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Abstract. Non-interactive zero-knowledge proofs and non-interactive witness-
indistinguishable proofs have played a significant role in the theory of cryp-
tography. However, lack of efficiency has prevented them from being used in
practice. One of the roots of this inefficiency is that non-interactive zero-
knowledge proofs have been constructed for general NP-complete languages such
as Circuit Satisfiability, causing an expensive blowup in the size of the statement
when reducing it to a circuit. The contribution of this paper is a general method-
ology for constructing very simple and efficient non-interactive zero-knowledge
proofs and non-interactive witness-indistinguishable proofs that work directly for
groups with a bilinear map, without needing a reduction to Circuit Satisfiability.

Groups with bilinear maps have enjoyed tremendous success in the field of
cryptography in recent years and have been used to construct a plethora of pro-
tocols. This paper provides non-interactive witness-indistinguishable proofs and
non-interactive zero-knowledge proofs that can be used in connection with these
protocols. Our goal is to spread the use of non-interactive cryptographic proofs
from mainly theoretical purposes to the large class of practical cryptographic pro-
tocols based on bilinear groups.

Keywords: Non-interactive witness-indistinguishability, non-interactive zero-
knowledge, common reference string, bilinear groups.

1 Introduction

Non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable
proofs have played a significant role in the theory of cryptography. However, lack of
efficiency has prevented them from being used in practice. Our goal is to construct effi-
cient and practical non-interactive zero-knowledge (NIZK) proofs and non-interactive
witness-indistinguishable (NIWI) proofs.
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Blum, Feldman and Micali [4] introduced NIZK proofs. Their paper and sub-
sequent work, e.g. [19,16,29,17], demonstrates that NIZK proofs exist for all of NP.
Unfortunately, these NIZK proofs are all very inefficient. While leading to interest-
ing theoretical results, such as the construction of public-key encryption secure against
chosen-ciphertext attack by Dolev, Dwork and Naor [18], they have therefore not had
any impact in practice.

Since we want to construct NIZK proofs that can be used in practice, it is worth-
while to identify the roots of the inefficiency in the above mentioned NIZK proofs. One
drawback is that they were designed with a general NP-complete language in mind, e.g.
Circuit Satisfiability. In practice, we want to prove statements such as “the ciphertext
c encrypts a signature on the message m” or “the three commitments ca, cb, cc contain
messages a, b, c so c = ab”. An NP-reduction of even very simple statements like these
gives us big circuits containing thousands of gates and the corresponding NIZK proofs
become very large.

While we want to avoid an expensive NP-reduction, it is still desirable to have
a general way to express statements that arise in practice instead of having to con-
struct non-interactive proofs on an ad hoc basis. A useful observation in this context
is that many public-key cryptography protocols are based on finite abelian groups. If
we can capture statements that express relations between group elements, then we can
express statements that come up in practice such as “the commitments ca, cb, cc con-
tain messages so c = ab” or “the plaintext of c is a signature on m”, as long as those
commitment, encryption, and signature schemes work over the same finite group. In
the paper, we will therefore construct NIWI and NIZK proofs for group-dependent
languages.

The next issue to address is where to find suitable group-dependent languages. We
will look at statements related to groups with a bilinear map, which have become widely
used in the design of cryptographic protocols. Not only have bilinear groups been used
to give new constructions of such cryptographic staples as public-key encryption, dig-
ital signatures, and key agreement (see [31] and the references therein), but bilinear
groups have enabled the first constructions achieving goals that had never been attained
before. The most notable of these is the Identity-Based Encryption scheme of Boneh
and Franklin [10] (see also [6,7,35]), and there are many others, such as Attribute-
Based Encryption [32,22], Searchable Public-Key Encryption [9,12,13], and One-time
Double-Homomorphic Encryption [11]. For an incomplete list of papers (currently over
200) on the application of bilinear groups in cryptography, see [2].

1.1 Our Contribution

For completeness, let us recap the definition of a bilinear group. Please note that
for notational convenience we will follow the tradition of mathematics and use
additive notation1 for the binary operations in G1 and G2. We have a probabilistic

1 We remark that in the cryptographic literature it is more common to use multiplicative nota-
tion for these groups, since the “discrete log problem” is believed to be hard in these groups,
which is also important to us. In our setting, however, it will be much more convenient to use
multiplicative notation to refer to the action of the bilinear map.
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polynomial time algorithm G that takes a security parameter as input and outputs
(n, G1, G2, GT , e, P1, P2) where

– G1, G2, GT are descriptions of cyclic groups of order n.
– The elements P1, P2 generate G1 and G2 respectively.
– e : G1 × G2 is a non-degenerate bilinear map so e(P1, P2) generates GT and for

all a, b ∈ Zn we have e(aP1, bP2) = e(P1, P2)ab.
– We can efficiently compute group operations, compute the bilinear map and decide

membership.

In this work, we develop a general set of highly efficient techniques for proving state-
ments involving bilinear groups. The generality of our work extends in two directions.
First, we formulate our constructions in terms of modules over commutative rings with
an associated bilinear map. This framework captures all known bilinear groups with
cryptographic significance – for both supersingular and ordinary elliptic curves, for
groups of both prime and composite order. Second, we consider all mathematical op-
erations that can take place in the context of a bilinear group - addition in G1 and G2,
scalar point-multiplication, addition or multiplication of scalars, and use of the bilin-
ear map. We also allow both group elements and exponents to be “unknowns” in the
statements to be proven.

