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We study the set disjointness problem in the most powerful model of bounded-error communication, the
k-party randomized number-on-the-forehead model. We show that set disjointness requires Ω(
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of communication, where n is the size of the universe. Our lower bound generalizes to quantum communica-
tion, where it is essentially optimal. Proving this bound was a longstanding open problem even in restricted
settings, such as one-way classical protocols with k = 4 parties (Wigderson 1997). The proof contributes a
novel technique for lower bounds on multiparty communication, based on directional derivatives of protocols
over the reals.
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1. INTRODUCTION
Set disjointness is the most studied problem in communication complexity theory. The
simplest version of the problem features two parties, Alice and Bob. Alice receives as
input a subset S ⊆ {1, 2, . . . , n}, Bob receives a subset T ⊆ {1, 2, . . . , n}, and their goal
is to determine with minimal communication whether the subsets are disjoint. One
also studies a promise version of this problem called unique set disjointness, in which
the intersection S∩T is either empty or contains a single element. The communication
complexity of two-party set disjointness is thoroughly understood. One of the earliest
results in the area is a tight lower bound of n+ 1 bits for deterministic protocols solv-
ing set disjointness. For randomized protocols, a lower bound of Ω(

√
n) was obtained

by Babai, Frankl, and Simon [4] and strengthened to a tight Ω(n) by Kalyanasun-
daram and Schnitger [32]. Simpler proofs of the linear lower bound were discovered
by Razborov [45] and Bar-Yossef et al. [8]. All three proofs [32; 45; 8] of the linear
lower bound apply to unique set disjointness as well. Finally, Razborov [46] obtained a
tight lower bound of Ω(

√
n) on the bounded-error quantum communication complexity

of set disjointness and unique set disjointness, with a simpler proof discovered several
years later [48]. Already in the two-party setting, the study of set disjointness has con-
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tributed to communication complexity theory a variety of techniques, including ideas
from combinatorics, Kolmogorov complexity, information theory, matrix analysis, and
Fourier analysis.

We study the complexity of set disjointness in the model with three or more
parties. We use the number-on-the-forehead model of multiparty communication,
due to Chandra, Furst, and Lipton [18]. This model features k parties and
a function f(x1, x2, . . . , xk) with k arguments. Communication occurs in broad-
cast, a bit sent by any given party instantly reaching everyone else. The input
(x1, x2, . . . , xk) is distributed among the parties by giving the ith party the arguments
x1, . . . , xi−1, xi+1, . . . , xk but not xi. One can think of xi as written on the ith party’s
forehead, hence the terminology. The number-on-the-forehead model is the main model
in the area because any other way of assigning arguments to parties results in a less
powerful model (provided of course that one does not assign all the arguments to a
single party, in which case there is never a need to communicate).

In the k-party version of set disjointness, the inputs are S1, S2, . . . , Sk ⊆ {1, 2, . . . , n},
and the ith party knows all the inputs except for Si. The goal is to determine whether
the sets have empty intersection: S1 ∩ S2 ∩ · · · ∩ Sk = ∅. For unique set disjointness,
the parties additionally know that the intersection S1 ∩ S2 ∩ · · · ∩ Sk is either empty or
contains a unique element. It is common to represent the input to set disjointness by
a k × n Boolean matrix X = [xij ], whose rows correspond to the characteristic vectors
of the input sets. In this notation, set disjointness is given by the simple formula

DISJk,n(X) =

n∧
j=1

k∨
i=1

xij . (1)

Unique set disjointness UDISJk,n is given by the same formula, with the understand-
ing that the input matrix X contains at most one column consisting entirely of ones.

Progress on the communication complexity of set disjointness for k > 3 parties is
summarized in Table I. In a surprising result, Grolmusz [28] proved an upper bound
of O(log2 n + k2n/2k) on the deterministic communication complexity of this problem.
Proving a strong lower bound, even for k = 3, turned out to be difficult. Tesson [52]
and Beame et al. [11] obtained a lower bound of Ω

(
1
k log n

)
for randomized protocols.

Four years later, Lee and Shraibman [39] and Chattopadhyay and Ada [21] gave an im-
proved result. These authors generalized the two-party method of [47; 48] to k > 3 par-
ties and thereby obtained a lower bound of Ω(n/22kk)1/(k+1) on the randomized commu-
nication complexity of set disjointness. Their lower bound was strengthened by Beame
and Huynh-Ngoc [10] to (nΩ(

√
k/ logn)/2k

2

)1/(k+1), which is an improvement for k large
enough. All lower bounds listed up to this point are weaker than Ω(n/2k

3

)1/(k+1),which
means that they become subpolynomial as soon as the number of parties k starts to
grow. Three years later, a lower bound of Ω(n/4k)1/4 was obtained in [49] on the ran-
domized communication complexity of set disjointness, which remains polynomial for
up to k ≈ 1

2 log n and comes close to matching Grolmusz’s upper bound.
The Ω(n/4k)1/4 lower bound is not accidental. It represents what we call the trian-

gle inequality barrier in multiparty communication complexity, described in detail at
the end of the Introduction. We are able to break this barrier and obtain a quadrati-
cally stronger lower bound. In the theorem that follows, Rε denotes ε-error randomized
communication complexity.
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THEOREM 1.1 (Main result). Set disjointness and unique set disjointness have ran-
domized communication complexity

R1/3(DISJk,n) > R1/3(UDISJk,n) = Ω

(√
n

2kk

)
.

Two remarks are in order. Over the years, the lack of progress on set disjointness
prompted researchers to consider restricted multiparty protocols, such as one-way pro-
tocols where the parties 1, 2, . . . , k speak in that order and the last party announces the
answer. An even more restricted form of communication is a simultaneous protocol, in
which the parties simultaneously and independently send a message to a referee who
then announces the answer. In 1997, Wigderson proved a lower bound of Ω(

√
n) for

solving set disjointness by a simultaneous protocol with k = 3 parties (unpublished
by Wigderson, the proof appeared in [5]). Since then, several papers have examined
the multiparty complexity of set disjointness for simultaneous, one-way, and other re-
stricted kinds of protocols [5; 52; 11; 55; 12; 34]. The strongest communication lower
bound [52; 11] obtained in that line of research was Ω(n/kk)1/(k−1). To summarize,
prior to our work it was an open problem to generalize Wigderson’s 1997 lower bound
even to k = 4 parties, communicating one-way or simultaneously.

Second, by the results of [38; 14], all communication lower bounds in this paper
generalize to quantum protocols. In particular, Theorem 1.1 implies a lower bound of√
n/2k+o(k) on the bounded-error quantum communication complexity of set disjoint-

ness. This lower bound essentially matches the well-known quantum protocol for set
disjointness due to Buhrman, Cleve, and Wigderson [16], with cost d

√
n/2ke logO(1) n.

For the reader’s convenience, we provide a sketch of the protocol in Remark 5.4. Thus,
our results essentially settle the bounded-error quantum communication complexity
of set disjointness.

Our technique allows us to obtain several additional results, discussed next.

Table I. Communication complexity of k-party set disjointness.

Bound Reference

O

(
log2 n +

k2n

2k

)
Grolmusz [28]

Ω

(
logn

k

)
Tesson [52]
Beame, Pitassi, Segerlind, and Wigderson [11]

Ω

(
n

22kk

) 1
k+1 Lee and Shraibman [39]

Chattopadhyay and Ada [21](
nΩ(
√

k/ log n)

2k2

) 1
k+1

Beame and Huynh-Ngoc [10]

Ω
( n

4k

)1/4
Sherstov [49]

Ω

(√
n

2kk

)
This paper
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XOR lemmas and direct product theorems
In a seminal paper, Yao [56] asked whether computation admits economies of scale.
More concretely, suppose that solving a single instance of a given decision problem
with probability of correctness 2/3 requires R units of a computational resource (such
as time, memory, communication, or queries). Common sense suggests that solving `
independent instances of the problem requires Ω(`R) units of the resource. Indeed,
having less than ε`R units in total, for a small constant ε > 0, leaves less than εR units
per instance, intuitively forcing the algorithm to guess random answers for many of
the instances and resulting in overall correctness probability 2−Θ(`). Such a statement
is called a strong direct product theorem. A related notion is an XOR lemma, which
asserts that computing the XOR of the answers to the ` problem instances requires
Ω(`R) resources, even to achieve correctness probability 1

2 + 2−Θ(`). XOR lemmas and
direct product theorems are motivated by basic intellectual curiosity as well as a num-
ber of applications, including separations of circuit classes, improvement of soundness
in proof systems, inapproximability results for optimization problems, and time-space
trade-offs.

