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Abstract. We consider the problem of constructing efficient locally de-
codable codes in the presence of a computationally bounded adversary.
Assuming the existence of one-way functions, we construct efficient lo-
cally decodable codes with positive information rate and low (almost
optimal) query complexity which can correctly decode any given bit of
the message from constant channel error rate ρ. This compares favor-
ably to our state of knowledge locally-decodable codes without crypto-
graphic assumptions. For all our constructions, the probability for any
polynomial-time adversary, that the decoding algorithm incorrectly de-
codes any bit of the message is negligible in the security parameter.

1 Introduction

When a message x is sent over a channel C, the channel might introduce some
errors so that the received message differs from the original message x. To deal
with this, the sender typically encodes the given message to obtain a codeword
y so that x can be recovered even if the received codeword y′ differs from the
original encoding y in some of the places.

The message is represented by a sequence of k symbols from alphabet Σ. The
codeword is also represented as a sequence of K symbols from the same alphabet
Σ. The encoding function is denoted by S : Σk → ΣK and the decoding function
is denoted by R : ΣK → Σk. The information rate (or simply rate) of the code
is k/K and measures the amount of extra information needed by the code for
correctly decoding from errors. Such a coding scheme is called a (K, k)q-coding
scheme, where q = |Σ|.

When the whole message x should be recovered from the corrupted codeword
y′, the decoding algorithm reads y′ entirely. If one is interested in reading only
one bit of x, more efficient coding schemes are possible. In particular, it is possible
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to construct codes which can decode a single bit of x by reading only a few bits
of y′. Such codes are called locally decodable codes (LDCs) [1,22,11].

Informally, a locally decodable code with query complexity �, error rate ρ,
and error correction probability p is a pair of algorithms (S, R), where S is the
encoding algorithm and R is the decoding algorithm, such that the decoding
algorithm makes at most � queries into the corrupted codeword y′ and recovers
any given bit j of x with probability p or more if y′ differs from y in at most a ρ
fraction of alphabets. For brevity, such a code is sometimes written as (�, ρ, p)-
LDC and we require that p > 0.5. An LDC is called adaptive if the queries of
R depend upon the answers of previous queries. It is called non-adaptive if they
depend only on the random coins of R.

Of course, locally decodable codes with high information rate, high error rate,
high error correction probability, and low query complexity are most desirable.
Low alphabet sizes (q = |Σ|) are desirable too as most channels are best at
transmitting only bits.

Locally decodable codes have found several notable applications. In complex-
ity theory [6], PCPs [1], and so on. In cryptography they have been useful due to
their interesting connection with private information retrieval protocols [4,13,2].
Their interesting properties make them applicable in several database applica-
tions such as fault-tolerant data storage [11]. It is tempting to say that construc-
tions of good locally decodable codes can yield benefits to several related fields
of computer science.

Modeling the Noisy Channel. The nature of channel errors plays an impor-
tant role in the design of good error correcting codes. Historically, there are two
popular ways of modeling a noisy channel: Shannon’s model and Hamming’s
model. In Shannon’s symmetric channel model, each symbol is changed to a
random different one independently with some fixed probability. In Hamming’s
adversarial channel model, symbols get changed in the worst possible manner
subject to an upper bound on the number of errors (such as a constant frac-
tion of the size of the codeword). It should be noted that Hamming’s channel
are computationally unbounded. As a consequence, good error-correcting codes in
Hamming’s model ensure robustness of the coding scheme. But at the same time,
constructing error correcting codes becomes more challenging in this model. In
particular, good1 locally decodable codes are not known to exist in this model.

