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Abstract. In the last decade, the notion of metric embeddings with small distortion has received wide
attention in the literature, with applications in combinatorial optimization, discrete mathematics, and
bio-informatics. The notion of embedding is, given two metric spaces on the same number of points,
to find a bijection that minimizes maximum Lipschitz and bi-Lipschitz constants. One reason for the
popularity of the notion is that algorithms designed for one metric space can be applied to a different
one, given an embedding with small distortion. The better distortion, the better the effectiveness of
the original algorithm applied to a new metric space.

The goal recently studied by Kenyon et al. [2004] is to consider all possible embeddings between
two finite metric spaces and to find the best possible one; that is, consider a single objective function
over the space of all possible embeddings that minimizes the distortion. In this article we continue
this important direction. In particular, using a theorem of Albert and Atkinson [2005], we are able
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to provide an algorithm to find the optimal bijection between two line metrics, provided that the
optimal distortion is smaller than 13.602. This improves the previous bound of 3 + 2

√
2, solving an

open question posed by Kenyon et al. [2004]. Further, we show an inherent limitation of algorithms
using the “forbidden pattern” based dynamic programming approach, in that they cannot find optimal

mapping if the optimal distortion is more than 7 + 4
√

3(� 13.928). Thus, our results are almost
optimal for this method. We also show that previous techniques for general embeddings apply to a
(slightly) more general class of metrics.
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computations, pattern matching
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1. Introduction

For a bijection σ : U → V between two n-point metric spaces (U, d) and (V, d ′),
the expansion of σ is defined as

expansion(σ ) = max
x,y∈U,x �=y

d ′(σ (x), σ (y))

d(x, y)
.

The distortion σ is defined as follows: dist(σ ) = expansion(σ ) × expansion(σ−1).
The minimum distortion problem is to find a bijection σ between two equal-sized
finite metric spaces (U, d) and (V, d ′) such that dist(σ ) is minimum over all possible
bijections.

The minimum distortion problem is interesting to study for both theoretical
as well as practical reasons. From a complexity-theoretic point-of-view, it has
interesting connections to graph isomorphism [Fortin 1996]. In particular, graph
isomorphism on two input graphs G and H is trivially reduced to deciding if there
exists an isometric (i.e., distortion 1) bijection between MG and MH , where MX
denotes the shortest-path metrics of a graph X .

On the practical side, we note that applications dealing with shape matching and
object recognition (e.g., signature matching, character recognition, matching facial
features, pattern matching in complicated protein structures, etc.) require good
measures of similarity. Distortion is an attractive measure of similarity between
two point sets [Akutsu et al. 2003; Hoffmann et al. 1998; Belongie et al. 2002;
Chazelle et al. 2003]. From the point-of-view of the aforementioned applications,
good algorithms for finding minimum distortion bijection (or optimal bijection) are
highly desirable.

Kenyon et al. [2004] show that the minimum distortion problem is NP-hard even
to approximate (within a factor of 2), and provide two positive results, described
next.

—A polynomial-time algorithm is given for exactly finding the minimum distortion
bijection between two line metrics if the optimal bijection has distortion strictly

less than 3 + 2
√

2.
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—A parameterized polynomial-time algorithm is provided for exactly finding the
optimal bijection between a bounded-degree tree metric and an arbitrary un-
weighted graph metric.

In this article, we improve and generalize the results of Kenyon et al. [2004]. We
detail these improvements as follows.

—In particular, we first provide a polynomial-time algorithm for exactly finding an
optimal bijection between two line metrics if the optimal bijection has distortion
strictly less than 13.602.

To achieve this improvement, we take a more general approach. In particular,
Kenyon et al. [2004] look at a single pattern (partial bijection of size 4) and
its inverse. They call this pattern a “forbidden pattern”. The presence of such
patterns guarantees high distortion (3 + 2

√
2). We generalize this approach and

look for patterns of higher sizes whose presence will guarantee even higher
distortion. We call these patterns nonseparable permutations. Absence of such
permutations guarantees that the dynamic programming approach can be applied
to find the optimal bijection/permutation.

We note that our nonseparable permutations are actually either the simple or the
exceptional permutations as defined by Albert and Atkinson [2005]. This allows
us to use a direct theorem of theirs to conclude that the minimum distortion of
families of nonseparable permutations increases with size.

