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Abstract. The approximate degree of a Boolean function f(x1, x2, . . . , xn) is the minimum
degree of a real polynomial that approximates f pointwise within 1/3. Upper bounds on approximate
degree have a variety of applications in learning theory, differential privacy, and algorithm design in
general. Nearly all known upper bounds on approximate degree arise in an existential manner from
bounds on quantum query complexity.

We develop a novel, first-principles approach to the polynomial approximation of Boolean func-
tions. We use it to give the first constructive upper bounds on the approximate degree of several
fundamental problems:

• O
(
n

3
4
− 1

4(2k−1)
)

for the k-element distinctness problem;

• O(n
1− 1

k+1 ) for the k-subset sum problem;

• O(n
1− 1

k+1 ) for any k-DNF or k-CNF formula;

• O(n3/4) for the surjectivity problem.

In all cases, we obtain explicit, closed-form approximating polynomials that are unrelated to the
quantum arguments from previous work. Our first three results match the bounds from quantum
query complexity. Our fourth result improves polynomially on the Θ(n) quantum query complexity
of the problem and refutes the conjecture by several experts that surjectivity has approximate degree
Ω(n). In particular, we exhibit the first natural problem with a polynomial gap between approximate
degree and quantum query complexity.
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1. Introduction. Let f : X → {0, 1} be a given Boolean function, defined on a
subset X ⊆ {0, 1}n. The ε-approximate degree of f , denoted degε(f), is the minimum
degree of a multivariate real polynomial p such that |f(x) − p(x)| 6 ε for all x ∈
X. The standard setting of the error parameter for most applications is ε = 1/3,
an aesthetically motivated constant that can be replaced by any other in (0, 1/2)
at the expense of a constant-factor increase in approximate degree. The notion of
approximate degree originated 25 years ago in the pioneering work of Nisan and
Szegedy [45] and has since proved to be a powerful and versatile tool in theoretical
computer science. Lower bounds on approximate degree have complexity-theoretic
applications, whereas upper bounds are a tool in algorithm design. In the former
category, the notion of approximate degree has enabled spectacular progress in circuit
complexity [48, 60, 12, 8, 37, 38, 54, 10], quantum query complexity [9, 15, 3, 1, 4,
34, 20], and communication complexity [16, 49, 19, 54, 55, 50, 40, 24, 52, 10, 58, 57].
On the algorithmic side, approximate degree underlies many of the strongest results
obtained to date in computational learning [61, 36, 35, 33, 46, 7], differentially private
data release [62, 23], and algorithm design in general [41, 32, 53].

Despite these applications, progress in understanding approximate degree as a
complexity measure has been slow and difficult. With very few exceptions [45, 32, 53,
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56], all known upper bounds on approximate degree arise from quantum query algo-
rithms. The connection between approximate degree and quantum query complexity
was discovered by Beals et al. [9], who proved that the acceptance probability of an
algorithm that makes T queries is representable by a real polynomial of degree 2T .
Put another way, every quantum algorithm implies an approximating polynomial of
comparable complexity for the problem in question. Since the seminal work of Beals
et al., essentially all upper bounds on approximate degree have come from quantum
query algorithms, e.g., [15, 63, 6, 29, 7, 28, 27, 13, 42]. An illustrative example is the
problem of determining the approximate degree of Boolean formulas of size n, posed
in 2003 by O’Donnell and Servedio [46]. Progress on this question was stalled for a
long time until it was finally resolved by Ambainis et al. [7], who built on the work
of Farhi et al. [29] to give a near-optimal quantum query algorithm for any Boolean
formula.

While quantum query complexity has been a fruitful source of approximate de-
gree upper bounds, the exclusive reliance on quantum techniques for the polynomial
approximation of Boolean functions is problematic. For one thing, a quantum query
algorithm generally does not give any information about the approximating poly-
nomial apart from its existence. For example, converting the quantum algorithms
of [6, 7, 13] to polynomials results in expressions so large and complicated that they
are no longer meaningful. More importantly, quantum query algorithms are more con-
strained objects than real polynomials, and an optimal query algorithm for a given
problem may be far less efficient than a polynomial constructed from scratch. Given
the many unresolved questions on approximate degree, there is a compelling need for
polynomial approximation techniques that go beyond quantum query complexity.

In this paper, we take a fresh look at several breakthrough upper bounds for ap-
proximate degree, obtained over the years by sophisticated quantum query algorithms.
In each case, we are able to construct an approximating polynomial from first princi-
ples that matches or improves on the complexity of the best quantum algorithm. All
of our constructions produce explicit, closed-form polynomials that are unrelated to
the corresponding quantum algorithms and are in the author’s opinion substantially
simpler. In one notable instance, our construction achieves a polynomial improvement
on the complexity of the best possible quantum algorithm, refuting a conjecture [22]
on the approximate degree of that problem and exhibiting the first natural example of
a polynomial gap between approximate degree and quantum query complexity. Our
proofs contribute novel techniques to the area, discussed in detail in Section 1.5.

1.1. k-Element distinctness. The starting point in our work is the element
distinctness problem [17, 3, 6, 4, 39, 13], which is one of the most studied questions
in quantum query complexity and a major success story of the field. The input to
the problem is a list of n elements from a given range of size r, and the objective
is to determine if the elements are pairwise distinct. A well-studied generalization
of this problem is k-element distinctness, where k is an arbitrary constant and the
objective is to determine if some k-tuple of the elements are identical. Formally, the
input to element distinctness and k-element distinctness is represented by a Boolean
matrix x ∈ {0, 1}n×r in which every row i has precisely one “1” entry, corresponding
to the value of the ith element.1 Aaronson and Shi [3], Ambainis [4], and Kutin [39]
showed that element distinctness has quantum query complexity Ω(n2/3). In follow-up

1Alternately, the input can be represented by a string of ndlog re bits. Switching to this more
compact representation changes the complexity of the problem by a factor of at most dlog re, which
is negligible in all settings of interest.
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work, Ambainis [6] gave a quantum algorithm for element distinctness with O(n2/3)
queries, matching the lower bound in [3, 4, 39]. For the more general problem of
k-element distinctness, Ambainis’s algorithm [6] requires O(nk/(k+1)) queries. Using
a different approach, Belovs [13] gave a polynomially faster algorithm for k-element

distinctness, with query complexity O(n
3
4−

1

4(2k−1) ). Belovs’s algorithm is currently
the fastest known.

The algorithms of Ambainis [6] and Belovs [13] are highly nontrivial. The for-
mer is based on a quantum walk on the Johnson graph, whereas the latter uses the
framework of learning graphs. We give an elementary, closed-form construction of
an approximating polynomial for k-element distinctness that bypasses the quantum
work. Formally, let EDn,r,k : {0, 1}n×r6n → {0, 1} be given by

EDn,r,k(x) =

{
1 if x1,j + x2,j + · · ·+ xn,j < k for each j,

0 otherwise.

The notation {0, 1}n×r6n for the domain of this function indicates that we allow arbitrary

input matrices x ∈ {0, 1}n×r of Hamming weight at most n, with no restriction on the
placement of the “1” bits. This is of course a problem more general than k-element
distinctness. We prove:

Theorem 1.1 (k-element distinctness). Let k > 1 be a fixed integer. Then for all
n, r > 1,

deg1/3(EDn,r,k) = O
(√

nmin{n, r}
1
2−

1

4(1−2−k)

)
.

Moreover, the approximating polynomial is given explicitly in each case.

Theorem 1.1 matches the quantum query bound of O(n
3
4−

1

4(2k−1) ) ≡ O(n
1− 1

4(1−2−k) )
due to Belovs [13] and further generalizes it to every r > 1.

1.2. k-Subset sum, k-DNF and k-CNF formulas. Another well-studied
problem in quantum query complexity is k-subset sum [26, 14]. The input to this
problem is a list of n elements from a given finite Abelian group G, and the objective is
to determine whether there is a k-tuple of elements that sum to 0. Formally, the input
is represented by a matrix x ∈ {0, 1}n×|G| with precisely one “1” entry in every row.
Childs and Eisenberg [26] contributed an alternate analysis of Ambainis’s algorithm
for k-element distinctness [6] and showed how to adapt it to compute k-subset sum
or any other function property with 1-certificate complexity at most k. In particular,
any such problem has an approximating polynomial of degree O(nk/(k+1)). We give a
first-principles construction of an approximating polynomial for any problem in this
class, using techniques that are elementary and unrelated to the quantum work of
Ambainis [6] and Childs and Eisenberg [26]. Our result is more general:

Theorem 1.2 (k-DNF and k-CNF formulas). Let k > 0 be a fixed integer. Let
f : {0, 1}N6n → {0, 1} be representable on its domain by a k-DNF or k-CNF formula.
Then

deg1/3(f) = O(n
k
k+1 ).

Moreover, the approximating polynomial is given explicitly in each case.

Recall that a k-DNF formula in Boolean variables x1, x2, . . . , xN is the disjunction of
an arbitrary number of terms, where each term is the conjunction of at most k literals
from among x1, x1, x2, x2, . . . , xN , xN . An essential aspect of Theorem 1.2 is that the
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approximate degree upper bound depends only on the Hamming weight x1 +x2 + · · ·+
xN of the input and does not depend at all on the number of variables N , which can be
arbitrarily large. Several special cases of Theorem 1.2 are worth noting. The theorem
clearly applies to k-subset sum, which is by definition representable on its domain
by a k-DNF formula. Moreover, in the terminology of Childs and Eisenberg [26],
Theorem 1.2 applies to any function property with 1-certificate complexity at most k.
Finally, taking N = n shows that Theorem 1.2 applies to any function f : {0, 1}n →
{0, 1} representable by a k-DNF or k-CNF formula.

1.3. Surjectivity. While our proofs of Theorems 1.1 and 1.2 are significantly
simpler than their quantum query counterparts, they do not give a quantitative im-
provement on previous work. This brings us to our next result. In the surjectivity
problem [11], the input is a list of n elements from a given range of size r, where r 6 n.
The objective is to determine whether the input features all r elements of the range.
In function terminology, the input represents a mapping {1, 2, . . . , n} → {1, 2, . . . , r},
and the objective is to determine whether the mapping is surjective. As usual in the
quantum query literature, the input is represented by a Boolean matrix x ∈ {0, 1}n×r
in which every row has precisely one “1” entry. Beame and Machmouchi [11] proved
that for r = bn/2c + 1, the surjectivity problem has the maximum possible quan-
tum query complexity, namely, Θ(n). This led several experts to conjecture that the
approximate degree of surjectivity is also Θ(n); see, e.g., [22]. The conjecture was
significant because its resolution would give the first AC0 circuit with approximate
degree Θ(n), closing a long line of research [45, 3, 4, 22].

Surprisingly, we are able to show that surjectivity has an approximating polyno-
mial of substantially lower degree, regardless of the range parameter r. Formally, let
SURJn,r : {0, 1}n×r6n → {0, 1} be given by

SURJn,r(x) =

r∧
j=1

n∨
i=1

xi,j .

In keeping with our other results, our definition of SURJn,r allows arbitrary input
matrices {0, 1}n×r of Hamming weight at most n. In this generalization of the sur-
jectivity problem, the input can be thought of as an arbitrary relation rather than a
function. We prove:

Theorem 1.3 (Surjectivity). For all positive integers n and r,

deg1/3(SURJn,r) =

{
O(
√
n · r1/4) if r 6 n,

0 if r > n.

Moreover, the approximating polynomial is given explicitly in each case.

In particular, the theorem gives an approximating polynomial of degree O(n3/4) for
all r. This upper bound is polynomially smaller than the problem’s quantum query
complexity Θ(n) for r = bn/2c + 1. While explicit functions with a polynomial gap
between approximate degree and quantum query complexity have long been known [5,
2], Theorem 1.3 exhibits the first natural function with this property. The functions
in previous work [5, 2] were constructed with the specific purpose of separating these
complexity measures.

1.4. Symmetric functions. Key building blocks in our proofs are symmetric
functions f : {0, 1}n → {0, 1}. A classic result due to Paturi [47] states that the 1/3-
approximate degree of any such function f is Θ(

√
n`), where ` ∈ {0, 1, 2, . . . , n} is the
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smallest number such that f is constant on inputs of Hamming weight in [`, n − `].
When a symmetric function is used in an auxiliary role as part of a larger construc-
tion, it becomes important to have approximating polynomials for every possible
setting of the error parameter, 1/2n 6 ε 6 1/3. A complete characterization of the
ε-approximate degree of symmetric functions for all ε was obtained by de Wolf [63],
who sharpened previous bounds [32, 15, 53] using an elegant quantum query algo-
rithm. Prior to our work, no classical, first-principles proof was known for de Wolf’s
characterization, which is telling in view of the basic role that ANDn,ORn, and other
symmetric functions play in the area. We are able to give such a first-principles
proof—in fact, three of them.

Theorem 1.4 (Symmetric functions). Let f : {0, 1}n → {0, 1} be a symmetric
function. Let ` ∈ {0, 1, 2, . . . , n} be an integer such that f is constant on inputs of
Hamming weight in (`, n− `). Then for 1/2n 6 ε 6 1/3,

degε(f) = O

(
√
n`+

√
n log

1

ε

)
.

Moreover, the approximating polynomial is given explicitly in each case.

Theorem 1.4 matches de Wolf’s quantum query result, tightly characterizing the ε-
approximate degree of every nonconstant symmetric function.

1.5. Our techniques. Our proofs use only basic tools from approximation
theory, such as Chebyshev polynomials. Our constructions additionally incorpo-
rate elements of classic algorithm design, e.g., the divide-and-conquer paradigm, the
inclusion-exclusion principle, and probabilistic reasoning. The title of our paper,
“Algorithmic Polynomials,” is a reference to this combination of classic algorithmic
methodology and approximation theory. The informal message of our work is that
algorithmic polynomials are not only more powerful than quantum algorithms but
also easier to construct. A detailed discussion of Theorems 1.1–1.4 follows.

Extension theorem. As our starting point, we prove an extension theorem for
polynomial approximation. This theorem allows one to construct an approximant for
a given function F using an approximant for a restriction f of F. In more detail,
let f : {0, 1}N6m → [−1, 1] be an arbitrary function, defined on inputs x ∈ {0, 1}N of

Hamming weight at most m. Let Fn : {0, 1}N6n → [−1, 1] be the natural extension of
f to inputs of Hamming weight at most n, defined by Fn = 0 outside the domain
of f. From an approximation-theoretic point of view, a fundamental question to ask
is how to efficiently “extend” any approximant for f to an approximant for Fn. Un-
fortunately, this näıve formulation of the extension problem has no efficient solution;
we describe a counterexample in Section 3. We are able to show, however, that the
extension problem becomes meaningful if one works with F2m instead of f . In other
words, we give an efficient, explicit, black-box transformation of any approximant for
the extension F2m into an approximant for the extension Fn, for any n > 2m. This
result is of independent interest and is essentially as satisfying as the “ideal” extension
theorem, in that the domains of f and F2m almost coincide and can be arbitrarily
smaller than the domain of Fn. Our proof makes use of extrapolation bounds, ex-
tremal properties of Chebyshev polynomials, and ideas from rational approximation
theory.

Symmetric functions. As mentioned earlier, we give three proofs of Theo-
rem 1.4 on the ε-approximate degree of symmetric functions. Each of the three proofs
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is fully constructive. Our simplest proof uses the extension theorem and is only half-
a-page long. Here, we use brute-force interpolation to compute the function f of
interest on inputs of small Hamming weight, and then apply the extension theorem to
effortlessly extend the interpolant to the full domain of f. Our second proof of The-
orem 1.4 is an explicit, closed-form construction that uses Chebyshev polynomials as
its only ingredient. This proof is a refinement of previous, suboptimal approximants
for the AND function [32, 53]. We eliminate the inefficiency in previous work by
using Chebyshev polynomials to achieve improved control at every point of the do-
main. Finally, our third proof of Theorem 1.4 is inspired by combinatorics rather than
approximation theory. Here, we use a sampling experiment to construct an approxi-
mating polynomial for any symmetric function f from an approximating polynomial
for AND. In more detail, the experiment allows us to interpret f as a linear combina-
tion of conjunctions of arbitrary degree, where the sum of the absolute values of the
coefficients is reasonably small. Once such a representation is available, we simply
replace every conjunction with its approximating polynomial. These substitutions in-
crease the error of the approximation by a factor bounded by the sum of the absolute
values of the coefficients in the original linear combination, which is negligible.

k-Element distinctness, k-DNF and k-CNF formulas. We first establish
a structural result of independent interest, bounding the approximate degree of com-
posed Boolean functions. Specifically, let F : X × {0, 1}N6n → {0, 1} be given by

F (x, y) =
∨N
i=1 yi ∧ fi(x) for some set X and some functions f1, f2, . . . , fN : X →

{0, 1}. We bound the ε-approximate degree of F in terms of the approximate de-
gree of

∨
i∈S fi, maximized over all sets S ⊆ {1, 2, . . . , N} of certain size. Crucially

for our applications, the bound that we derive has no dependence on N. The proof
uses Chebyshev polynomials and the inclusion-exclusion principle. Armed with this
generic composition theorem, we give a short proof of Theorem 1.2 on the approximate
degree of k-DNF and k-CNF formulas. The argument proceeds by induction on k,
with the composition theorem invoked to implement the inductive step. The proof of
Theorem 1.1 on the approximate degree of k-element distinctness is more subtle. It
too proceeds by induction, with the composition theorem playing a central role. This
time, however, the induction is with respect to both k and the range parameter r,
and the extension theorem is required to complete the inductive step. We note that
we are able to bound the ε-approximate degree of k-DNF formulas and k-element
distinctness for every setting of the error parameter ε, rather than just ε = 1/3 in
Theorems 1.1 and 1.2.

