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Abstract. Motivated by the problem of protecting cryptographic hard-
ware, we continue the investigation of private circuits initiated in [16]. In
this work, our aim is to construct circuits that should protect the secrecy
of their internal state against an adversary who may modify the values
of an unbounded number of wires, anywhere in the circuit. In contrast,
all previous works on protecting cryptographic hardware relied on an
assumption that some portion of the circuit must remain completely free
from tampering.

We obtain the first feasibility results for such private circuits. Our
main result is an efficient transformation of a circuit C, realizing an arbi-
trary (reactive) functionality, into a private circuit C′ realizing the same
functionality. The transformed circuit can successfully detect any serious
tampering and erase all data in the memory. In terms of the information
available to the adversary, even in the presence of an unbounded number
of adaptive wire faults, the circuit C′ emulates a black-box access to C.

1 Introduction

Can you keep a secret when your brain is being tampered with? In this paper we
study the seemingly paradoxical problem of constructing a circuit such that all
parts of the circuit are open to tampering at the level of logic gates and wires,
and yet the circuit can maintain the secrecy of contents of memory. We construct
private circuits which, even as they are being tampered with, can detect such
tampering and, if necessary, “self-destruct” to prevent leaking their secrets. We
consider security against a powerful inquisitor who may adaptively query the
circuit while tampering with an arbitrary subset of wires within the circuit,
including the part of the circuit that is designed to detect tampering.

The above question is motivated by the goal of designing secure cryptographic
hardware. While the traditional focus of cryptography is on analyzing algorithms,
in recent years there have been growing concerns about physical attacks that
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exploit the implementations (rather than the functionality) of cryptographic
primitives. For instance, it is in some cases possible to learn the secret key of
an encryption scheme by measuring the power consumed during an encryption
operation or the time it takes for the operation to complete [19, 20]. Other types
of physical attacks rely on inducing faults [6, 5, 20], electromagnetic radiation
[28, 11, 29], magnetic fields [27], cache hit ratios [18, 24], probing wires using a
metal needle [1], and others [17, 31, 32, 30, 2, 30]. In general, attacks of this type
have proven to be a significant threat to the practical security of embedded
cryptographic devices.

One possible approach for defeating the above type of attacks is by design-
ing specific hardware countermeasures, such as adding large capacitors to hide
the power consumption. Many such countermeasures have been proposed in the
literature. An inherent limitation of these approaches is that each such counter-
measure must be specially tailored for the set of specific physical attacks it is
intended to defeat. For example, one might design physical protection against
attacks based on electro-magnetic radiation, but still be vulnerable to attacks
based on physical probes.

A different approach is to tackle the problem at the logical level, namely by
designing algorithms that, when implemented, will be robust against a wide class
of physical attacks. Here, we would want to classify attacks not based on the
physical mechanism of the attack, but rather on the logical effect of the attack –
for instance, can we defend against all physical attacks that toggle the value on
a wire? Several ad-hoc approaches have been suggested (e.g., [10, 21, 15]) with
some subsequently broken [7, 9]. Recently, a more general and theoretically sound
study of physical security has been initiated in [16, 22, 12] (see Section 1.4 for an
account of this related work).

The current paper continues this line of work, but departs from all previous
work in the following fundamental way. All types of attacks that were previously
considered from a theoretical perspective are either (1) in some sense spatially
limited, and in particular cannot be applied to the entire circuitry on which
they are mounted [12]; or (2) deal with observation rather than faults [16, 22].
The question that motivates our work is the intriguing possibility of offering
protection even against adversaries that can tamper with the entire circuit. This
goal might sound too ambitious. For instance, the adversary can easily modify
the functionality of the circuit by simply destroying it completely. However, this
does not rule out the possibility of preventing the adversary from learning the
secret information, say a cryptographic key, stored in the circuit. Once the device
is already in the hands of the adversary, secrecy is the primary relevant concern.

The above question is captured by our notion of a private circuit, which we
also call a self-destructing circuit. Informally, such a circuit should carry out
some specified functionality (say, encryption) while protecting the secrecy of its
internal state (a key) even against an unbounded number of adversarial faults.
A natural way for achieving this goal is to build a tamper detection mechanism
which can detect faults and trigger a “self-destruction” mechanism to erase all
internal state. (This is akin to a prisoner of war taking a suicide pill.) The
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central problem with implementing this approach in our setting is that such a
tamper detection circuitry as well as the self-destruction mechanism itself can be
attacked and disabled by the adversary. Thus, it is tempting to conjecture that
such self-destructing circuits simply cannot exist.

In this paper, we obtain the first positive results establishing the feasibility
of private circuits in the presence of adversarial faults that can affect any wire
inside the circuit. Before describing our results, we give some further motivating
discussion, and a more detailed account of the types of circuits and the fault
model we consider.

1.1 Discussion of Difficulties

We briefly discuss some natural ideas to prevent loss of privacy due to faults
and why they don’t appear to work, as well as some inherent limitations to our
model.

Natural Approaches. First, one can consider standard techniques for fault-
tolerant circuits based on error-correcting codes or redundancy (see [26] and
references therein). However, such approaches are limited to tolerating only a
bounded number of total adversarial faults, whereas we are interested in the
case where the adversary can induce, over time, an unbounded number of faults,
eventually even faulting every wire in the circuit!

Next, one may think of using signature schemes or related techniques, which
would work as follows at a high level: hard-wire into the circuit a signature on
the circuit, and then verify the correctness of the signature before executing the
original functionality, otherwise cause a “self-destruct” (c.f. [12]). In our con-
text, this fails for a simple reason: the adversary can fault the wire in the circuit
that contains the “Correct”/“Incorrect” output of the signature verification al-
gorithm, so that this wire always reads “Correct”, regardless of whether the
signature verification succeeded or not.