—Next, based on the idea of families of nonseparable permutations, we are able
to design a dynamic programming algorithm which finds a minimum distortion
bijection on more instances than given by Kenyon et al. [2004]. Thus our work
answers a direct open question posed in Kenyon et al. [2004].

—We also show a limitation of the forbidden pattern approach, by showing that there
exists arbitrarily large families of forbidden patterns with bounded distortion.
This lower bound shows the extent to which this approach will be useful and
indicates that a new approach must be taken to pass this bound.

We remark that, after the work of Kenyon et al. [2004], most research has focused
on either approximating the distortion [Badoiu et al. 2005a, 2005b] or on proving
the hardness of approximating it [Hall and Papadimitriou 2005; Papadimitriou and
Safra 2005]. Hall and Papadimitriou [2005] show that line embeddings are hard to
approximate, even within large factors, when the distortion is high. To the best of
our knowledge, there have been no positive results for polynomial time algorithms
that exactly find the minimum distortion bijection; our results are the first such
improvement.

We have recently learned that, independently and concurrent to our work, Kenyon
et al. also extended their result on the embedding between two line metrics, using
an approach similar to ours. Their algorithm can now handle those cases where the
distortion is less than 5 + 2

√
6 � 9.90.

We also consider the case of embedding a bounded-degree unweighted tree metric
into an arbitrary unweighted graph metric. We prove that the algorithm of Kenyon
et al. [2004] actually works for a larger class of graphs: unweighted bounded-degree
graphs with maximum cycle-length 3. In other words, we show that their algorithm
finds an optimal bijection between a bounded-degree graph with maximum cycle-
length 3 and an arbitrary unweighted graph metric.
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FIG. 1. The 4-separable permutation (2, 4, 1, 3).

1.1. RELATED WORK. The problem of embedding distance metrics into ge-
ometric spaces has been studied extensively [Kruskal 1964a, 1964b; Shepard
1962a, 1962b; Johnson and Lindenstrauss 2003; Linial 2002]. The minimum dis-
tortion problem is a natural variant of the bi-Lipschitz embeddings questions that
were initially motivated by the study of Banach spaces.

A problem closely related to minimum distortion is that of minimum bandwidth.
Minimum distortion can be viewed as a variation and generalization of the minimum
bandwidth problem [Chinn et al. 1982; Diaz et al. 2002]. Good solutions for the
latter, however, typically incur very large contraction and hence do not seem useful
for solving minimum distortion.

After its introduction, the minimum distortion problem has received consider-
able attention in the research community. Most of the results, however, have been
negative, showing the problem hard to even approximate. Among such results are
those of Hall and Papadimitriou, who show the line embedding problem hard to
approximate even within large factors if distortion is high [Hall and Papadimitriou
2005], and Papadimitriou and Safra [2005] show the general embedding problem
hard to approximate within a factor of 3 in three dimensions.

Due to such results, some research has focused on approximating minimum dis-
tortion [Badoiu et al. 2005a, 2005b; Hall and Papadimitriou 2005] under certain
circumstances (e.g., considering only injections, focusing on alternate definitions
of distortion such as additive distortion, etc.). To the best of our knowledge, there
have been no positive results on exactly solving the embedding problem with mul-
tiplicative distortion as the measure of similarity. After Kenyon et al. [2004], ours
are the only positive results for finding an optimal embedding.

2. Line Embeddings

In this section, we focus on computing an optimal embedding between two fixed
line metrics. A line metric is a set of points on a real one-dimensional line with
the distance between any pair of points being their �1 distance (any �k distance is
equivalent for one-dimensional points).

As mentioned earlier, Kenyon et al. [2004] consider the problem of optimally
embedding one fixed line metric into another fixed one. They propose a polynomial-
time, dynamic programming based algorithm that computes the optimal embedding

if the distortion is less than 3 + 2
√

2. They show that any bijection containing
the bijection in Figure 1 as a partial bijection corresponds to an embedding with

distortion at least 3+2
√

2. These bijections have a nice structure that allows finding
the optimal such permutation, using dynamic programming in polynomial time.
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Notice that we can view any embedding as a mapping from source points to
destination points, or simply as a permutation. In this section, we improve the
result of Kenyon et al. [2004] by considering a less restricted class of permutations
called k-separable permutations. We improve the threshold value on distortion,

below which an optimal embedding can be found in polynomial time from 3+2
√

2
to 13.602. Let us now introduce some basic definitions.