With our level of generality, it would for example be easy to write down a short
statement, using the operations above, that encodes “c is an encryption of the value
committed to in d under the product of the two keys committed to in a and b” where the
encryptions and commitments being referred to are existing cryptographic constructions
based on bilinear groups. Logical operations like AND and OR are also easy to encode
into our framework using standard techniques in arithmetization.

The proof systems we build are non-interactive. This allows them to be used in
contexts where interaction is undesirable or impossible. We first build highly efficient
witness-indistinguishable proof systems, which are of independent interest. We then
show how to transform these into zero-knowledge proof systems. We also provide a de-
tailed examination of the efficiency of our constructions in various settings (depending
on what type of bilinear group is used).

The security of constructions arising from our framework can be based on any of a
variety of computational assumptions about bilinear groups (3 of which we discuss in
detail here). Thus, our techniques do not rely on any one assumption in particular.

Informal Statement of Our Results. We consider equations over variables
from G1, G2 and Zn as described in Figure 1. We construct efficient witness-
indistinguishable proofs for the simultaneous satisfiability of a set of such equations.
The witness-indistinguishable proofs have perfect completeness and there are two com-
putationally indistinguishable types of common reference strings giving respectively
perfect soundness and perfect witness indistinguishability. Due to lack of space we
have to refer to the full paper [28] for precise definitions.

We also consider the question of non-interactive zero-knowledge. We show that we
can give zero-knowledge proofs for multi-scalar multiplication in G1 or G2 and for
quadratic equations in Zn. We can also give zero-knowledge proofs for pairing product
equations with tT = 1. When tT �= 1 we can still give zero-knowledge proofs if we can
find P1, Q1, . . . , Pn, Qn such that tT =

∏n
i=1 e(Pi, Qi).
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Variables: X1, . . . , Xm ∈ G1 , Y1, . . . , Yn ∈ G2 , x1, . . . , xm′ , y1, . . . , yn′ ∈ Zn. a

Pairing product equation:

n∏
i=1

e(Ai, Yi) ·
m∏

i=1

e(Xi, Bi) ·
m∏

i=1

n∏
j=1

e(Xi, Yj)γij = tT ,

for constants Ai ∈ G1, Bi ∈ G2, tT ∈ GT , γij ∈ Zn.
Multi-scalar multiplication equation in G1:

n′∑
i=1

yiAi +
m∑

i=1

biXi +
m∑

i=1

n′∑
j=1

γijyjXi = T1,

for constants Ai, T1 ∈ G1 and bi, γij ∈ Zn. b

Multi-scalar multiplication equation in G2:

n∑
i=1

aiYi +
m′∑
i=1

xiBi +
m′∑
i=1

n∑
j=1

γijxiYj = T2,

for constants Bi, T2 ∈ G2 and ai, γij ∈ Zn.
Quadratic equation in Zn:

n′∑
i=1

aiyi +
m′∑
i=1

xibi +
m′∑
i=1

n′∑
j=1

γijxiyj = t,

for constants ai, γij , t ∈ Zn.

a We list variables in Zn in two separate groups because we will treat them differently in
the NIWI proofs. If we wish to deal with only one group of variables in Zn we can add
equations in Zn of the form x1 = y1, x2 = y2, etc.

b With multiplicative notation, these equations would be multi-exponentiation equations. We
use additive notation for G1 and G2, since this will be notationally convenient in the paper,
but stress that the discrete logarithm problem will typically be hard in these groups.

Fig. 1. Equations over groups with bilinear map

Instantiations. In the full paper we give three possible instantiations of the bilinear
groups; there are many more. The first instantiation is based on the composite order
groups introduced by Boneh, Goh and Nissim [11]. We work over a composite order
bilinear group (n, G, GT , e, P) where n = pq. The security of this instantiation is
based on the subgroup decision assumption that says it is hard to distinguish random
elements of order n from random elements of order q.

The second instantiation is based on prime order groups (p, G1, G2, GT , e, P1, P2).
Security depends on the symmetric external Diffie-Hellman (SXDH) assumption
[33,8,1,20,34] that says the DDH problem is hard in both G1 and G2.

The third instantiation is based on prime order groups (p, G, GT , e, P) where
the decisional linear (DLIN) problem is hard. The DLIN problem introduced by
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Boneh, Boyen and Shacham [8] states that given (αP , βP , rαP , sβP , tP) for random
α, β, r, s ∈ Zp it is hard to tell whether t = r + s or t is random.

The instantiations illustrate the variety of ways bilinear groups can be constructed.
We can choose prime order or composite order groups, we can use G1 = G2 and
G1 �= G2, and we can make various cryptographic assumptions. All three security as-
sumptions have been used in the cryptographic literature to build interesting protocols.

For all three instantiations, the techniques presented here give us short NIWI proofs.
In particular, the cost in proof size of each extra equation is constant and independent
of the number of variables in the equation. The size of the proofs, can be computed by
adding the cost, measured in group elements from G1 or G2, of each variable and each
equation listed in Figure 2. We refer to the full paper [28] for more detailed tables.