Similarly, one may think of directly applying multi-party computing tech-
niques [14, 4, 8] providing security against mobile Byzantine faults [23]. However,
here we cannot rely on an “honest majority”, since there is an unbounded num-
ber of faults, and every part of the circuit is susceptible to attacks. In protocols
for multi-party computation with no honest majority, each party executes a large
set of instructions, which invariably includes a verification step. In our model,
the adversary can fault just this verification portion of each party’s computa-
tion in order to fool the party into thinking that the verification always succeeds.
Thus, whatever approach we take, we must somehow prevent this kind of attack.

Another idea that seems to immediately help is to use randomization: perhaps
if we randomly encode “Correct” or “Incorrect” as 0 or 1, then we can prevent
the above problems. But even this is problematic, because the adversary can, as
its first set of actions, create faults that set all wires that should contain random
values to 0, thereby eliminating the randomization. (In our approach, we are
able to combine randomization ideas with other redundant encodings in order
to fault-tolerantly detect such behavior.)
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Limitations. To motivate the type of fault model we consider, it is instruc-
tive to address some inherent limitations on the type of adversarial behavior
one could hope to resist, and still obtain a general transformation result that
holds for all circuits. These limitations follow from the impossibility of program
obfuscation [3]: The most immediate limitation is observed in [16], that it is im-
possible to protect against an attacker which can simultaneously read the values
of all wires in the circuit. However, a number of natural fault models are also
equivalent to program obfuscation. For instance, allowing the adversary to cause
arbitrary immediate changes to the entire circuit trivially allows it to replace the
entire circuit with one that outputs the contents of all memory, thus making the
problem equivalent to program obfuscation. Similarly, if the adversary is allowed
to insert or replace wires it can mount the same type of attack by undetectably
adding wires from all memory cells to the output.

These limitations mean that we must consider attack models in which the ad-
versary is more restricted. We concentrate on models in which the adversary can
cause an unbounded number of faults over time, where these faults are localized
to individual wires anywhere in the circuit.

1.2 The Model

We consider reactive functionalities, i.e., functions with an internal state that
may be updated at each invocation. Such a functionality can be realized by a
stateful boolean circuit C that, given an external input and its current internal
state, produces an external output and a new internal state. (The state corre-
sponds to some secret data stored in the circuit’s memory.) We think of the
interaction of such a circuit with the environment as being paced by clock cy-
cles, where in each cycle the circuit receives an input, produces an output, and
updates its internal state.1 We would like to protect the secrecy of the inter-
nal state against an adversary that can induce faults in an unbounded number
of wires. That is, in each clock cycle (or epoch) the adversary can adaptively
choose t wires and permanently “set” (to 1), “reset” (to 0), or “toggle” the value
of each wire. Then, the adversary can feed a new input to the modified circuit
and observe the resulting output. By inducing such faults, the adversary’s hope
is to extract more information about the circuit’s internal state than is possible
via black-box access to the circuit. For instance, if the circuit implements an en-
cryption or a signature scheme, the adversary may try to learn some nontrivial
information about the secret key.

Our goal is to prevent the adversary from gaining any advantage by mounting
the above type of attack. We formalize this requirement via a simulation-based

1 An attacker may also try to tamper with the clock. To counter such attacks, we
envision the use of volatile memory, such as DRAM, to implement memory cells
whose contents fade over time if not refreshed regularly. In our main result, we need
to assume that the attacker cannot induce too many faults within a single “epoch”
defined by the amount of time it takes for the volatile memory to lose its value. If
the adversary is tampering with the clock, then we define a clock cycle to the lesser
of the actual clock cycle and one epoch.
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definition (in the spirit of similar definitions from [16, 12]). Specifically, we say
that a stateful circuit C′ is a secure private (or self-destructing) implementation
of C if there is a (randomized, efficient) transformation from an initial state s0
and circuit C to an initial state s′0 and circuit C′ such that:

1. C′[s′0] realizes the same functionality as C[s0].
2. Whatever the adversary can observe by interacting with C′[s′0] and adap-

tively inducing an unbounded number of wire faults, can be simulated by
only making a black-box use of C[s0], without inducing any faults.

1.3 Our Contribution

We present general feasibility results, showing how to efficiently transform an
arbitrary (reactive, stateful) circuit C into an equivalent self-destructing circuit
C′. Specifically:

1. In the case of reset only wire faults (set wires or memory cells to 0), the circuit
C′ is secure against an unbounded number of adaptive faults. Security is
either statistical, if C′ is allowed to produce fresh randomness in each cycle,
or is computational otherwise.

2. In the case of arbitrary wire faults (set wires or memory cells to 1, set to
0, or toggle the value), we can get the same results as above except that
we limit the adversary to performing only a bounded number of faults per
clock cycle.2 Since the adversary can choose the faults to be permanent, the
overall number of faults is still unbounded.

In all cases, the circuit C′ is proven secure under the conservative simulation-
based definition outlined above. Our techniques in both constructions can also
yield privacy against a bounded number of probing attacks per cycle as per [16].

Our Techniques. A central high-level idea behind our constructions is the
following. Given a circuit C, we compile it into a similar circuit C′ which can
be viewed as a “randomized minefield”. As long as C′ is not tampered with, it
has the same functionality as C. However, any tampering with C′ will lead with
high probability to “exploding a mine”, triggering an automatic self-destruction
and rendering C′ useless to the adversary.