2.1. BASIC DEFINITIONS. Assume the optimal embedding between U and
V is the permutation π . We specify a permutation π with the notation
(π (1), π (2), . . . , π (n)).

Permutation πn of size n contains permutation πk of size k if there exist indices
l1 < l2 < · · · < lk such that for all 1 ≤ i < j ≤ k, πk(i) < πk( j) iff πn(li ) < πn(l j ).

In this case, we refer to πk as a subpermutation of πn . In particular, π
x,y
n is the unique

permutation of size y − x + 1 such that π
x,y
n (i) < π

x,y
n ( j) iff πn(i + 1 − x) <

πn( j + 1 − x).
By [i, j], i < j , we mean the set of numbers from i to j . A nice interval I

in π is either a singleton or a set of at least two consecutive numbers from 1 to n
such that their mapping, via π , is still a set of consecutive numbers. For example,
the permutation (4, 3, 1, 2) contains several nice intervals: [1, 2], [3, 4], [2, 4], and
[1, 4].

If the interval [1, n] can be decomposed into a constant number of subintervals
such that each is mapped, via π , to a subinterval in V and if this property recursively
holds for all subintervals, then we can use dynamic programming and find the
optimal embedding. More formally, an interval I is k-separable, with respect to
π , if either it has at most k points or it can be partitioned into nice subintervals
I1, I2, . . . , Im (1 < m ≤ k) such that each Ii is k-separable. Moreover, π is k-
separable iff the interval [1, n] is k-separable with respect to π . The separability of
π is the minimum k > 1 such that π is k-separable.

For example, the permutation π = (2, 4, 3, 6, 5, 1) is 3-separable. Specifically,
I1 = [1, 3], I2 = [4, 5], I3 = [6], and it is clear that I1, I2, and I3 are 3-separable
as well.

Every 3-separable permutation is 2-separable, since for any three nice subinter-
vals that partition a permutation, two may be merged to form a nice subinterval.
Therefore, we don’t have any permutation with separability 3. It’s also easy to see
that for k ≥ 4, there exist permutations of size k with separability k. These per-
mutations could be interpreted in a simpler way: They don’t have any nice interval
except the interval [1, k]. We refer to these special k-separable permutations as
nonseparable permutations.

The distortion incurred by a permutation π , denoted by dist(π ), is the min-
imum distortion incurred by embedding any two line metrics U and V via π .
For example, dist(π ) for the permutation in Figure 1 equals 3 + 2

√
2 and hap-

pens when [a, b, c, x, y, z] = [1,
√

2, 1, 1,
√

2, 1]. As we see later, Theorem 2.3
states that dist(π ) equals the largest eigenvalue of a 0-1 matrix corresponding to
π .

Corresponding to every permutation π of size n, there exist three permutations
π0, π1, and π−1 that are similar to π and incur the same distortion. For all i’s,
π0(i) = n + 1 − π (i), π1(π (i)) = i , and π−1(i) = n + 1 − π1(i). For example,
if π = (2, 4, 1, 3), π0 = π1 = (3, 1, 4, 2) and π−1 = π . Throughout this section,
we always assume that a permutation comes with all its four symmetric forms. For
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example, when we say 2-separable permutations avoid π = (2, 4, 1, 3), we mean
they avoid (3, 1, 4, 2) as well.

Let �k be the set of all nonseparable permutations of size k. Let dk be the
minimum distortion over all permutations in �k . For example, �4 = {(2, 4, 1, 3)},
�5 = {(2, 4, 1, 5, 3), (2, 5, 3, 1, 4), (3, 5, 1, 4, 2)}, and it’s not hard to see that

d4 = d5 = 3 + 2
√

2. Note that by π ∈ �k we implicitly mean π0, π1, π−1 ∈ �k
as well. So, (3, 1, 5, 2, 4) is also in �5.

2.2. FORBIDDEN PERMUTATIONS. One commonly asked question regarding
many permutation classes is whether they can be characterized by a finite for-
bidden set of permutations. For example, a permutation is 2-separable if and only
if it contains neither (2, 4, 1, 3) nor (3, 1, 4, 2) [Bose et al. 1998].

Interestingly, we can generalize this statement for k-separable permutations.

THEOREM 2.1. A permutation is k-separable if and only if the following holds.