In communication complexity, the direct product question has been studied for over
twenty years. We refer the reader to [34; 50] for an up-to-date overview of the liter-
ature, focusing here exclusively on set disjointness. The direct product question for
two-party set disjointness has been definitively resolved, including classical one-way
protocols [31], classical two-way protocols [11; 34], quantum one-way protocols [12],
and quantum two-way protocols [35; 50]. Proving any kind of direct product result for
three or more parties remained an open problem until the recent paper [49], which
gives a communication lower bound of ` ·Ω(n/4k)1/4 for the following tasks: (i) comput-
ing the XOR of ` instances of set disjointness with probability of correctness 1

2 +2−Θ(`);
(ii) solving ` instances of set disjointness simultaneously with probability of correct-
ness at least 2−Θ(`). We obtain an improved result:

THEOREM 1.2. Let ε > 0 be a sufficiently small absolute constant. The following
tasks require ` · Ω(

√
n/2kk) bits of communication each:

(i) computing the XOR of ` instances of UDISJk,n with probability at least 1
2 +2−`−1;

(ii) solving with probability 2−ε` at least (1− ε)` among ` instances of UDISJk,n.

Theorem 1.2 generalizes Theorem 1.1, showing that Ω(
√
n/2kk) is in fact a lower bound

on the per-instance cost of set disjointness. The communication lower bound in The-
orem 1.2 is quadratically stronger than in previous work [49]. Clearly, Theorem 1.2
also holds for set disjointness, a problem harder than UDISJk,n. Finally, this theorem
generalizes to quantum protocols, where it is essentially tight.

Nondeterministic and Merlin-Arthur communication
Nondeterministic communication is defined in complete analogy with computational
complexity. A nondeterministic protocol starts with a guess string, whose length counts
toward the protocol’s communication cost, and proceeds deterministically thenceforth.
A nondeterministic protocol for a given communication problem F is required to output
the correct answer for all guess strings when presented with a negative instance of F,
and for some guess string when presented with a positive instance. We further consider
Merlin-Arthur protocols [3; 6], a communication model that combines the power of
randomization and nondeterminism. As before, a Merlin-Arthur protocol for a given
problem F starts with a guess string, whose length counts toward the communication
cost. From then on, the parties run an ordinary randomized protocol. The randomized
phase in a Merlin-Arthur protocol must produce the correct answer with probability
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at least 2/3 for all guess strings when presented with a negative instance of F, and for
some guess string when presented with a positive instance.

Nondeterministic and Merlin-Arthur protocols have been extensively studied for
k = 2 parties but are much less understood for k > 3. It was only five years ago that the
first nontrivial lower bound, nΩ(1/k)/22k ,was obtained [24] on the multiparty communi-
cation complexity of set disjointness in these models. That lower bound was improved
in [49] to Ω(n/4k)1/4 for nondeterministic protocols and Ω(n/4k)1/8 for Merlin-Arthur
protocols, both of which are tight up to a polynomial. In this paper, we obtain quadrat-
ically stronger lower bounds in both models.

THEOREM 1.3. Set disjointness has nondeterministic and Merlin-Arthur complex-
ity

N(DISJk,n) = Ω

(√
n

2kk

)
,

MA(DISJk,n) = Ω

(√
n

2kk

)1/2

.

Set disjointness should be contrasted in this regard with its complement ¬DISJk,n,
called set intersection, whose nondeterministic complexity is at most log n + O(1). In-
deed, it suffices to guess an element i ∈ {1, 2, . . . , n} and verify with two bits of com-
munication that i ∈ S1 ∩ S2 ∩ · · · ∩ Sk.

Small-bias communication and discrepancy
Much of the work in communication complexity revolves around the notion of discrep-
ancy. Informally, the discrepancy of a function F is the maximum correlation of F with
a constant-cost communication protocol. One of the many uses of discrepancy is prov-
ing lower bounds for small-bias protocols, which are randomized protocols with proba-
bility of correctness vanishingly close to the trivial value 1/2. Quantitatively speaking,
any function with discrepancy γ requires log 1√

γ bits of communication to achieve cor-
rectness probability 1

2 + 1
2

√
γ. The converse also holds, up to minor numerical adjust-

ments. In other words, the study of discrepancy is essentially the study of small-bias
communication.

In a famous result, Babai, Nisan, and Szegedy [7] proved that the generalized inner
product function

⊕n
j=1

∧k
i=1 xij has exponentially small discrepancy, exp(−Ω(n/4k)).

The proof in [7] crucially exploits the XOR function, and until several years ago it was
unknown whether any constant-depth {∧,∨,¬}-circuit of polynomial size has small
discrepancy. The most natural candidate, set disjointness, is of no use here: while
its bounded-error communication complexity is high, its discrepancy turns out to be
Θ(1/n). The question was finally resolved for k = 2 parties in [17; 47; 48], with a bound
of exp(−Ω(n1/3)) on the discrepancy of an {∧,∨}-formula of depth 3 and size n. Since
then, a series of papers have studied the question for k > 3 parties. Table II gives a
quantitative summary of this line of research. The best multiparty bound prior to this
paper was exp(−Ω(n/4k)1/7), obtained in [49] for an {∧,∨}-formula of depth 3 and size
nk. We prove the following stronger result.

THEOREM 1.4. There is an explicit k-party communication problem Hk,n, given by
an {∧,∨}-formula of depth 3 and size nk, with discrepancy

disc(Hk,n) = exp

{
−Ω

( n

4kk2

)1/3
}
.
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In particular,

R 1
2−exp

{
−Ω( n

4kk2
)
1/3

}(Hk,n) = Ω
( n

4kk2

)1/3

.

Theorem 1.4 is satisfying in that it matches the state of the art for two-party com-
munication, i.e., even in the setting of two parties no bound is known better than the
multiparty bound of Theorem 1.4. This theorem is qualitatively optimal with respect
to the number of parties k: by the results in [2; 30], every polynomial-size {∧,∨,¬}-
circuit of constant depth has discrepancy at least 2− logc n for k > logc n parties, where
c > 1 is a constant. Theorem 1.4 is also optimal with respect to circuit depth because
polynomial-size DNF and CNF formulas have discrepancy at least 1/nO(1), regardless
of the number of parties k. In Section 6.4, we give applications of Theorem 1.4 to circuit
complexity.

The triangle inequality barrier
Our proof is best described by abstracting away from the set disjointness problem and
considering arbitrary composed functions. Specifically, let G be a k-party communi-
cation problem, with domain X = X1 × X2 × · · · × Xk. In what follows, we refer
to G as a gadget. We study the communication complexity of functions of the form
F = f(G,G, . . . , G), where f : {0, 1}n → {0, 1}. Thus, F is a k-party communication
problem with domain X n = X n

1 ×X n
2 × · · · ×X n

k . Our motivation for studying such
compositions is clear from the defining equation (1) for set disjointness, which shows
that DISJk,nm = ANDn(DISJk,m, . . . ,DISJk,m).

Compositions of the form f(G,G, . . . , G) have been the focus of much recent work
in the area [48; 51; 39; 21; 10; 20; 49]. These recent papers differ in what gadgets G
they allow, but they all leave f unrestricted and give communication lower bounds
for f(G,G, . . . , G) in terms of the approximate degree of f, defined as the least degree
of a real polynomial that approximates f pointwise within 1/3. Such communication
lower bounds are strong and broadly applicable because the approximate degree is
high for virtually every Boolean function, including f = ANDn. The first communica-
tion lower bounds for f(G,G, . . . , G) for general f were obtained by the author [48] and
independently by Shi and Zhu [51], in the setting of two-party communication. Both of

Table II. Multiparty discrepancy of constant-depth {∧,∨}-circuits of size nk.

Depth Discrepancy Reference

3 exp{−Ω(n1/3)}, k = 2 Buhrman, Vereshchagin, and de Wolf [17]
Sherstov [47; 48]

3 exp

{
−Ω

( n

4k

)1/(6k2k)
}

Chattopadhyay [19]

6 exp

{
−Ω

( n

231k

)1/29
}

Beame and Huynh-Ngoc [10]

3 exp

{
−Ω

( n

4k

)1/7
}

Sherstov [49]

3 exp

{
−Ω

( n

4kk2

)1/3
}

This paper

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



Communication Lower Bounds Using Directional Derivatives A:7

these works have been generalized to the multiparty setting, e.g., [39; 21; 10; 20; 49].
The main goal in this line of research is to keep the gadget G small while guaran-
teeing that the communication complexity of f(G,G, . . . , G) is bounded from below by
the approximate degree of f. For the specific purpose of proving communication lower
bounds for set disjointness, the gadget G needs to be representable as G = DISJk,m
with m = m(n, k) as small as possible. Gadget constructions have become increas-
ingly efficient over the past few years, with the best previous result [49] achieving
m(n, k) = Θ(4kn). Unfortunately, the growth of the gadget size with n is inherent in all
previous work. We refer to this obstacle as the triangle inequality barrier, for reasons
that will shortly be explained. Proving a tight lower bound for set disjointness requires
breaking this barrier and making do with a gadget of fixed size.