An interesting idea due to Lipton [15], models the noisy channel as a com-
putationally bounded adversarial channel. That is, the channel C is modeled
as a probabilistic polynomial time algorithm which can change symbols in the
worst possible manner subject to an upper bound on the number of errors.
Thus, Lipton’s channels are essentially Hamming channels restricted to feasible
computation. Modeling channels in this way makes a lot of sense as all real
world channels are actually computationally bounded. The codes designed in
this model guarantee that if a channel can cause incorrect decoding with high
probability, it can also be used to break standard hardness assumptions.
1 By good LDCs we mean LDCs with high information rate and high probability of

error correction with small query size and constant error rate).
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Working with such computationally bounded channels has led to several in-
teresting results of late. In particular, Gopalan, Lipton, and Ding [9] develop a
technique called code scrambling which recovers from high error rates by using
few shared random bits. Similarly, Micali, Peikert, Sudan, and Wilson construct
codes that can uniquely decode from error-rates beyond the classical bounds.
Other notable results that use the idea of shared randomness in particular, are
the results of Langberg [14] and Smith [21]. We remark that all these results are
for standard error correcting codes and not for locally decodable codes. In this
paper we continue in this important direction and construct good LDCs against
computationally bounded noisy channels. We shall summarize our results shortly.

Previous Work On Locally Decodable Codes. In order to understand
the significance of our results, it is important that we shed some light on previous
work related to locally decodable codes. Mainly, there has been two important
research directions in this area: proving lower bounds on the size of LDCs and
constructing good LDCs. All prior work in this area deals with computationally
unbounded channels.

The first direction investigates the relation between the code length K and
the message length k for (�, ρ, p)-LDCs. Katz and Trevisan [11] first started
investigating this direction and showed that for non-adaptive LDCs, K is at least
k1+ 1

�−1 (suppressing the dependence on ρ and p). Deshpande et al [5] showed
that this bound holds even for adaptive LDCs. Currently, the best known lower
bounds for general locally decodable codes are due to Woodruff [24] who shows

that K = Ω

(
k
1+ 2

�−1

log k

)
. A series of papers [8,17,19,12,23] concentrated on LDCs

with � = 2 (or 3) and established exponential lower bounds. In particular for
2-query LDCs K = exp(Ω( ρ

2−2pk)).
The other direction focussed on constructing the locally decodable codes.

Important constructions in this direction for constant query length appeared
in [2,3]. Unfortunately, all these constructions yield codes that are exponentially
long in ki. Currently, the best known construction is due to Yekhanin [25] who
achieves locally decodable codes of sub-exponential length. For super-constant
number of queries, however, better constructions are known. In particular, for
� = (log k)O( 1

p−0.5 ) Babai et al [1] constructed LDCs of size K = k1+(p−0.5).
We derive following important conclusions from these results: all known con-

structions in the literature are either exponential in k or the query complexity
is a huge polynomial in log k. Furthermore, most of these constructions are able
to provide only a constant probability of error correction which does not vanish
with the size of the message.

Our Results. We consider the construction of locally decodable codes against
computationally bounded channel. Under the minimal cryptographic assump-
tion that one-way functions exist, we show how to construct asymptotically good
locally decodable codes over a binary alphabet. Notice that small alphabet size is
usually a requirement as most channels are best at transmitting only bits. Thus
we have achieved locally decodable codes over binary alphabets with constant
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information rate. This is already much better than all the known constructions
in the literature. Our constructions require that the encoding and decoding al-
gorithms share a secret key that is not known to the channel. For this reason we
call our codes private locally decodable codes.

By reading at most � = ω(log2 κ) bits in the codeword, our codes can correctly
recover any given bit with probability p ≥ 1 − κ−ω(1), where κ is the security
parameter, as long as the number of errors are less than a suitably chosen (con-
stant) fraction. Thus, the probability of incorrect decoding is κ−ω(1) which is
negligible in the security parameter.2 Furthermore, if we allow the sender and
the receiver to share a (synchronized) shared (such as a public counter), then our
codes can have query complexity only ω(log κ). We also show that � = ω(log κ) is
necessary in order to achieve negligibly small probability of incorrect decoding.
Thus, our codes have (almost) optimal query complexity.

Our codes are non-adaptive in nature. That is, the decoding procedure can
make all its � queries at once without any dependence on the answers received
from the corrupted word. This is a feature that might be desirable in some
applications.

In some sense our results are incomparable to previous work because we work
only against a computationally bounded adversary. But, a series of lower bound
results and the poor information rate of best known constructions from previ-
ous work provide good motivation to study the problem in this new (weak yet
reasonable) model.