Implementing the above approach is far from being straightforward. One prob-
lem that needs to be dealt with is preventing the adversary from learning some
useful partial information by merely getting “lucky” enough to not land on a
mine. This problem is aggravated by the fact that the adversary may possess
partial information about the values of internal circuit wires, implied by the ob-
served inputs and outputs. Another problem, already discussed above, is that of
2 The complexity of the constructions depends linearly on the parameter t bounding

the number of faults. In fact, our constructions resist attacks that can involve an
arbitrary number of simultaneous faults, provided that no more than t faults are
(simultaneously) concentrated in the same area. Thus, the task of mounting such a
coordinated attack within a single clock cycle does not become easier as the size of
the circuit grows.
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protecting the self-destruction mechanism itself from being destroyed. This dif-
ficulty is overcome through a novel distributed and randomized self-destruction
mechanism.

Combining the techniques in this paper with the results in [16], one can con-
struct self-destructing circuits which simultaneously resist probing attacks in
addition to fault attacks. (As in [16], and as discussed above, we need to con-
sider a limited number of probes in each clock cycle.)

1.4 Related Work

As noted above, negative results for program obfuscation [3] rule out the pos-
sibility of defeating adversaries who can observe all values propagating through
the circuit, for all circuits. This observation motivated the study of “private cir-
cuits”, withstanding a limited number of such probing attacks [16]. The results
of [16] do not consider active faults of the type considered here, yet are used as
an essential building block in our main constructions.

A more general study of security against passive attacks was taken in [22] un-
der an elegant framework of “physically observable cryptography”. In contrast
to [16], the focus of [22] is on obtaining model-independent reductions between
physically secure primitives rather than implement them with respect to a spe-
cific attack model.

Most relevant to our work is the work of Gennaro et al. [12], who considered
the problem of achieving security when an adversary can tamper with hardware.
In contrast to the current work, they make the (seemingly necessary) assumption
that there are parts of the circuitry that are totally tamper-proof. Indeed, as
discussed above, the typical use in [12] is to have a signature stored in memory
that is verified by the tamper-proof hardware. We stress that in our model, no
part of the circuitry is free from tampering. In particular, all wires and internal
memory cells can be affected. Thus, if an approach like the above is attempted,
the adversary can tamper with the signature-checking portion of the circuitry
(e.g., permanently fixing the output bit of the signature checker to indicate
success). To the best of our knowledge, our work is the first that allows every
portion of the hardware to be tampered with, at the level of individual wires
between logical gates.

We note that [12] consider a more general type of tampering attack, albeit
in a more restricted setting, in which the adversary can apply an arbitrary
polynomial-time computable function to the contents of the memory. Defend-
ing against this general type of attacks is, in general, impossible in our setting
(where no wire is free from tampering). Indeed, if the attacker could simply
set the value of a wire to some arbitrary function of the other wires, then the
impossibility result based on program obfuscation [3] would still hold.

Finally, it is instructive to contrast the positive results we achieve with a
negative result from [12]. In the model of [12] it is shown that an attacker can
recover the secret information stored in the memory, say a signature key, by
sequentially setting or resetting bits of the memory and observing the effects
of these changes on the output. Our model gets around this impossibility by
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allowing to feed values back into the memory. This form of feedback, which
prevails in real-world computing devices, is essential for realizing the strong
notion of privacy considered in this work.

1.5 Future Work

In this work we initiate the study of a fascinating question — can a circuit keep
a secret even when all parts of the circuit are open to tampering? We give the
first positive results, for an unbounded number of individual wire faults to any
set of wires in the circuit. We believe the theory of private circuits, and private
cryptographic implementations more generally, is still in its infancy and there are
many more questions to address. Most notably, what other fault models allow for
general positive results? As discussed above, negative results on obfuscation [3]
give rise to severe restrictions on such fault models.

2 Preliminaries

Physical Model. We consider clocked circuits with memory gates. Specifically,
our model is as follows:

– A memory gate has one input wire and one output wire: in each clock cycle,
the output value of the memory gate becomes the input value from the
previous clock cycle. The memory can be initialized with some data, which
gets updated in each clock cycle. We shall denote a circuit C initialized with
data D by C[D].

– In addition to the memory gates, the circuit can have AND, OR and NOT
gates, as well as input wires and output wires.

– The adversary can set each input wire to 0 or 1, and can read output wires.
– The adversary can also cause faults in the circuit. We consider the following

kinds of faults: (1) setting a wire to 1 (which we call a “set” attack), (2)
setting a wire to 0 (which we call a “reset” attack), or (3) toggling the value
on a wire.

– We assume that wires are conducting: that is, with a single fault on a wire
the adversary simultaneously causes faults everywhere that wire goes. In
our construction in Section 5 we use NOT gates which are reversible (see
e.g. [33]), so that faults on the output side of a NOT gate propagate to
the input side. For AND and OR gates (as well as NOT gates in the con-
struction in Section 4), faults can be introduced on input and output wires
independently of each other.

Circuit Transformations. We shall refer to transformations which take a (cir-
cuit, data) pair to another (circuit, data) pair. It will always be the case that
these are two separate transformations carried out independently of each other,
one for the circuit and one for the data. However, for convenience and brevity
we shall use a single transformation to denote these two transformations.
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Definition 1. A transformation between (circuit, data) pairs T (k) is called func-
tionality preserving if for any pair (C, D), if T (k)(C, D) �→ (C1, D1) then C[D]
and C1[D1] have the same input-output behavior.