—For odd k, it doesn’t contain any permutation in �k+1; and
—for even k, it contains neither a permutation in �k+1 nor π∗

k+2,

where π∗
2m is the permutation of size 2m in which π∗

2m(2i) = i and π∗
2m(2i − 1) =

i + m.

PROOF. Assume π is not k-separable. Then, it must contain a nonseparable
permutation π0 of size k0 > k. According to Albert and Atkinson [2005], every
nonseparable permutation of size m either contains a nonseparable permutation of
size m − 1 or is identical to π∗

m . As π∗
m contains π∗

m−2, the statement of the theorem
follows by repeatedly using the theorem of Albert and Atkinson [2005].

Note. Albert and Atkinson [2005, Theorem 4] use the notion simple for nonsep-
arable and call π∗

2m an exceptional permutation. They obtain their result by using
those from Schmerl and Trotter [1993] on partially ordered sets.

2.3. EMBEDDING BETWEEN TWO LINE METRICS. In this section we prove the
following theorem, which is a generalization of Kenyon et al.’s [2004] result.

THEOREM 2.2. For any two line metrics U and V and for any k, either the
distortion of the optimal embedding between U and V is greater than dk+1 or
there exists an O(k!n5k+2) time algorithm (which is a polynomial in n when k is a
constant) for computing the optimal embedding.

Recall that dk+1 is the minimum distortion over all permutations in �k+1. Let
π be the optimal embedding permutation. If π is not k-separable, then, according
to Theorem 2.1, π contains either a permutation in �k+1 or in π∗

k+2 (in the case
where k is even). From Sections 2.5 and 2.6, we can compute dist(π∗

k+2) = 2k +
2
√

k(k − 1)−1 and also conclude that dist(π∗
k+2) ≥ dk+1 for all k. Hence if π is not

k-separable, then dist(π ) ≥ dk+1. Otherwise, an algorithm for finding the optimal
embedding follows.

2.4. THE ALGORITHM.

2.4.1. Algorithm Intuition. Our algorithm will guarantee that we solve all inputs
whose optimal bijection π is k-separable, where k is the parameter. Note that
if dist(π ) < dk+1, then π is k-separable. Setting k = 46, we get an algorithm
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that computes the bijection when the optimal bijection π has distortion dist(π ) <
13.602.

At an intuitive level our algorithm will work as follows. It looks at every possible
subinterval of the points in U against every possible subinterval of the points in
V , starting with size 2 and working up to size n. It will break the subintervals into
every possible k subsubinterval (including the empty sets). It will then try match
these k subsubintervals by trying all k! possible bijections of the subsubintervals.
If a match is found with low enough distortion, the match will be saved for future
reference. How the subintervals are mapped is no longer important; all we need
know about the subinterval to continue the process is whether there was a bijection
with distortion less than dk+1, as well as the image and preimages, respectively, of
the first and last point of U and the first and last point in V . The reason we need to
keep the mappings of the first and last points in U and V is because when we try to
combine two subintervals, we need to check the expansion and inverse expansion
between them. We store this information in a table. When the subinterval is U and
V , if we can map U to V by the same process with distortion less than dk+1, then
we output “yes”.

Another way to think about the algorithm is to consider the algorithm to be
looking for mappings that contain a pattern size k1 for some k1 ≤ k. If it finds such
a pattern it then thinks of this entire set as one mapping that could be part of another
pattern of size ≤ k, and it looks for such a pattern.

2.4.2. Algorithm. The algorithm gets as input two line metrics (U, d) and
(V, d ′). It also gets as parameters α = √

dk+1, the maximum expansion and in-
verse expansion allowed, as well as a parameter k which is related to the bijections
that the algorithm tries.

The algorithm proceeds by building a dynamic programming Boolean table T
which is indexed by the following parameters:

—a subinterval I = {um, um+1, . . . , um+c−1} of U and a subinterval
J = {vm ′, vm ′+1, . . . , vm ′+c−1} of V of the same size c ≥ 1; and

—four elements v, v ′ ∈ J and u, u′ ∈ I .1 Specifically, v is the image of the first
point in I, and v ′ is the image of the last point in I. Similarly, u is the preimage
of the first point in J, and u′ is the preimage of the last point in J.