Surjectivity. Our proof of Theorem 1.3 is surprisingly short, given how improb-
able the statement was believed to be. As one can see from the defining equation for
SURJn,r, this function is the componentwise composition ANDr ◦ ORn restricted to
inputs of Hamming weight at most n. With this in mind, we start with a degree-O(

√
r)

polynomial ÃNDr that approximates ANDr pointwise within 1/4. The approximant
in question is simply a scaled and shifted Chebyshev polynomial. It follows that the

componentwise composition ÃNDr ◦ ORn, restricted to inputs of Hamming weight
at most n, approximates SURJn,r pointwise within 1/4. We are not finished, how-

ever, because the degree of ÃNDr ◦ ORn is unacceptably large. Moving on, a few

lines of algebra reveal that ÃNDr ◦ ORn is a linear combination of conjunctions in
which the absolute values of the coefficients sum to 2O(

√
r). It remains to approxi-

mate each of these conjunctions pointwise within 2−Ω(
√
r) by a polynomial of degree

O(
√
n
√
r) = O(

√
n · r1/4), for which we use our explicit approximant from Theo-
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rem 1.4 along with the guarantee that the input has Hamming weight at most n.
The proof of Theorem 1.3 is particularly emblematic of our work in its interplay of
approximation-theoretic methodology (Chebyshev polynomials, linear combinations)
and algorithmic thinking (reduction of the problem to the approximation of individual
conjunctions).

1.6. Recent progress. We are pleased to report that our work has sparked a
number of follow-up papers in the area, both on the algorithms and complexity the-
ory side. Our O(n3/4) upper bound for the surjectivity problem has inspired further
progress on approximate degree by Bun, Kothari, and Thaler [20], who prove tight or
nearly tight lower bounds on the approximate degree of several key problems in quan-
tum query complexity. In particular, the authors of [20] prove that our upper bound
for surjectivity is tight. In a different development, Bun, Kothari, and Thaler [21]

used our technique from the analysis of surjectivity to prove an Õ(n1−2−d) upper
bound on the approximate degree of linear-size constant-depth circuits, giving the
first subexponential-time PAC learning algorithm for this concept class. Huang and
Viola [30] adapted our constructions for symmetric functions and k-DNF formulas
to obtain low-weight approximants for these functions, with applications to indistin-
guishability. In a forthcoming paper, Sherstov and Thaler [59] prove lower bounds
for element distinctness, surjectivity, and permutation testing that match our upper
bounds for all settings of the error parameter (Theorems 6.1 and 7.2), with applica-
tions to QMA query complexity. We are confident that the ideas of our work will
inform future research as well.

2. Preliminaries. We start with a review of the technical preliminaries. The
purpose of this section is to make the paper as self-contained as possible, and com-
fortably readable by a broad audience. The expert reader may wish to skim it for the
notation or skip it altogether.

2.1. Notation. We view Boolean functions as mappings X → {0, 1} for some
finite set X. This arithmetization of the Boolean values “true” and “false” makes it
possible to use Boolean operations in arithmetic expressions, as in 1− 2

∨n
i=1 xi. The

familiar functions ORn : {0, 1}n → {0, 1} and ANDn : {0, 1}n → {0, 1} are given by
ORn(x) =

∨n
i=1 xi and ANDn(x) =

∧n
i=1 xi =

∏n
i=1 xi. The negation of a Boolean

function f is denoted as usual by f = 1 − f. The composition of f and g is denoted
f ◦ g, with (f ◦ g)(x) = f(g(x)).

For a string x ∈ {0, 1}n, we denote its Hamming weight by |x| = x1 +x2 +· · ·+xn.
We use the following notation for strings of Hamming weight at most k, greater than
k, and exactly k:

{0, 1}n6k = {x ∈ {0, 1}n : |x| 6 k},
{0, 1}n>k = {x ∈ {0, 1}n : |x| > k},
{0, 1}nk = {x ∈ {0, 1}n : |x| = k}.

For a string x ∈ {0, 1}n and a set S ⊆ {1, 2, . . . , n}, we let x|S denote the restriction of
x to the indices in S. In other words, x|S = xi1xi2 . . . xi|S| , where i1 < i2 < · · · < i|S|
are the elements of S. The characteristic vector of a subset S ⊆ {1, 2, . . . , n} is denoted
1S .

We let N = {0, 1, 2, 3, . . .} and [n] = {1, 2, . . . , n}. For a set S and a real number
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k, we define (
S

k

)
= {A ⊆ S : |A| = k},(

S

6k

)
= {A ⊆ S : |A| 6 k}.

We analogously define
(
S
>k

)
,
(
S
<k

)
, and

(
S
>k

)
. We let lnx and log x stand for the natural

logarithm of x and the logarithm of x to base 2, respectively. The following bound is
well known [31, Proposition 1.4]:

k∑
i=0

(
n

i

)
6
(en

k

)k
, k = 0, 1, 2, . . . , n,(2.1)

where e = 2.7182 . . . denotes Euler’s number. For a logical condition C, we use the
Iverson bracket notation

I[C] =

{
1 if C holds,

0 otherwise.

For a function f : X → R on a finite set X, we use the standard norms

‖f‖∞ = max
x∈X

|f(x)|,

‖f‖1 =
∑
x∈X

|f(x)|.

2.2. Approximate degree. Recall that the total degree of a multivariate real
polynomial p : Rn → R, denoted deg p, is the largest degree of any monomial of p.
We use the terms “degree” and “total degree” interchangeably in this paper. This
paper studies the approximate representation of functions of interest by polynomials.
Specifically, let f : X → R be a given function, for a finite subset X ⊂ Rn. Define

E(f, d) = min
p:deg p6d

‖f − p‖∞,

where the minimum is over polynomials of degree at most d. In words, E(f, d) is the
least error to which f can be approximated by a real polynomial of degree at most d.
For a real number ε > 0, the ε-approximate degree of f is defined as

degε(f) = min{d : E(f, d) 6 ε}.

Thus, degε(f) is the least degree of a real polynomial that approximates f pointwise to
within ε. We refer to any such polynomial as a uniform approximant for f with error ε.
In the study of Boolean functions f , the standard setting of the error parameter is ε =
1/3. This constant is chosen mostly for aesthetic reasons and can be replaced by any
other constant in (0, 1/2) at the expense of a constant-factor increase in approximate
degree. The following fact on the exact representation of functions by polynomials is
well known.

Fact 2.1. For every function f : {0, 1}N6n → R,

deg0(f) 6 n.
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Proof. The proof is by induction on n. The base case n = 0 is trivial since f
is then a constant function. For the inductive step, let n > 1 be arbitrary. By the
inductive hypothesis, there is a polynomial pn−1(x) of degree at most n− 1 such that
f(x) = pn−1(x) for inputs x ∈ {0, 1}N of Hamming weight at most n− 1. Define

pn(x) = pn−1(x) +
∑

a∈{0,1}Nn

(f(a)− pn−1(a))
∏
i:ai=1

xi.

For any fixed input x with |x| 6 n− 1, every term in the summation over a evaluates
to zero and therefore pn(x) = pn−1(x) = f(x). For any fixed input x with |x| = n,
on the other hand, the summation over a contributes precisely one nonzero term,
corresponding to a = x. As a result, pn(x) = pn−1(x) + (f(x) − pn−1(x)) = f(x) in
that case.

2.3. Inclusion-exclusion. All Boolean, arithmetic, and relational operations
on functions in this paper are to be interpreted pointwise. For example,

∨n
i=1 fi

refers to the mapping x 7→
∨n
i=1 fi(x). Similarly,

∏n
i=1 fi is the pointwise product of

f1, f2, . . . , fn. Recall that in the case of Boolean functions, we have
∧n
i=1 fi =

∏n
i=1 fi.

The well-known inclusion-exclusion principle, stated in terms of Boolean functions
f1, f2, . . . , fn, asserts that

n∨
i=1

fi =
∑

S⊆{1,2,...,n}
S 6=∅

(−1)|S|+1
∏
i∈S

fi.

We will need the following less common form of the inclusion-exclusion principle,
where the AND and OR operators are interchanged.

Fact 2.2. For any n > 1 and any Boolean functions f1, f2, . . . , fn : X → {0, 1},
n∏
i=1

fi =
∑

S⊆{1,2,...,n}
S 6=∅

(−1)|S|+1
∨
i∈S

fi.

Proof. We have

n∏
i=1

fi =

n∏
i=1

(1− fi)

=
∑

S⊆{1,2,...,n}

(−1)|S|
∏
i∈S

fi

=
∑

S⊆{1,2,...,n}

(−1)|S|

(∏
i∈S

fi − 1

)

=
∑

S⊆{1,2,...,n}

(−1)|S|

(
−
∨
i∈S

fi

)

=
∑

S⊆{1,2,...,n}
S 6=∅

(−1)|S|+1
∨
i∈S

fi,

where the third step uses the fact that half of the subsets of {1, 2, . . . , n} have odd
cardinality and the other half have even cardinality.
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2.4. Symmetrization. Let Sn denote the symmetric group on n elements.
For a permutation σ ∈ Sn and a string x = (x1, x2, . . . , xn), we adopt the short-
hand σx = (xσ(1), xσ(2), . . . , xσ(n)). A function f(x1, x2, . . . , xn) is called symmet-
ric if it is invariant under permutations of the input variables: f(x1, x2, . . . , xn) ≡
f(xσ(1), xσ(2), . . . , xσ(n)) for all x and σ. Symmetric functions on {0, 1}n are intimately
related to univariate polynomials, as borne out by Minsky and Papert’s symmetriza-
tion argument [44].

Proposition 2.3 (Minsky and Papert). Let p : {0, 1}n → R be a polynomial of
degree d. Then there is a univariate polynomial p∗ of degree at most d such that for
all x ∈ {0, 1}n,

E
σ∈Sn

p(σx) = p∗(|x|).

Minsky and Papert’s result generalizes to block-symmetric functions, as pointed out
in [50, Prop. 2.3]:

Proposition 2.4. Let n1, . . . , nk be positive integers. Let p : {0, 1}n1 × · · · ×
{0, 1}nk → R be a polynomial of degree d. Then there is a polynomial p∗ : Rk → R of
degree at most d such that for all x1 ∈ {0, 1}n1 , . . . , xk ∈ {0, 1}nk ,

E
σ1∈Sn1 ,...,σk∈Snk

p(σ1x1, . . . , σkxk) = p∗(|x1|, . . . , |xk|).

Proposition 2.4 follows in a straightforward manner from Proposition 2.3 by induction
on the number of blocks, k.

2.5. Chebyshev polynomials. Recall from Euler’s identity that

(cosx+ i sinx)d = cos dx+ i sin dx, d = 0, 1, 2, . . . ,(2.2)

where i denotes the imaginary unit. Multiplying out the left-hand side and using
sin2 x = 1− cos2 x, we obtain a univariate polynomial Td of degree d such that

(2.3) Td(cosx) = cos dx.

This unique polynomial is the Chebyshev polynomial of degree d. The representa-
tion (2.3) immediately reveals all the roots of Td, and all the extrema of Td in the
interval [−1, 1]:

Td

(
cos

(
2i− 1

2d
π

))
= 0, i = 1, 2, . . . , d,(2.4)

Td

(
cos

(
i

d
π

))
= (−1)i, i = 0, 1, . . . , d,(2.5)

|Td(t)| 6 1, t ∈ [−1, 1].(2.6)

The extremum at 1 is of particular significance, and we note it separately:

(2.7) Td(1) = 1.

In view of (2.2), the defining equation (2.3) implies that

Td(cosx) =

bd/2c∑
i=0

(
d

2i

)
(−1)i(sinx)2i(cosx)d−2i

=

bd/2c∑
i=0

(
d

2i

)
(cos2 x− 1)i(cosx)d−2i,
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so that the leading coefficient of Td for d > 1 is given by
∑bd/2c
i=0

(
d
2i

)
= 2d−1. As a

result, we have the factored representation

Td(t) = 2d−1
d∏
i=1

(
t− cos

(
2i− 1

2d
π

))
, d > 1.(2.8)

By (2.2) and (2.3),

Td(cosx) = cos dx

=
1

2
(cosx− i sinx)d +

1

2
(cosx+ i sinx)d

=
1

2
(cosx− i

√
1− cos2 x)d +

1

2
(cosx+ i

√
1− cos2 x)d,

whence

Td(t) =
1

2
(t−

√
t2 − 1)d +

1

2
(t+

√
t2 − 1)d, |t| > 1.(2.9)

The following fundamental fact follows from (2.9) by elementary calculus.

Fact 2.5 (Derivative of Chebyshev polynomials). For any integer d > 0 and real
t > 1,

T ′d(t) > d2.

Together, (2.9) and Fact 2.5 give the following useful lower bound for Chebyshev
polynomials on [1,∞).

Proposition 2.6. For any integer d > 1,

Td(1 + δ) > 1 + d2δ, 0 6 δ <∞,

Td(1 + δ) > 2d
√
δ−1 0 6 δ 6 1.

Proof. The first bound follows from the intermediate value theorem in view of
(2.7) and Fact 2.5. For the second bound, use (2.9) to write

Td(1 + δ) >
1

2
(1 + δ +

√
(1 + δ)2 − 1)d

>
1

2
(1 +

√
δ)d

>
1

2
· 2d
√
δ,

where the last step uses 1 + x > 2x for x ∈ [0, 1].

2.6. Coefficient bounds for univariate polynomials. We let Pd stand for
the set of univariate polynomials of degree at most d. For a univariate polynomial
p(t) = adt

d + ad−1t
d−1 + · · ·+ a1t+ a0, we let |||p||| =

∑d
i=0 |ai| denote the sum of the

absolute values of the coefficients of p. Then ||| · ||| is a norm on the real linear space of
polynomials, and it is in addition submultiplicative:

Fact 2.7. For any polynomials p and q,
(i) |||p||| > 0, with equality if and only if p = 0;

(ii) |||λp||| = |λ| · |||p||| for any real λ;



12 ALEXANDER A. SHERSTOV

(iii) |||p+ q||| 6 |||p|||+ |||q|||;
(iv) |||p · q||| 6 |||p||| · |||q|||.
Proof. All four properties follow directly from the definition.

We will need a bound on the coefficients of a univariate polynomial in terms of its
degree d and its maximum absolute value on the interval [0, 1]. This fundamental
problem was solved in the nineteenth century by V. A. Markov [43, p. 81], who
proved an upper bound of

O

(
(1 +

√
2)d√
d

)
(2.10)

on the size of the coefficients of any degree-d polynomial that is bounded on [−1, 1] in
absolute value by 1. Markov further showed that (2.10) is tight. Rather than appeal
to this deep result in approximation theory, we will use the following weaker bound
that suffices for our purposes.

Lemma 2.8. Let p be a univariate polynomial of degree d. Then

|||p||| 6 8d max
i=0,1,...,d

∣∣∣∣p( id
)∣∣∣∣ .(2.11)

Lemma 2.8 is a cosmetic modification of a lemma from [56], which in our notation
states that |||p||| 6 4d maxi=0,1,...,d |p(1 − 2i

d )| for p ∈ Pd. We include a detailed proof
for the reader’s convenience.

Proof of Lemma 2.8. We use a common approximation-theoretic technique [25,
51] whereby one expresses p as a linear combination of more structured polynomials
and analyzes the latter objects. For this, define q0, q1, . . . , qd ∈ Pd by

qj(t) =
(−1)d−jdd

d!

(
d

j

) d∏
i=0
i 6=j

(
t− i

d

)
, j = 0, 1, . . . , d.

One easily verifies that these polynomials behave like delta functions, in the sense
that for i, j = 0, 1, 2, . . . , d,

qj

(
i

d

)
=

{
1 if i = j,

0 otherwise.