We now take a closer look at the triangle inequality barrier by sketching the proof of
the best previous lower bound for set disjointness [49]. Let F = f(G,G, . . . , G) be a com-
posed communication problem of interest, where G : X → {0, 1} is a k-party communi-
cation problem and f : {0, 1}n → {0, 1} is an arbitrary function with high approximate
degree. Consider a linear operator L that maps real functions Π: X n → R to real func-
tions LΠ: {0, 1}n → R in the following natural way: the value (LΠ)(x1, x2, . . . , xn) is ob-
tained by averaging Π one way or another on the set G−1(x1)×G−1(x2)×· · ·×G−1(xn).
The definition of L ensures that f = LF. The proof strategy is to show that if
Π: X n → [0, 1] is the acceptance probability of any low-cost randomized protocol, then
LΠ can be approximated in the infinity norm by a low-degree real polynomial f̃ . This
immediately rules out an efficient protocol for F , since its existence would force

|f − f̃ | = |LF − f̃ | ≈ |LF − LΠ| = |L(F −Π︸ ︷︷ ︸
≈0

)| ≈ 0,

in contradiction to the inapproximability of f by low-degree polynomials.
The difficult part of the above program is proving that LΠ can be approximated by

a low-degree polynomial. The paper [49] does so constructively, by showing that the
Fourier spectrum of LΠ resides almost entirely on low-order characters:

|L̂Π(S)| < 2r · 2−|S|
(
n

|S|

)−1

, S ⊆ {1, 2, . . . , n}, (2)

where r is the cost of the communication protocol. In particular, an approximating
polynomial for LΠ can be obtained by truncating the Fourier spectrum at degree r +
O(1). The technical centerpiece of [49] is a proof that the Fourier concentration (2) can
be achieved by using the gadget G = DISJk,Θ(4kn).

In the proof just sketched, the gadget size needs to grow with n for the obvious reason
that the number of Fourier coefficients of LΠ grows with n and we apply the triangle
inequality to them. This triangle inequality barrier is inherent not only in [49] but
in previous multiparty analyses as well. All these papers use the triangle inequality
to control the error term, either explicitly by bounding the discarded Fourier mass as
above [51; 20; 49], or implicitly by bounding the Fourier mass of certain pairwise prod-
ucts [47; 39; 21; 10]. As explained below, we are able to avoid this term-by-term sum-
ming of Fourier coefficients by focusing on the global, approximation-theoretic struc-
ture of the function rather than its spectrum.

Our proof
To obtain our main result, we are restricted to use gadgetsGwhose size is independent
of n. This requires finding a way to approximate protocols by low-degree polynomials
without summing Fourier coefficients term by term. In the setting of k = 2 parties,
the triangle inequality barrier was successfully overcome in 2007 using matrix analy-
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sis [48]. For multiparty communication, the problem remained wide open prior to this
paper because matrix-analytic tools do not apply to k > 3.

Our solution involves two steps. First, we derive a criterion for the approximability
of any given function φ : {0, 1}n → R by low-degree polynomials. Specifically, recall that
the directional derivative of φ in the direction S ⊆ {1, 2, . . . , n} at the point x ∈ {0, 1}n
is given by (∂φ/∂S)(x) = 1

2φ(x)− 1
2φ(x⊕1S), where 1S denotes the characteristic vector

of S. Directional derivatives of higher order are obtained by differentiating repeatedly.
We prove:

THEOREM 1.5. Every φ : {0, 1}n → R can be approximated pointwise by a polyno-
mial of degree d to within

Kd+1∆(φ, d+ 1) +Kd+2∆(φ, d+ 2) +Kd+3∆(φ, d+ 3) + · · · , (3)

where K > 2 is an absolute constant and ∆(φ, i) is the maximum magnitude of an
order-i directional derivative of φ with respect to pairwise disjoint sets S1, S2, . . . , Si.

The crucial point is that the dimension n of the ambient hypercube never figures in
the error bound (3). This allows us to break the triangle inequality barrier and approx-
imate a large class of functions φ that were off limits to previous techniques, including
communication protocols. The author finds Theorem 1.5 to be of general interest in
Boolean function analysis, independent of its use in this paper to prove communica-
tion lower bounds.

To apply the above criterion to multiparty communication, we must bound the direc-
tional derivatives of LΠ for every Π derived from a low-cost communication protocol.
This is equivalent to bounding the repeated discrepancy of the gadget G, a new quan-
tity that we introduce. The standard notion of discrepancy, reviewed above, involves
fixing a probability distribution µ on the domain of G and challenging a constant-cost
communication protocol to solve an instance X of G chosen at random according to µ.
In computing the repeated discrepancy of G, one presents the communication proto-
col with infinitely many instances X1, X2, X3, . . . of the given communication problem
G, each chosen independently from µ conditioned on G(X1) = G(X2) = G(X3) = · · · .
Thus, the instances are either all positive or all negative, and the protocol’s challenge
is to tell which is the case. It is considerably harder to bound the repeated discrepancy
than the usual discrepancy because each of the additional instances X2, X3, . . . gen-
erally reveals new information about the truth status of X1. In fact, it is not clear a
priori whether there is any distribution µ under which set disjointness has repeated
discrepancy less than the maximum possible value 1, let alone o(1) as our application
requires. By a detailed probabilistic analysis, we are able to prove the desired o(1)
bound for a suitable distribution µ.

With these new results in hand, we obtain an efficient way to transform commu-
nication protocols into approximating polynomials. This transformation allows us to
expeditiously prove Theorems 1.1–1.4.

Organization
The remainder of this article is organized as follows. Section 2 opens with a review
of technical preliminaries. Sections 3 and 4 are devoted to the two main components
of our proof, approximation via directional derivatives and repeated discrepancy. Sec-
tion 5 establishes our main results on randomized communication, including Theo-
rems 1.1 and 1.4. Section 6 concludes with several additional applications, among other
things settling Theorems 1.2 and 1.3.
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2. PRELIMINARIES
There are two common ways to encode the Boolean values “true” and “false,” the clas-
sic encoding 1, 0 and the more recent one −1,+1. The former is more convenient in
combinatorial applications, whereas the latter is more economical when working with
analytic tools such as the Fourier transform. In this paper, we will use both encod-
ings depending on context. To exclude any possibility of confusion, we reserve the term
Boolean predicate in the remainder of the paper for mappings of the form X → {0, 1},
and the term Boolean function for mappings X → {−1,+1}. As a notational aid to
distinguish predicates from functions, we always typeset the former with an asterisk,
as in PARITY∗ and AND∗, reserving unstarred symbols such as PARITY and AND
for the corresponding Boolean functions. More generally, to every Boolean function f
we associate the corresponding Boolean predicate f∗ = (1 − f)/2. A partial function f
on X is a function whose domain of definition, denoted dom f, is a nonempty proper
subset of X . For emphasis, we will sometimes refer to functions with dom f = X as
total. For (possibly partial) Boolean functions f and g on {0, 1}n and X , respectively,
we let f ◦g denote the componentwise composition of f with g, i.e., the (possibly partial)
Boolean function on X n given by (f ◦ g)(x1, x2, . . . , xn) = f(g∗(x1), g∗(x2), . . . , g∗(xn)).
Clearly, the domain of f ◦ g is the set of all (x1, x2, . . . , xn) ∈ (dom g)n for which
(g∗(x1), g∗(x2), . . . , g∗(xn)) ∈ dom f.

We let ε denote the empty string, which is the only element of the zero-dimensional
hypercube {0, 1}0. For a bit string x ∈ {0, 1}n, we let |x| = x1 + x2 + · · · + xn denote
the Hamming weight of x. The kth level of the Boolean hypercube {0, 1}n is the subset
{x ∈ {0, 1}n : |x| = k}. The componentwise conjunction and componentwise XOR of
x, y ∈ {0, 1}n are denoted x∧ y = (x1 ∧ y1, . . . , xn ∧ yn) and x⊕ y = (x1⊕ y1, . . . , xn⊕ yn).
In particular, |x ∧ y| refers to the number of components in which x and y both have
a 1. The bitwise negation of a string x ∈ {0, 1}n is denoted x = (x1 ⊕ 1, . . . , xn ⊕ 1). The
notation log x refers to the logarithm of x to base 2. For a subset S ⊆ {1, 2, . . . , n}, its
characteristic vector 1S is given by

(1S)i =

{
1 if i ∈ S,
0 otherwise.