Organization. The rest of this article is organized as follows. The next section
presents relevant background from coding theory and cryptography. We then
describe our model which is followed by our constructions. Several details and
discussions that have been omitted from this version because of space limitations
can be found in the full version [18].

2 Definitions

In this section we will present relevant coding theory and cryptography. When
dealing with codes, small alphabet size is usually preferred. Thus, unless speci-
fied otherwise, from now onwards we describe our constructions only for binary
alphabets. It is straightforward to see their general version that has larger al-
phabet size. First we present some notations.

Notation. Vectors over {0, 1} will be represented in bold, e.g., x,y. Because
we are working over binary alphabets, occasionally we may refer to vectors over
{0, 1} as (bit) strings. Concatenation of two vectors x,y is denoted by x ◦ y. By
[n] we denote the set of positive integers smaller than or equal to n: {1, 2, . . . , n}.
A function ν(n) is negligible in n if it vanishes faster than the inverse of every
polynomial P (n) for a sufficiently large choice of n. Notation Δ(x,y) represents
the hamming distance between vectors x and y which is the number of alphabet
2 We can also choose the length of the input instead of the security parameter and

then the error probability will be negligible in the length of the input.
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positions in which they differ. By x[j] we denote the jth bit of x. If S is a set then
the process of selecting an element e from S uniformly at random, is denoted
by: e

$← S. By π we denote a permutation (or a map) which permutes the bits
of a given string x by sending its jth bit to the position π(j). We will abuse the
notation and denote by π(x) the string obtained by applying π to x as above.

We now present some standard definitions, mostly taken from existing litera-
ture, e.g. [16].

Definition 1 (Coding Scheme). An (K, k)q-coding scheme C = (S, R) over
the alphabet Σ is a pair of encoding and decoding functions S : Σk → ΣK and
R : ΣK → Σk for some positive integers K > k, q = |Σ| ≥ 2. The (information)
rate of the scheme, denoted R, is defined as R = k

K . The (minimum) distance
of the coding scheme, denoted δ, is defined as δ = minx1,x2∈Σk Δ(S(x1), S(x2))

In this paper we will be interested in asymptotic behavior of our codes. This
requires us to consider infinite families of codes. Thus, we augment our current
notation by indexing them and redefine the parameters such as the rate of the
code.

Definition 2 (Family of Coding Schemes). Let C = {Ci}∞i=1 be an infinite
family of coding schemes where Ci is a (Ki, ki)qi -coding scheme and limi→∞
Ki = ∞. The asymptotic information rate and minimum distance of C, denoted
R(C) and δ(C) respectively, are defined as R(C) = lim infi→∞ ki/Ki and δ(C) =
lim infi→∞ δi/Ki. If {Si} and {Ri} can be computed by two uniform probabilistic
polynomial time algorithms, we say that the coding scheme is efficient.

In our constructions, as the encoding and decoding function do not change with
i and only the parameters such as message length, code length etc. vary with i,
we will drop the index i from S, R. Now we turn to the definition of standard
locally decodable codes:

Definition 3 (Locally Decodable Code). An �-locally decodable code over
a binary alphabet for error rate ρ and error-correction probability p > 1

2 , ab-
breviated as (�, ρ, p)-LDC, is a pair of probabilistic algorithms (S, R), where
S : {0, 1}ki → {0, 1}Ki and R are the encoding and decoding algorithms re-
spectively. If x ∈ {0, 1}ki is the message and y ← S(x) is its encoding then
we require that on input j ∈ [ki], the algorithm R reads at most � bits from
a given word y′ and outputs a bit b such that Pr[b = x[j]] ≥ p provided that
Δ(y,y′) ≤ ρKi for some constant ρ.

Notice that locally decodable code is also a coding scheme as defined above
but with the exception that the decoding algorithm does not have the whole
codeword as input. It rather takes a single bit-position as input and is given
oracular access to the codeword. Thus, terms such as a family of locally decodable
coding schemes and asymptotic information rate are also defined analogously for
locally decodable codes.
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3 Our Model

We work in a shared key model where the encoding and decoding algorithms
share some small secret information not known to the channel. In particular, this
information will be the secret key to the pseudorandom permutation generator.