Lagrange interpolation gives

p =

d∑
j=0

p

(
j

d

)
qj .(2.12)

By Fact 2.7,

|||qj ||| 6
dd

d!

(
d

j

) d∏
i=0
i 6=j

(
1 +

i

d

)

6
dd

d!

(
d

j

) d∏
i=1

(
1 +

i

d

)
=

1

d!

(
d

j

)
(2d)!

d!
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=

(
d

j

)(
2d

d

)
6 4d

(
d

j

)
, j = 0, 1, 2, . . . , d.(2.13)

Now

|||p||| 6
(

max
j=0,1,...,d

∣∣∣∣p( jd
)∣∣∣∣) d∑

j=0

4d
(
d

j

)

= 8d max
j=0,1,...,d

∣∣∣∣p( jd
)∣∣∣∣ ,

where the first step uses (2.12), (2.13), and Fact 2.7.

2.7. Coefficient bounds for multivariate polynomials. Let φ : Rn → R be
a multivariate polynomial. Analogous to the univariate case, we let |||φ||| denote the
sum of the absolute values of the coefficients of φ. Fact 2.7 is clearly valid in this
multivariate setting as well. Recall that a multivariate polynomial φ is multilinear
if it has degree at most 1 in each variable. The following result is an analogue of
Lemma 2.8.

Lemma 2.9. Let φ : Rn → R be a symmetric multilinear polynomial. Then

|||φ||| 6 8deg φ max
x∈{0,1}n

|φ(x)|.

Proof. Abbreviate d = deg φ and write

φ(x) =

d∑
i=0

ai
∑

S∈([n]
i )

∏
j∈S

xj ,

where a0, a1, . . . , ad are real coefficients. For 0 6 t 6 1, let B(t) denote the Bernoulli
distribution with success probability t. Then

|||φ||| =
d∑
i=0

|ai|
(
n

i

)

6 8d max
06t61

∣∣∣∣∣
d∑
i=0

ai

(
n

i

)
ti

∣∣∣∣∣
= 8d max

06t61

∣∣∣∣ E
x1,x2,...,xn∼B(t)

φ(x)

∣∣∣∣
6 8d max

x∈{0,1}n
|φ(x)|,

where the second and third steps use Lemma 2.8 and multilinearity, respectively.

The following lemma, due to Razborov and Sherstov [50, Lemma 3.2], bounds the
value of a polynomial p at a point of large Hamming weight in terms of p’s values at
points of low Hamming weight.

Lemma 2.10 (Extrapolation lemma). Let d be an integer, 0 6 d 6 n − 1. Let
φ : Rn → R be a polynomial of degree at most d. Then

|φ(1n)| 6 2d
(
n

d

)
max

x∈{0,1}n6d
|φ(x)|.
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As one would expect, one can sharpen the bound of Lemma 2.10 by maximizing over
a larger neighborhood of the Boolean hypercube than {0, 1}n6d. The resulting bound
is as follows.

Lemma 2.11 (Generalized extrapolation lemma). Fix positive integers N > m >
d. Let φ : RN → R be a polynomial of degree at most d. Then

|φ(x∗)| 6 2d
(
d|x∗|/bm/dce

d

)
max

x∈{0,1}N6m
|φ(x)|, x∗ ∈ {0, 1}N>m.

One recovers Lemma 2.10 as a special case by taking N = n, m = d, and x∗ = 1n.

Proof of Lemma 2.11. Consider an arbitrary vector x∗ ∈ {0, 1}N of Hamming
weight |x∗| > m, and abbreviate n = d|x∗|/bm/dce. Let S1, S2, . . . , Sn be a partition
of {i : x∗i = 1} such that |Si| 6 bm/dc for all i. Observe that

(2.14) n > d.

Define L : {0, 1}n → {0, 1}N by

L(z) =

n∑
i=1

zi1Si .

Then clearly

L(1n) = x∗,(2.15)

|L(z)| 6 |z| ·
⌊m
d

⌋
.(2.16)

Moreover, the mapping z 7→ φ(L(z)) is a real polynomial on {0, 1}n of degree at most
deg φ 6 d. As a result,

|φ(x∗)| = |φ(L(1n))|

6 2d
(
n

d

)
max
|z|6d

|φ(L(z))|

6 2d
(
n

d

)
max

|x|6dbm/dc
|φ(x)|

6 2d
(
n

d

)
max
|x|6m

|φ(x)|,

where the first step uses (2.15); the second step follows by (2.14) and Lemma 2.10;
and the third step is valid by (2.16).

2.8. The conjunction norm. Recall that a conjunction in Boolean variables
x1, x2, . . . , xn is the AND of some subset of the literals x1, x1, x2, x2, . . . , xn, xn. Anal-
ogously, a disjunction is the OR of some subset of x1, x1, x2, x2, . . . , xn, xn. We regard
conjunctions and disjunctions as Boolean functions {0, 1}n → {0, 1} and in particu-
lar as a special case of real functions {0, 1}n → R. For a subset X ⊆ {0, 1}n and a
function f : X → R, we define the conjunction norm Π(f) to be the minimum Λ > 0
such that

f(x) = λ1C1(x) + λ2C2(x) + · · ·+ λNCN (x) (x ∈ X)
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for some integer N, some conjunctions C1, C2, . . . , CN , and some real coefficients
λ1, λ2, . . . , λN with |λ1| + |λ2| + · · · + |λN | 6 Λ. Our choice of the symbol Π, for
“product,” is motivated by the view of conjunctions as products of literals. In partic-
ular, we have Π(φ) 6 |||φ||| for any multivariate polynomial φ : {0, 1}n → R. The next
proposition shows that Π is a norm on the space of multivariate real functions and
establishes other useful properties of this complexity measure.

Proposition 2.12 (Conjunction norm). Let f, g : X → R be given functions, for
a nonempty set X ⊆ {0, 1}n. Then:

(i) Π(f) > 0, with equality if and only if f = 0;
(ii) Π(λf) = |λ|Π(f) for any real λ;
(iii) Π(f + g) 6 Π(f) + Π(g);
(iv) Π(f · g) 6 Π(f) Π(g);
(v) Π(f) 6 ‖f‖1;
(vi) Π(f) 6 2 if f is a disjunction;

(vii) Π(p ◦ f) 6 max{1,Π(f)}d |||p||| for any polynomial p ∈ Pd.

Proof. (i)–(iii) Immediate from the definitions.
(iv) Express f and g individually as a linear combination of conjunctions with

real coefficients whose absolute values sum to Π(f) and Π(g), respectively. Then,
multiply these two linear combinations. Since the product of conjunctions is again a
conjunction, the resulting representation is a linear combination of conjunctions with
real coefficients whose absolute values sum to at most Π(f) Π(g).

(v) By the homogeneity (ii) and triangle inequality (iii), we have

Π(f) = Π

(∑
a∈X

f(a)Ca

)
6
∑
a∈X
|f(a)|Π(Ca)

6
∑
a∈X
|f(a)|

= ‖f‖1,

where Ca denotes the conjunction that evaluates to true on a and to false on all other
inputs in {0, 1}n.

(vi) We have Π(f) 6 Π(f − 1) + Π(1) = Π(1− f) + Π(1) 6 2, where the first step
applies the triangle inequality (iii), the second step uses the homogeneity (ii), and the
third step uses the fact that 1 and 1− f are conjunctions.

(vii) Let p(t) = adt
d + ad−1t

d−1 + · · ·+ a1t+ a0 be a given polynomial. Then

Π(p ◦ f) = Π

 d∑
i=0

ai f · f · · · · · f︸ ︷︷ ︸
i


6

d∑
i=0

|ai|Π(f · f · · · · · f︸ ︷︷ ︸
i

)

6
d∑
i=0

|ai|Π(f)i
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6 max{1,Π(f)d}
d∑
i=0

|ai|

= max{1,Π(f)}d |||p|||,

where the second step uses (ii) and (iii), and the third step applies (iv).

3. The extension theorem. This section proves an approximation-theoretic
result of independent interest, the extension theorem, that we use several times in the
rest of the paper to construct approximating polynomials. To set the stage for this
result, let f : {0, 1}N6m → [−1, 1] be a given function, defined on inputs of Hamming
weight up to m. For any integer n > m, consider the extension Fn of f to inputs of
Hamming weight up to n, given by

Fn(x) =

{
f(x) if |x| 6 m,

0 otherwise.

From the point of view of approximation theory, a fundamental question to ask is
how to “extend” any approximant for f to an approximant for Fn, without degrading
the quality of the approximation or significantly increasing the approximant’s degree.
Ideally, we would like the approximant for the extension Fn to have degree within
a small factor of the original degree, e.g., a factor of O(n/m)α for some constant
0 < α < 1.

Unfortunately, the extension problem is hopeless as stated. Indeed, consider the
special case of the constant function f = 1, so that

Fn(x) =

{
1 if 0 6 |x| 6 m,

0 if m < |x| 6 n.

In this example, deg1/3(f) = 0 but deg1/3(Fn) = Ω(
√
n) by a well-known result

of Nisan and Szegedy [45]. In particular, there is no efficient way to transform an
approximant for a general function f into an approximant for the extension Fn. Our
contribution is to show that the extension problem becomes meaningful and efficiently
solvable if one’s starting point is an approximant for F2m rather than for f. In other
words, we give an efficient, black-box transformation of an approximant for F2m into
an approximant for any extension Fn, where n > 2m. The formal statement of our
result is as follows.

Theorem 3.1 (Extension theorem). Let f : {0, 1}N6m → [−1, 1] be given, where

N > m > 0 are integers. For integers n > m, define Fn : {0, 1}N6n → [−1, 1] by

Fn(x) =

{
f(x) if |x| 6 m,

0 otherwise.

Then for some absolute constant C > 1 and all ε, δ ∈ (0, 1/2) and n > m,

(3.1) degε+δ(Fn) 6 C

√
n

m+ 1
·
(

degε(F2m) + log
1

δ

)
.

Theorem 3.1 solves the extension problem with only a factor-
√
n/m increase in degree.

The approximation quality of the new approximant can be made arbitrarily close to
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that of the original at a small additive cost in degree. This overhead in degree and
error is optimal, as we will discover in applications later in this paper. We also note
that the constant 2 in this result was chosen exclusively for aesthetic reasons, and (3.1)
holds with F2m replaced by Fdcme for any constant c > 1. The rest of this section is
devoted to the proof of Theorem 3.1.

3.1. Proof strategy. In the notation of Theorem 3.1, let p2m(x) be an approx-
imant for F2m(x). Then clearly

(3.2) Fn(x) ≈ p2m(x) · I[|x| 6 2m]

on the domain of Fn, where I[|x| 6 2m] is the characteristic function of the set of in-
puts of Hamming weight at most 2m. While p2m(x) can grow rapidly as the Hamming
weight |x| increases beyond 2m, that growth is not entirely arbitrary. Specifically, the
generalized extrapolation lemma (Lemma 2.11) bounds |p2m(x)| in terms of the Ham-
ming weight |x| and the degree of p2m. In particular, the approximate equality (3.2)
is preserved if I[|x| 6 2m] is replaced by a low-degree approximant. The construc-
tion of such an approximant is the crux of our proof. More precisely, we construct a
low-degree univariate approximant to the characteristic function of any interval. To
crystallize our approach, we first consider the degenerate interval [0, 0] = {0}.

Proposition 3.2. For any positive integers n and d, there is a polynomial p with

p(0) = 1,(3.3)

|p(t)| 6 1

td
, t ∈ [1, n],(3.4)

deg p 6 7d
√
n.(3.5)

The key property here is (3.4), whereby the approximating polynomial gets smaller as
one moves farther away from the point of interest, 0. Reproducing this behavior in the
context of a general interval is much more subtle and is the subject of Sections 3.2–3.4.

Proof. Define

T (t) =

dlogne∏
i=0

Td
√
n/2ie

(
1 +

2i − t
n

)d

.

Fix an arbitrary point t ∈ [1, n], and let j be the integer such that t ∈ [2j , 2j+1). Then

|T (t)| =
dlogne∏
i=0

∣∣∣∣Td√n/2ie(1 +
2i − t
n

)∣∣∣∣d

6
dlogne∏
i=j+1

∣∣∣∣Td√n/2ie(1 +
2i − t
n

)∣∣∣∣d

6
dlogne∏
i=j+1

∣∣∣∣Td√n/2ie(1 +
2i

n

)∣∣∣∣d
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= |T (0)|
j∏
i=0

∣∣∣∣Td√n/2ie(1 +
2i

n

)∣∣∣∣−d

6 |T (0)|
j∏
i=0

2−d

6
|T (0)|
td

,

where the second step uses (2.6), the third step follows from (2.7) and Fact 2.5, and
the next-to-last step applies Proposition 2.6. Moreover,

deg T = d

dlogne∑
i=0

⌈√
n

2i

⌉

6 d

∞∑
i=0

√
n

2i
· 2

6 7d
√
n.

As a result, (3.3)–(3.5) hold for p(t) = T (t)/T (0).

3.2. Approximating 1/t . To handle actual intervals rather than singleton
points, we need to develop a number of auxiliary results. To start with, we con-
struct an approximant for the reciprocal function 1/t on [1, n]. We are specifically
interested in approximation within a multiplicative factor close to 1, which is a more
demanding regime than pointwise approximation.

Lemma 3.3. For any integer d > 0 and real n > 1, there is an (explicitly given)
polynomial p ∈ Pd such that

1− ε
t

6 p(t) 6
1 + ε

t
, 1 6 t 6 n,(3.6)

where

ε =
1

Td+1

(
n+1
n−1

) .
Proof. Property (3.6) can be restated as max16t6n |1 − tp(t)| 6 ε. Thus, the

existence of p ∈ Pd that obeys (3.6) is equivalent to the existence of q ∈ Pd+1 that
obeys q(0) = 1 and max16t6n |q(t)| 6 ε. Now, define q ∈ Pd+1 by

q(t) =
Td+1

(
1− 2 · t−1

n−1

)
Td+1

(
n+1
n−1

) .

Then q(0) = 1 by definition. Moreover,

max
16t6n

|q(t)| 6 max
−16t61

|Td+1(t)|∣∣Td+1

(
n+1
n−1

)∣∣
6

1∣∣Td+1

(
n+1
n−1

)∣∣
=

1

Td+1

(
n+1
n−1

) ,
where the last two steps use (2.6) and (2.9), respectively.
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It is well known [51, Theorem 1.10] that among all polynomials of degree at most
d that are bounded on [−1, 1] in absolute value by 1, the Chebyshev polynomial Td
takes on the largest possible value at every point of [1,∞). Using this fact, it is
straightforward to verify that Lemma 3.3 gives the best possible bound on ε in terms
of n and d.

Corollary 3.4. For any real n > 1, there is an (explicitly given) univariate
polynomial p of degree at most

√
2(n− 1) such that

1

2t
6 p(t) 6

1

t
, 1 6 t 6 n.

Proof. By Proposition 2.6,

Tb
√

2(n−1)c+1

(
n+ 1

n− 1

)
> 5.

As a result, it suffices to invoke Lemma 3.3 with d = b
√

2(n− 1)c.
3.3. Approximating 1/t i . We now construct approximants for powers of the

reciprocal function, focusing this time on absolute rather than relative error. Here,
we are interested only in approximation in the neighborhood of 1. In the following
construction, increasing the approximant’s degree makes the neighborhood larger and
the approximation more accurate.

Lemma 3.5. Let d > 1 be a given integer. Then for every integer D > 0, there is
an (explicitly given) polynomial p with∣∣∣∣ 1

td
− p(t)

∣∣∣∣ 6 |1− t|D+1

(
D + d

d

)
d, t ∈

[
d

d+D
, 2− d

d+D

]
,(3.7)

|p(t)| 6
(
D + d

d

)
, t ∈ [0, 2],(3.8)

deg p 6 D.(3.9)

Proof. Define

p(t) =

D∑
i=0

(
i+ d− 1

i

)
(1− t)i.

Then (3.9) is immediate. For (3.8), it suffices to observe that

D∑
i=0

(
i+ d− 1

i

)
=

(
D + d

D

)
=

(
D + d

d

)
,

where the first equality is well-known and can be verified by using Pascal’s triangle
or by interpreting the left-hand side as the number of ways to distribute at most D
identical balls into d distinct bins.

It remains to settle (3.7). For 0 < t < 2, we have the Maclaurin expansion

1

td
=

( ∞∑
i=0

(1− t)i
)d

=

∞∑
i=0

(
i+ d− 1

i

)
(1− t)i.
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Therefore,

∣∣∣∣ 1

td
− p(t)

∣∣∣∣ =

∣∣∣∣∣
∞∑

i=D+1

(
i+ d− 1

i

)
(1− t)i

∣∣∣∣∣
6

∞∑
i=D+1

(
i+ d− 1

i

)
|1− t|i

6 |1− t|D+1

(
D + d

D + 1

) ∞∑
i=0

(
D + d

D + 1

)i
|1− t|i

6 |1− t|D+1

(
D + d

D + 1

) ∞∑
i=0

(
D

D + 1

)i
= |1− t|D+1

(
D + d

d

)
d,

where the fourth step is legitimate in view of the range of t in (3.7).