For i = 1, 2, . . . , n, we define ei = 1{i}. In other words, ei is the vector with 1 in the
ith component and zeroes everywhere else. We identify {0, 1}n with the n-dimensional
vector space GF(2)n, with addition corresponding to componentwise XOR. This makes
available standard vector space notation, e.g., ax ⊕ by = (. . . , (aixi) ⊕ (biyi), . . . ) for
a, b ∈ {0, 1} and strings x, y ∈ {0, 1}n. A more complicated instance of this notation that
we will use many times is w ⊕ z11S1

⊕ z21S2
⊕ · · · ⊕ zd1Sd , where z1, z2, . . . , zd ∈ {0, 1},

w ∈ {0, 1}n, and S1, S2, . . . , Sd ⊆ {1, 2, . . . , n}.
The parity of a Boolean string x ∈ {0, 1}n, denoted PARITY∗(x) ∈ {0, 1}, is defined

as usual by PARITY∗(x) =
⊕n

i=1 xi. We adopt the convention that(
n

−1

)
=

(
n

−2

)
=

(
n

−3

)
= · · · = 0

for every positive integer n. For positive integers n,m, k, one has

k∑
i=0

(
n

i

)(
m

k − i

)
=

(
n+m

k

)
, (4)
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a combinatorial identity known as Vandermonde’s convolution. The total degree of a
multivariate real polynomial p is denoted deg p. The Kronecker delta is given by

δx,y =

{
1 if x = y,

0 otherwise,

where x, y are elements of some set. We let Z+ = {1, 2, 3, . . . , } and N = {0, 1, 2, 3, . . . }
denote positive integers and natural numbers, respectively. We adopt the convention
that the linear span of the empty set is the zero vector: span∅ = {0}. The symmetric
group of order n is denoted Sn. For a string x ∈ {0, 1}n and a permutation σ ∈ Sn,
we define σx = (xσ(1), xσ(2), . . . , xσ(n)). A function f : {0, 1}n → R is called symmetric if
f(x) = f(σx) for all x and all σ ∈ Sn. Equivalently, f is symmetric if and only if it is
determined uniquely by the Hamming weight |x| of the input.

The familiar functions ANDn,ORn : {0, 1}n → {−1,+1} are given by ANDn(x) =∧n
i=1 xi and ORn(x) =

∨n
i=1 xi. We also define a partial Boolean function ÃNDn on

{0, 1}n as the restriction of ANDn to the set {x : |x| > n− 1}. In other words,

ÃNDn(x) =

{
ANDn(x) if |x| > n− 1,

undefined otherwise.

Analogously, we define a partial Boolean function ÕRn on {0, 1}n as the restriction of
ORn to the set {x : |x| 6 1}.

2.1. Norms and products
For a finite set X , the linear space of real functions on X is denoted RX . This space
is equipped with the usual norms and inner product:

‖f‖∞ = max
x∈X

|f(x)| (f ∈ RX ), (5)

‖f‖1 =
∑
x∈X

|f(x)| (f ∈ RX ), (6)

〈f, g〉 =
∑
x∈X

f(x)g(x) (f, g ∈ RX ). (7)

The tensor product of f ∈ RX and g ∈ RY is the function f ⊗ g ∈ RX×Y given by
(f ⊗ g)(x, y) = f(x)g(y). The tensor product f ⊗ f ⊗ · · · ⊗ f (n times) is abbreviated
f⊗n. When specialized to real matrices, tensor product is the usual Kronecker product.
The pointwise (Hadamard) product of f, g ∈ RX is denoted f · g ∈ RX and given by
(f ·g)(x) = f(x)g(x). Note that as functions, f ·g is a restriction of f ⊗g. Tensor product
notation generalizes to partial functions in the natural way: if f and g are partial real
functions on X and Y , respectively, then f ⊗ g is a partial function on X × Y with
domain dom f×dom g and is given by (f⊗g)(x, y) = f(x)g(y) on that domain. Similarly,
f⊗n = f ⊗ f ⊗ · · · ⊗ f (n times) is a partial function on X n with domain (dom f)n.

The support of a function f : X → R is defined as the set supp f = {x ∈ X : f(x) 6=
0}. For a real number λ and subsets F,G ⊆ RX , we use the standard notation λF =
{λf : f ∈ F} and F + G = {f + g : f ∈ F, g ∈ G}. Clearly, λF and F + G are convex
whenever F and G are convex. More generally, we adopt the shorthand λ1F1 + λ2F2 +
· · ·+λkFk = {λ1f1 +λ2f2 + · · ·+λkfk : f1 ∈ F1, f2 ∈ F2, . . . , fk ∈ Fk}, where λ1, λ2, . . . , λk
are reals and F1, F2, . . . , Fk ⊆ RX . A conical combination of f1, f2, . . . , fk ∈ RX is any
function of the form λ1f1 + λ2f2 + · · · + λkfk, where λ1, λ2, . . . , λk are nonnegative. A
convex combination of f1, f2, . . . , fk ∈ RX is any function of the form λ1f1 +λ2f2 + · · ·+
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λkfk, where λ1, λ2, . . . , λk are nonnegative and additionally sum to 1. The convex hull
of F ⊆ RX , denoted convF, is the set of all convex combinations of functions in F.

2.2. Matrices
For a set X such as X = {0, 1} or X = R, the symbol X n×m denotes the family of n×m
matrices with entries in X . The symbol X n×∗ denotes the family of matrices that have
n rows and entries in X , and analogously X ∗×m denotes matrices with m columns
and entries in X . The notation (5)–(7) applies to any real matrices: ‖A‖∞ = max |Ai,j |,
‖A‖1 =

∑
i,j |Ai,j |, and 〈A,B〉 =

∑
i,j Ai,jBi,j . For a matrix A = [Ai,j ] of size n×m and a

permutation σ ∈ Sm,we let σA = [Ai,σ(j)]i,j denote the result of permuting the columns
of A according to σ. The notation A =� B means that the matrices A,B are the same
up to a permutation of columns, i.e., A = σB for some permutation σ. A submatrix
of A is a matrix obtained from A by discarding zero or more rows and zero or more
columns, keeping unchanged the relative ordering of the remaining rows and columns.
For a Boolean matrix A ∈ {0, 1}n×m and a string x ∈ {0, 1}m, we let A|x denote the
submatrix of A obtained by removing those columns i for which xi = 0:

A|x =


A1,i1 A1,i2 · · · A1,i|x|

A2,i1 A2,i2 · · · A2,i|x|
...

...
. . .

...
An,i1 An,i2 · · · An,i|x|

 ,
where i1 < i2 < · · · < i|x| are the distinct indices such that xi1 = xi2 = · · · = xi|x| = 1.
By convention, A|0m = ε. The notation A v B means that

A =


Bi1,j1 Bi1,j2 · · · Bi1,jm
Bi2,j1 Bi2,j2 · · · Bi2,jm

...
...

. . .
...

Bin,j1 Bin,j2 · · · Bin,jm


for some row indices i1 < i2 < · · · < in and some distinct column indices j1, j2, . . . , jm,
where n×m are the dimensions of A. In other words, A v B means that A is a subma-
trix of B, up to a permutation of columns.

We use lowercase letters (a, b, u, v, w, x, y, z) for row vectors and Boolean strings, and
uppercase letters (A,B,M,X, Y ) for real and Boolean matrices. The convention of us-
ing lowercase letters for row vectors is somewhat unusual, and for that reason we em-
phasize it. We identify Boolean strings with corresponding row vectors, e.g., the string
00111 is used interchangeably with the row vector [0 0 1 1 1] . Similarly, 111 . . . 1 refers
to an all-ones row, and 0m1m refers to the row vector whose 2m components are m ze-
roes followed by m ones. On occasion, we will use bracket notation to emphasize that
the string should be interpreted as a row vector, e.g., [0m1m]. We use standard matrix-
theoretic notation to typeset block matrices, e.g.,

[
A00 A01 A10 A11

]
,

[
A

111 . . . 1

]
,

[
B
b
b′

]
.

Here the first matrix is composed of four blocks, the second matrix is obtained by
appending an all-ones row to A, and the third matrix is obtained by appending the
row vectors b and b′ to B. When warranted, we will use vertical and horizontal lines as
in (51) to emphasize block structure.
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The set disjointness function DISJ on Boolean matrices X is defined by

DISJ(X) =

{
+1 if X contains an all-ones column,
−1 otherwise.

