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Abstract. Encryption secures our stored data but seems to make it in-
ert. Can we process encrypted data without having to decrypt it first?
Answers to this fundamental question give rise to a wide variety of appli-
cations. Here, we explore this question in a number of settings, focusing
on how interaction and secure hardware can help us compute on en-
crypted data, and what can be done if we have neither interaction nor
secure hardware at our disposal.

1 Introduction

The increased frequency of cyber-attacks as well as governmental regulations,
such as HIPPA and GLBA in the United States, are driving enterprises to en-
crypt more and more of their data. In the near future, it is expected that en-
cryption will be ubiquitous and the majority of enterprise data will be stored
encrypted.

While protecting data with encryption provides clear benefits, it also has some
significant drawbacks. Unlike cleartext data which can be edited and searched,
encrypted data seems to support none of these operations. It is commonly be-
lieved that encrypted data cannot be manipulated without first decrypting it.
This often leads to complex key management where multiple entities are given
access to the decryption keys. The end result is reduced security and increased
cost. To give some examples, consider a database that stores encrypted trans-
actions. Locating all transactions within a certain range of dates is believed to
be impossible without giving the database access to decryption keys. More gen-
erally, once a database column is encrypted it is typically impossible to issue
general queries on that column. The same limitations apply to systems man-
aging encrypted file servers and email. This leads to the following fundamental
question:

Can we process encrypted data without having to decrypt it first?

Answers to this fundamental question give rise to a wide variety of applica-
tions. Here, we explore this question in a number of settings, focusing on how
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interaction and secure hardware can help us compute on encrypted data, and
briefly discussing our recent work in this area. We conclude with some musings
about what can be done if we have neither interaction nor secure hardware at
our disposal.

2 Interaction

Somewhat surprisingly, over two decades ago a powerful positive answer was
given to this fundamental question by making use of interaction, which led to
the flourishing field of secure two-party and multiparty computation [24,11,3,6].
Secure multi-party computation allows users that hold different sets of secret
data to collaborate and analyze all their data together, in such a way that no user
learns anything about anyone else’s secret data except for whatever is revealed
by the output of the analysis. Thus, even though the secrecy of other users’ data
is guaranteed through encryption methods, arbitrarily complex functions of all
the data can be jointly computed by the users.

The key to this is interaction. The intuition behind what makes this possible
is the fact that the holder of the data in unencrypted form is available to “answer
questions” from the other users, who only hold the data in some encrypted form.
Of course, the challenge is the following: how can we allow others to process our
data when we are only willing to answer questions that don’t reveal anything
about our data? A number of fascinating and sophisticated techniques have been
discovered to meet this challenge.

Secure two-party and multiparty computation remains a vast and exciting
field. We will briefly mention here two works regarding secure computation
that we were recently involved in. In recent joint work with Ishai and Prab-
hakaran [17], we show how to achieve a very high level of efficiency for secure
two-party and multi-party computation – where the communication overhead of
a secure two-party computation protocol for a function F is only a fixed con-
stant factor larger than the circuit size of F . This is possible under standard and
minimal computational assumptions. By making somewhat stronger and more
non-standard intractability assumptions, in another recent work, joint with Ishai,
Kushilevitz, and Ostrovsky [16], we gave the first steps towards achieving secure
two-party computation withconstant computational overhead. By this, we mean
that the amount of computation (not just communication) necessary to securely
compute some function F is only a fixed constant factor larger than the circuit
size of F .

3 Secure Tamper-Proof Hardware

Another resource with a much more obvious application to our question is secure
tamper-proof hardware. By “secure tamper-proof hardware,” we mean a device
that implements some functionality in a “black-box” manner, so that the holder
of the device can only query the device with some input and receive some out-
put from the device. As such, it is quite intuitive that such devices could allow
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for the processing of encrypted data. In particular, the device could have the
decryption key built into it, so the device would take as input some encrypted
values, decrypt them and process them, and reencrypt the result. Indeed, Gol-
dreich and Ostrovsky [12] showed that using such devices, one can efficiently run
“encrypted programs”. That is, the entire program to be executed is available
only in encrypted form, and therefore nothing about the program is revealed
except for roughly how long it runs, and what its outputs are on given inputs.
This goal is often called program obfuscation. Even with trusted hardware, this
goal is non-trivial to achieve because of the problem of “replay” attacks, where
the result of some intermediate computation is maliciously reused at some other
point of the program where it should not be used. Goldreich and Ostrovsky [12]
solve this problem using secure hardware tokens that maintain state information.
Recently, the work of Goyal and Venkatesan [15] achieved the same result using
stateless hardware tokens, where more sophisticated cryptographic techniques
are used to defend against the problem of replay attacks.

Perhaps the most natural question to ask in the context of secure tamper-
proof hardware is whether it is reasonable to assume that we could really have
secure tamper-proof hardware to begin with? This question has led to two very
interesting recent lines of work:

– Can we implement secure tamper-proof hardware out of insecure
components? In joint works with Ishai, Prabhakaran, and Wagner [19,18],
we considered this question, and showed how to make secure hardware de-
vices for implementing any function that can tolerate specific side channel
attacks (namely bit probes) and specific tampering attacks (namely tam-
pering with the values on individual wires inside the circuit). Interestingly,
the techniques we needed to accomplish these goals are closely related to
techniques from secure two-party and multiparty computation.