Deviating from traditional goals, we focus on constructing codes with high
probability of recovering any given bit rather than some constant probability
larger than 1/2. In particular, we require the probability of incorrect decoding to
be negligible in the message length. Of course small query complexity is desirable
too along with negligible probability of incorrect decoding.

Because the encoding and decoding algorithms must share a key in our model,
our codes are named private locally decodable codes. We present the definition
of a private locally decodable code below.

Definition 4 (Private �-Locally Decodable Code). Let κ be the security pa-
rameter. A private �-locally decodable code for a family of parameters {(Ki, ki)}∞i=1
is a triplet of probabilistic polynomial time algorithms (K, S, R) such that:

– K(1κ) is the key generation algorithm that takes as input the security param-
eter κ and outputs a secret key sk.

– S(x, sk) is the encoding algorithm that takes as input the message x of length
ki = poly(κ) and the secret key sk. The algorithm outputs y ∈ {0, 1}Ki that
denotes an encoding of x.

– R(j, sk) denotes the decoding algorithm, which takes as input a bit position
j ∈ [ki] and the secret key sk. It outputs a single bit b denoting the decoding
of x[j] by making at most � (adaptive) queries into a given a codeword y′

possibly different from y.

The information rate of the scheme is lim infi→∞ ki/Ki.

Parameter � is called the query complexity of the code. Notice that in our def-
inition, the decoding algorithm is supposed to have the same secret key sk as
was used to encode the message. Obviously this definition does not make sense
until we introduce the probability of correctly obtaining x[j] using the decoding
procedure. But before that, we need to explain the game between the channel
and the encoding and decoding algorithms.

A computationally bounded adversarial channel C with error rate ρ is a proba-
bilistic polynomial time algorithm which repeatedly interacts with the encoding
algorithm S and the decoding algorithm R polynomially many times until it
terminates. Each iteration takes place as follows:

1. Given a security parameter κ, the key generation algorithm outputs a secret
key sk ← K(1κ). The secret is given to both S, R but not to the channel.
The channel is given κ.

2. In hth iteration, the channel C chooses a message x(h) ∈ {0, 1}ki and hands
it to the sender.

3. The sender computes y(h) ← S(x(h), sk) and hands the codeword y(h) ∈
{0, 1}Ki back to the channel.
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4. The channel corrupts at most a fraction ρ of all Ki bits in y(h) to output
the corrupted codeword y

′(h), i.e., Δ(y(h),y
′(h)) ≤ ρKi. It gives y

′(h) and a
challenge bit j to the receiver R.

5. The receiver makes at most � (possibly adaptive) queries into the new code-
word y

′(h) and outputs b ← R(j, sk).

We say that a code (K, S, R) correctly decodes from error rate ρ with high
probability if for all probabilistic polynomial time algorithms C in the above
experiment, for all messages x ∈ {0, 1}ki, and for all j ∈ [ki] we have that
Pr

[
b 	= x(h)[j]

]
= ν(κ), where the probability is taken over the random coins of

K, S, R, and C.
In above definition, we have that maximum value of h is bounded from above

by a value polynomial in the length of the input. If we have a code that only
works (i.e., correctly decodes from error rate ρ with high probability) once (i.e.,
only for h = 1) and guarantees nothing for repeated executions, we call such a
private locally decode to be one time.

In the above definition, we assume that the adversary always sends messages
of the same length known a priori both to the sender and receiver. We stress
that it is merely a technicality. If one wants that the adversary be given the
flexibility to choose the message lengths, then also our constructions work but
with a slight technical modification3.

4 Our Constructions

In this section we provide our constructions. We do this in two stages. First we
provide two constructions which work only once, i.e., they are one-time. First
such construction is a simple repetition code with log2 κ query complexity4 and
the second one is based on any asymptotically good code and has the same query
complexity but a better (i.e., asymptotically positive) information rate. In the
second stage, we show how to uplift our construction so that we get a code that
works for polynomially many invocations, i.e., satisfies our actual definition.