In particular, DISJ−1(+1) is the family of all Boolean matrices with an all-ones column.
By convention, DISJ(ε) = −1. Note that

DISJ
[
X
x

]
= DISJ(X|x)

for any matrix X ∈ {0, 1}n×m and any row vector x ∈ {0, 1}m. We let
DISJk,n : {0, 1}k×n → {−1,+1} be the restriction of DISJ to matrices of size k × n.
In Boolean notation,

DISJk,n(X) =

n∧
j=1

k∨
i=1

Xi,j . (8)

The partial function UDISJk,n on {0, 1}k×n, called unique set disjointness, is defined as
the restriction of DISJk,n to k×n Boolean matrices with at most one column consisting
entirely of ones. In other words,

UDISJk,n(X) =

{
DISJk,n(X) if |x1 ∧ x2 ∧ · · · ∧ xk| 6 1,

undefined otherwise,
(9)

where x1, x2, . . . , xk are the rows of X. As usual, DISJ∗k,n and UDISJ∗k,n denote the
corresponding Boolean predicates, given by DISJ∗k,n = (1−DISJk,n)/2 and UDISJ∗k,n =
(1−UDISJk,n)/2.

2.3. Probability
We view probability distributions first and foremost as real functions. This makes
available various notational devices introduced above. In particular, for probability
distributions µ and λ, the symbol suppµ denotes the support of µ, and µ ⊗ λ denotes
the probability distribution given by (µ⊗ λ)(x, y) = µ(x)λ(y). We define µ× λ = µ⊗ λ,
the former notation being more standard for probability distributions. The Hellinger
distance between probability distributions µ and λ on a finite set X is given by

H(µ, λ) =

(
1

2

∑
x∈X

(
√
µ(x)−

√
λ(x))2

)1/2

=

(
1−

∑
x∈X

√
µ(x)λ(x)

)1/2

. (10)

The statistical distance between µ and λ is defined to be 1
2‖µ − λ‖1. The Hellinger

distance between two random variables taking values in the same finite set X is de-
fined to be the Hellinger distance between their respective probability distributions.
Analogously, one defines the statistical distance between two random variables. The
following classical fact [37; 43] gives basic properties of Hellinger distance and relates
it to statistical distance.

FACT 2.1. For any probability distributions µ, µ1, µ2, . . . , µn and λ, λ1, λ2, . . . , λn,

(i) 0 6 H(µ, λ) 6 1,
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(ii) 2H(µ, λ)2 6 ‖µ− λ‖1 6 2
√

2H(µ, λ),

(iii) H(µ1 ⊗ · · · ⊗ µn, λ1 ⊗ · · · ⊗ λn) 6
√
H(µ1, λ1)2 + · · ·+H(µn, λn)2.

The multiplicative form of Hellinger distance in (10) makes it particularly useful. For
example, the paper of Bar-Yossef et al. [8] on two-party set disjointness exploits the
multiplicative property when analyzing probability distributions on tree leaves. The
role of Hellinger distance in our work is quite different: following [44; 9], we use it to
bound the statistical distance between product distributions via Fact 2.1(ii), (iii). For
the reader’s convenience, we include a proof of Fact 2.1.

PROOF. Part (i) is immediate from the defining equations for Hellinger distance.
For (ii), we have

2H(µ, λ)2 =
∑
x∈X

(
√
µ(x)−

√
λ(x))2

6
∑
x∈X

|
√
µ(x)−

√
λ(x)|(

√
µ(x) +

√
λ(x))

= ‖µ− λ‖1,
and in the reverse direction

‖µ− λ‖1 =
∑
x∈X

|
√
µ(x)−

√
λ(x)|(

√
µ(x) +

√
λ(x))

6

(∑
x∈X

(
√
µ(x)−

√
λ(x))2

)1/2(∑
x∈X

(
√
µ(x) +

√
λ(x))2

)1/2

=
√

2H(µ, λ)

(∑
x∈X

(
√
µ(x) +

√
λ(x))2

)1/2

= 2H(µ, λ)

(
1 +

∑
x∈X

√
µ(x)λ(x)

)1/2

= 2H(µ, λ)
√

2−H(µ, λ)2

6 2
√

2H(µ, λ).

For (iii), let Xi denote the domain of µi and λi. Then

H(µ1 ⊗ · · · ⊗ µn, λ1 ⊗ · · · ⊗ λn)2

= 1−
∑

x1∈X1

· · ·
∑

xn∈Xn

√
µ1(x1) · · ·µn(xn)λ1(x1) · · ·λn(xn)

= 1−
n∏
i=1

( ∑
xi∈Xi

√
µi(xi)λi(xi)

)

= 1−
n∏
i=1

(1−H(µi, λi)
2)

6
n∑
i=1

H(µi, λi)
2,

where the final step uses (i).
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The set membership symbol ∈, when used in the subscript of an expectation operator,
means that the expectation is taken over a uniformly random element of the indicated
set.

2.4. Fourier transform
Consider the real vector space of functions {0, 1}n → R. For S ⊆ {1, 2, . . . , n}, define
χS : {0, 1}n → {−1,+1} by χS(x) = (−1)

∑
i∈S xi . Then every function f : {0, 1}n → R has

a unique representation of the form

f =
∑

S⊆{1,2,...,n}

f̂(S)χS ,

where f̂(S) = 2−n
∑
x∈{0,1}n f(x)χS(x). The reals f̂(S) are called the Fourier coeffi-

cients of f. Formally, the Fourier transform is the linear transformation f 7→ f̂ , where
f̂ is viewed as a function on the power set of {1, 2, . . . , n}. This makes available the
shorthands

‖f̂‖1 =
∑

S⊆{1,2,...,n}

|f̂(S)|, ‖f̂‖∞ = max
S⊆{1,2,...,n}

|f̂(S)|.

PROPOSITION 2.2. For all functions f, g : {0, 1}n → R,

(i) ‖f̂‖∞ 6 2−n‖f‖1,
(ii) ‖f̂‖1 6 ‖f‖1,

(iii) ‖f̂ + g‖1 6 ‖f̂‖1 + ‖ĝ‖1,
(iv) ‖f̂ · g‖1 6 ‖f̂‖1‖ĝ‖1.

PROOF. Item (i) is immediate by definition, and (ii) follows directly from (i). Item (iii)
is trivial. The submultiplicativity (iv) can be verified as follows:

‖f̂ · g‖1 =
∑

S⊆{1,2,...,n}

|f̂ · g(S)|

=
∑

S⊆{1,2,...,n}

∣∣∣∣∣∣
∑

T⊆{1,2,...,n}

f̂(T )ĝ(S ⊕ T )

∣∣∣∣∣∣
6

∑
S⊆{1,2,...,n}

∑
T⊆{1,2,...,n}

|f̂(T )| |ĝ(S ⊕ T )|

= ‖f̂‖1‖ĝ‖1,

where S ⊕ T = (S ∩ T ) ∪ (S ∩ T ) denotes the symmetric difference of S and T.

The convolution of f, g : {0, 1}n → R is the function f ∗ g : {0, 1}n → R given by

(f ∗ g)(x) =
∑

y∈{0,1}n
f(y)g(x⊕ y).

Some authors define convolution using an additional normalizing factor of 2−n, but the
above definition is more classical and better serves our needs. The Fourier spectrum of
the convolution is given by

f̂ ∗ g(S) = 2nf̂(S)ĝ(S), S ⊆ {1, 2, . . . , n}.
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In particular, convolution is a symmetric operation: f ∗ g = g ∗ f. It also follows that
convolving f with the function 2−n

∑
|S|>d χS is tantamount to discarding the Fourier

coefficients of f of order less than d:2−n
∑
|S|>d

χS

 ∗ f =
∑
|S|>d

f̂(S)χS . (11)

For any given f : {0, 1}n → R, it is straightforward to verify the existence and unique-
ness of a multilinear polynomial f̃ : Rn → R such that f ≡ f̃ on {0, 1}n. Following stan-
dard practice, we will identify f with its multilinear extension f̃ to Rn. In particular,
we define deg f = deg f̃ . The polynomial f̃ can be read off from the Fourier expansion
of f, with the useful consequence that deg f = max{|S| : f̂(S) 6= 0}.

2.5. Approximation by polynomials
Let f : X → R be given, for a finite subset X ⊂ Rn. The ε-approximate degree of f,
denoted degε(f), is the least degree of a real polynomial p such that ‖f − p‖∞ 6 ε. We
generalize this definition to partial functions f on X by letting degε(f) be the least
degree of a real polynomial p with

|f(x)− p(x)| 6 ε, x ∈ dom f,

|p(x)| 6 1 + ε, x ∈X \ dom f.

}
(12)

For a (possibly partial) real function f on a finite subset X ⊂ Rn, we define E(f, d) to
be the least ε such that (12) holds for some polynomial p of degree at most d. In this
notation, degε(f) = min{d : E(f, d) 6 ε}.When f is a total function,E(f, d) is simply the
least error to which f can be approximated by a real polynomial of degree no greater
than d. We will need the following dual characterization of approximate degree.