ISW Transformation and Security Definition. The starting point for our
constructions is a transformation T

(k)
isw from [16]. The transformation yields a

circuit which uses standard gates and some randomness gates (which output fresh
random bits in each clock cycle). T

(k)
isw ensures that reading (but not tampering

with) “a few wires” of the circuit in each clock cycle does not leak any information
about the initial data in the memory (beyond what the output reveals). This is
achieved using a (proactive) secret-sharing scheme, which shares each bit among
k or more wires. Here we will not need any particulars of that construction,
beyond the properties summarized below.

T
(k)
isw (C, D) �→ (C′, D′), is a functionality preserving transformation where

each wire in C′ is assigned at most two indices from [k]. To define the security
guarantees of T

(k)
isw we define two adversaries: an “ideal” adversary which has

only black-box access to C and a “real” adversary which can probe the internals
of C′. For future reference we define these classes of adversaries Aideal and A

(k)
isw

more formally, below.

– If A ∈ Aideal is given a circuit C[D], then in every clock cycle A can feed
inputs to the circuit and observe the outputs. This kind of access to the
circuit is considered legitimate (ideal).

– If A ∈ A
(k)
isw is given a circuit C′[D′] with wires indexed from [k], then in

each cycle it can feed inputs to the circuit, read the outputs and probe wires
in the circuit such that no more than k − 1 indices are covered by the wires
probed in that clock cycle.3

Without loss of generality, all adversaries are considered to output a single bit
at the end of the interaction with the circuit.

Lemma 1 (Properties of the ISW Transformation). [16] There exists a
functionality preserving transformation T

(k)
isw (C, D) �→ (C′, D′), where C′ uses

AND gates, XOR gates, NOT gates and “randomness gates,” and each wire is
assigned at most two indices from [k], such that the following hold:

1. Values on any k − 1 wires in C′ (excluding wires in the input and output
phases), such that no two wires share an index, are distributed so that the
following condition holds (distribution being as determined by the distribution
of the outputs of the randomness gates during that clock cycle): any bit, even
conditioned on all other k − 2 bits and all other information obtained by any
A′ ∈ A

(k)
isw in previous clock cycles, has entropy at least c for a fixed c > 0.

3 To be precise about the counting, we should consider the values on the wires that go
into the memory at a clock cycle same as the values that come out of the memory
at the next clock cycle. Thus probing one of these wires in one clock cycle counts
towards probes in both clock cycles.



316 Y. Ishai et al.

2. ∀C, ∃Sisw (a universal simulator), such that ∀D, ∀A′ ∈ A
(k)
isw, we have S′ =

SA′

isw
∈ Aideal, and S′ after interacting with C[D] outputs 1 with almost the

same probability as A′ outputs 1 after interacting with C′ [D′ ] (the difference
in probabilities being negligible in the security parameter k).

We remark that in [16] these properties are not explicitly stated in this form.
In particular in the second property above, [16] is interested only in restricting
A′ to probing at most (k − 1)/2 wires. However to employ T

(k)
isw within our

transformations we shall use the fact that the construction allows A′ to probe
any number of wires as long as they cover at most k − 1 indices.

3 Security When Circuits Are Completely Tamperable

In the next two sections we present our constructions which do not require any
untamperable components (except the topology of the circuit and the atomic
gates (AND, NOT, OR)). The adversary is allowed to change the values in any
of the wires in the circuit. We give constructions for two scenarios:

1. Tamper-resistance against “reset” attacks: In this case the only kind
of faults that the adversary can introduce into the circuit are “resets.” That
is, it can change the value of any wire to zero (but not to one). In each clock
cycle, the adversary can set the input values, reset any number of wires of
its choice and observe the outputs. We call this class of adversaries Areset.

2. Tamper-resistance against “set, reset and toggle” attacks: Here the
adversary is allowed to set or reset the wires. That is, it can change the
value of any wire to one or zero. Also, it can toggle the value in a wire (if
the value prior to attack is zero, change it to one, and vice versa). There is
an a priori bound on the number of new wires it can attack (set, reset or
toggle) at each clock cycle. However, it is allowed to introduce persistent (or
permanent) faults to any wire it attacks (such a fault will not be counted as
a new fault in every cycle). Hence, after multiple clock cycles, the adversary
can potentially have faults in all the wires in the circuit simultaneously. We
call this class of adversaries A

(t)
tamper, where t is the bound on the number of

wires the adversary can attack in each clock cycle.

The two constructions use similar techniques. First we introduce our basic
construction techniques and proof ideas for the reset-only case, and then explain
the extensions used to make the construction work for the general case.

4 Tamper-Resistance Against Reset Attacks

We present our construction as two transformations T
(k)
1 and T

(k)
2 . The com-

plete transformation consists of applying T
(k)
1 followed by T

(k)
2 . The first trans-

formation converts any given circuit to a private circuit which uses “encoded
randomness gates” (which output fresh random bits in every cycle, but each



Private Circuits II: Keeping Secrets in Tamperable Circuits 317

bit of the output is encoded into a pair of bits as explained later). The second
transformation converts the resulting circuit to a standard deterministic circuit
(using only AND, NOT and OR gates), while preserving the security property.
The formal security statements for T

(k)
1 and T

(k)
2 follow.

Lemma 2. There is a polynomial time (in input size and security parameter k)
functionality preserving transformation T

(k)
1 (C, D) �→ (C1, D1), where C1 uses

“encoded randomness gates,” such that ∀C, ∃S1 (a universal simulator), such
that ∀D, ∀A1 ∈ Areset, we have S = SA1

1 ∈ Aideal and the following two
experiments output 1 one with almost the same probability (the difference in
probabilities being negligible in the security parameter k):

– Experiment A: S outputs a bit after interacting with C[D].
– Experiment B: A1 outputs a bit after interacting with C1[D1].