Although we describe our construction for log2 κ query complexity, they actu-
ally work for any query complexity that grows faster than log κ, (i.e., ω(log κ)).
We also show that ω(log κ) query complexity is essential if we want decoding
error to be negligible in κ. Thus our constructions have optimal query length.

4.1 Constructions for One-Time Codes

A Simple Repetition Code. Our first code is a very simple repetition code.
Let x be the string we want to encode. Our repetition code (KREP, SREP, RREP)
is as follows.
3 See full version [18].
4 Technically, the query complexity is actually �log2 κ�, but in order to avoid the

cluttering in presentation, we shall drop floors and ceiling in formulas. This does not
affect our analysis.
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Algorithm KREP(1κ). This is a randomized algorithm which simply outputs
a truly random permutation π and a truly random mask r both of size Ki

(the code length, to be stated later)Thus, sk ← (π, r).
Algorithm SREP(x, sk). The algorithm works as follows:

– Compute x′ by repeating each bit of x for log2 κ times.
– Compute y1 ← π(x′) and output y = y1 ⊕ r.

Notice that the size of codeword y is Ki = ki log2 κ.
Algorithm RREP(j, sk). To decode, the algorithm simply reads all � = log2 κ

bit positions of corrupted word y′ that correspond to bit position j of the
original message x, and decides by majority after unmasking them with r.
Note that computing these bit positions requires reading only � entries from
the stored permutation π and hence has polylogarithmic running time. The
algorithm works as follows:
– Let j1, j2, . . . , j� denote the � bit positions of x′ that have the copies of

x[j]. Compute ih ← π(jh) for h = 1, 2, . . . , �.
– Compute y′[i1] ⊕ r[i1],y′[i2] ⊕ r[i2], . . . ,y′[i�] ⊕ r[i�] and output the ma-

jority bit.
Notice that the query complexity is � = log2 κ.

In the above, instead of � = log2 κ we can choose any � = ω(log κ).

Theorem 1. There exists a constant ρ such that (KREP, SREP, RREP) is a one-
time private ω(log κ)-locally decodable code that correctly decodes from error rate
ρ with high probability.

Proof. It is easy to see that a bit is decoded incorrectly if and only if at least
λ = �/2 of its � copies were corrupted. From Lipton’s theorem [15], it follows
that if the permutation π and the mask r are truly random, then the adversarial
channel C behaves like a binary symmetric channel which corrupts at most a
fraction ρ of all bits. Thus, the probability p of incorrect decoding for a given
bit position j can be calculated by a simple combinatorial analysis:

p <

(
�
λ

)(
n−λ
m−λ

)
(

n
m

) <

(
256

�

λ
· eb+1ρ

)λ

(see full version)

which is less than 2−� = ν(k) for ρ = 1
211eb+1 and � = ω(log κ). Because probabil-

ity of incorrectly decoding a given bit is negligible and there are only ki = poly(κ)
bits, we conclude that probability of incorrectly decoding any bit is negligible
given that the permutation π and r are truly random (which is the case). �
Construction based on Any Asymptotically Good Code. In this section
we present the construction of a locally decodable code based on any asymptoti-
cally good code. We will present a general construction and its analysis without
setting the parameters explicitly. Later on, we will set the parameters suitably
so as to obtain a locally decodable code satisfying our goals. We start with the
definition of asymptotically good codes.

Definition 5 (Asymptotically Good Codes). A family of codes C={Ci}∞i=1
is said to be asymptotically good if R(C), δ(C) > 0.
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We remark that efficient asymptotically good codes are known [10,20]. Some-
times we may simply use R and δ and drop the argument C when it is clear
from the context. Also, from now on, in our constructions we will only refer to
C = (S, R) which is a (A, a)q coding scheme from the family of asymptotically
good codes. Let 1

β be the rate of the code so that A ≤ βa, where β is a constant.
Let γ denote the constant fraction such that C can recover from error rate γ (i.e.
the number of errors allowed is equal to γA symbols). Because we are working
over an alphabet of size q, let c = log q, and we will sometimes say that the
message x is a sequence of c · a bits and the codeword y is a sequence of c · A
bits. A symbol is considered corrupted if any of its c bits gets corrupted and
hence number of bit -errors e from which C can recover is still at most γA.