FACT 2.3. Let f be a (possibly partial) real function on {0, 1}n. Then degε(f) > d if
and only if there exists ψ : {0, 1}n → R such that∑

x∈dom f

f(x)ψ(x)−
∑

x/∈dom f

|ψ(x)| − ε‖ψ‖1 > 0,

and ψ̂(S) = 0 for |S| 6 d.
Fact 2.3 follows from linear programming duality; see [48; 50] for details. A related
notion is that of threshold degree deg±(f), defined for a (possibly partial) Boolean func-
tion f as the limit

deg±(f) = lim
ε↘0

deg1−ε(f).

Equivalently, deg±(f) is the least degree of a real polynomial p with f(x) = sgn p(x)
for x ∈ dom f. We recall two well-known results on the polynomial approximation of
Boolean functions, the first due to Minsky and Papert [41] and the second due to Nisan
and Szegedy [42].

THEOREM 2.4 (Minsky and Papert). The function MPn(x) =
∨n
i=1

∧4n2

j=1 xij obeys

deg±(MPn) = n.

THEOREM 2.5 (Nisan and Szegedy). The functions ANDn and ÃNDn obey

deg1/3(ANDn) > deg1/3(ÃNDn) = Θ(
√
n).
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2.6. Multiparty communication
An excellent reference on communication complexity is the monograph by Kushilevitz
and Nisan [36]. In this overview, we will limit ourselves to key definitions and nota-
tion. The main model of communication of interest to us is the randomized multiparty
number-on-the-forehead model, due to Chandra, Furst, and Lipton [18]. Here one con-
siders a (possibly partial) Boolean function F on X1×X2×· · ·×Xk, for some finite sets
X1,X2, . . . ,Xk. There are k parties. A given input (x1, x2, . . . , xk) ∈X1×X2×· · ·×Xk

is distributed among the parties by placing xi on the “forehead” of party i (for i =
1, 2, . . . , k). That is to say, party i knows x1, . . . , xi−1, xi+1, . . . , xk but not xi. The parties
communicate by writing bits on a shared blackboard, visible to all. They also have ac-
cess to a shared source of random bits. Their goal is to devise a communication protocol
that will allow them to accurately predict the value of F everywhere on the domain of
F. An ε-error protocol for F is one which, on every input (x1, x2, . . . , xk) ∈ domF, pro-
duces the correct answer F (x1, x2, . . . , xk) with probability at least 1 − ε. The cost of
a communication protocol is the total number of bits written to the blackboard in the
worst case. The ε-error randomized communication complexity of F, denoted Rε(F ), is
the least cost of an ε-error communication protocol for F in this model. The canonical
quantity to study is R1/3(F ), where the choice of 1/3 is largely arbitrary since the error
probability of a protocol can be decreased from 1/3 to any other positive constant at
the expense of increasing the communication cost by a constant factor.

The nondeterministic model is similar in some ways and different in others from
the randomized model. As in the randomized model, one considers a (possibly par-
tial) Boolean function F on X1 ×X2 × · · · ×Xk, for some finite sets X1,X2, . . . ,Xk.
An input (x1, x2, . . . , xk) ∈ X1 ×X2 × · · · ×Xk is distributed among the k parties as
before, giving the ith party all the arguments except xi. Beyond this setup, nondeter-
ministic computation proceeds as follows. At the start of the protocol, c1 bits appear on
the shared blackboard. Given the values of those bits, the parties execute an agreed-
upon deterministic protocol with communication cost at most c2. A nondeterministic
protocol for F is required to output the correct answer for at least one nondeterminis-
tic choice of the c1 bits when F (x1, x2, . . . , xk) = −1 and for all possible choices when
F (x1, x2, . . . , xk) = +1. As usual, the protocol is allowed to behave arbitrarily on inputs
outside the domain of F . The cost of a nondeterministic protocol is defined as c1 + c2.
The nondeterministic communication complexity of F , denoted N(F ), is the least cost
of a nondeterministic protocol for F.

The Merlin-Arthur model [3; 6] combines the power of randomization and nonde-
terminism. Similar to the nondeterministic model, the protocol starts with a nonde-
terministic guess of c1 bits, followed by c2 bits of communication. However, the com-
munication can now be randomized, and the requirement is that the error probability
be at most ε for at least one nondeterministic guess when F (x1, x2, . . . , xk) = −1 and
for all possible nondeterministic guesses when F (x1, x2, . . . , xk) = +1. The cost of a
Merlin-Arthur protocol is defined as c1 + c2. The ε-error Merlin-Arthur communication
complexity of F , denoted MAε(F ), is the least cost of an ε-error Merlin-Arthur protocol
for F. Clearly, MAε(F ) 6 min{N(F ), Rε(F )} for every F .

In much of this paper, the input to a k-party communication problem will be an
ordered sequence of matrices X1, X2, . . . , Xn ∈ {0, 1}k,∗, with the understanding that
the ith party sees rows 1, . . . , i − 1, i + 1, . . . , k of every matrix. The main communica-
tion problem of interest to us is the k-party set disjointness problem DISJk,n, defined
in (8). In words, the goal in the set disjointness problem is to determine whether a
given k × n Boolean matrix contains an all-ones column, where the ith party sees the
entire matrix except for the ith row. We will also consider the k-party communication
problem UDISJk,n called unique set disjointness, given by (9). Observe that UDISJk,n
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is a promise version of set disjointness, the promise being that the input matrix has at
most one column consisting entirely of ones.

A common operation in this paper is that of composing functions to obtain com-
munication problems. Specifically, let G be a (possibly partial) Boolean function on
X1 × X2 × · · · × Xk, representing a k-party communication problem, and let f be a
(possibly partial) Boolean function on {0, 1}n. We view the composition f ◦ G as a k-
party communication problem on X n

1 ×X n
2 × · · · ×X n

k . With these conventions, one
has

DISJk,rs = ANDr ◦DISJk,s,

UDISJk,rs = ÃNDr ◦UDISJk,s

for all positive integers r, s.

2.7. Discrepancy and generalized discrepancy
A k-dimensional cylinder intersection is a function χ : X1 ×X2 × · · · ×Xk → {0, 1} of
the form

χ(x1, . . . , xk) =

k∏
i=1

χi(x1, . . . , xi−1, xi+1, . . . , xk),

where χi : X1 × · · · ×Xi−1 ×Xi+1 × · · · ×Xk → {0, 1}. In other words, a k-dimensional
cylinder intersection is the product of k functions with range {0, 1}, where the ith
function does not depend on the ith coordinate but may depend arbitrarily on the other
k − 1 coordinates. In particular, a one-dimensional cylinder intersection is one of the
two constant functions 0, 1. Cylinder intersections were introduced by Babai, Nisan,
and Szegedy [7] and play a fundamental role in the theory due to the following fact.

FACT 2.6. Let Π: X1 ×X2 × · · · ×Xk → {−1,+1} be a deterministic k-party com-
munication protocol with cost r. Then

Π =

2r∑
i=1

aiχi

for some cylinder intersections χ1, . . . , χ2r with pairwise disjoint support and some co-
efficients a1, . . . , a2r ∈ {−1,+1}.

Since a randomized protocol with cost r is a probability distribution on deterministic
protocols of cost r, Fact 2.6 implies the following two results on randomized communi-
cation complexity.

COROLLARY 2.7. Let F be a (possibly partial) Boolean function on X1×X2× · · · ×
Xk. If Rε(F ) = r, then

|F (X)−Π(X)| 6 ε

1− ε
, X ∈ domF,

|Π(X)| 6 1

1− ε
, X ∈X1 × · · · ×Xk,

where Π =
∑
χ aχχ is a linear combination of cylinder intersections with

∑
χ |aχ| 6

2r/(1− ε).
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COROLLARY 2.8. Let Π be a randomized k-party protocol with domain X1 ×X2 ×
· · · ×Xk. If Π has communication cost r bits, then

P[Π(X) = −1] ≡
∑
χ

aχχ(X), X ∈X1 ×X2 × · · · ×Xk,

where the sum is over cylinder intersections and
∑
χ |aχ| 6 2r.

For a (possibly partial) Boolean function F on X1 ×X2 × · · · ×Xk and a probability
distribution P on X1×X2×· · ·×Xk, the discrepancy of F with respect to P is given by

discP (F ) =
∑

X/∈domF

P (X) + max
χ

∣∣∣∣∣ ∑
X∈domF

F (X)P (X)χ(X)

∣∣∣∣∣ ,
where the maximum is over cylinder intersections. The least discrepancy over all dis-
tributions is denoted disc(F ) = minP discP (F ). As Fact 2.6 suggests, upper bounds on
the discrepancy give lower bounds on communication complexity. This technique is
known as the discrepancy method [22; 7; 36].