Lemma 3. There is a polynomial time (in input size and security parameter
k) functionality preserving transformation T

(k)
2 (C1, D1) �→ (C2, D2), where C1

may use encoded randomness gates, such that ∀C1, ∃S2 (a universal simulator),
such that ∀D1, ∀A ∈ Areset, we have A1 = SA

2 ∈ Areset and the following
two experiments output 1 with almost the same probability (the difference in
probabilities being negligible in the security parameter k):

– Experiment B: A1 outputs a bit after interacting with C1[D1].
– Experiment C: A outputs a bit after interacting with C2[D2].

Theorem 1. There is a polynomial time (in input size and security parameter
k) functionality preserving transformation T

(k)
reset(C, D) �→ (C2, D2), such that

∀C, ∃S0 (a universal simulator), such that ∀D, ∀A ∈ Areset, we have S =
SA

0 ∈ Aideal and experiment A and experiment C output 1 with almost the
same probability (the difference in probabilities being negligible in the security
parameter k).

Proof. This follows from the above two lemmas, by setting T
(k)
reset(C, D) =

T
(k)
2 (T (k)

1 (C, D)) and SA
0 = SSA

2
1 .

4.1 Proof of Lemma 2

As proof of Lemma 2 we first present the transformation T
(k)
1 . We then will

demonstrate a universal simulator as required in the Lemma and show the cor-
rectness of simulation.

The Transformation T
(k)
1 . The transformation T

(k)
1 is carried out in two

stages. In the first step, we apply the transformation T
(k)
isw from [16] to (C, D) to

obtain (C′, D′).
Next we shall transform (C′, D′) further so that the following “encoding” gets

applied to all the data: the bit 0 is mapped to a pair of bits 01 and the bit 1
is mapped to 10. We shall refer to this encoding as the Manchester encoding.
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Encoding D′ to get D1 is straight-forward: we simply replace 0 and 1 by 01
and 10 respectively (thereby doubling the size of the memory and doubling the
number of wires connecting the memory to the circuit). C′ is transformed to get
C1 as follows:

1. The input data is passed through a simple encoding gadget, which converts
0 to 01 and 1 to 10. The encoding simply involves fanning out the signal into
two: the first output wire and an input to a NOT gate whose output is the
second output wire.

2. The “core” of the circuit C1 is derived from C′ as follows: every wire in C′

is replaced by a pair of wires. Then the input wire pairs are connected to
the outputs from the encoding gates (described above), and the output wire
pairs are fed into the decoding phase (below). The gates to which the wires
are connected are modified as follows:
(a) Each randomness gate is replaced by an encoded randomness gate.
(b) XOR and AND gates in C′ are replaced by the gadgets shown in Figure 1.

NOT gates are replaced by a gadget which simply swaps the two wires
in the pair.

3. An “error cascade” stage (described below) is added before the output stage
(including the output from the circuit to the memory).

4. A simple decoding stage is added just before the final output wires (excluding
the wires going into the memory): the decoding is done by simply ignoring
the second wire in the encoding of each signal.

Error Cascading. The circuit will be designed to “detect” reset attacks, and if
an attack is detected, to erase all the data in the memory. (Such self-destruction
is not required by Lemma 2, but it is a desirable property that is achieved by
our construction.) The basic step in this is to ensure that if a detectable error is
produced at some point in the circuit, it is propagated all the way to an “error
cascading stage” (such an error propagation will be ensured by the gadgets in
Figure 1). Then, the cascading stage will ensure that all the data in the memory
and output is erased.

Fig. 1. XOR and AND Gadgets used by T
(k)
1 . Note that the outputs of the gadgets

are implemented as OR of ANDs of input wires and their NOTs. It is important that
the gadgets do not have NOT gates except at the input side (to maintain the invariant
that the encoding 11 does not appear in the circuit).
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Fig. 2. The error-cascade phase and the truth table of the cascade gadget used by T
(k)
1

The detectable error referred to above is the invalid encoding 00 in a pair of
wires corresponding to a single wire in C′. Recall that the only valid encodings
are 01 and 10. We shall denote the encoding 00 by the symbolic value ⊥. (We will
show that the transformed circuit is so designed that the other invalid encoding,
namely 11, will never occur in the circuit, even after any number of reset attacks.)
As sketched in Figure 2, the error cascading phase is built using small cascade
gadgets which take two encoded inputs and convert them both to ⊥ if either of
them is ⊥. (These gadgets are implemented similar to the gadgets in Figure 1,
with NOT gates only at the input side.) It is easy to see that if any of the
input pairs has the value ⊥, then after the cascade phase all output pairs will
encode ⊥.

All the wire pairs going to the output or back to the memory are passed
through the cascade phase. In addition, for simplicity, we shall have all the wire
pairs coming from the input and from the memory also go into the cascade phase.
This will ensure that if a ⊥ value appears anywhere in the memory or input,
the entire memory is erased in the next round (even if the wire pair where ⊥
originally appears does not influence the output or memory otherwise).

Note that in Figure 2 the inputs to the cascade stage are ordered top to
bottom. The wire pairs corresponding to the output signals are fed into the
cascade phase first and the other signals are fed into the cascade phase below
them. This will ensure that even if a ⊥ is introduced within the cascade phase,
but in one of the wires going into the memory, the entire output is erased in
the same clock cycle (and the memory contents will get erased in the next clock
cycle). We shall use the convention that the wires within the cascade phase,
except those corresponding to the output wires, are considered as part of the
core of the circuit.