We set the table entry T [I, J, v, v ′, u, u′] to true if there is a bijection σ : I → J
such that σ (um) = v, σ (um+c−1) = v ′, σ−1(vm ′) = u, and σ−1(vm ′+c−1) = u′, and
with expansion and inverse expansion at most α.

The algorithm runs from c = 1 to n. The base case c = 1 is trivial, with all
entries set to true. For c > 1, compute every entry T [I, J, v, v ′, u, u′] with |I | = c
and |J | = c as follows: Consider all partitions of I and J into 2 ≤ k0 ≤ k
subintervals I = ⋃k0

a=1 Ia, J = ⋃k0

b=1 Jb. Try all possible combinations of pairs of
Ia, Jb (σ (Ia) = Jb) over all a,b’s and set T [I, J, v, v ′, u, u′] to true if and only if
in at least one of the combinations, the following conditions hold.

—∀a, b T [Ia, Jb, vb, v ′
b, ua, u′

a] is true, where σ (Ia) = Jb.

1 Here, v ′ and u′ do not denote images. They are just normal points. The same will hold throughout
this subsection and we will specifically mention the images.
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Filling in the table: a possible case.

—Let Jb1
= σ (Ia), Jb2

= σ (Ia+1), Ia1
= σ−1(Jb), Ia2

= σ−1(Jb+1). Then,

d(vb2
, v ′

b1
) ≤ α · d(min(Ia+1), max(Ia))

d(ua2
, u′

a1
) ≤ α · d(min(Jb+1), max(Jb)).

These inequalities ensure that the edges connecting the subintervals have expan-
sion and inversion expansion at most α.2

Once the table is prepared, the algorithm just checks whether T [U, V, v, v ′, u, u′]
is true for some (v, v ′, u, u′).

2.4.3. Analysis. The analysis proceeds as follows.

—Correctness. For the correctness of this algorithm we must show that we can
solve any bijection whose optimal mapping is has distortion less than dk+1. Since
the distortion of the optimal mapping is less than dk+1, the optimal mapping is
k-separable. Hence, the permutation π contains only nice intervals of sizes at most
k. Thus, the algorithm will try each of these partial mappings (on the nice intervals)
and return a value of true for them.

—Running Time. The running time of the algorithm is easy to bound. Notice
that the table size is just O(n7). Computing each entry T [I, J, v, v ′, u, u′] of the
table is polynomial in n: The sets I and J can be split into k0 ≤ k sets in O(nk−1)
ways and for each such possible splitting we store 4(k0 − 2) + 2 + 2 ≤ 4(k −
1) mappings, which can be done in O(n4k−4); and, finally, there are k! possible
ways of mapping various Ia’s to various Jb’s. Thus computing each entry takes
O(n4k−4 · nk−1 · k!) = O(k!n5k−5) time. So, computing the whole table takes
O(k!n5k−5 · n7) = O(k!n5k+2).

This also completes the proof of Theorem 2.2.

2.5. LARGEST EIGENVALUE. In this subsection, we provide an interesting obser-
vation that the distortion of nonseparable patterns can be computed by computing
the largest eigenvalue of the 0-1 matrix of their permutation. This observation
suggests that we can find minimum distortions using a computer program.

Assume that the distortion corresponding to a permutation π of [1, n] is λ. This
means that for any two line metrics of n points each, the distortion using π is at
least λ and there exists a pair of line metrics whose distortion, using π , is exactly

2 Note that we need only consider the expansion and inverse expansion of edges [Kenyon et al. 2004].
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λ. In fact, it is not hard to see that the maximum expansion and inverse expansion
in embedding U to V happens for a pair of consecutive points, so we need to care
only about them. Finding dist(π ) corresponds to solving a set of linear equations.
For example, for the permutation in Figure 1, the linear equations are

y + z ≤ √
λa

x + y + z ≤ √
λb

x + y ≤ √
λc

a + b ≤ √
λx

a + b + c ≤ √
λy

b + c ≤ √
λz,

or equivalently AX ≤ √
λX , where A is the adjacency matrix corresponding to π

and X is [a, b, c, x, y, z]T . In general, for a permutation π of size n that corresponds
to embedding between two line metrics of size n, A has 2n − 2 rows and columns
where, for all 0 ≤ i, j < n, A[i, j] = A[n + i, n + j] = 0 and A[i, n + j] = A[n +
i, j] is one iff the interval [π (i), π (i + 1)] (or [π (i + 1), π (i)] if π (i) > π (i + 1))
contains the interval [ j, j + 1], and is zero otherwise.