Subgroup decision SXDH DLIN
Variable in G1 or G2 1 2 3
Variable in Zn or Zp 1 2 3
Paring product equation 1 8 9
Multi-scalar multiplication in G1 or G2 1 6 9
Quadratic equation in Zn or Zp 1 4 6

Fig. 2. Number of group elements each variable or equation adds to the size of a NIWI proof

1.2 Related Work

As we mentioned before, early work on NIZK proofs demonstrated that all NP-
languages have non-interactive proofs, however, did not yield efficient proofs. One
cause for these proofs being inefficient in practice was the need for an expensive NP-
reduction to e.g. Circuit Satisfiability. Another cause of inefficiency was the reliance on
the so-called hidden bits model, which even for small circuits is inefficient.

Groth, Ostrovsky, and Sahai [27,26] investigated NIZK proofs for Circuit Satisfia-
bility using bilinear groups. This addressed the second cause of inefficiency since their
techniques give efficient proofs for Circuit Satisfiability, but to use their proofs one
must still make an NP-reduction to Circuit Satisfiability thus limiting the applications.
We stress that while [27,26] used bilinear groups, their application was to build proof
systems for Circuit Satisfiability. Here, we devise entirely new techniques to deal with
general statements about equations in bilinear groups, without having to reduce to an
NP-complete language.

Addressing the issue of avoiding an expensive NP-reduction we have works by
Boyen and Waters [13,14] that suggest efficient NIWI proofs for statements related
to group signatures. These proofs are based on bilinear groups of composite order and
rely on the subgroup decision assumption.

Groth [23] was the first to suggest a general group-dependent language and NIZK
proofs for statements in this language. He investigated satisfiability of pairing product
equations and only allowed group elements to be variables. He also looked only at the
special case of prime order groups G, GT with a bilinear map e : G × G → GT

and, based on the decisional linear assumption [8], constructed NIZK proofs for such
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pairing product equations. However, even for very small statements, the very different
and much more complicated techniques of Groth yield proofs consisting of thousands
of group elements (whereas ours would be in the tens). Our techniques are much easier
to understand, significantly more general, and vastly more efficient.

We summarize our comparison with other works on NIZK proofs in Figure 3.

Inefficient Efficient
Circuit Satisfiability E.g. [29] [27,26]
Group-dependent language [23] (restricted case) This work

Fig. 3. Classification of NIZK proofs according to usefulness

We note that there have been many earlier works (starting with [21]) dealing with
efficient interactive zero-knowledge protocols for a number of algebraic relations.
Here, we focus on non-interactive proofs. We also note that even for interactive zero-
knowledge proofs, no set of techniques was known for dealing with general algebraic
assertions arising in bilinear groups, as we do here.

1.3 New Techniques

[27,26,23] start by constructing non-interactive proofs for simple statements and then
combine many of them to get more powerful proofs. The main building block in [27],
for instance, is a proof that a given commitment contains either 0 or 1, which has little
expressive power on its own. Our approach is the opposite: we directly construct proofs
for very expressive languages; as such, our techniques are very different from previous
work.

The way we achieve our generality is by viewing the groups G1, G2, GT as modules
over the ring Zn. The ring Zn itself can also be viewed as a Zn-module. We there-
fore look at the more general question of satisfiability of quadratic equations over Zn-
modules A1, A2, AT with a bilinear map, see Section 2 for details. Since many bilinear
groups with various cryptographic assumptions and various mathematical properties
can be viewed as modules we are not bound to any particular bilinear group or any par-
ticular assumption. We remark that while bilinear groups can be interpreted as modules
with a bilinear map, it is possible that there exist other interesting modules with a bilin-
ear map that are not based on bilinear groups. We leave the existence of such modules
as an interesting open problem.

Given modules A1, A2, AT with a bilinear map, we construct new modules
B1, B2, BT , also equipped with a bilinear map, and we map the elements in A1, A2, AT

into B1, B2, BT . More precisely, we devise commitment schemes that map variables
from A1, A2 to the modules B1, B2. The commitment schemes are homomorphic with
respect to the module operations but also with respect to the bilinear map.

Our techniques for constructing witness-indistinguishable proofs are fairly involved
mathematically, but we will try to present some high level intuition here. (We give more
detailed intuition later in Section 5, where we present our main proof system). The main
idea is the following: because our commitment schemes are homomorphic and we equip



Efficient Non-interactive Proof Systems for Bilinear Groups 421

them with a bilinear map, we can take the equation that we are trying to prove, and just
replace the variables in the equation with commitments to those variables. Of course,
because the commitment schemes are hiding, the equations will no longer be valid.
Intuitively, however, we can extract out the additional terms introduced by the random-
ness of the commitments: if we give away these terms in the proof, then this would be a
convincing proof of the equation’s validity (again, because of the homomorphic proper-
ties). But, giving away these terms might destroy witness indistinguishability. Suppose,
however, that there is only one “additional term” introduced by substituting the com-
mitments. Then, because it would be the unique value which makes the equation true,
giving it away would preserve witness indistinguishability! In general, we are not so
lucky. But if there are many terms, that means that these terms are not unique, and be-
cause of the nice algebraic environment that we work in, we can randomize these terms
so that the equation is still true, but so that we effectively reduce to the case of there
being a single term being given away with a unique value.

