., pp. 1–7, 1965.

[13] C. G. Nevill-Manning and I. H. Witten, “Identifying hierarchical struc-
ture in sequences: A linear-time algorithm,” J. Artificial Intell., vol. 7,
pp. 67–82, 1997.

[14] T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa, “A uni-
fying framework for compressed pattern matching,” in Proc. 6th Int.
Symp. String Processing and Information Retrieval, Cancun, Mexico,
1999, pp. 89–96.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

2576 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005

[15] J. C. Kieffer and E. H. Yang, “Sequential codes, lossless compression
of individual sequences, and kolmogorov complexity,” IEEE Trans. Inf.
Theory, vol. 42, no. 1, pp. 29–39, Jan. 1996.

[16] G. Nelson, J. C. Kieffer, and P. C. Cosman, “An interesting hierarchical
lossless data compression algorithm,” in Proc. IEEE Information Theory
Society Workshop, Rydzyna, Poland, Jun. 1995. Invited Presentation.

[17] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, no. 8, pp. 677–691, Aug. 1986.

[18] J. C. Kieffer, P. Flajolet, and E.-H. Yang, “Data compression via binary
decision diagrams,” in IEEE Int. Symp. Information Theory, vol. 46, Jun.
2000, p. 296.

[19] C.-H. Lai and T.-F. Chen, “Compressing inverted files in scalable infor-
mation systems by binary decision diagram encoding,” in Proc. 2001
Conf. Supercomputing, Denver, CO, Nov. 2001, p. 60.

[20] A. Lempel and J. Ziv, “On the complexity of finite sequences,” IEEE
Trans. Inf. Theory, vol. IT-23, no. 1, pp. 75–81, Jan. 1976.

[21] J. Ziv and A. Lempel, “A universal algorithm for sequential data com-
pression,” IEEE Trans. Inf. Theory, vol. IT-23, no. 3, pp. 337–343, May
1977.

[22] J. A. Storer, “Data compression: Methods and complexity,” Ph.D. dis-
sertation, Princeton Univ., Princeton, NJ, 1978.

[23] J. A. Storer and T. G. Szymanski, “Data compression via textual substi-
tution,” J. ACM, vol. 29, no. 4, pp. 928–951, Oct. 1982.

[24] J. A. Storer, Data Compression: Methods and Theory. Rockville, MD:
Computer Science, 1988.

[25] A. Apostolico and S. Lonardi, “Compression of biological sequences by
greedy off-line textual substitution,” in Proc. IEEE Data Compression
Conf., DCC, Snowbird, UT, Mar. 2000, pp. 143–152.

[26] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. Shi-
nohara, and S. Arikawa, “Byte Pair Encoding: A Text Compression
Scheme That Accelerates Pattern Matching,” Dept., Kyushu Univ.,
Kyushu, Japan, Tech. Rep. DOI-TR-CS-161, Apr. 1999.

[27] S. R. Kosaraju and G. Manzini, “Compression of low entropy strings
with Lempel-Ziv algorithms,” SIAM J. Comput., vol. 29, no. 3, pp.
893–911, 2000.

[28] P. Berman and M. Karpinski, “On Some Tighter Inapproximability Re-
sults, Further Improvements,” Electronic Colloquium on Computational
Complexity, Tech. Rep. TR98-065, 1998.

[29] D. E. Knuth, Seminumerical Algorithms. Reading, MA: Ad-
dison-Wesley, 1981.

[30] E. G. Thurber, “Efficient generation of minimal length addition chains,”
SIAM J. Comput., vol. 28, no. 4, pp. 1247–1263, 1999.

[31] P. Erdös, “Remarks on number theory III,” ACTA Arithmetica, vol. VI,
pp. 77–81, 1960.

[32] P. Downey, B. Leong, and R. Sethi, “Computing sequences with addition
chains,” SIAM J. Comput., vol. 10, no. 3, pp. 638–646, Aug. 1981.

[33] A. C.-C. Yao, “On the evaluation of powers,” SIAM J. Comput., vol. 5,
no. 1, pp. 100–103, Mar. 1976.

[34] P. Gage, “A new algorithm for data compression,” The C Users J., vol.
12, no. 2, Feb. 1994.

[35] A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis, “Linear approx-
imation of shortest superstrings,” in Proc. Symp. Theory of Computing,
New Orleans, LA, May 1991, pp. 328–336.

[36] C. G. Nevill-Manning and I. H. Witten, “Compression and explanation
using hierarchical grammars,” Comput. J., vol. 40, no. 2/3, pp. 103–116,
1997.

[37] N. Pippenger, “On the evaluation of powers and monomials,” SIAM J.
Comput., vol. 9, no. 2, pp. 230–250, May 1980.