3.4. Approximating the characteristic function of an interval. The fol-
lowing lemma is the last prerequisite to our construction of a low-degree approximant
for the characteristic function of an interval. Without loss of generality, it suffices to
consider the interval [0, 1]. The lemma below almost solves our problem except that
it gives a flat bound on the approximant’s value outside the interval, not taking into
account how far one is from the interval.

Lemma 3.6. For any reals n > 1 and 0 < ε < 1/2, there is an (explicitly given)
univariate polynomial p such that

|p(t)− 1| 6 ε, t ∈ [0, 1],(3.10)

|p(t)| 6 1, t ∈ (1, 2],(3.11)

|p(t)| 6 ε, t ∈ (2, n],(3.12)

deg p = O

(√
n log

1

ε

)
.(3.13)

Proof. For n < 2, the lemma holds trivially with p = 1. In what follows, we treat
the complementary case n > 2. Consider the univariate polynomial

q(t) = Td
√
ne

(
1 +

2− t
n

)
.
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Using n > 2, we obtain

q([0, n]) ⊆
[
−1, Td

√
ne

(
1 +

2

n

)]

⊆

−1,

1 +
2

n
+

√(
1 +

2

n

)2

− 1


√
n+1


⊆

−1,

(
1 +

2

n
+

√
6

n

)√n+1


⊂

[
−1, exp

((
2

n
+

√
6

n

)(√
n+ 1

))]
⊂ [−1, e7 − 1],(3.14)

where the first step is legitimate in view of (2.6), (2.7), and Fact 2.5; and the second
step uses (2.9). By Proposition 2.6,

min
06t61

q(t) = min
16t62

Td
√
ne

(
1 +

t

n

)
> 2.(3.15)

By (2.6),

max
26t6n

|q(t)| 6 max
06t61

|Td√ne(t)|

6 1.(3.16)

In view of (3.14)–(3.16), the normalized polynomial q∗(t) = (q(t) + 1)/e7 obeys

q∗([0, n]) ⊆ [0, 1],(3.17)

q∗([0, 1]) ⊆ [3e−7, 1],(3.18)

q∗([2, n]) ⊆ [0, 2e−7].(3.19)

To complete the proof, we use a technique due to Buhrman et al. [18]. Consider
the univariate polynomial

Bd(t) =

d∑
i=d2.5 e−7de

(
d

i

)
ti(1− t)i.

In words, Bd(t) is the probability of observing at least 2.5 e−7d heads in a sequence of
d independent coin flips, each coming up heads with probability t. For large enough
d = O(log(1/ε)), the Chernoff bound guarantees that

Bd([0, 1]) ⊆ [0, 1],(3.20)

Bd([0, 2e−7]) ⊆ [0, ε],(3.21)

Bd([3e−7, 1]) ⊆ [1− ε, 1].(3.22)

Now define p(t) = Bd(q
∗(t)). Then the degree bound (3.13) is immediate, whereas the

remaining properties (3.10)–(3.12) follow from (3.17)–(3.22).
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Finally, we are now in a position to construct the desired approximant for the charac-
teristic function of an interval. As mentioned above, we may without loss of generality
focus on the interval [0, 1].

Theorem 3.7. For all integers n, d > 0 and all 0 < ε < 1/2, there is an (explicitly
given) univariate polynomial p such that

|p(t)− 1| 6 ε, t ∈ [0, 1],(3.23)

|p(t)| 6 1 + ε, t ∈ (1, 2],(3.24)

|p(t)| 6 ε

td
t ∈ (2, n],(3.25)

deg p = O

(√
n

(
d+ log

1

ε

))
.(3.26)

Proof. For n < 2, the theorem holds trivially by taking p = 1. In what follows,
we focus on the complementary case n > 2.

Corollary 3.4 gives an explicit univariate polynomial p1 such that

1

2(t+ 1)
6 p1(t) 6

1

t+ 1
, 0 6 t 6 n,(3.27)

deg p1 6
√

2n.(3.28)

Let D be an integer parameter to be chosen later, D > 5d. Then Lemma 3.5 provides
an explicit polynomial p2 such that

∣∣∣∣ 1

td
− p2(t)

∣∣∣∣ 6 (5

6

)D+1(
D + d

d

)
d, t ∈

[
1

6
, 1

]
,(3.29)

|p2(t)| 6
(
D + d

d

)
, t ∈ [0, 2],(3.30)

deg p2 6 D.(3.31)

As our last building block, Lemma 3.6 constructs an explicit polynomial p3 with

|p3(t)− 1| 6 ε2−D−d, t ∈ [0, 1],(3.32)

|p3(t)| 6 1, t ∈ (1, 2],(3.33)

|p3(t)| 6 ε2−D−d, t ∈ (2, n],(3.34)

deg p3 = O

(√
n

(
D + d+ log

1

ε

))
.(3.35)

In the rest of the proof, we will show that the conclusion of the theorem holds for the
polynomial

p(t) = p1(t)dp2(p1(t))p3(t).
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To begin with,

max
06t61

|p(t)− 1| 6 max
06t61

(1 + |p1(t)dp2(p1(t))− 1|) · (1 + |1− p3(t)|)− 1

6
(

1 +
ε

2

)
max

06t61
(1 + |p1(t)dp2(p1(t))− 1|)− 1

6
(

1 +
ε

2

)(
1 + max

1/46t61
|tdp2(t)− 1|

)
− 1

6
(

1 +
ε

2

)(
1 + max

1/46t61

∣∣∣∣p2(t)− 1

td

∣∣∣∣)− 1

6
(

1 +
ε

2

)(
1 +

(
5

6

)D+1(
D + d

d

)
d

)
− 1,(3.36)

where the first step uses the inequality |ab− 1| 6 (1 + |a− 1|)(1 + |b− 1|)− 1 for any
real a, b; the second step is valid by (3.32); the third applies (3.27); and the final step
is legitimate by (3.29). Continuing,

max
16t62

|p(t)| = max
16t62

|p1(t)dp2(p1(t))p3(t)|

6 max
16t62

|p1(t)dp2(p1(t))|

6 max
1/66t61/2

|tdp2(t)|

6 max
1/66t61/2

|tdp2(t)− 1|+ 1

6 max
1/66t61/2

∣∣∣∣p2(t)− 1

td

∣∣∣∣+ 1

6 1 +

(
5

6

)D+1(
D + d

d

)
d,(3.37)

where the second step uses (3.33), the third step applies (3.27), the fourth step is im-
mediate from the triangle inequality, and the last step follows from (3.29). Moreover,

max
26t6n

|tdp(t)| 6 max
26t6n

|tdp1(t)d| · max
26t6n

|p2(p1(t))| · max
26t6n

|p3(t)|

6 max
26t6n

|tdp1(t)d| · max
26t6n

|p2(p1(t))| · ε2−D−d

6 max
26t6n

|p2(p1(t))| · ε2−D−d

6 max
06t61/3

|p2(t)| · ε2−D−d

6

(
D + d

d

)
· ε2−D−d

6 ε,(3.38)

where the second step is legitimate by (3.34), the third and fourth steps use (3.27),
and the fifth step is immediate from (3.30). Finally, (3.28), (3.31), and (3.35) imply
that

(3.39) deg p = O

(√
n

(
D + d+ log

1

ε

))
.
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Now the claimed bounds (3.23)–(3.26) in the theorem statement follow immediately
from (3.36)–(3.39) by taking

D = c

⌈
d+ log

1

ε

⌉
for a sufficiently large absolute constant c > 1.

3.5. Proof of the extension theorem. Using the approximant constructed
in Theorem 3.7, we now prove the extension theorem. We restate it below for the
reader’s convenience.

Theorem 3.1 (restated). Let f : {0, 1}N6m → [−1, 1] be given, where N > m > 0

are integers. For integers n > m, define Fn : {0, 1}N6n → [−1, 1] by

Fn(x) =

{
f(x) if |x| 6 m,

0 otherwise.

Then for some absolute constant C > 1 and all ε, δ ∈ (0, 1/2) and n > m,

(3.40) degε+δ(Fn) 6 C

√
n

m+ 1
·
(

degε(F2m) + log
1

δ

)
.

Proof. To simplify the presentation, we first settle two degenerate cases. For
m = 0, consider the polynomial

T (t) =

(
Td
√
ne

(
1 +

1− t
n

))dlog 1
δ e

.

Then T (0) > 1/δ by Proposition 2.6, and max16t6n |T (t)| 6 1 by (2.6). Therefore,
in this case Fn is approximated pointwise within δ by the degree-O(

√
n log(1/δ))

polynomial Fn(0N )T (|x|)/T (0). Another degenerate possibility is n 6 2m, in which
case degε(Fn) 6 degε(F2m) and the theorem holds trivially. In what follows, we focus
on the general case when

m > 1,

n > 2m.

Abbreviate d = max{degε(F2m), 1}. By Fact 2.1,

(3.41) 1 6 d 6 2m.

Fix a polynomial φ : {0, 1}N → R such that

|F2m(x)− φ(x)| 6 ε, x ∈ {0, 1}N62m,(3.42)

deg φ 6 d.(3.43)

Let 0 < α < 1/2 be a parameter to be chosen later. Then Theorem 3.7 gives an
explicit univariate polynomial p such that

|p(t)− 1| 6 α, t ∈ [0, 1],(3.44)

|p(t)| 6 1 + α, t ∈ (1, 2],(3.45)

|p(t)| 6 α

td
t ∈
(

2,
n

m

]
,(3.46)

deg p = O

(√
n

m

(
d+ log

1

α

))
.(3.47)
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Consider the polynomial Φ: {0, 1}N → R given by

Φ(x) = φ(x) p

(
|x|
m

)
.

By (3.43) and (3.47),

(3.48) deg Φ = O

(√
n

m

(
d+ log

1

α

))
.

As the notation suggests, Φ is meant to be an extension of the approximant φ to
inputs x ∈ {0, 1}N of Hamming weight up to n. To analyze the accuracy of this new
approximant, we will examine three cases depending on the Hamming weight |x|.

To start with,

max
|x|6m

|Fn(x)− Φ(x)| = max
|x|6m

|F2m(x)− Φ(x)|

6 max
|x|6m

{|F2m(x)− φ(x)|+ |φ(x)− Φ(x)|}

6 ε+ max
|x|6m

|φ(x)− Φ(x)|

6 ε+ max
|x|6m

|φ(x)| max
06t61

|1− p(t)|

6 ε+ (1 + ε) max
06t61

|1− p(t)|

6 ε+ (1 + ε) · α,(3.49)

where the third and fifth steps use (3.42), and the last step uses (3.44). Continuing,

max
m<|x|62m

|Fn(x)− Φ(x)| = max
m<|x|62m

|Φ(x)|

6 max
m<|x|62m

|φ(x)| max
1<t62

|p(t)|

6 max
m<|x|62m

(|F2m(x)|+ ε) max
1<t62

|p(t)|

6 ε · (1 + α),(3.50)

where the last two steps use (3.42) and (3.45), respectively. Finally,

max
2m<|x|6n

|Fn(x)− Φ(x)|

= max
2m<|x|6n

|Φ(x)|

= max
2m<|x|6n

|φ(x)| p
(
|x|
m

)
6 max

2m<|x|6n
|φ(x)| · α ·

(
m

|x|

)d
6 max

2m<|x|6n

{
2d
(
d|x|/b2m/dce

d

)
max
|x′|62m

|φ(x′)| · α ·
(
m

|x|

)d}

6 max
2m<t6n

{
2d
(
dt/b2m/dce

d

)
(1 + ε) · α ·

(m
t

)d}
6 (4e)d(1 + ε) · α,(3.51)
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where the third step uses (3.46), the fourth step applies (3.41) and the generalized
extrapolation lemma (Lemma 2.11), the fifth step follows from (3.42), and the last step
uses (2.1) and (3.41). Now (3.40) follows from (3.48)–(3.51) by taking α = δ(4e)−d−1.

4. Symmetric functions. In this section, we study the approximation of sym-
metric functions. This class includes ANDn and ORn, which are fundamental building
blocks of our constructions in the rest of the paper. Our result here is as follows.

Theorem 4.1. Let f : {0, 1}n → [−1, 1] be an arbitrary symmetric function. Let
k be a nonnegative integer such that f is constant on inputs of Hamming weight in
(k, n− k). Then for 0 < ε < 1/2,

(4.1) degε(f) = O

(
√
nk +

√
n log

1

ε

)
.

Moreover, the approximating polynomial is given explicitly in each case.

Theorem 4.1 is tight [53] for every ε ∈ [1/2n, 1/3] and every symmetric function
f : {0, 1}n → {0, 1}, with the obvious exception of the constant functions f = 0 and
f = 1. Prior to our work, de Wolf [63] proved the upper bound (4.1) by giving an
ε-error quantum query algorithm for any symmetric function f. The novelty of Theo-
rem 4.1 is the construction of an explicit, closed-form approximating polynomial that
achieves de Wolf’s upper bound. We give three proofs of Theorem 4.1, corresponding
to Sections 4.1–4.3 below.

4.1. Approximation using the extension theorem. Our first proof of Theo-
rem 4.1 is based on the extension theorem, and is the shortest of the three. The center-
piece of the proof is the following technical lemma, in which we construct a closed-form
approximant for any function supported on inputs of low Hamming weight.

Lemma 4.2. Let f : {0, 1}n → [−1, 1] be given. Let k be a nonnegative integer
such that f(x) = 0 for |x| > k. Then for 0 < ε < 1/2,

degε(f) = O

(
√
nk +

√
n log

1

ε

)
.

Moreover, the approximating polynomial is given explicitly in each case.

Proof. Abbreviate

m =

⌈
k + log

1

ε

⌉
.

If m > n, the bound in the theorem statement follows trivially from deg0(f) 6 n. In
the rest of the proof, we focus on the complementary case m < n.

For i > m, define Fi : {0, 1}n6i → [−1, 1] by

Fi(x) =

{
f(x) if |x| 6 m,

0 otherwise.
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Then

degε(f) = degε(Fn)

6

√
n

m
·O
(

deg0(F2m) + log
1

ε

)
6

√
n

m
·O
(

2m+ log
1

ε

)
= O

(
√
nk +

√
n log

1

ε

)
,

where the first step uses f = Fn, the second step applies the extension theorem (The-
orem 3.1), and the third step is valid by Fact 2.1. Moreover, the approximating
polynomial is given explicitly because the extension theorem and Fact 2.1 are fully
constructive.

We are now in a position to prove the claimed result on the approximation of arbitrary
symmetric functions.

Theorem 4.3. Let f : {0, 1}n → [−1, 1] be given. Let k be a nonnegative integer
such that f is constant on inputs of Hamming weight in (k, n− k). Then for 0 < ε <
1/2,

degε(f) = O

(
√
nk +

√
n log

1

ε

)
.

Moreover, the approximating polynomial is given explicitly in each case.

A powerful feature of Theorem 4.3 is that the function of interest is only assumed to
be symmetric on inputs of Hamming weight in (k, n− k). In particular, Theorem 4.3
is significantly more general than Theorem 4.1.

Proof of Theorem 4.3. If k > n/2, the theorem follows from the trivial bound
deg0(f) 6 n. For the complementary case k < n/2, write

f(x1, . . . , xn) = λ+ f ′(x1, . . . , xn) + f ′′(x1, . . . , xn),

where λ ∈ [−1, 1] and f ′, f ′′ : {0, 1}n → [−2, 2] are functions that vanish on {0, 1}n>k.
Then

degε(f) 6 max{degε/2(f ′),degε/2(f ′′)}

6 max

{
degε/4

(
f ′

2

)
,degε/4

(
f ′′

2

)}
= O

(
√
nk +

√
n log

1

ε

)
,

where the last step uses Lemma 4.2.

4.2. Approximation from first principles. We now present our second proof
of Theorem 4.1. This proof proceeds from first principles, using Chebyshev polyno-
mials as its only ingredient. To convey the construction as clearly as possible, we first
present an approximant for the simplest and most important symmetric function,
ANDn. For this, we adopt the strategy of previous constructions [32, 53], whereby
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one first zeroes out as many of the integer points n−1, n−2, n−3, . . . as possible and
then uses a Chebyshev polynomial to approximate ANDn on the remaining points of
{0, 1, 2, . . . , n}. We depart from the previous work in the implementation of the first
step. Specifically, we produce the zeroes using a product of Chebyshev polynomials,
each of which is stretched and shifted so as to obtain an extremum at n and a root
at one of the points n− 1, n− 2, n− 3, . . . . The use of Chebyshev polynomials allows
us to avoid explosive growth at the nonzeroes, thereby eliminating a key source of
inefficiency in [32, 53]. The lemma below shows how to produce a single zero, at any
given point m.