The Simulator for T
(k)
1 . The universal simulator S1 is constructed as follows:

S1 runs A1, simulating to it C1[D1]. This means A1 can request a particular
input value for C1, and expect to be provided the output from C1 for that input.
Further A1 can request that a particular reset attack be applied to C1. The
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output of the simulated C1 that S1 provides to A1 should be indistinguishable
from what A1 would have seen had it been actually working with C1[D1]. How-
ever, S1 has to do this with only black-box access to (the functionally equivalent)
C[D].

S1 internally runs the simulator Sisw corresponding to the transformation T
(k)
isw

which takes C to C′. It gives Sisw blackbox access to C, which can then simulate
(non-blackbox, probing) access to C′. So S1 can work as if it had (probing) access
to C′. It then requests Sisw to set the inputs to (the simulated) C′ to the same
as the input A1 requests for C1. It provides A1 with the output values of the
simulated C1 which are the same as that given by Sisw. We need to describe how
the reset attacks launched by A1 on C1 are translated by S1 to probing attacks
on C′.

Recall that C1 is composed of an encoding of C′, and a few extra phases
(input encoding, error cascading and output decoding phases). S1 maintains a
flag called destroyed which is initially set to false. While the flag remains set
to false, at each clock cycle, S1 receives an attack pattern (i.e., a collection of
reset attacks) from A1 and applies it to the simulated circuit as follows.

1. For attacked wires that belong to the core of the circuit: S1 will determine a
set of indices I ⊂ [k], as follows. I is initialized to the empty set. Then each
attacked wire is considered as below:
(a) If the attacked wire is outside of the gadgets in Figure 1: Then the wire

is one of a wire pair in C1 which encodes a single a wire in C′. Recall
that all the wires in C′ are indexed by values in [k]. S1 will add the index
of the wire corresponding to the wire that is reset, to I. (If the wire has
two index values, both are added to I.)4

(b) If the attacked wire is inside a gadget in Figure 1: The gadget corresponds
to a gate (AND, XOR or NOT) in C′. For each input wire to this gate in
C′, S1 checks if that wire has an influence on whether the attack creates
a ⊥ value or not. A wire is said to have such an influence if there are two
settings of the values of the input to the gate such that in one a ⊥ value
is created and in the other it is not. S1 adds the indices of the wires with
influence to I.

Once I is determined by considering all attacks in the core of the circuit,
S1 (acting as the adversary A′) will make probes into the circuit simulated
by Sisw on all wires with indices in I. From the values obtained from this
probe, it can check if the reset attacks produce a ⊥. If they do, then S1 will
set the flag destroyed.
Note that Sisw allows I to have at most k − 1 indices. If I is of size k (i.e.,
I = [k]), then S1 sets the flag destroyed (without querying Sisw).

2. For attacked wires that belong to the encoding phase: Such a wire is an input
to an encoding gate (the outputs from an encoding gate are considered part

4 C′ has input encoding and output decoding phases. Recall that the wires in these
phases are not indexed by values in [k] and the Manchester encodings of these wires
are not considered to belong to the core of the transformed circuit.
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of the core of the circuit), or equivalently an input to the simulated C1. In
this case the corresponding input to C′ is set to zero.

3. For attacked wires that belong to the cascade phase: The cascade phase con-
sists of pairs of wire which correspond to wires going to the output phase in
C′. (The wires in the cascade phase that correspond to the wires going to
the memory are considered part of the core of the circuit). S1 obtains the
values on these from the simulated C1 and determines how the attack affects
the output from the cascade phase.

4. For attacked wires is in the decode phase: A reset attack on the second wire
in a pair does not have any influence on the output while a reset attack on
the first wire causes the corresponding output to be reset.

Once the flag destroyed is set S1 simply produces the all zero output in every
round.

The Proof. We start by observing what reset attacks can do in C1. An invariant
maintained in C1 is that no wire pair carries the value 11: this is true for the data
in the memory and also for the inputs coming out of the encoding stage; a reset
attack on a wire which is 00, 10 or 01 cannot generate 11; further each gadget
ensures that the invariant is maintained from inputs to outputs even when the
internal wires of the gadget are attacked. (This follows from an analysis of the
gadgets of the form of “OR of ANDs of signals and their NOTs.”) Not having
11 in the wires has the following consequences:

– Impossibility of changing a signal to a non-⊥ value: Reset attacks can either
leave a wire pair unchanged, or convert it to a ⊥, but not generate a new
non-⊥ value.

– ⊥ Propagation and Self-destruction: The gadgets shown in Figure 1 are “⊥-
propagating.” That is, if any input wire pair encodes ⊥ the output will be
⊥ too. Thus any ⊥ introduced by an attack in the core of the circuit will
reach the cascade stage, which will ensure that even a single ⊥ will result in
the entire memory being erased and the outputs zeroed out.
Thus, the output of the circuit will either be correct (or contain resets intro-
duced after the cascade stage), or will be all zeroes. If a ⊥ is introduced it
will result in the entire memory being erased as well. If the ⊥ is introduced
after the cascade phase, this will happen in the next round.

Now we turn to the simulation by S1. S1 simply uses Sisw to get the outputs
and also to check if a ⊥ is created by the resets.

First, suppose that the set of indices I determined by S1 is of size at most
k − 1 in each round. In this case we observe the simulation by S1 is perfect.
This is because, in the simulation, C1 as simulated by S1 can be considered to
encode the values in C′ as simulated by Sisw. Since in this case for each reset
Sisw allows all the indices to be queried, S1 can precisely determine if a ⊥ value
is created or not in the core of C1. When ⊥ is not created, the output is simply
the correct output (with any modifications caused by reset attacks in or after
the cascade phase). When ⊥ is created in the core, the output will be all zeroes
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in all subsequent clock cycles. Note that if a ⊥ is created in the cascade phase
in a signal going to the memory (which is considered part of the core), though
the output is zeroed out in the same clock cycle, the memory may be zeroed out
only in the next clock cycle.