[38] R. K. Brayton and C. McMullen, “The decomposition and factorization
of boolean expressions,” in Proc. Int. Symp. Circuits and Systems, Rome,
Italy, 1982, pp. 49–54.

[39] R. K. Brayon, R. L. Rudell, A. L. Sangiovanni-Vincentelli, and A.
R. Wang, “Multi-level logic optimization and the rectangle covering
problem,” in Proc. Int. Conf. Computer Aided Design, San Francisco,
CA, Nov. 1987, pp. 66–69.

[40] J. Rajski and J. Vasudevamurthy, “The testability-preserving concurrent
decomposition and factorization of boolean expressions,” IEEE Trans.
Computer-Aided Design, vol. 11, no. 6, pp. 778–793, Jun. 1992.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 20:01 from IEEE Xplore. Restrictions apply.

	toc
	The Smallest Grammar Problem
	Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Pra
	I. I NTRODUCTION
	A. Data Compression
	B. Complexity
	C. Pattern Recognition
	D. Hierarchical Approximation

	II. P REVIOUS W ORK
	III. S UMMARY OF O UR C ONTRIBUTIONS
	IV. P RELIMINARIES
	A. Grammars and Strings
	B. Approximation Ratio
	C. Basic Lemmas
	Lemma 1: The smallest grammar for a string of length n has siz
	Proof: Let G be an arbitrary grammar of size m . We show tha

	Lemma 2: Let α be the string generated by grammar $G_\alp
	Proof: To establish 1), create a grammar containing all rules in

	Lemma 3 (mk Lemma): If a string σ is generated by a gr
	Proof: Let G be a grammar for σ of size m . For each

	V. H ARDNESS
	A. NP-Hardness
	Theorem 1: There is no polynomial-time algorithm for the smalles
	Proof: We use a reduction from a restricted form of vertex cover

	B. Hardness Via Addition Chains
	Theorem 2: Let $T = \{k_1 \ldots k_p\}$ be a set of distinct pos
	Proof: We translate the grammar of size m^* for string $\sigma

	C. An Observation on Hardness

	VI. A NALYSIS OF P REVIOUS A LGORITHMS
	A. LZ78
	1) LZ78 in Grammar Terms: An LZ78 pair sequence maps naturally t
	Theorem 3: The approximation ratio of LZ78 is $\Omega(n^{2/3}/\l
	Proof: The lower bound follows by analyzing the behavior of LZ78

	Theorem 4: The approximation ratio of LZ78 is $O((n /\log n)^{2/
	Proof: Suppose that the input to LZ78 is a string σ of le

	2) LZW: Some practical improvements on LZ78 are embodied in a la

	B. B ISECTION
	1) The Procedure: B ISECTION works on an input string σ a
	2) Bounds: The following two theorems give nearly match- ing low
	Theorem 5: The approximation ratio of B ISECTION is $\Omega(\sqr
	Proof: We analyze the behavior of B ISECTION on input strings of

	Theorem 6: The approximation ratio of B ISECTION is $O(\sqrt{n /
	Proof: Suppose that the input to B ISECTION is a string σ

	3) M PM: B ISECTION was generalized to an algorithm called M PM

	C. S EQUENTIAL
	1) The Procedure: S EQUENTIAL processes a string as follows. Beg
	2) Bounds: The next two theorems bound the approximation ratio o
	Theorem 7: The approximation ratio of S EQUENTIAL is $\Omega(n^{
	Proof: We analyze the behavior of S EQUENTIAL on strings $\sigma

	3) Irreducible Grammars: Our upper bound on the approximation ra
	Lemma 4: The sum of the lengths of the expansions of all distinc
	Proof: Let S be the start symbol of an irreducible grammar for

	Lemma 5: Every irreducible grammar of size m contains at least
	Proof: For each rule, group the first and second symbols on the

	4) Upper Bound: We can now upper-bound the approximation ratio o
	Theorem 8: Every irreducible grammar for a string is $O((n/\log
	Corollary 1: The approximation ratio of S EQUENTIAL is $O((n/\lo
	Proof (of Theorem 8): This argument closely follows the one used

	D. Global Algorithms
	1) The Procedure: A global algorithm begins with the grammar $S
	2) Upper Bound: The approximation ratio of every global algorith
	Lemma 6: Every grammar produced by a global algorithm has the fo
	Proof: We show that this is actually an invariant property of th

	Lemma 7: Every grammar produced by a global algorithm is irreduc
	Proof: We must show that a grammar produced by a global algorith

	Theorem 9: The approximation ratio of every global algorithm is
	Proof: This argument is similar to the upper bound on irreducibl