Lemma 4.4. Let n and m be given integers, 0 6 m < n. Then there is a univariate
polynomial Tn,m such that

Tn,m(n) = 1,(4.2)

Tn,m(m) = 0,(4.3)

|Tn,m(t)| 6 1, 0 6 t 6 n,(4.4)

deg(Tn,m) 6

⌈
π

4

√
n

n−m

⌉
.(4.5)

Proof. As mentioned above, the construction involves starting with a Chebyshev
polynomial and stretching and shifting it so as to move an extremum to n and a root
to m. In more detail, let

d =

⌈
π

4

√
n

n−m

⌉
.

Consider the linear map L that sends

L(n) = 1,(4.6)

L(m) = cos
( π

2d

)
.(4.7)

Observe that under L, the length of any given interval of the real line changes by a
factor of

1

n−m

(
1− cos

( π
2d

))
6

1

n−m

(
1−

(
1− π2

8d2

))
=

π2

8d2(n−m)

6
2

n
,

where the first step uses cosx > 1− 1
2x

2 for x ∈ R. In particular,

L([0, n]) ⊆
[
L(n)− 2

n
· n,L(n)

]
⊆ [−1, 1].(4.8)

We now show that the sought properties (4.2)–(4.5) hold for the polynomial
Tn,m(t) = Td(L(t)), where Td denotes as usual the Chebyshev polynomial of degree
d. To start with,

Tn,m(n) = Td(L(n))

= Td(1)

= 1,
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where the last two steps use (4.6) and (2.7), respectively. Similarly,

Tn,m(m) = Td(L(m))

= Td

(
cos
( π

2d

))
= cos

(π
2

)
= 0,

where the second and third steps follow from (4.7) and (2.3), respectively. Continuing,

Tn,m([0, n]) = Td(L([0, n]))

⊆ Td([−1, 1])

⊆ [−1, 1],

where the last two steps follow from (4.8) and (2.6), respectively. Finally, the degree
bound (4.5) is immediate from the choice of d.

We now obtain the desired approximant for AND and OR, using the two-stage ap-
proach described earlier. The reader interested exclusively in the general case may
wish to skip to Theorem 4.8.

Theorem 4.5. For some constant c > 0 and all integers n > 1 and d > 0, there
is an (explicitly given) univariate polynomial p such that

p(n) = 1,(4.9)

|p(t)| 6 exp

(
−cd

2

n

)
, t = 0, 1, 2, . . . , n− 1,(4.10)

|p(t)| 6 1, t ∈ [0, n],(4.11)

deg p 6 d.(4.12)

In particular,

E(ANDn, d) 6
1

2
exp

(
− c

2
· d

2

n

)
, d = 0, 1, 2, 3, . . . ,(4.13)

degε(ANDn) 6 O

(√
n log

1

ε

)
, 0 < ε <

1

2
,(4.14)

and analogously

E(ORn, d) 6
1

2
exp

(
− c

2
· d

2

n

)
, d = 0, 1, 2, 3, . . .(4.15)

degε(ORn) 6 O

(√
n log

1

ε

)
, 0 < ε <

1

2
.(4.16)

Proof. For d > n, we may simply take p(t) = t(t − 1)(t − 2) · · · (t − n + 1)/n!.
In what follows, we focus on the construction of p for d < n. Let `, r be integer
parameters to be chosen later, where 1 6 ` 6 n− 1 and 1 6 r 6 n. We define

p(t) =
Tr(t/(n− `))
Tr(n/(n− `))

n−1∏
i=n−`+1

Tn,i(t),
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where Tn,i is as constructed in Lemma 4.4, and Tr stands as usual for the Chebyshev
polynomial of degree r. By (4.2) and (4.3),

p(n) = 1,(4.17)

p(t) = 0, t = n− `+ 1, . . . , n− 1.(4.18)

Moreover,

max
06t6n−`

|p(t)| = max
06t6n−`

|Tr(t/(n− `))|
|Tr(n/(n− `))|

n−1∏
i=n−`+1

|Tn,i(t)|

6
1

|Tr(n/(n− `))|

6
1

max
{

1 + r2`
n , 2

r
√
`/n−1

}
6

1

min
{

exp
(
r2`
3n

)
, exp

(
r
√
`

3
√
n

)} ,(4.19)

where the second step uses (2.6) and (4.4); the third step follows from Proposition 2.6;
and the last step uses 1 + x > exp(x/3) for 0 6 x 6 4, and 2

√
x−1 > exp(

√
x/3) for

x > 4. Next,

max
06t6n

|p(t)| = max
06t6n

|Tr(t/(n− `))|
|Tr(n/(n− `))|

n−1∏
i=n−`+1

|Tn,i(t)|

6 max
06t6n

|Tr(t/(n− `))|
|Tr(n/(n− `))|

6 1,(4.20)

where the second inequality uses (4.4), and the third inequality follows from (2.6),
(2.7), and Fact 2.5. Finally,

deg p 6 r +

n−1∑
i=n−`+1

deg(Tn,i)

6 r +

`−1∑
i=1

(
π

4

√
n

i
+ 1

)

6 r + `− 1 +
π
√
n

4

∫ `−1

0

dt√
t

= r + `− 1 +
π
√
n(`− 1)

2

6 r + 3
√
n(`− 1),(4.21)

where the second step uses (4.5). Now (4.9)–(4.12) follow from (4.17)–(4.21) by setting
r = dd/2e and ` = bd2/(36n)c+ 1.

The remaining claims in the theorem statement follow in a straightforward manner
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from (4.9)–(4.12). For (4.13), we have

E(ANDn, d) 6 max
x∈{0,1}n

∣∣∣∣ANDn(x)−
p(
∑n
i=1 xi)

1 + exp(−cd2/n)

∣∣∣∣
6

exp(−cd2/n)

1 + exp(−cd2/n)

6
1

2
exp

(
− c

2
· d

2

n

)
,

where the last step uses a/(1 + a) 6
√
a/2 for any a > 0. This in turn settles (4.15)

since ORn(x) = 1−ANDn(1−x1, . . . , 1−xn). Finally, (4.14) and (4.16) are immediate
from (4.13) and (4.15), respectively.

To generalize Theorem 4.5 to an arbitrary symmetric function f , it is helpful to think
of f as a linear combination of the characteristic functions of individual levels of the
Boolean hypercube. Specifically, define EXACTn,k : {0, 1}n → {0, 1} by

EXACTn,k(x) =

{
1 if |x| = k,

0 otherwise.

In this notation, Theorem 4.5 treats the special case ANDn = EXACTn,n. The
technique of that theorem is easily adapted to yield the following more general result.

Theorem 4.6. For any 0 < ε < 1/2 and any integers n > m > k > 0, there is a
univariate polynomial p such that

p(|x|) = EXACTn,n−k(x), |x| 6 m,

p(|x|) = EXACTn,n−k(x), |x| > n−m,
|p(|x|)− EXACTn,n−k(x)| 6 ε, x ∈ {0, 1}n,

deg p = O

(
√
nm+

√
n log

1

ε

)
.

Proof. Define

` =

⌈
m+ log

2

ε

⌉
,(4.22)

r =

⌈√
n log

2

ε

⌉
.(4.23)

If ` > n/2, the theorem holds trivially for the degree-n polynomial

p(t) =

n∏
i=0

i 6=n−k

t− i
n− k − i

.

In the complementary case ` < n/2, define

p(t) =
Tr(t/(n− `))

Tr((n− k)/(n− `))
·
∏̀
i=0

Tn−k,i(t) ·
n−k−1∏
i=n−`

Tn−k,i(t) ·
n∏

i=n−k+1

(1− Ti,n−k(t)2),
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where Tn−k,i and Ti,n−k are as constructed in Lemma 4.4, and Tr denotes as usual
the Chebyshev polynomial of degree r. Then (4.2) and (4.3) imply that

p(t) = 0, t ∈ {0, 1, . . . , `},(4.24)

p(t) = 0, t ∈ {n− `, . . . , n− 1, n} \ {n− k},(4.25)

and

p(n− k) =
∏̀
i=0

Tn−k,i(n− k) ·
n−k−1∏
i=n−`

Tn−k,i(n− k) ·
n∏

i=n−k+1

(1− Ti,n−k(n− k)2)

=
∏̀
i=0

1 ·
n−k−1∏
i=n−`

1 ·
n∏

i=n−k+1

(1− 02)

= 1.(4.26)

Moreover,

max
06t6n−`

|p(t)| = max
06t6n−`

∣∣∣∣∣ Tr(t/(n− `))
Tr((n− k)/(n− `))

·
∏̀
i=0

Tn−k,i(t)

×
n−k−1∏
i=n−`

Tn−k,i(t) ·
n∏

i=n−k+1

(1− Ti,n−k(t)2)

∣∣∣∣∣
6 max

06t6n−`

∣∣∣∣ Tr(t/(n− `))
Tr((n− k)/(n− `))

∣∣∣∣
6

1

|Tr((n− k)/(n− `))|

6 2−r
√

`−k
n + 1

6 ε,(4.27)

where the second step uses (4.4), the third step uses (2.6), the fourth step applies
Proposition 2.6, and the final step substitutes the parameters (4.22) and (4.23). Fi-
nally,

deg p 6 r +
∑̀
i=0

deg(Tn−k,i) +

n−k−1∑
i=n−`

deg(Tn−k,i) + 2

n∑
i=n−k+1

deg(Ti,n−k)

6 r +
∑̀
i=0

(
π

4

√
n− k

n− k − i
+ 1

)
+

`−k∑
i=1

(
π

4

√
n− k
i

+ 1

)

+ 2

k∑
i=1

(
π

4

√
n− k + i

i
+ 1

)

6 r + 3`+ π

`+1∑
i=1

√
n

i
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6 r + 3`+ π
√
n

∫ `+1

0

dt√
t

= r + 3`+ 2π
√
n(`+ 1)

= O

(
√
nm+

√
n log

1

ε

)
,(4.28)

where the second and third steps use (4.4) and k < ` < n − k, respectively. In view
of (4.24)–(4.28), the proof is complete.

We are now in a position to handle arbitrary symmetric functions by expressing them
as a linear combination of EXACTn,i for i = 0, 1, 2, . . . , n. This result provides a new
proof of Theorem 4.1.

Theorem 4.7. Let f : {0, 1}n → [−1, 1] be an arbitrary symmetric function. Let
k be a nonnegative integer such that f is constant on inputs of Hamming weight in
(k, n− k). Then for 0 < ε < 1/2,

(4.29) degε(f) = O

(
√
nk +

√
n log

1

ε

)
.

More precisely, there is an (explicitly given) polynomial f̃ : {0, 1}n → R such that

f(x) = f̃(x), |x| 6 k,(4.30)

f(x) = f̃(x), |x| > n− k,(4.31)

|f(x)− f̃(x)| 6 ε, x ∈ {0, 1}n,(4.32)

deg f̃ = O

(
√
nk +

√
n log

1

ε

)
.(4.33)

Proof. If k > n/2, the theorem follows from the trivial bound deg0(f) 6 n. For
the complementary case k < n/2, write

f(x) = λ+

k∑
i=0

λ′i · EXACTn,i(x) +

k∑
i=0

λ′′i · EXACTn,n−i(x)

= λ+

k∑
i=0

λ′i · EXACTn,n−i(x1, . . . , xn) +

k∑
i=0

λ′′i · EXACTn,n−i(x),

where λ, λ′0, λ
′′
0 , . . . , λ

′
k, λ
′′
k ∈ [−2, 2] are fixed reals. By Theorem 4.6, each of the

functions EXACTn,n−i in this linear combination can be approximated pointwise to

within ε/(2k + 2) by a polynomial of degree O(
√
nk +

√
n log(1/ε)). Moreover, the

lemma guarantees that in each case, the approximation is exact on {0, 1}n6k and
{0, 1}n>n−k. Now (4.29)–(4.32) are immediate.

4.3. Approximation using a sampling argument. We now give a third proof
of Theorem 4.1, inspired by combinatorics rather than approximation theory. Here, we
show how to approximate an arbitrary symmetric function f using an approximant
for AND (cf. Theorem 4.5) and a sampling argument. Suppose for simplicity that
f : {0, 1}n → {0, 1} is supported on inputs of Hamming weight at most k. A folklore
approach for approximating f to within ε is to write f as the sum of at most

(
n
k

)
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conjunctions, corresponding to all possible inputs where f 6= 0, and then approximate
each of the conjunctions to error ε/

(
n
k

)
using Theorem 4.5. This gives an approximant

for f with pointwise error at most ε and degree

O

(√
n log

(
1

ε
·
(
n

k

)))
= O

(√
n log

1

ε
+

√
nk log

en

k

)
.

This simple bound is within a factor of O(
√

log(en/k)) of optimal. In this section,
we will show how to achieve optimality by combining Theorem 4.5 with sampling.

Our approach is as follows. Let f : {0, 1}n → [−1, 1] be a given symmetric func-
tion, supported on inputs of Hamming weight at most k. Given a string x ∈ {0, 1}n,
consider the experiment whereby one chooses bn/kc bits of x independently and uni-
formly at random, and outputs the disjunction of those bits. To approximate f, we
feed the expected value of the sampling experiment to a suitable univariate polyno-
mial constructed by Lagrange interpolation. The expected value of the experiment
as a function of x has Π-norm at most 2, which by Proposition 2.12 means that the
overall composition has small Π-norm as well. The complete details of this construc-
tion are provided in Lemma 4.8. To finish the proof, we expand the composition as a
linear combination of conjunctions and replace each conjunction by a corresponding
approximant from Theorem 4.5.

Lemma 4.8. Let k > 0 be a given integer. Let f : {0, 1}n → [−1, 1] be a symmetric
function that vanishes on {0, 1}n>k. Then for every 0 < ε < 1/2, there exists an

(explicitly given) function f̃ : {0, 1}n → R such that

f(x) = f̃(x), |x| 6 k,(4.34)

f(x) = f̃(x), |x| > n− k,(4.35)

|f(x)− f̃(x)| 6 ε, x ∈ {0, 1}n,(4.36)

Π(f̃) 6 Ck+log(1/ε),(4.37)

where C > 1 is an absolute constant independent of f, n, k, ε.

Proof. If k = 0, the only possibilities are f(x) ≡ 0 and f(x) =
∧
xi, and therefore

we may take f̃ = f . If k > n/4, we again may take f̃ = f since Π(f) 6 2n by
Proposition 2.12(v). In what follows, we treat the remaining case

(4.38) 1 6 k <
n

4
.

Consider the points 0 = t0 6 t1 6 t2 6 · · · 6 tn = 1, where

ti = 1−
(

1− i

n

)b n2kc
, i = 0, 1, 2, . . . , n.

The derivative of t 7→ 1 − (1 − t
n )bn/(2k)c on [0, 2k] ranges in [ 1

6k ,
1
2k ]. Therefore, the

mean value theorem gives

|i− j|
6k

6 |ti − tj | 6
|i− j|

2k
, i, j = 0, 1, 2, . . . , 2k.(4.39)

In particular,

i

6k
6 ti 6

i

2k
, i = 0, 1, 2, . . . , 2k.(4.40)
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Consider the univariate polynomials

p(t) = (1− t)d
n∏

i=n−k

(t− ti),

q(t) =

k∑
i=0

f(1i0n−i)

p(ti)

2k∏
j=0
j 6=i

t− tj
ti − tj

,

where

(4.41) d = 5

⌈
8k + ln

1

ε

⌉
.

Our definitions ensure that p(ti)q(ti) = f(1i0n−i) for i = 0, 1, 2, . . . , k. Moreover, we
have p(ti)q(ti) = 0 for i = {k + 1, k + 2, . . . , 2k} ∪ {n − k, n − k + 1, . . . , n}. Since f
vanishes on inputs of Hamming weight greater than k, we conclude that

p(ti)q(ti) = f(1i0n−i), i = {0, 1, . . . , 2k} ∪ {n− k, n− k + 1, . . . , n}.(4.42)

A routine calculation reveals the following additional properties of p and q.

Claim 4.9. |p(ti)q(ti)− f(1i0n−i)| 6 ε for i > 2k.

Claim 4.10. |||p · q||| = 2O(k+log(1/ε)).