THEOREM 2.9 (Discrepancy method). Let F be a (possibly partial) Boolean func-
tion on X1 ×X2 × · · · ×Xk. Then

2Rε(F ) >
1− 2ε

disc(F )
.

A more general technique, originally applied by Klauck [33] in the two-party quantum
model and subsequently adapted to many other settings [46; 40; 48; 39; 21], is the
generalized discrepancy method.

THEOREM 2.10 (Generalized discrepancy method). Let F be a (possibly partial)
Boolean function on X1×X2×· · ·×Xk. Then for every nonzero Ψ: X1×X2×· · ·×Xk → R,

2Rε(F ) >
1− ε

maxχ |〈χ,Ψ〉|

( ∑
X∈domF

F (X)Ψ(X)−
∑

X/∈domF

|Ψ(X)| − ε

1− ε
‖Ψ‖1

)
,

where the maximum is over cylinder intersections χ.

Complete proofs of Theorems 2.9 and 2.10 can be found in [49, Theorems 2.9, 2.10]. The
generalized discrepancy method has been adapted to nondeterministic and Merlin-
Arthur communication. The following result [24, Theorem 4.1] gives a criterion for
high communication complexity in these models.

THEOREM 2.11 (Gavinsky and Sherstov). Let F be a (possibly partial) k-party com-
munication problem on X = X1×X2×· · ·×Xk. Fix a function H : X → {−1,+1} and
a probability distribution P on domF. Put

α = P (F−1(−1) ∩H−1(−1)),

β = P (F−1(−1) ∩H−1(+1)),

Q = log
α

β + discP (H)
.

Then

N(F ) > Q,

MA1/3(F ) > min

{
Ω(
√
Q), Ω

(
Q

log(2/α)

)}
.
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Theorem 2.11 was stated in [24] for total functions F, but the proof in that paper
applies to partial functions as well.

3. DIRECTIONAL DERIVATIVES AND APPROXIMATION
Directional derivatives are meaningful for any function on the Boolean hypercube
with values in a ring R. The directional derivative of f : {0, 1}n → R in the direction
S ⊆ {1, 2, . . . , n} is usually defined as the function (∂f/∂S)(x) = f(x)−f(x⊕1S). Direc-
tional derivatives of higher order are obtained by differentiating more than once. As a
special case, partial derivatives are given by (∂f/∂{i})(x) = f(x)−f(x⊕ei).Directional
derivatives have been studied mostly for the field R = F2, motivated by applications to
circuit complexity and cryptography [54; 1; 26; 27; 53; 23]. In particular, the uniformity
norm Ud of Gowers [26; 27] is defined in terms of a randomly chosen order-d directional
derivative for R = F2. To a lesser extent, directional derivatives have been studied for
R a finite field [25] and the field of reals [13]. In this work, derivatives serve the pur-
pose of determining how well a given function f : {0, 1}n → R can be approximated by
a polynomial p ∈ R[x1, x2, . . . , xn] of given degree d. Consequently, we work with the
field R = R.

3.1. Definition and basic properties
Let d be a positive integer. For a given function f : {0, 1}n → R and sets S1, S2, . . . , Sd ⊆
{1, 2, . . . , n}, we define the directional derivative of f with respect to S1, S2, . . . , Sd to be
the function ∂df/∂S1 ∂S2 · · · ∂Sd : {0, 1}n → R given by

∂df

∂S1 ∂S2 · · · ∂Sd
(x) = E

z∈{0,1}d

[
(−1)|z|f

(
x⊕

d⊕
i=1

zi1Si

)]
. (13)

The order of the directional derivative is the number of sets involved. Thus, (13) is a
directional derivative of order d. We collect basic properties of directional derivatives
in the following proposition.

PROPOSITION 3.1 (Folklore). Let f : {0, 1}n → R be a given function,
S1, S2, . . . , Sd ⊆ {1, 2, . . . , n} given sets, and σ : {1, 2, . . . , d} → {1, 2, . . . , d} a permuta-
tion. Then

(i) ∂d/∂S1∂S2 · · · ∂Sd is a linear transformation of R{0,1}n into itself ;
(ii) ∂df/∂S1∂S2 · · · ∂Sd ≡ ∂(∂d−1f/∂S1∂S2 · · · ∂Sd−1)/∂Sd;

(iii) ∂df/∂S1∂S2 · · · ∂Sd ≡ ∂df/∂Sσ(1)∂Sσ(2) · · · ∂Sσ(d);

(iv) ‖∂df/∂S1∂S2 · · · ∂Sd‖∞ 6 ‖f‖∞;
(v) ∂df/∂S1∂S2 · · · ∂Sd ≡ 0 whenever Si = ∅ for some i;

(vi) ∂df/∂S1∂S2 · · · ∂Sd ≡ 0 whenever S1, S2, . . . , Sd are pairwise disjoint and deg f 6
d− 1.

PROOF. Items (i)–(iv) follow immediately from the definition. Since ∂f/∂∅ ≡ 0 for
any function f, item (v) follows directly from (ii) and (iii). To prove (vi), we may assume
by (i) that f = χT with |T | 6 d − 1. For such f, observe that ∂f/∂Si ≡ 0 whenever
T ∩Si = ∅. Since |T | 6 d−1 and S1, S2, . . . , Sd are pairwise disjoint, we have T ∩Si = ∅
for some i, thus forcing ∂f/∂Si ≡ 0. That ∂df/∂S1 ∂S2 · · · ∂Sd ≡ 0 now follows from (ii)
and (iii).

Item (vi) in Proposition 3.1 provides intuition for why directional derivatives might be
relevant in characterizing the least error in an approximation of f by a real polynomial
of given degree. This intuition will be borne out at the end of Section 3. The disjointness

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 Alexander A. Sherstov

assumption in Proposition 3.1(vi) cannot be removed, even when 1S1
,1S2

, . . . ,1Sd are
linearly independent as vectors in Fn2 . For example, ∂2x1/∂{1, 2} ∂{1, 3} = x1 − 1

2 6≡ 0.
We now define the key complexity measure in our study.

Definition 3.2. Let f : {0, 1}n → R be a given function. For d = 1, 2, . . . , n, define

∆(f, d) = max
S1,...,Sd

∥∥∥∥ ∂df

∂S1 ∂S2 · · · ∂Sd

∥∥∥∥
∞
,

where the maximum is over nonempty pairwise disjoint sets S1, S2, . . . , Sd ⊆
{1, 2, . . . , n}. Define ∆(f, n+ 1) = ∆(f, n+ 2) = · · · = 0.

It is helpful to think of ∆(f, d) as a measure of smoothness. Our ultimate goal is to
understand how this complexity measure relates to the approximation of f by polyno-
mials. As a first step in that direction, we have:

THEOREM 3.3. For all functions f : {0, 1}n → R and all d = 1, 2, . . . , n,

E(f, d− 1) > ∆(f, d).

Furthermore,

E(AND∗n, d− 1) > 2d(1−O( dn ))−1∆(AND∗n, d).

PROOF. Write f = p+ ξ, where p is a polynomial of degree at most d− 1 and ‖ξ‖∞ 6
E(f, d− 1). Then

∆(f, d) 6 ∆(p, d) + ∆(ξ, d)

= ∆(ξ, d) by Proposition 3.1(vi)
6 E(f, d− 1) by Proposition 3.1(iv).

To prove the second part, note that ∆(AND∗n, d) = 2−d since AND∗n is supported on
exactly one point and takes on 1 at that point. At the same time, Buhrman et al. [15]
show that E(AND∗n, d− 1) > 2−1−Θ(d2/n).

Thus, ∆(f, d) is always a lower bound on the least error in an approximation of f by
a polynomial of degree less than d, and the gap between the two quantities can be
considerable. Our challenge is to prove a partial converse to this result. Specifically,
we will be able to show that

E(f, d− 1) 6 Kd∆(f, d) +Kd+1∆(f, d+ 1) + · · ·+Kd+i∆(f, d+ i) + · · · , (14)

where K > 2 is an absolute constant.

3.2. Elementary dual functions
The proof of (14) requires considerable preparatory work. Basic building blocks in it
are the linear functionals to which partial derivatives correspond. We start with their
formal definition.

Definition 3.4 (Elementary dual function). For a string w ∈ {0, 1}n and nonempty
pairwise disjoint subsets S1, . . . , Sd ⊆ {1, 2, . . . , n}, let ψw,S1,...,Sd : {0, 1}n → R be the
function that has support

suppψw,S1,...,Sd =

{
w ⊕

d⊕
i=1

zi1Si : z ∈ {0, 1}d
}

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



Communication Lower Bounds Using Directional Derivatives A:21

and is defined on that support by

ψw,S1,...,Sd

(
w ⊕

d⊕
i=1

zi1Si

)
=

(−1)|z|

2d
, z ∈ {0, 1}d.