1.4 Applications

Independently of our work, Boyen and Waters [14] have constructed non-interactive
proofs that they use for group signatures (see also their earlier paper [13]). These proofs
can be seen as examples of the NIWI proofs in instantiation 1. Subsequent to the an-
nouncement of our work, several papers have built upon it: Chandran, Groth and Sahai
[15] have constructed ring-signatures of sub-linear size using the NIWI proofs in the
first instantiation, which is based on the subgroup decision problem. Groth and Lu
[25] have used the NIWI and NIZK proofs from instantiation 3 to construct a NIZK
proof for the correctness of a shuffle. Groth [24] has used the NIWI and NIZK proofs
from instantiation 3 to construct a fully anonymous group signature scheme. Belenkiy,
Chase, Kohlweiss and Lysyanskaya [3] have used instantiations 2 and 3 to construct
non-interactive anonymous credentials. Also, by attaching NIZK proofs to semantically
secure public-key encryption in any instantiation we get an efficient non-interactive
verifiable cryptosystem. Boneh [5] has suggested using this for optimistic fair ex-
change [30], where two parties use a trusted but lazy third party to guarantee fairness.

2 Modules with Bilinear Maps

Let (R, +, ·, 0, 1) be a finite commutative ring. Recall that an R-module A is an abelian
group (A, +, 0) where the ring acts on the group such that ∀r, s ∈ R ∀x, y ∈ A :

(r + s)x = rx + sx ∧ r(x + y) = rx + ry ∧ r(sx) = (rs)x ∧ 1x = x.

A cyclic group G of order n can in a natural way be viewed as a Zn-module. We will
observe that all the equations in Figure 1 can be viewed as equations over Zn-modules
with a bilinear map. To generalize completely, let R be a finite commutative ring and let
A1, A2, AT be finite R-modules with a bilinear map f : A1 × A2 → AT . We consider
quadratic equations over variables x1, . . . , xm ∈ A1, y1, . . . , yn ∈ A2 of the form

n∑
j=1

f(aj, yj) +
m∑

i=1

f(xi, bi) +
m∑

i=1

n∑
j=1

γijf(xi, yj) = t.
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In order to simplify notation, let us for x1, . . . , xn ∈ A1, y1, . . . , yn ∈ A2 define

x · y =
n∑

i=1

f(xi, yi).

The equations can now be written as

a · y + x · b + x · Γy = t.

We note for future use that due to the bilinear properties of f , we have for any matrix
Γ ∈ Matm×n(R) and for any x1, . . . , xm, y1, . . . , yn that x · Γy = Γ�x · y.

Let us now return to the equations in Figure 1 and see how they can be recast as
quadratic equations over Zn-modules with a bilinear map.

Pairing product equations: Define R = Zn, A1 = G1, A2 = G2, AT =
GT , f(x, y) = e(x, y) and we can rewrite2 the pairing product equation as
(A · Y)(X · B)(X · ΓY) = tT .

Multi-scalar multiplication in G1: Define R = Zn, A1 = G1, A2 = Zn, AT =
G1, f(X , y) = yX and we can rewrite the multi-scalar multiplication equation
as A · y + X · b + X · Γy = T1.

Multi-scalar multiplication in G2: Define R = Zn, A1 = Zn, A2 = G2, AT =
G2, f(x, Y) = xY and we can rewrite the multi-scalar multiplication equation
as a · Y + x · B + x · ΓY = T2.

Quadratic equation in Zn: Define R = Zn, A1 = Zn, A2 = Zn, AT =
Zn, f(x, y) = xy mod n and we can rewrite the quadratic equation in Zn as
a · y + x · b + x · Γy = t.

From now on, we will therefore focus on the more general problem of constructing non-
interactive composable witness-indistinguishable proofs for satisfiability of quadratic
equations over R-modules A1, A2, AT (using additive notation for all modules) with a
bilinear map f .

3 Commitment from Modules

In our NIWI proofs we will commit to the variables x1, . . . , xm ∈ A1, y1, . . . , yn ∈ A2.
We do this by mapping them into other R-modules B1, B2 and making the commit-
ments in those modules.

Let us for now just consider how to commit to elements from one R-module A. The
public key for the commitment scheme will describe another R-module B and R-linear
maps ι : A → B and p : B → A. It will also contain elements u1, . . . , un ∈ B. To
commit to x ∈ A we pick r1, . . . , rn ← R at random and compute the commitment

c := ι(x) +
n∑

i=1

riui.

Our commitment scheme will have two types of commitment keys.