Now we consider the case when I = [k] in some round. S1 sets the flag
destroyed but it is possible that in C1 corresponding to C′ as simulated by Sisw,
⊥ is not produced. However the probability of the latter happening is negligible
in k. To see this, note that in building I, whenever a reset attack causes new
indices to be added to I, there is a constant probability (independent of values of
wires of indices already added to I) that a ⊥ is produced by that attack. Further
for each attack at most four indices are added (at most two inputs to a gate,
each with at most two indices). Thus having added indices for Ω(k) attacks, the
probability that none of the attacks produce a ⊥ is exponentially small in k.

Thus in either case the simulation is good.

4.2 Proof of Lemma 3

The transformation T
(k)
2 removes the “encoded randomness gates” from a circuit.

If (C2, D2) = T
(k)
2 (C1, D1) we need to show that an adversary A cannot gain

any advantage in Experiment C in Lemma 3 than it will when employed by a
simulator S2 in Experiment B.

The plan is to replace the encoded randomness gates with some sort of a
pseudorandom generator (PRG) circuit, with an initial seed built into the mem-
ory. However, since the PRG circuit itself is open to attack from the adversary, it
needs to be somehow protected. First we introduce a transformation which gives
a weak protection. Then we show how multiple PRG units protected by such a
transformation can be put together to obtain a PRG implementation which will
also be secure against the reset attacks.

Lemma 4. Weak Protection Against Reset Attacks: There is a polyno-
mial time (in input size and security parameter k) transformation T

(k)
weak(CP , DP )

�→ (CQ, DQ), such that the following properties hold for all CP and DP :

– CQ[DQ] is functionally equivalent to CP [DP ], except that the output of CQ

is Manchester encoded.
– Consider any adversary A ∈ Areset interacting with CQ[DQ]. If it resets

even one wire inside CQ (not an input or output wire), with probability at
least q (for some constant q > 0), at least one of the output signals of CQ

becomes ⊥.

T
(k)
weak differs from T

(k)
1 in that the resulting circuit (CQ, above) does not contain

any encoded randomness gates. It is just a conventional deterministic circuit. On
the other hand, the guarantee given by the transformation is much weaker: it
guarantees introducing a ⊥ into the output only with some positive probability.

The basic idea behind the construction is to randomize all the signals in the
circuit, so that a reset attack has a constant probability of causing a ⊥. The
construction is essentially the same as T

(2)
1 (i.e., with security parameter 2), but
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without using randomness gates. Instead we use built-in randomness (i.e., it is
stored in the memory). This will be sufficient to guarantee that the first time
the circuit is attacked, there is a constant probability of producing a ⊥. Also for
this transformation we do not need the cascade stage and the output decoding
stage of T

(2)
1 .

Transformation T
(k)
2 . Now we are ready to describe T

(k)
2 . Suppose the in-

put circuit requires n encoded random bits. Let CP be a PRG circuit, which
at every round, outputs n freshly generated pseudorandom bits, as well as re-
freshes its seed (kept in the memory). Consider k such circuits CP [Di

P ], Di
P

being a uniformly and independently drawn seed for the PRG. Let (CQ, Di
Q) =

T
(k)
weak(CP , Di

P ). T
(k)
2 replaces the collection of all n encoded randomness gates

by the following: the outputs of CQ[Di
Q] (i = 1, . . . , k), are XOR-ed together

using k − 1 encoded XOR gadgets (from Figure 1).
The proof that the above transformation indeed satisfies the properties re-

quired in Lemma 3 is included in the full version of this paper. The proof depends
on the fact that as long as the adversary has attacked fewer than k of CQ[Di

Q]
in C2, a careful simulation can reproduce the effect of this attack in C1. On
the other hand, if the adversary attacks all k of CQ[Di

Q], then due to constant
probability of each attack resulting in a ⊥, except with negligible probability at
least one ⊥ value will indeed be generated which will propagate to the cascade
stage and the output of the circuit (and hence can be easily simulated).

5 General Attacks on Wires

Next we turn to more general attacks in which the adversary can set the values
in the wires to 1 or 0, as well as toggle the values in the wires. We shall impose a
bound on the number of wires it can attack at each cycle, but allow the attacks
to be persistent. That is, the wires set or reset in any one cycle are stuck at that
value until explicitly released by the adversary; similarly toggled wires retain
the toggling fault until released. There is no limit on the number of wires the
adversary can release at any cycle.

Theorem 2. There is a polynomial time (in input size and security parameter
k) functionality preserving transformation T

(k)
full(C, D) �→ (C∗, D∗), such that

∀C, ∃S0 (a universal simulator), such that ∀D, ∀A ∈ A
(t)
tamper, we have SA

0 ∈
Aideal and the following two experiments output 1 with almost the same proba-
bility (the difference in probabilities being negligible in the security parameter k):

– Experiment A: SA
0 outputs a bit after interacting with C.

– Experiment B: A outputs a bit after interacting with C∗.

5.1 Proof Sketch of Theorem 2

The construction of T
(k)
full, the simulation and proof of simulation roughly follow

that in the reset-only case. The construction first applies the transformation



324 Y. Ishai et al.

T
(k)
isw , then changes the circuit to use some sort of encoding for each bit, adds

an error cascade stage, and finally replaces all encoded randomness gates by a
psuedo-randomness generator (PRG) circuit.