We will settle these claims once we complete the main proof. Define f̃ : {0, 1}n →
R by f̃(x) = p(t|x|)q(t|x|). Then (4.34)–(4.36) follow from (4.42) and Claim 4.9.
For (4.37), observe that

f̃(x) = p

(
E
S

∨
i∈S

xi

)
q

(
E
S

∨
i∈S

xi

)

where the expectation is over a multiset S of b n2k c elements that are chosen indepen-
dently and uniformly at random from {1, 2, . . . , n}. As a result, (4.37) follows from
Claim 4.10 and Proposition 2.12 (ii), (iii), (vi), (vii).

Proof of Claim 4.9. Fix any point t ∈ [t2k, tn] = [t2k, 1]. Recall from (4.38) that
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k < n/4. As a result,

|p(t)q(t)| 6 |p(t2k)q(t)|

6 |p(t2k)|
k∑
i=0

1

min{|p(t0)|, . . . , |p(tk)|}

2k∏
j=0
j 6=i

|1− tj |
|ti − tj |

6
|p(t2k)|
|p(tk)|

k∑
i=0

2k∏
j=0
j 6=i

|1− tj |
|ti − tj |

6

(
1− t2k
1− tk

)d k∑
i=0

2k∏
j=0
j 6=i

|1− tj |
|ti − tj |

=

(
1− t2k − tk

1− tk

)d k∑
i=0

2k∏
j=0
j 6=i

|1− tj |
|ti − tj |

6 exp

(
− t2k − tk

1− tk
· d
) k∑
i=0

2k∏
j=0
j 6=i

|1− tj |
|ti − tj |

.

Using the lower bounds in (4.39) and (4.40), we obtain

|p(t)q(t)| 6 exp

(
− (2k − k)/6k

1− (k/6k)
· d
) k∑
i=0

2k∏
j=0
j 6=i

1− (j/6k)

|i− j|/6k

= exp

(
−d

5

) k∑
i=0

2k∏
j=0
j 6=i

6k − j
|i− j|

6 exp

(
−d

5

) k∑
i=0

(6k)!/(4k)!

i! (2k − i)!

= exp

(
−d

5

) k∑
i=0

(
6k

4k

)(
2k

i

)
6 exp

(
−d

5

)(
6k

4k

)
· 22k

6 exp

(
−d

5

)
· 28k

6 ε,

where the last step follows from the definition of d in (4.41). Hence, |p(ti)q(ti) −
f(1i0n−i)| = |p(ti)q(ti)| 6 ε for i > 2k.
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Proof of Claim 4.10. Recall from (4.38) that k < n/4. As a result,

min
i=0,1,...,k

|p(ti)| = |p(tk)|

= |1− tk|d
n∏

i=n−k

|tk − ti|

> |1− tk|d · |tk − t2k|k+1

>
1

2d · 6k+1
,(4.43)

where the last step uses the estimates in (4.39) and (4.40). As a result,

|||p · q||| 6 (1 + 1)d
n∏

i=n−k

(1 + ti) ·
k∑
i=0

|f(1i0n−i)|
|p(ti)|

2k∏
j=0
j 6=i

1 + tj
|ti − tj |

6 2d · 2k+1
k∑
i=0

1

2−d · 6−k−1

2k∏
j=0
j 6=i

2

|ti − tj |

6 4d · 12k+1
k∑
i=0

2k∏
j=0
j 6=i

2 · 6k
|i− j|

= 4d · 12k+1 · 62k · (2k)2k

(2k)!

k∑
i=0

(
2k

i

)
6 4d · 12k+1 · 62k · (2k)2k

(2k)!
· 22k

= 2O(d+k),

where the first step is valid by Fact 2.7; the second step uses 0 6 ti 6 1 and (4.43);
the third step follows from the lower bound in (4.39); and the last step is legitimate
by Stirling’s approximation. In view of (4.41), the proof is complete.

We have reached the promised construction of an approximating polynomial for any
symmetric function.

Theorem 4.1 (restated). Let f : {0, 1}n → [−1, 1] be an arbitrary symmetric
function. Let k be a nonnegative integer such that f is constant on inputs of Hamming
weight in (k, n− k). Then for 0 < ε < 1/2,

(4.44) degε(f) = O

(
√
nk +

√
n log

1

ε

)
.

Moreover, the approximating polynomial is given explicitly in each case.

Proof. If k > n/2, the theorem follows from the trivial bound deg0(f) 6 n. For
the complementary case k < n/2, write

f(x1, . . . , xn) = λ+ f ′(x1, . . . , xn) + f ′′(x1, . . . , xn),

where λ ∈ [−1, 1] and f ′, f ′′ : {0, 1}n → [−2, 2] are symmetric functions that vanish
on {0, 1}n>k. Lemma 4.8 shows that f ′/2 and f ′′/2 are each approximated pointwise
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to within ε/5 by a linear combination of conjunctions, with real coefficients whose
absolute values sum to 2O(k+log(1/ε)). By Theorem 4.5, each such conjunction can in
turn be approximated pointwise by a polynomial of degree d to within 2−Θ(d2/n).
Summarizing,

E(f, d) 6 E(f ′, d) + E(f ′′, d)

6 2E

(
f ′

2
, d

)
+ 2E

(
f ′′

2
, d

)
6 2

(
2 · ε

5
+ 2O(k+log(1/ε)) · 2−Θ(d2/n)

)
,

whence (4.44). Moreover, the approximating polynomial is given explicitly because
Theorem 4.5 and Lemma 4.8 provide closed-form expressions for the approximants
involved.

4.4. Generalizations. Theorem 4.5 on the approximation of AND and OR ob-
viously generalizes to arbitrary conjunctions and disjunctions. Somewhat less obvi-
ously, it generalizes in an optimal manner to conjunctions and disjunctions whose
domain of definition is restricted to the first few levels of the hypercube. We record
this generalization for later use.

Theorem 4.12. Let f : {0, 1}N6n → {0, 1} be given by

f(x) =

(∨
i∈A

xi

)
∨

(∨
i∈B

xi

)
,

for some subsets A,B ⊆ {1, 2, . . . , N}. Then

E(f, d) 6
1

2
exp

(
−cd

2

n

)
, d = 0, 1, 2, . . . ,

where c > 0 is an absolute constant. Moreover, the approximating polynomial is given
explicitly in each case.

Proof. If |B| > n, then f ≡ 1 on its domain of definition and hence E(f, 0) = 0.
In the complementary case when |B| 6 n, we have∑

i∈A
xi +

∑
i∈B

(1− xi) ∈ {0, 1, 2, . . . , 2n}, x ∈ {0, 1}N6n.(4.45)

Theorem 4.5 gives an explicit univariate polynomial p of degree d such that

p(2n) = 1,(4.46)

|p(t)| 6 exp

(
−Cd

2

n

)
, t = 0, 1, 2, . . . , 2n− 1,(4.47)

where C > 0 is an absolute constant. Define

P (x) = 1− 1

1 + exp(−Cd2/n)
· p

(
2n−

∑
i∈A

xi −
∑
i∈B

(1− xi)

)
.

Then

max
x∈{0,1}N6n

|f(x)− P (x)| 6 exp(−Cd2/n)

1 + exp(−Cd2/n)

6
1

2
exp

(
−Cd

2

2n

)
,
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where the first step follows from (4.45)–(4.47), and the second step uses a/(1 + a) 6√
a/2 for any a > 0.

Corollary 4.13. Let f : {0, 1}N6n → {0, 1} be given by

f(x) =

(∧
i∈A

xi

)
∧

(∧
i∈B

xi

)
,

for some subsets A,B ⊆ {1, 2, . . . , N}. Then

E(f, d) 6
1

2
exp

(
−cd

2

n

)
, d = 0, 1, 2, . . . ,

where c > 0 is an absolute constant. Moreover, the approximating polynomial is given
explicitly in each case.

Proof. Apply Theorem 4.12 to 1− f.
5. k-DNF and k-CNF formulas. Recall that a k-DNF formula in Boolean

variables x1, x2, . . . , xN is the disjunction of zero or more terms, where each term
is the conjunction of at most k literals from among x1, x1, x2, x2, . . . , xN , xN . As a
convention, we consider the constant functions 0 and 1 to be valid k-DNF formulas
for every k > 0. Analogously, a k-CNF formula in Boolean variables x1, x2, . . . , xN
is the conjunction of zero or more clauses, where each clause is the disjunction of at
most k literals from among x1, x1, x2, x2, . . . , xN , xN . Again, we consider the constant
functions 0 and 1 to be valid k-CNF formulas for all k > 0. Recall that a function f is
representable by a k-DNF formula if and only if its negation f is representable by a
k-CNF formula. Note also that the definition of k-DNF formulas is hereditary in the
sense that a k-DNF formula is also a k′-DNF formula for any k′ > k, and analogously
for CNF formulas.

The contribution of this section is to settle Theorem 1.2 on the approximate
degree of every k-DNF and k-CNF formula. We will in fact prove the following more
precise result, for every setting of the error parameter.

Theorem 5.1. Let f : {0, 1}N6n → {0, 1} be representable on its domain by a k-
DNF or k-CNF formula. Then

(5.1) degε(f) 6 c · (
√

2)k n
k
k+1

(
log

1

ε

) 1
k+1

for all 0 < ε < 1/2, where c > 1 is an absolute constant independent of f,N, n, k, ε.
Moreover, the approximating polynomial is given explicitly in each case.

We present the proof of this theorem in Sections 5.1–5.4 below.

5.1. Key quantities. For nonnegative integers n and k and a real number ∆ >
1, we define

D(n, k,∆) = max
f

deg2−∆(f),

where the maximum is over all functions f : {0, 1}N6n → {0, 1} for some N > n that
are representable by a k-DNF formula. Fact 2.1 gives the upper bound

(5.2) D(n, k,∆) 6 n.

Since the only 0-DNF formulas are the constant functions 0 and 1, we obtain

(5.3) D(n, 0,∆) = 0.

We will prove Theorem 5.1 by induction of k, with (5.3) serving as the base case.
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5.2. A composition theorem for approximate degree. The inductive step
in our analysis of D(n, k,∆) relies on a certain general bound on approximate degree
for a class of composed functions, as follows.

Lemma 5.2. Let F : X × {0, 1}Nn → {0, 1} be given by

F (x, y) =

N∨
i=1

yi ∧ fi(x)

for some functions f1, f2, . . . , fN : X → {0, 1}. Let b be an integer with b | n and b | N.
Then

degε(F ) 6 C

√
nb log

1

ε
+ max

S⊆{1,...,N}
|S|6C

√
nb log 1

ε

deg
ε exp

(
−C
√

n
b log 1

ε

)
(∨
i∈S

fi

)

for all 0 < ε 6 1/2, where C > 1 is an absolute constant independent of F,N, n, b, ε.

As we will see shortly, the bound of Lemma 5.2 generalizes to functions F : X ×
{0, 1}N6n → {0, 1} and to arbitrary reals b > 1. It is this more general, and more
natural, result on the approximate degree of composed functions that we need for our
analysis of D(n, k,∆). However, establishing Lemma 5.2 first considerably improves
the readability and modularity of the proof. By way of notation, we remind the reader
that the symbol

∨
i∈S fi denotes the mapping x 7→

∨
i∈S fi(x). The reader will also

recall the notation [n] = {1, 2, . . . , n}. In particular,
(

[n]
6d

)
denotes the family of subsets

of {1, 2, . . . , n} of cardinality at most d.

Proof of Lemma 5.2. The proof is constructive and uses as its building blocks
two main components: an “outer” approximant (for the OR function) and “inner”
approximants (for disjunctions of small sets of fi). We first describe these components
individually and then present the overall construction and error analysis.

Step 1: Outer approximant. Theorem 4.5 provides a symmetric multilinear
polynomial ÕRn/b : {0, 1}n/b → [0, 1] of degree d = O(

√
n log(1/ε)/b) that approx-

imates ORn/b pointwise to within ε/2. More specifically, there are real coefficients
a0, a1, a2, . . . such that∣∣∣∣∣∣∣

n/b∨
i=1

zi −
∑

S∈([n/b]
6d )

a|S|
∏
i∈S

zi

∣∣∣∣∣∣∣ 6
ε

2
, z ∈ {0, 1}n/b,(5.4)

where

1 6 d 6 c

√
n

b
log

1

ε
(5.5)

for some absolute constant c > 1. By Lemma 2.9,

d∑
`=0

(
n/b

`

)
|a`| 6 8d.(5.6)



ALGORITHMIC POLYNOMIALS 41

Step 2: Inner approximants. For a subset S ⊆ {1, 2, . . . , N}, define fS : X →
{0, 1} by

fS(x) =
∨
i∈S

fi(x).

Fix a polynomial f̃S : X → R of the smallest possible degree such that

‖fS − f̃S‖∞ 6
ε

2

(
d∑
`=0

(
n/b

`

)
2`|a`|

)−1

.(5.7)

To avoid notational clutter in the formulas below, we will frequently write fS and f̃S
instead of fS(x) and f̃S(x), respectively, when referring to the value of these functions
at a given point x ∈ X. We have

deg(f̃S) 6 degε/(2·16d)

(∨
i∈S

fi

)

6 deg
ε exp

(
−4c
√

n
b log 1

ε

)
(∨
i∈S

fi

)
,(5.8)

where the first and second steps use (5.6) and (5.5), respectively.

Step 3: Overall approximant. By appropriately composing the outer ap-
proximant with the inner approximants, we obtain an approximant for the overall
function F . Specifically, define F̃ : X × {0, 1}Nn → R by

(5.9) F̃ (x, y) = a0 +

d∑
`=1

a`

(
n/b

`

)(
N

b`

)(
n

b`

)−1

× E
B1,...,Bn/b


 ∑
S⊆{1,2,...,`}

S 6=∅

(−1)|S|+1 f̃⋃
i∈SBi

 ∏
i∈B1∪···∪B`

yi

 ,
where the expectation is taken over a uniformly random tuple of sets B1, . . . , Bn/b ⊆
{1, 2, . . . , N} that are pairwise disjoint and have cardinality b each. Then

deg(F̃ ) 6 max
B1,...,Bn/b

max
S⊆{1,2,...,d}

{
deg(f̃⋃

i∈S Bi
) +

d∑
i=1

|Bi|

}
6 max
S∈( [N]

6db)

{
deg(f̃S)

}
+ db

6 max
S⊆{1,...,N}
|S|6c
√
nb log 1

ε

{
deg

ε exp
(
−4c
√

n
b log 1

ε

)
(∨
i∈S

fi

)}
+ c

√
nb log

1

ε
,(5.10)

where the final step uses (5.5) and (5.8).

Step 4: Error analysis. For the rest of the proof, fix y ∈ {0, 1}Nn arbitrarily.
Let L = {i : yi = 1}. In the defining equation (5.9), the product

∏
i∈B1∪···∪B` yi acts
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like an indicator random variable for the event that B1 ∪ . . . ∪B` ⊆ L, which occurs
with probability precisely

(
|L|
b`

)(
N

b`

)−1

=

(
n

b`

)(
N

b`

)−1

.