2 We use multiplicative notation here, because, usually GT is written multiplicatively in the
literature. When we work with the abstract modules, however, we will use additive notation.
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Hiding key: A hiding key contains (B, ι, p, u1, . . . , un) such that ι(G) ⊆
〈u1, . . . , un〉. The commitment c := ι(x) +

∑n
i=1 riui is perfectly hiding when

r1, . . . , rn are chosen at random from R.
Binding key: A binding key contains (B, ι, p, u1, . . . , un) such that ∀i : p(ui) = 0

and ι ◦ p is the identity.3 The commitment c := ι(x) +
∑n

i=1 riui is perfectly
binding, since it determines x as p(c) = p(ι(x)) = x.4

Computational indistinguishability: The main assumption that we will be making
throughout this paper is that the distribution of hiding keys and the distribution of
binding keys are computationally indistinguishable. Witness-indistinguishability of
our NIWI proofs and later the zero-knowledge property of our NIZK proofs will
rely on this property.

Often we will commit to many elements at a time so let us define some convenient
notation. Given elements x1, . . . , xm we write c := ι(x)+ Ru with R ∈ Matm×n(R)
for making commitments c1, . . . , cm computed as ci := ι(xi) +

∑n
j=1 rijuj .

The treatment of commitments using the language of modules generalizes sev-
eral previous works dealing with commitments over bilinear groups, including
[11,27,26,23,36]. We refer to the full paper [28] for a demonstration of how the com-
mitment scheme can be instantiated with respectively the subgroup decision, the SXDH
and the DLIN assumptions.

4 Setup

In our NIWI proofs the common reference string will contain commitment keys to
commit to elements in respectively A1 and A2. These commitment keys specify
B1, ι1, p1, u1, . . . , um̂ so ι1 ◦ p1 is the identity map and B2, ι2, p2, v1, . . . , vn̂ so ι2 ◦ p2
is the identity map. In addition, the common reference string will also specify a third
R-module BT together with R-linear maps ιT : AT → BT and pT : BT → AT so
ιT ◦ pT is the identity map. There will be a bilinear map F : B1 × B2 → BT as well.
We require that the maps are commutative. We refer to Figure 4 for an overview of the
modules and the maps.

For notational convenience, let us define for x ∈ Bn
1 , y ∈ Bn

2 that

x • y =
n∑

i=1

F (xi, yi).

The final part of the common reference string is a set of matrices H1, . . . , Hη ∈
Matm̂×n̂(R) that all satisfy u • Hiv = 0.5

3 In the full paper [28], we also consider the case where ι ◦ p is not the identity. In particular, in
the instantiation based on the subgroup decision problem, ι ◦ p is the projection on the order p
subgroup of G.

4 The map p is not efficiently computable. However, one can imagine scenarios where a secret
key will make p efficiently computable making the commitment scheme a cryptosystem with
p being the decryption operation.

5 The number of matrices H1, . . . , Hη depends on the concrete setting. In many cases, we need
no matrices at all and we have η = 0, but there are also cases where they are needed.
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A1 × A2 → AT

f
ι1 ↓↑ p1 ι2 ↓↑ p2 ιT ↓↑ pT

B1 × B2 → BT

F

∀x ∈ A1 ∀y ∈ A2 : F (ι1(x), ι2(y)) = ιT (f(x, y))

∀x ∈ B1 ∀y ∈ B2 : f(p1(x), p2(x)) = pT (F (x, y))

Fig. 4. Modules and maps between them

There will be two different types of settings of interest to us.

Soundness setting: In the soundness setting, we require that the commitment keys are
binding so we have p1(u) = 0 and p2(v) = 0.

Witness-indistinguishability setting: In the witness-indistinguishability setting we
have hiding commitment keys, so ι1(G1) ⊆ 〈u1, . . . , um̂〉 and ι2(G2) ⊆
〈v1, . . . , vn̂〉. We also require that H1, . . . , Hη generate the R-module of all ma-
trices H so u • Hv = 0. As we will see in the next section, these matrices play a
role as randomizers in the witness-indistinguishability proof.

Computational indistinguishability: The (only) computational assumption this paper
is based on is that the two settings can be set up in a computationally indistinguish-
able way. The instantiations show that there are many ways to get such computa-
tionally indistinguishable soundness and witness-indistinguishability setups.

All three instantiations based on the subgroup decision, the SXDH and the DLIN
assumptions enable us to make this kind of setup, see the full paper [28] for details.

5 Proving That Committed Values Satisfy a Quadratic Equation

Recall that in our setting, a quadratic equation looks like the following:

a · y + x · b + x · Γy = t, (1)

with constants a ∈ An
1 , b ∈ Am

2 , Γ ∈ Matm×n(R), t ∈ AT . We will first consider the
case of a single quadratic equation of the above form. The first step in our NIWI proof
will be to commit to all the variables x, y. The commitments are of the form

c = ι1(x) + Ru , d = ι2(y) + Sv, (2)

with R ∈ Matm×m̂(R), S ∈ Matn×n̂(R). The prover’s task is to convince the verifier
that the commitments contain x ∈ Am

1 , y ∈ An
2 that satisfy the quadratic equation.

(Note that for all equations we will use these same commitments.)

Intuition. Before giving the proof let us give some intuition. In the previous sections,
we have carefully set up our commitments so that the commitments themselves also
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“behave” like the values being committed to: they also belong to modules (the B mod-
ules) equipped with a bilinear map (the map F , also implicitly used in the • operation).
Given that we have done this, a natural idea is to take the quadratic equation (1), and
“plug in” the commitments (2) in place of the variables; let us evaluate:

ι1(a) • d + c • ι2(b) + c • Γd.