Our Construction. On a high level, we visualize the message x as a series
of ni messages each of which will contain a symbols from Σ, or in other words
each message will contain a blocks of c = log q bits each. That is,

x =

1︷ ︸︸ ︷
(x1 ◦ . . . ◦ xa) ◦

2︷ ︸︸ ︷
(xa+1 ◦ . . . ◦ x2a) ◦ . . . ◦

ni︷ ︸︸ ︷
(x(ni−1)a+1 ◦ . . . ◦ xnia)

Now each message (contained in parentheses) will be encoded using the encoding
function S of the asymptotically good coding scheme C and all such encodings
will be concatenated together. The resulting string will be permuted according
to a pseudo-random permutation π and XORed with a pseudorandom string r to
yield the final code. Notice that the message length for our locally decodable code
is: ki = |x| = c ·a ·ni. We will choose the parameters A, a for the asymptotically
good code C in such a way that we will achieve locally decodable codes with
desirable properties. Following is the formal description of our code.

Let C be the asymptotically good (aG) code with a = log2 κ where κ is the
security parameter. Let the rate of the code be 1/β and error-tolerance γ so that
code length A = βa and it can correct up to γA errors. Following is the set of
algorithms.

Algorithm KaG(1κ). Same as for the repetition code: sk ← (π, r)
Algorithm SaG(x, sk). The algorithm works as follows:

– Let x = w1 ◦ w2 ◦ . . . ◦ wni , where ws = x(s−1)a+1 ◦ x(s−1)a+2 ◦ . . . ◦ xsa

for s = 1, 2, . . . , ni. Notice that ki = ca · ni.
– Each ws is a sequence of a symbols from Σ. Encode each ws using the

encoding function S of C to get encoded words w′
s. That is, for each s,

compute: w′
s ← S(ws)

– Let x′ = w′
1 ◦ w′

2 ◦ . . . ◦ w′
ni

. Compute y1 ← π(x′) and output y1 ⊕ r.
Notice that the size of codeword y is Ki = cAni = A

a ki = βki.
Algorithm RaG(j, sk). The jth bit of message x lies in ws where s = � j

ac�.
The decoding algorithm simply reads all the cA bits (corresponding to w′

s)
from the (possibly) corrupted encoding y′ using � = cA queries, unmasks
them using r and then decodes using the decoding algorithm R to obtain the
complete subsequence ws. Notice that positions of all cA bits corresponding
to w′

s can be computed using π in sublinear time.
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– Let j1, j2, . . . , j� be the bit positions corresponding to the bits of w′
s.

Then for all h = 1, 2, . . . , � compute ih ← π(jh).
– Compute y′[i1] ⊕ r[i1],y′[i2] ⊕ r[i2], . . . ,y′[i�] ⊕ r[i�] and obtain points

w′
s (possibly corrupted).

– Apply the decoding algorithm R instance on possibly corrupted w′
s to

obtain ws. Output that bit of ws which corresponds to the jth bit of x.
Notice that the query complexity is � = cA.

Above code is a private locally decodable code with positive information rate
lim infi→∞ ki

Ki
= 1

β and query complexity � = cA = log q · β log2 κ = O(log2 κ).
Notice that we can use a = ω(log κ) and achieve � = ω(log κ). Let us now prove
the following.

Theorem 2. There exists a constant ρ such that (KaG, SaG, RaG) is a one-
time private ω(log κ)-locally decodable code with constant information rate that
correctly decodes from error rate ρ with high probability.

Proof. We have already proved the claims about information rate and query
complexity. We only need to show that the code indeed correctly recovers from
some constant error rate ρ with high probability.