Therefore,

F̃ (x, y)

= a0 +
d∑
`=1

a`

(
n/b

`

)
E

B1,...,Bn/b

∑
S⊆[`]
S 6=∅

(−1)|S|+1 f̃⋃
i∈SBi

∣∣∣∣∣∣∣∣ B1, . . . , B` ⊆ L



= a0 +

d∑
`=1

a`

(
n/b

`

)
E

B1,...,Bn/b

∑
S⊆[`]
S 6=∅

(−1)|S|+1 f̃⋃
i∈SBi

∣∣∣∣∣∣∣∣
n/b⋃
i=1

Bi = L



= a0 +

d∑
`=1

a` E
B1,...,Bn/b

 ∑
T∈([n/b]

` )

∑
S⊆T
S 6=∅

(−1)|S|+1 f̃⋃
i∈SBi

∣∣∣∣∣∣∣∣
n/b⋃
i=1

Bi = L



= E
B1,...,Bn/b

a0 +

d∑
`=1

a`
∑

T∈([n/b]
` )

∑
S⊆T
S 6=∅

(−1)|S|+1 f̃⋃
i∈SBi

∣∣∣∣∣∣∣∣
n/b⋃
i=1

Bi = L

 ,(5.11)

where the second step is valid because a uniformly random tuple of pairwise disjoint
sets B1, . . . , B` ⊆ L of cardinality b each can be generated by partitioning L uniformly
at random into parts of size b and using the first ` parts of that partition; the third
step is valid in view of the symmetry of the distribution of B1, . . . , Bn/b; and the last
step uses the linearity of expectation. Analogously,

F (x, y) =

N∨
i=1

yi ∧ fi

=
∨
i∈L

fi

= fL

= E
B1,...,Bn/b

fB1∪···∪Bn/b

∣∣∣∣∣∣
n/b⋃
i=1

Bi = L

 .(5.12)
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As a result,

|F (x, y)− F̃ (x, y)|

6 max
B1,...,Bn/b

∣∣∣∣∣∣∣∣fB1∪···∪Bn/b − a0 −
d∑
`=1

a`
∑

T∈([n/b]
` )

∑
S⊆T
S 6=∅

(−1)|S|+1f̃⋃
i∈SBi

∣∣∣∣∣∣∣∣
6 max
B1,...,Bn/b

∣∣∣∣∣∣∣∣fB1∪···∪Bn/b − a0 −
d∑
`=1

a`
∑

T∈([n/b]
` )

∑
S⊆T
S 6=∅

(−1)|S|+1f⋃
i∈SBi

∣∣∣∣∣∣∣∣
+ max
B1,...,Bn/b

d∑
`=1

|a`|
∑

T∈([n/b]
` )

∑
S⊆T
S 6=∅

∣∣∣f⋃
i∈S Bi

− f̃⋃
i∈SBi

∣∣∣

6 max
B1,...,Bn/b

∣∣∣∣∣∣∣∣fB1∪···∪Bn/b − a0 −
d∑
`=1

a`
∑

T∈([n/b]
` )

∑
S⊆T
S 6=∅

(−1)|S|+1f⋃
i∈SBi

∣∣∣∣∣∣∣∣+
ε

2

= max
B1,...,Bn/b

∣∣∣∣∣∣∣∣
n/b∨
i=1

fBi − a0 −
d∑
`=1

a`
∑

T∈([n/b]
` )

∑
S⊆T
S 6=∅

(−1)|S|+1
∨
i∈S

fBi

∣∣∣∣∣∣∣∣+
ε

2

= max
B1,...,Bn/b

∣∣∣∣∣∣∣
n/b∨
i=1

fBi −
d∑
`=0

a`
∑

T∈([n/b]
` )

∏
i∈T

fBi

∣∣∣∣∣∣∣+
ε

2

6 ε,(5.13)

where the first step is immediate from (5.11) and (5.12), the second step applies the
triangle inequality, the third step is valid by (5.7), the fourth step is a change of
notation, the fifth step uses the inclusion-exclusion formula (Fact 2.2), and the last
step is justified by (5.4). By (5.10) and (5.13), the proof of Lemma 5.2 is complete
by taking C = 4c.

To remove the homogeneity and divisibility assumptions in Lemma 5.2, we now show
how to reduce the approximation of any function on {0, 1}N6n to the approximation

of a closely related function on {0, 1}N+n
n . This connection is surprising at first but

has a short proof based on Minsky and Papert’s symmetrization argument.

Lemma 5.3 (Homogenization lemma). Let f : X×{0, 1}N6n → R be given. Define

f ′ : X × {0, 1}N+n
n → R by

(5.14) f ′(x, y1 . . . yN+n) = f(x, y1 . . . yN ).

Then for all ε > 0,

degε(f
′) = degε(f).

Proof. The upper bound degε(f
′) 6 degε(f) is immediate from the defining equa-

tion (5.14). For a matching lower bound, fix a polynomial φ′ : X × RN+n → R such
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that

|f ′(x, y)− φ′(x, y)| 6 ε, x ∈ X, y ∈ {0, 1}N+n
n ,(5.15)

deg φ′ = degε(f
′).(5.16)

Minsky and Papert’s symmetrization argument (Proposition 2.4) yields a polynomial
φ∗ : X × RN × R→ R such that for t = 0, 1, 2, . . . , n,

φ∗(x, y, t) = E
z∈{0,1}nt

φ′(x, yz), x ∈ X, y ∈ {0, 1}N ,(5.17)

deg φ∗ 6 deg φ′.(5.18)

We are now in a position to construct the desired approximant for f. For any x ∈ X
and y ∈ {0, 1}N6n, we have∣∣∣∣∣f(x, y)− φ∗

(
x, y, n−

N∑
i=1

yi

)∣∣∣∣∣
6

∣∣∣∣∣f(x, y)− E
z∈{0,1}nn−|y|

f ′(x, yz)

∣∣∣∣∣
+

∣∣∣∣∣ E
z∈{0,1}nn−|y|

f ′(x, yz)− φ∗
(
x, y, n−

N∑
i=1

yi

)∣∣∣∣∣
=

∣∣∣∣∣ E
z∈{0,1}nn−|y|

f ′(x, yz)− φ∗
(
x, y, n−

N∑
i=1

yi

)∣∣∣∣∣
=

∣∣∣∣∣ E
z∈{0,1}nn−|y|

[f ′(x, yz)− φ′(x, yz)]

∣∣∣∣∣
6 ε,

where the first step applies the triangle inequality, the second step is immediate from
the definition of f ′, the third step uses (5.17), and the last step follows from (5.15).
In summary, we have shown that degε(f) 6 deg φ∗, which in view of (5.18) and (5.16)
completes the proof.

We are now in a position to remove the divisibility assumption in Lemma 5.2 and
additionally generalize it to the nonhomogeneous setting.

Theorem 5.4. Let F : X × {0, 1}N6n → {0, 1} be given by

F (x, y) =

N∨
i=1

yi ∧ fi(x)

for some functions f1, f2, . . . , fN : X → {0, 1}. Then

degε(F ) 6 C

√
nb log

1

ε
+ max

S⊆{1,...,N}
|S|6C

√
nb log 1

ε

deg
ε exp

(
−C
√

n
b log 1

ε

)
(∨
i∈S

fi

)
(5.19)

for all reals b > 1 and 0 < ε 6 1/2, where C > 1 is an absolute constant independent
of F,N, n, b, ε.
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Proof. We first examine the case 1 6 b 6 n. Consider the function F ′ : X ×
{0, 1}N ′n′ → {0, 1} given by

F ′(x, y) =

N ′∨
i=1

yi ∧ fi(x),

where

n′ = bbc
⌈
n

bbc

⌉
,

N ′ = bbc
⌈
N

bbc

⌉
+ bbc

⌈
n

bbc

⌉
,

fN+1 = fN+2 = · · · = fN ′ = 0.

Then

degε(F ) 6 degε(F
′)

6 c

√
n′bbc log

1

ε
+ max

S⊆{1,...,N ′}
|S|6c
√
n′bbc log 1

ε

deg
ε exp

(
−c
√

n′
bbc log 1

ε

)
(∨
i∈S

fi

)
,

for some absolute constant c > 1, where the first step uses the homogenization lemma
(Lemma 5.3) and the second step follows from Lemma 5.2. This settles (5.19) for
C = 2c.

For the complementary case b > n, define F ′ : X × {0, 1}N+n
n → {0, 1} by

F ′(x, y) =

N+n∨
i=1

yi ∧ fi(x),

where fN+1 = fN+2 = · · · = fN+n = 0. Then

(5.20) degε(F ) = degε(F
′)

by the homogenization lemma (Lemma 5.3). On the other hand,

(5.21) F ′(x, y) =
∑

S∈([N+n]
n )

(∨
i∈S

fi(x)

)∏
i∈S

yi.

For any input y of Hamming weight n, every term in this summation vanishes except
for the term corresponding to S = {i : yi = 1}. This means that an approximant
for F ′ with error ε can be obtained by replacing each disjunction in (5.21) with a
polynomial that approximates that disjunction to within ε. As a result,

degε(F
′) 6 n+ max

S∈([N]
6n)

degε

(∨
i∈S

fi

)
.

This upper bound along with (5.20) settles (5.19) for b > n.
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5.3. A recursive bound. Using Theorem 5.4 as our main tool, we now derive
the promised recurrence for D(n, k,∆).

Lemma 5.5. There is a constant C > 1 such that for all integers n, k > 1 and
reals ∆ > 1,

(5.22) D(n, k,∆) 6 max
b>1

{
C
√
nb∆ +D

(
n, k − 1,∆ + C

√
n∆

b

)}
.

Proof. Let f : {0, 1}N6n → {0, 1} be a k-DNF formula. Our objective is to bound
deg2−∆(f) by the right-hand side of (5.22). We may assume that

(5.23) f 6≡ 1,

since the bound holds trivially for the constant function f = 1.
Write f = f ′ ∨ f ′′, where f ′ is a k-DNF formula in which every term has an

unnegated variable, and f ′′ is a k-DNF formula whose terms feature only negated
variables. Collecting like terms in f ′, we immediately obtain

(5.24) f ′(x) =

N∨
i=1

xi ∧ f ′i(x)

for some (k − 1)-DNF formulas f ′1, f
′
2, . . . , f

′
N .

We now turn to f ′′. By (5.23), there exists x∗ ∈ {0, 1}N6n such that f ′′(x∗) = 0.
Consider the subset I = {i : x∗i = 1}, of cardinality

(5.25) |I| 6 n.

Since every occurrence of a variable in f ′′(x) is negated, we conclude that every term
in f ′′(x) features some literal xi with i ∈ I. Collecting like terms, we obtain the
representation

(5.26) f ′′(x) =
∨
i∈I

xi ∧ f ′′i (x),

where each f ′′i is a (k − 1)-DNF formula.
To summarize (5.24)–(5.26), the function f = f ′ ∨ f ′′ is a subfunction of some

F : {0, 1}N6n × {0, 1}
N+n
62n → {0, 1} of the form

F (x, y) =

N+n∨
i=1

yi ∧ fi(x),

where each fi is a (k − 1)-DNF formula. Now

deg2−∆(f) 6 deg2−∆(F )

6 max
b>1

{
c
√

2nb∆ + max
S⊆{1,2...,N+n}

deg
2−∆ exp(−c

√
2n∆/b)

(∨
i∈S

fi

)}

6 max
b>1

{
c
√

2nb∆ +D

(
n, k − 1,∆ +

c

ln 2

√
2n∆

b

)}
,

where the second step follows from Theorem 5.4 for a suitable absolute constant c > 1,
and the third step is justified by the fact that each

∨
i∈S fi : {0, 1}N6n → {0, 1} is a

(k − 1)-DNF formula. In conclusion, (5.22) holds with C = c
√

2/ ln 2.
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5.4. Solving the recurrence. It remains to solve the recurrence for D(n, k,∆)
given by (5.3) and Lemma 5.5.

Theorem 5.6. There is a constant c > 1 such that for all integers n, k > 0 and
reals ∆ > 1,

(5.27) D(n, k,∆) 6 c · (
√

2)k n
k
k+1 ∆

1
k+1 .

This result settles Theorem 5.1. Indeed, if f : {0, 1}N6n → {0, 1} is representable by
a k-DNF formula, then (5.1) is immediate from (5.27). The same bound applies
to k-CNF formulas because they are negations of k-DNF formulas, and degε(f) =
degε(1− f) for any f.

Proof of Theorem 5.6. We will prove (5.27) for c = 2(C+ 1)2, where C > 1 is the
absolute constant from Lemma 5.5. The proof is by induction on k. The base k = 0
holds due to (5.3). For the inductive step, let k > 1 be arbitrary. For ∆ > n, the
claim is immediate from (5.2), and we focus on the complementary case

(5.28) 1 6 ∆ 6 n.

For every b > 1,

D(n, k,∆) 6 min

{
n,C
√
nb∆ +D

(
n, k − 1,∆ + C

√
n∆

b

)}

6 min

n,C√nb∆ + 2(C + 1)2 2
k−1

2 n
k−1
k

(
∆ + C

√
n∆

b

) 1
k


6 (C + 1)

√
nb∆ + (C + 1)2 2

k+1
2 n

k−1
k

(
(C + 1)

√
n∆

b

) 1
k

,(5.29)

where the first step uses (5.2) and Lemma 5.5; the second step applies the inductive
hypothesis; and the last step can be verified in a straightforward manner by examining
the cases ∆ 6 n/b and ∆ > n/b. Setting

b = (C + 1)2 2k
( n

∆

)1− 2
k+1

in (5.29) now yields (5.27), completing the inductive step. Note that our choice of
parameter meets the requirement b > 1, as one can see from (5.28).

6. k-Element distinctness. For an integer k, recall that the threshold function
THRk : {0, 1}∗ → {0, 1} is given by

THRk(x) =

{
1 if |x| > k,

0 otherwise.

Note that the subscript k may be positive, zero, or negative. In particular, we have

(6.1) THR0 ≡ THR−1 ≡ THR−2 ≡ THR−3 ≡ · · · ≡ 1.

In the k-element distinctness problem, the input is a list of n integers from some range
of size r, and the objective is to determine whether some integer occurs at least k times.
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Traditionally, the input to k-element distinctness is represented by a Boolean matrix
x ∈ {0, 1}n×r with precisely one nonzero entry in each row. We depart from tradition
by allowing the input x ∈ {0, 1}n×r to be an arbitrary matrix with at most n ones.
Formally, we define the k-element distinctness function EDn,r,k : {0, 1}nr6n → {0, 1} by

EDn,r,k(x) = ¬
r∨
i=1

THRk(x1,ix2,i . . . xn,i).

Since our focus is on upper bounds, working with the more general domain makes our
results stronger. Our main result in this section is as follows.

Theorem 6.1. Let k > 1 be a fixed integer. Then for all integers n, r > 1 and all
reals 0 < ε 6 1/2,

degε(EDn,r,k) = O

(
√
nmin{n, r}

1
2−

1

4(1−2−k)

(
log

1

ε

) 1

4(1−2−k)

)
+O

(√
n log

1

ε

)
.

Moreover, the approximating polynomial is given explicitly in each case.

Taking ε = 1/3 in this result settles Theorem 1.1 from the introduction. To prove The-
orem 6.1, we will need to consider a more general class of functions. For nonnegative
integers n, r, k and a real number ∆ > 1, we define

D(n, r, k,∆) = max
F

deg2−∆(F ),

where the maximum is over all functions F : {0, 1}N6n → {0, 1} for some N that are
expressible as

F (x) =

r∨
i=1

THRki(x|Si)

for some pairwise disjoint sets S1, S2, . . . , Sr ⊆ {1, 2, . . . , N} and some k1, k2, . . . , kr ∈
{0, 1, 2, . . . , k}. The four-argument quantity D that we have just defined is unrelated
to the three-argument quantity D from Section 5. We abbreviate

D(n,∞, k,∆) = max
r>1

D(n, r, k,∆).

By definition,

degε(EDn,r,k) 6 D

(
n, r, k, log

1

ε

)
, 0 < ε 6

1

2
.(6.2)

Our analysis of D(n, r, k,∆) proceeds by induction on k. As the base cases, we have

D(n,∞, 0,∆) = 0(6.3)

by (6.1), and

(6.4) D(n,∞, 1,∆) = C
√
n∆

by Theorem 4.12 for some constant C > 1. Also, Fact 2.1 implies that

(6.5) D(n,∞, k,∆) 6 n.
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6.1. A recursive bound for small range. To implement the inductive step,
we derive two complementary recursive bounds for D(n, r, k,∆). The first of these
bounds, presented below, is tailored to the case when n > kr.

Lemma 6.2. There is a constant C > 1 such that for all positive integers n, r, k
and all reals ∆ > 1,

D(n, r, k,∆) 6 C ·
√

1 +
n

kr
· (D(2kr, r, k,∆ + 1) + ∆).

Proof. Since D is monotonically increasing in every argument, the lemma holds
trivially for n < kr. In what follows, we consider the complementary case

(6.6) n > kr.

Consider an arbitrary function F : {0, 1}N6n → {0, 1} of the form

(6.7) F (x) =

r∨
i=1

THRki(x|Si)

for some pairwise disjoint sets S1, S2, . . . , Sr ⊆ {1, 2, . . . , N} and k1, k2, . . . , kr ∈
{0, 1, 2, . . . , k}. By discarding any irrelevant variables among x1, x2, . . . , xN , we may
assume that S1 ∪ S2 ∪ · · · ∪ Sr = {1, 2, . . . , N}. Then by the pigeonhole principle,
any input x with Hamming weight at least kr satisfies at least one of the disjuncts
in (6.7). Therefore,

F (x) = 1, x ∈ {0, 1}N>kr.(6.8)

For i > kr, define Fi : {0, 1}N6i → {0, 1} by

Fi(x) =

{
F (x) if |x| 6 kr,

1 otherwise.

Then

deg2−∆(F ) = deg2−∆(Fn)

= deg2−∆(1− Fn)

6 c

√
n

kr
· (deg2−∆−1(1− F2kr) + ∆ + 1)

= c

√
n

kr
· (deg2−∆−1(F2kr) + ∆ + 1)

6 c

√
n

kr
· (D(2kr, r, k,∆ + 1) + ∆ + 1)

for some absolute constant c > 1 and all ∆ > 1, where the first and last steps use (6.8),
and the third step applies (6.6) and the extension theorem (Theorem 3.1) with m = kr
and ε = δ = 2−∆−1. As a result, the lemma holds with C = 2c.