After some computations, where we expand the commitments (2), make use of the
bilinearity of •, and rearrange terms (the details can be found in the proof of Theorem
1 in the full paper [28]) we get

(
ι1(a) • ι2(y) + ι1(x) • ι2(b) + ι1(x) • Γι2(y)

)
+ι1(a) • Sv + Ru • ι2(b) + ι1(x) • ΓSv + Ru • Γι2(y) + Ru • ΓSv.

By the commutative properties of the maps, the first group of three terms is equal to
ιT (t), if Equation 1 holds. Looking at the remaining terms, note that the verifier knows
u and v. Using the fact that bilinearity implies that for any x, y we have x • Γy =
Γ�x•y, we can sort the remaining terms so that they match either u or v to get (again
see the proof of Theorem 1 in the full paper for details)

ιT (t)+u•
(
R�ι2(b)+R�Γι2(y)+R�ΓSv

)
+

(
S�ι1(a)+S�Γ�ι1(x)

)
•v. (3)

Now, for sake of intuition, let us make some simplifying assumptions: Let’s assume
that we’re working in a symmetric case where A1 = A2, and B1 = B2, and therefore
u = v and, so, the above equation can be simplified further to get:

ιT (t) + u •
(
R�ι2(b) + R�Γι2(y) + R�ΓSu + S�ι1(a) + S�Γ�ι1(x)

)
.

Now, suppose the prover gives to the verifier as his proof π =
(
R�ι2(b) +

R�Γι2(y) + S�ι1(a) + S�Γ�ι1(x)
)

. The verifier would then check that the fol-

lowing verification equation holds:

ι1(a) • d + c • ι2(b) + c • Γd = ιT (t) + u • π.

It is easy to see that this proof would be convincing in the soundness setting, because
we have that p1(u) = 0. Then the verifier would know (but not be able to compute)
that by applying the maps p1, p2, pT we get

a • p2(d) + p1(c) • b + p1(c) • Γp2(d) = t + p1(u) • p2(π) = t.

This gives us soundness, since x := p1(c) and y := p2(d) satisfy the equations.
The remaining problem is to get witness-indistinguishability. Recall that in the

witness-indistinguishability setting, the commitments are perfectly hiding. Therefore,
in the verification equation, nothing except for π has any information about x and y
except for the information that can be inferred from the quadratic equation itself. So,
let’s consider two cases:
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1. Suppose that π is the unique value so that the verification equation is valid. In
this case, we trivially have witness indistinguishability, since this means that all
witnesses would lead to the same value for π.

2. The simple case above might seem too good to be true, but let’s see what it means if
it isn’t true. If two values π and π′ both satisfy the verification equation, then just
subtracting the equations shows that u • (π − π′) = 0. On the other hand, recall
that in the witness indistinguishability setting, the u vectors generate the entire
space where π or π′ live, and furthermore we know that the matrices H1, . . . , Hη

generate all H such that u•Hu = 0. Therefore, let’s choose r1, . . . , rη at random,
and consider the distribution π′′ = π +

∑η
i=1 riHiu. We thus obtain the same

distribution on π′′ regardless of what π we started from, and such that π′′ always
satisfies the verification equation.

Thus, for the symmetric case we obtain a witness indistinguishable proof system. For
the general non-symmetric case, instead of having just π for the u part of Equation 3,
we would also have a proof θ for the v part. In this case, we would also have to make
sure that this split does not reveal any information about the witness. What we will do
is to randomize the proofs such that they get a uniform distribution on all π, θ that
satisfy the verification equation. If we pick T ← Matn̂×m̂(R) at random we have that
θ + Tu completely randomizes θ. The part we add in θ can be “subtracted” from π by
observing that

ιT (t) + u • π + θ • v = ιT (t) + u •
(
π − T�v

)
+

(
θ + Tu

)
• v.

This leads to a unique distribution of proofs for the general non-symmetric case as well.
Having explained the intuition behind the proof system, we proceed to a formal de-

scription and proof of security properties.

Proof: Pick T ← Matn̂×m̂(R), r1, . . . , rη ← R at random. Compute

π := R�ι2(b) + R�Γι2(y) + R�ΓSv − T�v +
η∑

i=1

riHiv

θ := S�ι1(a) + S�Γ�ι1(x) + Tu

and return the proof (θ, π).
Verification: Return 1 if and only if

ι1(a) • d + c • ι2(b) + c • Γd = ιT (t) + u • π + θ • v.

Perfect completeness of our NIWI proof will follow from the following theorem
no matter whether we are in the soundness setting or the witness-indistinguishability
setting. We refer to the full paper [28] for the proof.

Theorem 1. Given x ∈ Am
1 , y ∈ An

2 , R ∈ Matm×m̂(R), S ∈ Matn×n̂(R) satisfying

c = ι1(x) + Ru , d = ι2(y) + Sv , a · y + x · b + x · Γy = t,

we have for all choices of T, r1, . . . , rη that the proofs π, θ constructed as above will
be accepted.