In the construction for reset attacks, it was crucial that the adversary cannot
set a wire to 1, thereby being unable to change an encoded wire pair to anything
but ⊥. Here, however, the adversary is allowed to set as well as reset the wires.
Nevertheless, using the fact that it can launch only t attacks per cycle, and using
a longer encoding (instead of using a pair of wires) to encode each bit, we can
ensure that if the adversary attacks any encoding, it will either leave it unchanged
or change it to an invalid encoding. Below we sketch the details of this.

Encoding. Each bit is encoded by 2kt wires, where k is the security parameter
and t is the bound on the number of attacks that the adversary can make per
cycle. 0 is encoded as 02kt and 1 as 12kt. All other values are invalid (⊥); a special
value ⊥∗ is defined as 0kt1kt.

Transformation. First T
(k)
isw is applied to get a circuit using randomness gates.

Then the circuit is modified to use the encoded values. The core of the circuit
is derived by replacing each wire by 2kt wires, and each of the atomic gates
(AND, XOR and NOT) by gates shown in Figure 3. Input encoding and output
decoding are straightforward. The error cascading stage is the same as shown
in Figure 2, but using the cascade gadget from Figure 3. In implementing these
gadgets, each bit of the output is generated by a circuit of the form OR of ANDs
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Fig. 3. Truthtables for the gadgets used by T
(k)
full. The gadgets can be implemented

using atomic gates: AND, OR and NOT gates. The AND gates used have 4kt input
wires and the NOT gates are reversible (see below).
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of input wires or their NOTs, or NOT of such a circuit. The AND gates involved
have 4kt input wires. (These AND gates are the only components in this work
which are not of constant size.) Note that to keep the circuit size polynomial
it is important to allow the output to be of the form NOT of OR of ANDs, as
well as OR of ANDs. In contrast, in the reset-only case it was important that
the gadgets did not have NOT gates except at the input side. However, with
general faults such a restriction is not helpful, nor used. The NOT gates used
are reversible, so that faults on the output side of a NOT gate propagate to the
input side. (This has the effect that NOT gates appearing immediately before
the input to the AND gates can be considered part of the atomic AND gates.)

Finally, the encoded randomness gates can be replaced by a PRG circuit
similar to that in Section 4.2.

Simulation. We sketch the simulator S1 (analogous to the simulator described
in Section 4.1) for the part of the transformation before replacing the randomness
gates by the PRG circuit. (The details of the simulation for the latter part can be
found in the full version.) As in Section 4.1, S1 will internally run the simulator
Sisw corresponding to the transformation T

(k)
isw and translates attacks on C1 to

probing attacks on C′. However now the attacks are not just reset attacks but
set, reset or toggle attacks. Further, each wire in C′ is represented by a bundle of
2kt wires in C1 (instead of just a pair of wires). S1 maintains the flag destroyed
and calculates the set of indices I as before. The one additional action now is
that at any clock cycle if kt or more wires in any bundle are subject to attack,
then the flag destroyed is set. Here, attacking a wire inside any of the gadgets
of Figure 3 (i.e., output of any of the AND or OR gates inside a gadget) is
considered as an attack on the unique wire in the output of the gadget affected
by the attack. Another difference is that, even after the flag destroyed is set,
the simulator here continues to output non-zero values, but these values can be
determined just from the attacks (in the cascade and output phases).

To analyze this new simulator we follow the same arguments as in Section 4.1,
but with the following modifications.

– Impossibility of changing a signal to a non-⊥ value: We claim that as long
as the flag destroyed is not set, an attack can either leave the values in a
bundle corresponding to a signal in C′ unchanged or convert it to a ⊥. To
see this note that to produce a new non-⊥ signal the adversary must have
attacked at least kt wires in a bundle. (These attacks may be direct attacks
on the wires or attacks inside a gadget from which the wire emanates.)
This is because the minimum distance between the signals that occur in an
unattacked circuit (namely 02kt, 12kt and ⊥∗ = 0kt1kt), and each valid signal
is kt. But when the adversary attacks kt or more wires in a single bundle
(directly or by attacking a wire inside a gadget), then the simulator sets the
flag destroyed.

– ⊥ Propagation and Self-destruction: If a ⊥ (an encoding which is not 02kt

or 12kt) is produced in any input signal to (the gadget corresponding to) a
gate, it results in a ⊥∗ being generated by the gate. Since ⊥∗ is far from a
valid encoding, the adversary cannot change it to a valid signal in the same
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cycle. So the ⊥ value will reach the cascade stage, which ensures that all
information in the circuit is lost. (If the ⊥ is introduced after the cascade
phase, this will happen in the next round.)

Now to prove that the simulation is good, first we observe that the probability
that destroyed is set due to at least kt wires in a bundle being under attack
is negligible. This is because at any cycle, the adversary can set/reset at most
t wires, and so it will need at least k cycles to attack kt wires in a bundle. But
during these cycles if the signal value in that bundle changes, then a ⊥ is nec-
essarily produced (resulting in the flag destroyed being set). Since each signal
value is randomized by T

(k)
isw (Lemma 1), except with probability 2−Ω(k) this will

indeed happen. The argument extends to the case when some of the attacks are
on wires inside the gadgets as well, by observing that all the internal wires have
influence on the output of the gadget, and the randomization ensures that with
constant probability the input signals to the gadget will take values causing the
attack to influence the output wire of the gadget.Here by internal wires in a
gadget we refer to the outputs of the AND gates used in the gadgets; the only
other wires inside a gadget are all connected to wires external to the gadget
either directly or through a reversible NOT gate, and as such are accounted for
by attacks on the wires external to the gadget. (This is where we require that
the NOT gates be reversible; attacks on either side of a NOT gate propagates
to the other side as well.)

Given this, the rest of the analysis of this simulator follows that in Section 5.1.
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