In other related work, Gennaro et al. [9] considered the question of
whether a general secure hardware device could be separated into a read-
able but tamper proof part, and a separate unreadable but tamperable part.
They gave a number of positive results for various specific functions.

– What can we accomplish with a very simple secure hardware de-
vices? The recent work of Goldwasser, Kalai, and Rothblum [13] introduce
a very simple hardware device that they call a “one-time memory” device
(we call such devices “OT tokens” because they can be thought of as im-
plementing the oblivious transfer [21,8] function). This device has built into
it two secret strings s0 and s1, takes a single bit t has input, outputs st

and then self-destructs (i.e. becomes useless). Using a collection of such sim-
ple devices, and assuming that one-way functions exist, they show how to
achieve a relaxation of program obfuscation, where the encrypted program
may only be run once – a notion which they call one-time programs. (Note
that this notion can be trivially generalized to allow the program to run a
pre-specified k times.)

In recent joint work with Goyal, Ishai, and Wadia [14], we extend their re-
sults in three ways, two major and one minor. One minor improvement that
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we offer is that our secure devices can be even simpler – a “bit OT token”
where the two strings s0 and s1 are replaced with just two bits b0 and b1,
and the output is just the bit bt. Our two major improvements are: (1) We
strengthen the notion of one-time programs to allow the manufacturer of the
program to specify guarantees about the encrypted program that the evalua-
tor of the program can verify at run-time (i.e. when the owner of the tokens,
Alice, runs the program on her secret input xA, she could be assured that
the program will simply compute f(xA, xB), where f is a specific function
known to Alice, and xB is a secret input of the manufacturer). We call this
stronger notion one-time programs with security against malicious sender.
(2) We achieve this stronger notion of one-time programs unconditionally,
without needing to make any unproven assumptions, such as the existence
of one-way functions.

4 The “Plain” Model

Unfortunately, much less is known about computing on encrypted data in the
“plain model,” where encrypted data is given to us, and we must non-interactively
process it without the assistance of any secure hardware. Indeed, in joint workwith
Barak, Goldreich, Impaggliazzo, Rudich, Vadhan, and Yang [2], we showed that in
this situation the goal of program obfuscation (encrypted programs) is in general
impossible to achieve, even when the programs to the obfuscated/encrypted are
fairly simple. Nevertheless, this area is filled with a number of fascinating open
questions.

One of the central open problems in cryptography today, called doubly-
homomorphic encryption, was first posed by Rivest et al. [22] almost 30 years
ago. The problem can be stated succinctly as follows. Let E be a (semantically)
secure encryption system where plaintexts are integers in {0, . . . , n} for some n.
The system is said to be doubly homomorphic if given the encryption of two
plaintexts Ek(x) and Ek(y) anyone can construct a new independent encryp-
tion of Ek(x + y) and Ek(x · y), without knowledge of x or y. This property
enables arbitrary computations on encrypted data, where the output and all in-
termediate computations remain in encrypted form. More precisely, E is doubly
homomorphic if there are two efficient algorithms A+ and A∗ such that

A+

(
Ek(x1), Ek(x2)

)
=p

(
Ek(x1 + x2), Ek(x1), Ek(x2)

)
, and

A∗
(

Ek(x1), Ek(x2)
)

=p

(
Ek(x1 · x2), Ek(x1), Ek(x2)

)

where =p denotes indistinguishability of distributions.
Virtually nothing is known about the existence of such an E, other than some

very weak impossibility results [5]. The major open problem is to build a
semantically secure public-key encryption that is doubly homomorphic where,
furthermore, algorithms A+ and A∗ are efficient and practical. Such a system
will enable a host of magical applications, such as:
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– Searching. In principle, E will enable a very rich set of search queries on
encrypted data, as discussed in the previous sections. It will also enable very
general searches with encrypted queries.

– Minimally interactive distributed data-mining and secure compu-
tation. E will enable simple minimally-interactive data-mining of databases
distributed across multiple competing entities (e.g., multiple airlines, hos-
pitals, or governments). The goal is to ensure that nothing other than the
data-mining results is revealed. Currently, this requires highly interactive
protocols based on secure computation techniques.

Several existing public-key systems, such as ElGamal [7] and Pallier [20], are
singly-homomorphic — they support only one homomorphic operation. Pre-
vious attempts [23] at building doubly-homomorphic systems only applied to
boolean operations and doubled the ciphertext size at every step. As a result,
one could only perform few boolean operations before the ciphertext size be-
came unmanageable. Recent work of Boneh, Goh, and Nissim [4] use techniques
from elliptic curves to construct a system that allows for an arbitrary number of
additions, and one multiplication. Surprisingly, this small additional homomor-
phic property already leads to a number of exciting new constructions. Thus,
even seemingly minor progress on this fundamental open question can lead to
significant payoffs.

5 Conclusions

The question of computing on encrypted data has spawned countless fascinating
techniques as well as deep open problems. It remains a driving force behind much
of the most exciting research in cryptography today.
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