Perfect soundness of our NIWI proof follows from the following theorem.
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Theorem 2. In the soundness setting, where we have p1(u) = 0 and p2(v) = 0, a
valid proof implies a · p2(d) + p1(c) · b + p1(c) · Γp2(d) = t.

Proof. An acceptable proof π, θ satisfies ι(a) • d + c • ι2(b) + c • Γd = ιT (t) + u •
π + θ • v. The commutative property of the linear and bilinear maps gives us

p1(ι1(a)) · p2(d) + p1(c) · p2(ι2(b)) + p1(c) · Γp2(d)
= pT (ιT (t)) + p1(u) · p2(π) + p1(θ) · p2(v) = pT (ιT (t)).

�
Composable witness-indistinguishability follows from the following theorem, which
we prove in the full paper [28].

Theorem 3. In the witness-indistinguishable setting where ι1(G1) ⊆ 〈u1, . . . , um̂〉,
ι2(G2) ⊆ 〈v1, . . . , vn̂〉 and H1, . . . , Hη generate all matrices H so u • Hv = 0, all
satisfying witnesses x, y, R, S yield proofs π ∈ 〈v1, . . . , vn̂〉m̂ and θ ∈ 〈u1, . . . , um̂〉n̂

that are uniformly distributed conditioned on the verification equation ι1(a) • d + c •
ι2(b) + c • Γd = ιT (t) + u • π + θ • v.

6 NIWI Proof for Satisfiability of a Set of Quadratic Equations

We will now give the full composable NIWI proof for satisfiability of a set of quadratic
equations in a module with a bilinear map. The cryptographic assumption we make is
that the common reference string is created by one of two algorithms K or S and that
their outputs are computationally indistinguishable. The first algorithm outputs a com-
mon reference string that specifies a soundness setting, whereas the second algorithm
outputs a common reference string that specifies a witness-indistinguishability setting.

Setup: gk := (R, A1, A2, AT , f) ← G(1k).
Soundness string:

σ := (B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT , u, v, H1, . . . , Hη) ← K(gk).
Witness-Indistinguishability String:

σ := (B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT , u, v, H1, . . . , Hη) ← S(gk).
Proof: The input consists of gk, σ, a list of quadratic equations {(ai, bi, Γi, ti)}N

i=1
and a satisfying witness x ∈ Am

1 , y ∈ An
2 .

Pick at random R ← Matm×m̂(R) and S ← Matn×n̂(R) and commit to all
the variables as c := x + Ru and d := y + Sv.

For each equation (ai, bi, Γi, ti) make a proof as described in Section 5. In other
words, pick Ti ← Matn̂×m̂(R) and ri1, . . . , riη ← R compute

πi := R�ι2(bi) + R�Γι2(y) + R�ΓSv − T�
i v +

η∑
j=1

rijHjv

θi := S�ι1(ai) + S�Γ�ι1(x) + Tiu.

Output the proof (c, d, {(πi, θi)}N
i=1).
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Verification: The input is gk, σ, {(ai, bi, Γi, ti)}N
i=1 and the proof (c, d, {(πi, θi)}).

For each equation check

ι1(ai) • d + c • ι2(bi) + c • Γid = ιT (ti) + u • πi + θi • v.

Output 1 if all the checks pass, else output 0.

The construction gives us a NIWI proof. We prove the following theorem in the full
paper [28].

Theorem 4. The protocol given above is a NIWI proof for satisfiability of a set of
quadratic equations with perfect completeness, perfect soundness and composable
witness-indistinguishability.

Proof of knowledge. We observe that if K outputs an additional secret piece of infor-
mation ξ that makes it possible to efficiently compute p1 and p2, then it is straightfor-
ward to compute the witness x = p1(c) and y = p2(d), so the proof is a perfect proof
of knowledge.

Proof size. The size of the common reference string is m̂ elements in B1 and n̂ elements
in B2 in addition to the description of the modules, the maps and H1, . . . , Hη. The size
of the proof is m + Nn̂ elements in B1 and n + Nm̂ elements in B2.

Typically, m̂ and n̂ will be small, giving us a proof size that is O(m + n + N)
elements in B1 and B2. The proof size may thus be smaller than the description of the
statement, which can be of size up to Nn elements in A1, Nm elements in A2, Nmn
elements in R and N elements in AT .

6.1 NIWI Proofs for Bilinear Groups

We will now outline the strategy for making NIWI proofs for satisfiability of a set of
quadratic equations over bilinear groups. As we described in Section 2, there are four
different types of equations, corresponding to the following four combinations of Zn-
modules:

Pairing product equations: A1 = G1, A2 = G2, AT = GT , f(X , Y) = e(X , Y).
Multi-scalar multiplication in G1: A1 = G1, A2 = Zn, AT = G1, f(X , y) = yX .
Multi-scalar multiplication in G2: A1 = Zn, A2 = G2, AT = GT , f(x, Y) = xY .
Quadratic equations in Zn: A1 = Zn, A2 = Zn, AT = Zn, f(x, y) = xy mod n.