We can also assume that by scaling edge weights in U or V if necessary, the expan-

sion and contraction both equal
√

λ. Thus, for any single edge in U and V we write
an inequality to make sure that its corresponding expansion does not exceed

√
λ.

Since we are interested in minimizing λ, we had better make the equality AX =√
λX .3 Therefore,

√
λ is an eigenvalue of A. It is well known that when all entries

of A are positive, the only eigenvalue whose corresponding eigenvector is positive

is the largest eigenvalue [Horn and Johnson 1986, Chapter 8.2.]. Thus
√

λ is the
largest eigenvalue of A.

THEOREM 2.3. Let Aπ be the 0-1 matrix corresponding to π and let its largest
eigenvalue be λ. Then, the distortion of π is exactly λ2 and is obtained when the
edge lengths are taken according to the eigenvector corresponding to λ.

2.6. BOUNDING dk . Although dk is increasing in k, it remains bounded. This is
somewhat disappointing, since if it were unbounded we could imagine an algorithm
that finds an optimal embedding for any two line metrics, no matter how large the
optimal distortion, whose running time is a function of the distortion.

THEOREM 2.4. For any value k, there exists a nonseparable permutation πk

whose distortion is at most 7 + 4
√

3.

PROOF. Let π̂2n be the permutation on [1, 2n], where π̂2n(1) = 2, π̂2n(2n) =
2n−1, π̂2n(2i) = 2i +2, and π̂2n(2i +1) = 2i −1, for i = 1, 2, . . . , n−1. Similarly,
π̂2n+1 is defined as: π̂2n+1(i) = π̂2n(i), for i = 1, 2, . . . , n −1, π̂2n+1(2n) = 2n +1,
and π̂2n+1(2n + 1) = 2n − 1(see Figure 2).

3 To see this, let λ be the smallest distortion and assume AX ≤ √
λX for some positive vector X .

Let X be the one with smallest sum of elements, that is, X1 + X2 + ... + Xn . If AX <
√

λX then
Ai X <

√
λXi (for some i), which means we can replace Xi by Ai X without violating the condition

that AX ≤ √
λX . This is a contradiction because now the new sum is the one with smallest sum of

elements.
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FIG. 2. Illustration of permutation π̂15.

TABLE I. DISTORTION OF π̂k FOR SEVERAL VALUES OF k

k 5 7 9 11 13 15 17 19
distortion 8.352 10.896 12.045 12.651 13.007 13.233 13.385 13.492

TABLE II. dk

k 4 6 9 12 15 24
dk 5.828 8.352 9.899 10.896 11.571 12.850
k 30 34 38 42 46
dk 13.131 13.316 13.443 13.534 13.602

Set dU (2i − 1, 2i) = 1, dU (2i, 2i + 1) = √
3, dV (2i − 1, 2i) = 2 + √

3, and

dV (2i, 2i + 1) = 3 + 2
√

3. The distortion corresponding to this pair of point sets

is 7 + 4
√

3, which means dk ≤ 7 + 4
√

3 � 13.928.

Table I shows the exact distortion of such permutations for small values of
k. Finding dk for small k’s (by computing the eigenvalue corresponding to all
permutations in �k and taking the minimum) suggests that dk converges to
7 + 4

√
3. Table II shows the value of dk for different k’s.

Limitation of the approach. It is easy to see that if the pattern π̂15 keeps

extending to infinity, then its distortion is 7 + 4
√

3. Using the tightness property of
edges in this pattern, we get the equations

αa = 2x + 3y ; αb = x + 2y
αx = 2a + 3b ; αy = a + 2b ⇒
α(2b − a) = y ; α(2a − 3b) = x

α2(2a − 3b) = 2a + 3b ; α2(2b − a) = a + 2b,

from which we get α2 = 7 + 4
√

3 ≈ 13.928.

3. Bounded-Degree Graphs with Short Cycles

THEOREM 3.1. Let (U, d) be the shortest-path metric of an unweighted graph
G of maximum degree b (b �= 1). Let (V, d ′) be the shortest-path metric of an
arbitrary unweighted graph G ′. Then, the problem of finding an optimal bijection
between U and V is NP-hard.