	E. L ONGEST M ATCH
	1) Lower Bound:
	Theorem 10: The approximation ratio of L ONGEST M ATCH is $\Omeg
	Proof: We analyze the performance of L ONGEST M ATCH on a string

	F. G REEDY
	Theorem 11: The approximation ratio of G REEDY is at least $(5 \
	Proof: We consider the behavior of G REEDY on an input string of

	G. R E -P AIR
	Theorem 12: The approximation ratio of R E -P AIR is $\Omega(\sq
	Proof: Consider the performance of R E -P AIR on input strings o

	VII. N EW A LGORITHMS
	A. An $O(\log^3 N)$ Approximation Algorithm
	Lemma 8: Let σ be a string generated by a grammar of size
	Proof: We can construct β_k by concatenating strings obtai

	B. The Algorithm

	Fig. 1.
	Theorem 13: The procedure described above is an $O(\log^3 n)$ -a
	Proof: We must determine the size of the grammar generated by th

	C. An $O(\log n/m^*)$ -Approximation Algorithm
	D. An LZ77 Variant
	Lemma 9: The length of the shortest LZ77 sequence for a string i
	Proof: Suppose that a string is generated by a grammar of size $

	E. Balanced Binary Grammars
	1) The A DD P AIR Operation: This operation begins with a balanc
	Case 1: If Z_i and Y_{i+1} are in balance, then we create a
	Case 2: Otherwise, if A_i is in balance with $B_i Y_{i+1}$, th
	Case 3: Otherwise, suppose that B_i is defined by the rule $B_
	2) The A DD S EQUENCE Operation: The A DD S EQUENCE operation is
	3) The A DD S UBSTRING Operation: This operation takes a balance

	F. The Algorithm
	G. Grammar-Based Compression Versus LZ77
	VIII. F UTURE D IRECTIONS
	A. Analysis of Global Algorithms
	B. Algebraic Extraction
	C. String Complexity in Other Natural Models

	J. Ziv and A. Lempel, Compression of individual sequences via va
	T. A. Welch, A technique for high-performance data compression,
	J. C. Kieffer, E. H. Yang, G. J. Nelson, and P. Cosman, Universa
	E. H. Yang and J. C. Kieffer, Efficient universal lossless data
	J. C. Kieffer and E. H. Yang, Grammar based codes: A new class o
	C. G. Nevill-Manning, Inferring sequential structure, Ph.D. diss
	N. J. Larsson and A. Moffat, Offline dictionary-based compressio
	J. K. Lanctot, M. Li, and E. H. Yang, Estimating DNA sequence en
	C. G. de Marcken, Unsupervised language acquisition, Ph.D. disse
	A. Apostolico and S. Lonardi, Off-line compression by greedy tex
	A. N. Kolmogorov, Three approaches to the quantitative definitio
	C. G. Nevill-Manning and I. H. Witten, Identifying hierarchical
	T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa, A
	J. C. Kieffer and E. H. Yang, Sequential codes, lossless compres
	G. Nelson, J. C. Kieffer, and P. C. Cosman, An interesting hiera
	R. E. Bryant, Graph-based algorithms for Boolean function manipu
	J. C. Kieffer, P. Flajolet, and E.-H. Yang, Data compression via
	C.-H. Lai and T.-F. Chen, Compressing inverted files in scalable
	A. Lempel and J. Ziv, On the complexity of finite sequences, IEE
	J. Ziv and A. Lempel, A universal algorithm for sequential data
	J. A. Storer, Data compression: Methods and complexity, Ph.D. di
	J. A. Storer and T. G. Szymanski, Data compression via textual s
	J. A. Storer, Data Compression: Methods and Theory . Rockville,
	A. Apostolico and S. Lonardi, Compression of biological sequence
	Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. S
	S. R. Kosaraju and G. Manzini, Compression of low entropy string
	P. Berman and M. Karpinski, On Some Tighter Inapproximability Re
	D. E. Knuth, Seminumerical Algorithms . Reading, MA: Addison-Wes
	E. G. Thurber, Efficient generation of minimal length addition c
	P. Erdös, Remarks on number theory III, ACTA Arithmetica, vol.
	P. Downey, B. Leong, and R. Sethi, Computing sequences with addi
	A. C.-C. Yao, On the evaluation of powers, SIAM J. Comput., vol
	P. Gage, A new algorithm for data compression, The C Users J.,
	A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis, Linear ap
	C. G. Nevill-Manning and I. H. Witten, Compression and explanati
	N. Pippenger, On the evaluation of powers and monomials, SIAM J.
	R. K. Brayton and C. McMullen, The decomposition and factorizati
	R. K. Brayon, R. L. Rudell, A. L. Sangiovanni-Vincentelli, and A
	J. Rajski and J. Vasudevamurthy, The testability-preserving conc