The common reference string will specify commitment schemes to respectively scalars
and group elements. We first commit to all the variables and then make the NIWI proofs
that correspond to the types of equations that we are looking at. It is important that
we use the same commitment schemes and commitments for all equations, i.e., for
instance we only commit to a scalar x once and we use the same commitment in the
proof whether the equation x is involved in is a multi-scalar multiplication in G2 or
a quadratic equations in Zn. The use of the same commitment in all the equations is
necessary to ensure a consistent choice of x throughout the proof. As a consequence
of this we use the same module B′

1 to commit to x in both multi-scalar multiplication
in G2 and quadratic equations in Zn. We therefore end up with at most four different
modules B1, B

′
1, B2, B

′
2 to commit to respectively X , x, Y, y variables. We give the

full construction of efficient NIWI proofs for the three instantiations based on subgroup
decision, SXDH and DLIN respectively in the full paper [28].
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7 Zero-Knowledge

We will show that in many cases it is possible to make zero-knowledge proofs for
satisfiability of quadratic equations. An obvious strategy is to use our NIWI proofs
directly, however, such proofs may not be zero-knowledge because the zero-knowledge
simulator may not be able to compute any witness for satisfiability of the equations. It
turns out that the strategy is better than it seems at first sight, because we will often
be able to modify the set of quadratic equations into an equivalent set of quadratic
equations where a witness can be found.

We consider first the case where A1 = R, A2 = AT , f(r, y) = ry and where S
outputs an extra piece of information τ that makes it possible to trapdoor open the
commitments in B1. More precisely, τ permits the computation of s ∈ Rm̂ so ι1(1) =
ι1(0)+s�u. We remark that this is a common case; in bilinear groups both multi-scalar
multiplication equations in G1, G2 and quadratic equations in Zn have this structure.

Define c = ι1(1) to be a commitment to φ = 1. Let us rewrite the equations in the
statement as

ai · y + f(−φ, ti) + x · bi + x · Γy = 0.

We have introduced a new variable φ and if we choose all of our variables in these
modified equations to be 0 then we have a satisfying witness. In the simulation, we give
the simulator trapdoor information that permits it to open c to 0 and we can now use the
NIWI proof from Section 6.

We will now describe the NIZK proof. The setup, common reference string gen-
eration, proof and verification work as a standard NIWI proof. Here we describe the
simulator.

Simulation string: Using ι1(1) = ι1(0) +
∑m̂

i=1 siui the simulation string is
(σ, τ) := ((B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT , u, v), s, H1, . . . , Hη) ← S1(gk).

Simulated proof: The input consists of gk, σ, a list of quadratic equations
{(ai, bi, Γi, ti)}N

i=1 and a satisfying witness x, y.
Rewrite the equations as ai · y + x · bi + f(φ, −ti) + x · Γiy = 0. Define

x := 0, y := 0 and φ = 0 to get a witness that satisfies all equations.
Pick at random R ← Matm×m̂(R) and S ← Matn×n̂(R) and commit to all

the variables as c := 0 + Ru and d := 0 + Sv. We also use c := ι1(1) =
ι1(0) +

∑m̂
i=1 siui and append it to c.

For each modified equation (ai, bi, −ti, Γi, 0) make a proof as described in
Section 5. Return the simulated proof {(c, d, πi, θi)}N

i=1.

We prove in the full paper [28] that this construction gives us a perfect NIZK proof.

Theorem 5. The NIWI proof from Section 6 with the simulator described above is a
composable NIZK proof for satisfiability of pairing product equations with perfect com-
pleteness, soundness and composable zero-knowledge, when A1 = R and the commit-
ment in B1 can be trapdoor opened.

7.1 NIZK Proofs for Bilinear Groups

Let us return to the four types of quadratic equations given in Figure 1. If we set up the
common reference string such that we can trapdoor open respectively ι′1(1) and ι′2(1)
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to 0 ∈ Zn then multi-scalar multiplication equations and quadratic equations in Zn are
of the form for which we can give zero-knowledge proofs (at no additional cost).

In the case of pairing product equations we do not know how to get zero-knowledge,
since even with the trapdoors we may not be able to compute a satisfiability witness.
We do observe though that in the special case, where all tT = 1 the choice of X =
O, Y = O is a satisfactory witness. Since we also use X = O, Y = O in the other
zero-knowledge proofs, the simulator can use this witness and give a NIWI proof. In
the special case where all tT = 1 we can therefore make NIZK proofs for satisfiability
of the set of pairing product equations.

Next, let us look at the case where we have a pairing product equation with
tT =

∏n
i=1 e(Pi, Qi) for some known Pi, Qi. In this case, we can add linear equa-

tions Zi = Pi to the set of multi-scalar multiplication equations in G1. We already
know that such equations have zero-knowledge proofs. We can now rewrite the pairing
product equation as (A · Y)(X · B)(Z · Q)(X · ΓY) = 1. We can therefore also
make zero-knowledge proofs if all the pairing product equations have tT of the form
tT =

∏n
i=1 e(Pi, Qi) for some known Pi, Qi.

The case of pairing product equations points to a couple of differences between
witness-indistinguishable proofs and zero-knowledge proofs using our techniques.
NIWI proofs can handle any target tT , whereas zero-knowledge proofs can only handle
special types of target tT . Furthermore, if tT �= 1 the size of the NIWI proof for this
equation is constant, whereas the NIZK proof for the same equation may be larger.
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