Notice that the algorithm may decode a given bit j incorrectly only if w′
s

is corrupted in at least λ = γA bit positions. This is because C can correctly
recover from error rate γ. We thus need to bound the probability that more
than λ bits of w′

s are flipped by any adversary. As π and r are truly random we
can use Lipton’s theorem, and bound this probability just by analyzing the code
represented by x′ in the presence of a binary symmetric channel5 which only
corrupts at most a ρ fraction of all Ki bits. Now the probability p of incorrectly
decoding bit j can be bounded as before for the repetition code and comes out
to be (see full version) ν(κ). �

4.2 Final Construction

In this section, we now show how to uplift our one-time constructions so that
they work for polynomially many times. The idea is to divide the codeword
obtained from one-time code into small chunks and then encrypt each chunk
using a suitable encryption scheme. This way, we hide the permutation π behind
the encryption scheme and hence can use just that permutation every time we
encode. Notice that encryption can blow up the size of the chunk by a factor of
the security parameter κ. Thus, we instead encrypt the chunk by a pseudorandom
one-time pad obtained from a pseudorandom function [7]. In order to tolerate
the errors in these ciphertexts, we encode each ciphertext using an off the shelf
asymptotically good error-correcting code. Details follow.

Let fkey denote a pseudorandom function with the key key. Let (KaG, SaG,
RaG) be the one-time coding scheme that we will use as our base. Let log2 κ
where κ is the security parameter.6 Our final private locally decodable code
(KFIN, SFIN, RFIN) is as follows:
5 Recall that BSC introduces errors randomly with some fixed error probability.
6 Any a=ω(log κ) would also work for our constructions.
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Algorithm KFIN(1κ). This algorithm first runs KaG((1κ)) to obtain sk′ and
then chooses a truly random seed key of size log2 κ for the pseudorandom
function f . It sets sk ← (sk′,key).

Algorithm SFIN(x, sk). The algorithm works as follows:
– Obtain y′←SaG(x, sk′). Let K ′

i= |y′|. Divide y′ into chunks B1, B2. . ., Bz

of size a each where z = K ′
i/a. Now, encrypt each Bh as Eh = (rh, fkey

(rh) ⊕ Bh) where h ∈ [z] and rh is a string of length a chosen uniformly
at random.

– Now, encode each ciphertext Eh using an asymptotically good code of
information rate 1/β1: Fh ← S(Eh). Let y = F1 ◦ F2 ◦ . . . ◦ Fz . Notice
that |y| = 2β1K

′
i. Output y.

Notice that the size of codeword y is Ki = 2β1K
′
i = 2ββ1ki.

Algorithm RFIN(j, sk). The decoding algorithm will first run the RaG(j, sk)
and let j1, j2, . . . , j

′
� denote the indexes queried by RaG (where �′ is query

length of the one-time code). From the construction, these queries are actu-
ally queries into the intermediate code y′. Let Bjh

, 0 ≤ h ≤ �, denote that
chunk of y′ in which the jth

h bit of y′ lies. Then, RFIN reads all bits of y′

corresponding to each block Fjh
, for j1, j2, . . . , j�. Thus the query length is

� = a�′. Note that these blocks may be corrupted. Now algorithm proceeds
as follows:
– Decode each block Fjh

using the decoding algorithm R to obtain (pos-
sibly incorrect) blocks Ejh

= (rjh
, E′

jh
). Now compute Bjh

= E′
jh

⊕
fkey(rjh

). Notice that Bjh
may be totally different from what it was

originally when encoded. Read that bit of Bjh
that corresponds to jth

h

bit of y′ and give it to RaG when asked.
– Return whatever is returned by RaG.

Notice that the query complexity is � = a�′.

Above code is a private locally decodable code with positive information rate
1

2ββ1
and query complexity � = a�′. As, �′ = ω(log κ) we could have used any

a = ω(log κ), we have a code with query complexity ω(log2 κ). We have (see full
version for proofs & discussions):

Theorem 3. There exists a constant ρ such that (KFIN, SFIN, RFIN) is a pri-
vate ω(log2 κ)-locally decodable code with constant information rate that correctly
decodes from error rate ρ with high probability.

Lemma 1. Private locally decodable codes with query complexity O(log κi) (or
smaller) that decode from constant error rate with high probability do not exist.
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