6.2. A recursive bound for large range. We now derive an alternate upper
bound on D(n, r, k,∆), with no dependence on the range parameter r. This result
addresses the case of large r and complements Lemma 6.2.
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Lemma 6.3. There is a constant C > 1 such that for all integers n, k > 1 and all
reals ∆, b > 1,

(6.9) D(n,∞, k,∆) 6 C
√
nb∆ + C

(
1 +

1√
k

( n

b∆

)1/4
)
×

×

(
D

(
bCk
√
nb∆c,∞, k − 1, C

√
n∆

b
+ 1

)
+

√
n∆

b

)
.

Proof. Consider an arbitrary function F : {0, 1}N6n → {0, 1} of the form

(6.10) F (x) =

r∨
i=1

THRki(x|Si)

for some integer r > 1, some pairwise disjoint sets S1, S2, . . . , Sr ⊆ {1, 2, . . . , N}, and
some k1, k2, . . . , kr ∈ {0, 1, 2, . . . , k}. If ki = 0 for some i, then the corresponding term
in (6.10) is the constant function 1, resulting in deg0(F ) = 0. In what follows, we
treat the complementary case when ki > 1 for each i.

Rewriting (6.10),

(6.11) F (x) =

r∨
i=1

∨
j∈Si

xj ∧ THRki−1(x|Si\{j}).

As this representation suggests, our intention is to bound the approximate degree of
F by appeal to Theorem 5.4.

Claim 6.4. Fix a subset S′i ⊆ Si for each i = 1, 2, . . . , r. Then for ∆ > 1,

deg2−∆

 r∨
i=1

∨
j∈S′i

THRki−1(x|Si\{j})

 6 D

(
n,

r∑
i=1

|S′i|, k − 1,∆

)
+

r∑
i=1

|S′i|.

We will settle Claim 6.4 once we complete the main proof. In light of this claim, the
representation (6.11) shows that

F (x) =

N∨
i=1

xi ∧ fi(x)

for some functions fi such that

deg2−∆

(∨
i∈S

fi

)
6 D(n, |S|, k − 1,∆) + |S|(6.12)

for all S ⊆ {1, 2, . . . , N} and all ∆ > 1. Then for some absolute constants c′, c′′ > 1
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and all ∆ > 1 and b > 1, we have

deg2−∆(F ) 6 c′
√
nb∆ + max

S⊆{1,...,N}
|S|6c′

√
nb∆

deg
2−∆ exp

(
−c′
√
n∆/b

)
(∨
i∈S

fi

)

6 2c′
√
nb∆ +D

(
n, dc′

√
nb∆e, k − 1,∆ +

c′

ln 2

√
n∆

b

)

6 2c′
√
nb∆ + c′′ ·

√
1 +

n

k · c′
√
nb∆

×

×

(
D

(
2kdc′

√
nb∆e,∞, k − 1,∆ +

c′

ln 2

√
n∆

b
+ 1

)

+ ∆ +
c′

ln 2

√
n∆

b

)
,

where the first step applies Theorem 5.4, the second step uses (6.12), and the final step
follows from (6.3) for k = 1 and from Lemma 6.2 for k > 2. This directly implies (6.9)
for ∆ 6 n/b. In the complementary case ∆ > n/b, the right-hand side of (6.9) exceeds
n and therefore the bound follows trivially from (6.5).

Proof of Claim 6.4. To start with,

r∨
i=1

∨
j∈S′i

THRki−1(x|Si\{j}) =
∨

i:S′i 6=∅

∨
j∈S′i

THRki−1(x|Si\{j})

=
∨

i:S′i 6=∅

THR
ki−1−min

{∣∣∣x|S′
i

∣∣∣, |S′i|−1
}(x|Si\S′i),

where the second step uses (6.1). Considering the possible values for the Hamming
weight of each x|S′i , we arrive at the representation

(6.13)

r∨
i=1

∨
j∈S′i

THRki−1(x|Si\{j}) =

|S′1|∑
`1=0

· · ·
|S′r|∑
`r=0

I[|x|S′i | = `i for each i]

×

 ∨
i:S′i 6=∅

THRki−1−min{`i, |S′i|−1}(x|Si\S′i)

 .

The indicator functions in this summation are mutually exclusive in that for any given
value of x, precisely one of them is nonzero. As a result, the right-hand side of (6.13)
can be approximated pointwise to within 2−∆ by replacing each parenthesized expres-
sion with its 2−∆-error approximant, which by definition can be chosen to have degree
at most D(n,

∑
|S′i|, k− 1,∆). This completes the proof since each indicator function

in (6.13) depends on only
∑
|S′i| Boolean variables and is therefore a polynomial of

degree at most
∑
|S′i|.

6.3. Solving the recurrence. It remains to solve the newly obtained recur-
rences. We first solve the recurrence given by (6.4) and Lemma 6.3, corresponding to
the infinite-range case.
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Theorem 6.5 (Range-independent bound). There is a constant c > 1 such that
for all positive integers n and k, and all reals ∆ > 1,

D(n,∞, k,∆) 6 ck
√
k! · n1− 1

4(1−2−k) ∆
1

4(1−2−k) .(6.14)

Proof. We will prove (6.14) for c = (4C)2, where C > 1 is the larger of the
constants in (6.4) and Lemma 6.3. The proof is by induction on k. The base case
k = 1 is immediate from (6.4). For the inductive step, let k > 2 be arbitrary. When
∆ > n, the right-hand side of (6.14) exceeds n and therefore the bound is immediate
from (6.5). In what follows, we assume that

(6.15) 1 6 ∆ 6 n.

Let b > 1 be a parameter to be fixed later. By Lemma 6.3,

D(n,∞, k,∆) 6 C
√
nb∆ + C

(
1 +

1√
k

( n

b∆

) 1
4

)(√
n∆

b

+D

(
bCk
√
nb∆c,∞, k − 1, C

√
n∆

b
+ 1

))
.

It follows that

D(n,∞, k,∆) 6 C
√
knb∆ + 2C

( n

kb∆

) 1
4

(√
n∆

b

+D

(
bCk
√
nb∆c,∞, k − 1, C

√
n∆

b
+ 1

))
,

as one can verify from the previous step if n > kb∆ and from (6.5) if n < kb∆.
Applying the inductive hypothesis,

D(n,∞, k,∆) 6 C
√
knb∆ + 2C

( n

kb∆

) 1
4

(√
n∆

b

+ ck−1
√

(k − 1)! · (Ck
√
nb∆)

1− 1

4(1−2−k+1)

(
C

√
n∆

b
+ 1

) 1

4(1−2−k+1)

 .

Now the bound

D(n,∞, k,∆) 6 C
√
knb∆ + 2C

( n

kb∆

) 1
4 ×

× 4ck−1
√

(k − 1)! · (Ck
√
nb∆)

1− 1

4(1−2−k+1)

(
C

√
n∆

b

) 1

4(1−2−k+1)

is immediate from the previous step if n > b/∆ and from (6.5) if n < b/∆. Rearrang-
ing, we find that

D(n,∞, k,∆) 6 C
√
knb∆

(
1 + C

( n
∆

) 1
4 · 8ck−1

√
(k − 1)! b

− 1
4−

1

4(1−2−k+1)

)
.(6.16)
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The right-hand side is minimized at

b =

(
C
( n

∆

) 1
4 · 8ck−1

√
(k − 1)!

) 2k+1−4

2k−1

,

which in view of (6.15) is a real number in [1,∞) and therefore a legitimate parameter
setting. Making this substitution in (6.16), we arrive at

D(n,∞, k,∆) 6 2C
√
kn∆

(
C
( n

∆

) 1
4 · 8ck−1

√
(k − 1)!

) 2k−2

2k−1

6 2C2 · 8ck−1

√
k!n∆

( n
∆

) 2k−1−1

2k−1

= ck
√
k!n

1− 1

4(1−2−k) ∆
1

4(1−2−k) .

This completes the inductive step and settles (6.14).

By combining the previous result with an application of Lemma 6.2, we will now prove
our main bound on D(n, r, k,∆).

Theorem 6.6 (Range-dependent bound). There is a constant c > 1 such that for
all positive integers n, r, k and all reals ∆ > 1,

D(n, r, k,∆) 6 ck
√
k!
(√

nmin{n, kr}
1
2−

1

4(1−2−k) ∆
1

4(1−2−k) +
√
n∆
)
.

Proof. The bound follows from Theorem 6.5 if kr > n; and from (6.5) if ∆ > n.
As a result, we may assume that

n > kr,(6.17)

n > ∆.(6.18)

In what follows, let C > 1 denote the larger of the constants in Lemma 6.2 and
Theorem 6.5. Then

D(n, r, k,∆)

6 D

(
n, r +

⌈
∆

k

⌉
, k,∆

)
6 C ·

√
1 +

n

kr + kd∆/ke
·
(
D

(
2kr + 2k

⌈
∆

k

⌉
,∞, k,∆ + 1

)
+ ∆

)
6 2C ·

√
n

kr + kd∆/ke
·
(
D

(
2kr + 2k

⌈
∆

k

⌉
,∞, k,∆ + 1

)
+ ∆

)
6 2C ·

√
n

kr + kd∆/ke

×

(
Ck
√
k!

(
2kr + 2k

⌈
∆

k

⌉)1− 1

4(1−2−k)

(∆ + 1)
1

4(1−2−k) + ∆

)

6 2C ·
√

n

kr + kd∆/ke
· 2Ck

√
k!

(
2kr + 2k

⌈
∆

k

⌉)1− 1

4(1−2−k)

(∆ + 1)
1

4(1−2−k)

= 4Ck+1
√
k! ·
√

2n

(
2kr + 2k

⌈
∆

k

⌉) 1
2−

1

4(1−2−k)

(∆ + 1)
1

4(1−2−k) ,
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where the first step is valid because D is monotonically increasing in every argument;
the second step applies Lemma 6.2; the third step uses (6.17) and (6.18); and the
fourth step applies Theorem 6.5. This completes the proof for n > kr.

Equation (6.2) and Theorem 6.6 establish the main result of this section, Theorem 6.1.
We note that with a more careful analysis, the multiplicative factor

√
k! in Theo-

rems 6.5 and 6.6 can be improved to a slightly smaller quantity, still of the order of
kO(k).

7. Surjectivity. For positive integers n and r, the surjectivity problem is to
determine whether a given mapping {1, 2, . . . , n} → {1, 2, . . . , r} is surjective. Tradi-
tionally, the input to this problem is represented by a Boolean matrix x ∈ {0, 1}n×r
with precisely one nonzero entry in every row. Analogous to our work on element
distinctness in the previous section, we depart from tradition by allowing arbitrary
matrices x ∈ {0, 1}n×r with at most n ones. Specifically, we define the surjectivity
function SURJn,r : {0, 1}nr6n → {0, 1} by

SURJn,r(x) =

r∧
j=1

n∨
i=1

xi,j .

This formalism corresponds to determining the surjectivity of arbitrary relations on
{1, 2, . . . , n}×{1, 2, . . . , r} of cardinality at most n, including functions {1, 2, . . . , n} →
{1, 2, . . . , r} as a special case. Since we are interested in upper bounds, working in
this more general setting makes our results stronger.

7.1. Approximation to 1/3. For clarity of exposition, we first bound the ap-
proximate degree of surjectivity with the error parameter set to ε = 1/3. This setting
covers most applications of interest and allows for a shorter and simpler proof. Read-
ers with an interest in general ε can skip directly to Section 7.2.

Theorem 1.3 (restated). For all positive integers n and r,

deg1/3(SURJn,r) = O(
√
n · r1/4) (r 6 n),(7.1)

deg1/3(SURJn,r) = 0 (r > n).(7.2)

Moreover, the approximating polynomial is given explicitly in each case.

The theorem shows that deg1/3(SURJn,r) = O(n3/4) for all r, disproving the conjec-
ture of Bun and Thaler [22] that the 1/3-approximate degree of SURJn,Ω(n) is linear
in n.

Proof. The identity SURJn,r ≡ 0 for r > n implies (7.2) directly. The proof

of (7.1) involves two steps. First, we construct an explicit real function S̃URJn,r
that approximates SURJn,r pointwise and is representable by a linear combination of
conjunctions with reasonably small coefficients. Then, we replace each conjunction in
this linear combination by an approximating polynomial of low degree.

In more detail, let m > 1 be an integer parameter to be chosen later. Recall
from (2.6) and Proposition 2.6 that the Chebyshev polynomial Tm obeys

|Tm(t)| 6 1, − 1 6 t 6 t,

Tm

(
1 +

1

r

)
> 1 +

m2

r
.
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As a result, SURJn,r is approximated pointwise within 1/(1 + m2

r ) by

S̃URJn,r(x) =
1

Tm(1 + 1
r )
· Tm

1

r
+

1

r

r∑
j=1

n∨
i=1

xi,j

 .

Therefore,

E(SURJn,r, d) 6
1

1 + m2

r

+ E(S̃URJn,r, d), d = 1, 2, 3, . . . .(7.3)

To estimate the rightmost term in (7.3), use the factored representation (2.8) to
write

S̃URJn,r(x) =
2m−1

Tm(1 + 1
r )
·
m∏
i=1

1

r
+

1

r

r∑
j=1

(
n∨
i=1

xi,j

)
− cos

(2i− 1)π

2m


=

2m−1

Tm(1 + 1
r )
·
m∏
i=1

1

r
+ 1− 1

r

r∑
j=1

n∏
i=1

xi,j − cos
(2i− 1)π

2m

 .

Multiplying out shows that S̃URJn,r(x) is a linear combination of conjunctions with
real coefficients whose absolute values sum to 2O(m). By Corollary 4.13, each of these
conjunctions can be approximated by a polynomial of degree d to within 2−Θ(d2/n)

pointwise. We conclude that

E(S̃URJn,r, d) 6 2O(m) · 2−Θ(d2/n),

which along with (7.3) gives

E(SURJn,r, d) 6
1

1 + m2

r

+ 2O(m) · 2−Θ(d2/n).

Now (7.1) follows by taking m = d
√

3re and d = Θ(
√
n · r1/4). The approximating

polynomial in question is given explicitly because every stage of our proof, including
the appeal to Corollary 4.13, is constructive.

7.2. Approximation to arbitrary error. We now generalize the previous the-
orem to arbitrary ε. The proof closely mirrors the case of ε = 1/3 but features
additional ingredients, such as Lemma 2.8.

Theorem 7.2. For all positive integers n and r, and all reals 0 < ε < 1/2,

degε(SURJn,r) = O

(
√
n

(
r log

1

ε

)1/4

+

√
n log

1

ε

)
(r 6 n),(7.4)

degε(SURJn,r) = 0 (r > n).(7.5)

Moreover, the approximating polynomial is given explicitly in each case.
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Proof. As before, we need only prove (7.4) since SURJn,r ≡ 0 for r > n. Theo-
rem 4.5 provides, after rescaling, an explicit univariate polynomial p such that

p(1) = 1,(7.6)

|p(t)| 6 ε

2
, t ∈

{
0,

1

r
,

2

r
, . . . ,

r − 1

r

}
,(7.7)

|p(t)| 6 1, t ∈ [0, 1],(7.8)

deg p = O

(√
r log

1

ε

)
.(7.9)

Now define S̃URJn,r : {0, 1}nr6n → R by

S̃URJn,r(x) = p

1

r

r∑
j=1

n∨
i=1

xi,j

 .

This function clearly approximates SURJn,r pointwise to ε/2. It follows that for any
d,

E(SURJn,r, d) 6 ‖ SURJn,r −S̃URJn,r‖∞ + E(S̃URJn,r, d)

6
ε

2
+ E(S̃URJn,r, d).(7.10)

We have

Π(S̃URJn,r) 6 max

1,Π

1

r

r∑
j=1

n∨
i=1

xi,j


deg p

|||p|||

6 2deg p |||p|||

6 16deg p

6 2
O
(√

r log(1/ε)
)
,(7.11)

where the first and second steps use Proposition 2.12 (ii), (iii), (vi), (vii); the third
step follows from (7.8) and Lemma 2.8; and the final step is valid by (7.9).

To restate (7.11), we have shown that S̃URJn,r is a linear combination of con-

junctions with real coefficients whose absolute values sum to exp(O(
√
r log(1/ε))).

By Corollary 4.13, each of these conjunctions can be approximated by a polynomial
of degree d to within 2−Θ(d2/n) pointwise. We conclude that

E(S̃URJn,r, d) 6 2
O
(√

r log(1/ε)
)
· 2−Θ(d2/n),

which along with (7.10) gives

E(SURJn,r, d) 6
ε

2
+ 2

O
(√

r log(1/ε)
)
· 2−Θ(d2/n).

Now (7.4) follows by taking

d = Θ

(
√
n

(
r log

1

ε

)1/4

+

√
n log

1

ε

)
.
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Finally, the approximating polynomial in question is given explicitly because every
stage of our proof, including the appeal to Theorem 4.5 and Corollary 4.13, is con-
structive.
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