PROOF. This proof is based on the proof that it is NP-hard to approximate the
minimum distortion problem within a factor better than 2, given in Kenyon et al.
[2004]. Let G ′ be an unweighted, undirected graph on n vertices. Construct a metric
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(V, d ′) by setting d ′(u, v) = 1 if u, v is an edge of G ′, and d ′(u, v) = 2 otherwise.
Let the bounded-degree graph G be the unweighted cycle on n vertices, C . Clearly,
C is of bounded degree b = 2 and construct the metric (U, d) in the same manner
as (V, d ′). It is easy to check that if G ′ contains a Hamilton cycle, then an optimal
bijection between (U, d) and (V, d ′) has distortion exactly 2. If G ′ does not contain
a Hamilton cycle, then any bijection must have distortion at least 4. Hence, the
problem of finding an optimal bijection between (U, d) and (V, d ′) as described
before is NP-hard. Since the given instance is a particular case of the metrics in the
lemma, the lemma is true.

In this section, we prove the following in a very similar manner to the algorithm
presented in Kenyon et al. [2004].

THEOREM 3.2. Let (U, d) be the shortest-path metric of an unweighted graph
G of maximum degree b and largest cycle-length 3. Let (V, d ′) be the shortest-path
metric of an arbitrary unweighted graph G ′. Then, for any fixed constants b and α,
there is an O(n2) algorithm that decides whether there exists a bijection between
U and V with expansion and inverse expansion at most α.

3.1. STRUCTURAL PROPERTIES. We begin with a few definitions. For a subset
of vertices A ⊆ G, let �(A) denote the set of neighbors of A that lie outside A. We
also use �(v) to denote the set of neighbors of a vertex v ∈ G.

Definition 3.3. We say that a graph G is graph-rooted at vertex r0 by assigning
every vertex v ∈ G a value l(v) that is equal to the length of the shortest path from
v to r0 in G (with l(r0) = 0). By level(i), we denote the set of all vertices v in G
such that l(v) = i .

Definition 3.4. Gr is the subgraph rooted at vertex r according to the following
definition.

(1) r is in Gr .

(2) If there exists a path from r to a vertex v in G such that for all vertices v ′ along
this path (including v), l(v ′) > l(r ), then v ∈ Gr .

(3) If (v1, v2) is an edge in G and both v1 and v2 are ∈ Gr , then the edge (v1, v2) is
an edge in Gr .

We now prove the following lemma (based on the proof of Kenyon et al. [2004]
in the case where (U, d) is the shortest-path metric of an unweighted tree T of
maximum degree b). Let B(u, l) (respectively, B ′(u, l)) denote the closed ball of
radius l around any vertex u in G (respectively, in G ′). For a subset of vertices A ⊆ G
(respectively, in G ′), let �(A) (respectively, �′(A)) denote the set of neighbors of
A that lie outside A. Assume that G is graph-rooted at an arbitrary vertex r0. The
subgraph rooted at any vertex r of G (as defined earlier) is denoted by Gr .

LEMMA 3.5. Let σ : U → V be a bijection with expansion and inverse expan-
sion at most α. Then, the following holds.

(1) G ′ has maximum vertex degree at most bα.
(2) For any vertex r ∈ G, each connected component of G ′\B ′(σ (r ), α2) lies either

entirely in σ (Gr ) or entirely in G ′\σ (Gr ).
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(3) For any r ∈ G, for any adjacent pair (u′, v ′) in G ′ with u′ ∈ σ (Gr ) and
v ′ /∈ σ (Gr ), both σ−1(u′) and σ−1(v ′) are in B(r, α)

PROOF. For the first statement, for any v ∈ G ′, the expansion of σ−1 implies
that σ−1(B ′(v, 1)) ⊆ B(σ−1(v), α), and the cardinality of this ball is at most bα by
the degree bound on G.

For the second statement, let Gr be the subgraph graph-rooted at r ∈ G. Let
v ′ = σ (v) be a vertex in �′(σ (Gr )). By the definition of �′, v ′ is adjacent to
some vertex u′ = σ (u) of σ (Gr ). From the inverse expansion bound, we have
d(u, v) ≤ α. Now, assume that the shortest path from u to v goes through r . Then,
clearly d(r, v) ≤ α. Thus we have d ′(σ (r ), v ′) ≤ α2. From this we get

�′(σ (Gr )) ⊆ B ′(σ (r ), α2),

from which we get the second statement.
For the third statement, note that by the expansion of σ−1, we get that

d(σ−1(u′), σ−1(v ′)) ≤ α. Again assuming that the shortest path from u to v goes
through r , we get that d(r, σ−1(u′)) ≤ α and d(r, σ−1(v ′)) ≤ α.

Now, the proof of Lemma 3.6 completes this proof.

LEMMA 3.6. Let u ∈ Gr and v �∈ Gr , then the shortest path from u to v goes
through r.

PROOF. We shall prove this by contradiction. Suppose the shortest path from
u to v does not go through r . In this case, this path has to go through a node (r ′)
such that l(r ′) ≤ l(r ) (otherwise, v is a vertex of Gr ). Note that there is a path from
r to r ′ such that any vertex w on this path (w �= r, r ′) has l(w) < l(r ). Hence, there
is a path from r to r ′ of length at least 2 that does not overlap with the paths from
u to r and u to r ′. Now, consider the nonoverlapping parts of the paths from u to
r and u to r ′. The lengths of these parts are at least 1 each, and hence we get a
cycle of length at least 4 (by joining the path from r to r ′ completely at lower levels
and the path from r to r ′ completely at higher levels). This is a contradiction to the
maximum cycle-length restriction of 3 on G. Hence, the shortest path from u to v
goes through r .

We now present the algorithm, its analysis, and the proof of Theorem 3.2. This
follows from the algorithm in the case of bounded-degree trees presented in Kenyon
et al. [2004].

3.2. ALGORITHM AND PROOF OF THEOREM 3.2.

3.2.1. Algorithm. The algorithm is a dynamic programming algorithm in the
same way as given in Kenyon et al. [2004]. The graph G is graph-rooted arbitrar-
ily at a node r0. The dynamic programming table T is indexed by the following
parameters:

(1) r ∈ {u1, . . . . , un}, the root of the subgraph Gr (with respect to the graph-rooting
G);

(2) r ′ ∈ {v1, . . . , vn};
(3) an injection τ from B(r, α) ∩ Gr into B ′(r ′, α2); and

(4) a subset S of the vertices of G ′ with the property that each connected component
of G ′\B ′(r ′, α2) lies entirely within S or entirely outside of S.
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An entry of the table is true if and only if there exists an injection σ : Gr →
G ′ such that σ (r ) = r ′, σ coincides with r on B(r, α) ∩ Gr , σ (Gr ) = S, and
expansion of every edge of Gr and inverse expansion of every edge of σ (Gr ) are
each at most α. To compute T (r, r ′, τ, S), we run through all combinations of entries
T (ri , r ′

i , τi , Si )i , all of which have value true. The ri ’s are the children of a given
root r . We set the result to be true if at least one of these combinations satisfies the
conditions given next and to false otherwise.

(1) The map τ is consistent with all the maps τi ’s, the τi ’s are consistent among
themselves, the Si ’s do not include r ′, and S is the union of the Si ’s plus the
vertex r ′.

(2) For each r ′
i , we have d ′(r ′, r ′

i ) ≤ αd(r, ri ).

(3) For each adjacent pair v ′, w ′ in G ′, that belong to different sets Si (or with
v ′ = r ′), both v ′ and w ′ are in the image of τ and satisfy d(τ−1(v ′), τ−1(v ′)) ≤ α.

After all entries of the dynamic programming table are computed, the algorithm
checks whether some table entry T (r0, ., ., .) is true.

3.2.2. Running Time and Correctness. The degree bound on G implies that

B ′(v, α2) has size at most bα3

for any v . We claim that the size of the table T is at
most

n × n × (bα3

)
bα

× 22bα3 = O(n2).

The two n terms come from the r and r ′ in the table. The third factor bounds the
number of maps from B(r, α) to B ′(r ′, α2). From the second part of the lemma, we
get the number of possibilities for the set S as the fourth factor. Filling the table
entries takes constant time, as, given r and r ′, we only have to consider r ′

i such
that r ′

i ∈ B ′(r ′, α); for further details, see Kenyon et al. [2004]. Thus the overall

running time is O(n2).
The correctness of the algorithm follows in the same way as in Kenyon et al.

[2004] by an induction (bottom-up the levels in G). This also completes the proof
of Theorem 3.2.
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