An elementary dual function of order d is any of the functions ψw,S1,...,Sd , where w ∈
{0, 1}n and S1, . . . , Sd ⊆ {1, 2, . . . , n} are nonempty pairwise disjoint sets.

An elementary dual function can be written in several ways using the above nota-
tion. For example, ψw,S1,...,Sd ≡ ψw,Sσ(1),...,Sσ(d) for any permutation σ on {1, 2, . . . , d}.
One also has ψw,S,T ≡ ψw⊕1S⊕1T ,S,T and more generally ψw⊕z11S1⊕···⊕zd1Sd ,S1,...,Sd =

(−1)|z|ψw,S1,...,Sd . We now establish key properties of elementary dual functions, moti-
vating the term itself and relating it to directional derivatives.

THEOREM 3.5 (On elementary dual functions).

(i) For every f : {0, 1}n → R, one has 〈f, ψw,S1,...,Sd〉 = (∂df/∂S1∂S2 · · · ∂Sd)(w).
(ii) The negation of an order-d elementary dual function is an order-d elementary

dual function.
(iii) If p is a polynomial of degree less than d, then 〈ψw,S1,...,Sd , p〉 = 0. Equivalently,

ψw,S1,...,Sd ∈ span{χS : |S| > d}.
(iv) Every χS with |S| > d is the sum of 2n elementary dual functions of order d. In

particular, every function in span{χS : |S| > d} is a linear combination of order-d
elementary dual functions.

(v) For every function f : {0, 1}n → R and d = 1, 2, . . . , n, one has ∆(f, d) =
max〈f, ψw,S1,...,Sd〉 = max |〈f, ψw,S1,...,Sd〉|, where the maximum is taken over
order-d elementary dual functions ψw,S1,...,Sd .

PROOF. Item (i) is immediate from the definitions, and (ii) follows from
−ψw,S1,...,Sd = ψw⊕1S1 ,S1,...,Sd . Item (iii) follows from (i) and Proposition 3.1(vi).

For (iv), it suffices by symmetry to consider χ{1,2,...,D} for D = d, d + 1, . . . , n. For
every u ∈ {0, 1}n−d,

ψ0du,{1},...,{d}(x) =

{
2−dχ{1,...,d}(x) if (xd+1, . . . , xn) = u,

0 otherwise.

Therefore,

χ{1,...,D}(x) = 2d
∑

u∈{0,1}n−d
(−1)u1+···+uD−dψ0du,{1},...,{d}(x).

By (ii), each of the functions in the final summation is an order-d elementary dual
function, so that χ{1,...,D} is indeed the sum of 2n elementary dual functions of order d.

Finally, (v) is immediate from (i) and (ii).

Definition 3.6. For d = 1, . . . , n, define Ψn,d ⊆ R{0,1}n to be the convex hull of order-
d elementary dual functions, Ψn,d = conv{χw,S1,...,Sd}. Define Ψn,n+1,Ψn,n+2, . . . ⊆
R{0,1}n by Ψn,n+1 = Ψn,n+2 = · · · = {0}.
By Theorem 3.5(ii), the convex sets Ψn,1,Ψn,2, . . . ,Ψn,n are all closed under negation
and hence contain 0. As a result, we have cΨn,d ⊆ CΨn,d for all C > c > 0. We will
use this fact without mention throughout this section, including Lemmas 3.7, 3.11,
and 3.12 and Theorems 3.8 and 3.13. The next lemma establishes useful analytic prop-
erties of Ψn,d.

LEMMA 3.7. Let d ∈ {1, 2, . . . , n} and f, ψ : {0, 1}n → R be given. Then
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(i) ψ ∈ 2n‖ψ̂‖1Ψn,d ⊆ 2n‖ψ‖1Ψn,d whenever ψ ∈ span{χS : |S| > d};
(ii) (f ∗ ψw,S1,...,Sd)(x) = (∂df/∂S1∂S2 · · · ∂Sd)(x⊕ w);

(iii) ‖f ∗ ψ‖∞ 6 ∆(f, d) whenever ψ ∈ Ψn,d.

PROOF. (i) Recall from Theorem 3.5(iv) that χS ∈ 2nΨn,d for every subset S ⊆
{1, 2, . . . , n} with |S| > d. Therefore, ψ ∈ 2n‖ψ̂‖1Ψn,d by convexity. The containment
2n‖ψ̂‖1Ψn,d ⊆ 2n‖ψ‖1Ψn,d is immediate from Proposition 2.2(ii).

(ii) Writing out the convolution explicitly,

(f ∗ ψw,S1,...,Sd)(x) =
∑

y∈{0,1}n
f(y)ψw,S1,...,Sd(x⊕ y)

= 〈f, ψx⊕w,S1,...,Sd〉

=

(
∂df

∂S1∂S2 · · · ∂Sd

)
(x⊕ w),

where the final step uses Theorem 3.5(i).
(iii) It is a direct consequence of (ii) that ‖f ∗ ψw,S1,...,Sd‖∞ 6 ∆(f, d) for every ele-

mentary dual function ψw,S1,...,Sd . By convexity, (iii) follows.

Recall that our goal is to establish a partial converse to Theorem 3.3, i.e., prove
that functions with small derivatives can be approximated well by low-degree poly-
nomials. To help the reader build some intuition for the proof, we illustrate our
technique in a particularly simple setting. Specifically, we give a short proof that
E(f, d − 1) 6 2n∆(f, d). We actually prove something stronger, namely, that every f
can be approximated pointwise within 2n∆(f, d) by its truncated Fourier polynomial∑
|S|6d−1 f̂(S)χS . We do so by expressing the discarded part of the Fourier spectrum,∑

|S|>d

f̂(S)χS(x), (15)

as a linear combination of order-d directional derivatives of f at appropriate points,
where the absolute values of the coefficients in the linear combination sum to at most
2n. Since the magnitude of an order-d derivative of f cannot exceed ∆(f, d), we arrive
at the desired upper bound on the approximation error.

THEOREM 3.8. For all functions f : {0, 1}n → R and all d = 1, 2, . . . , n,

E(f, d− 1) 6

∥∥∥∥∥∥
∑
|S|>d

f̂(S)χS

∥∥∥∥∥∥
∞

6 2n∆(f, d).

PROOF. Define ψ : {0, 1}n → R by ψ(x) = 2−n
∑
|S|>d χS . Then by Lemma 3.7(i),

ψ ∈ 2nΨn,d. (16)

As a result,∥∥∥∥∥∥
∑
|S|>d

f̂(S)χS

∥∥∥∥∥∥
∞

= ‖f ∗ ψ‖∞ by (11)

6 2n max
ψ′∈Ψn,d

‖f ∗ ψ′‖∞ by (16)

6 2n∆(f, d) by Lemma 3.7(iii).
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f0; 1gn
f0; 1gm

Fig. 1. Extending a symmetric function from {0, 1}m to {0, 1}n.

Theorem 3.8 serves an illustrative purpose and is of little interest by itself. To obtain
the actual result that we want, (14), we will need to consider directional derivatives of
all orders starting at d. Specifically, we will express the discarded portion of the Fourier
spectrum, (15), as a linear combination of directional derivatives of f of orders d, d +
1, . . . , n, where each derivative is with respect to pairwise disjoint sets S1, S2, S3, . . .
and the sum of the absolute values of the coefficients of the order-i derivatives is Ki

for some absolute constant K > 2.
To find the kind of linear combination described in the previous paragraph, we will

express the function ψ = 2−n
∑
|S|>d χS as a linear combination of elementary dual

functions of orders d, d + 1, . . . , n with small coefficients. This project will take up the
next few pages. Once we have obtained the needed representation for ψ, we will be
able to complete the proof using a convolution argument, cf. Theorem 3.8.

3.3. Symmetric extensions
Consider the operation of extending a symmetric function g : {0, 1}m → R to a larger
domain {0, 1}n, illustrated schematically in Figure 1. The extended function G is again
symmetric, supported onm+1 equispaced levels of the hypercube, and normalized such
that the sum of G on each of these levels is the same as for g. Here, we relate the metric
and Fourier-theoretic properties of the original function to those of its extension.

LEMMA 3.9. Let n,m,∆ be positive integers, m∆ 6 n. Let g : {0, 1}m → R be a given
symmetric function. Consider the symmetric function G : {0, 1}n → R given by

G(x) =

{(
n
|x|
)−1( m

|x|/∆
)
g(1|x|/∆00 . . . 0) if |x| = 0,∆, 2∆, . . . ,m∆,

0 otherwise.
(17)

Then:

(i) the Fourier coefficients of G are given by

Ĝ(S) = 2−n
m∑
i=0

(
m

i

)
g(1i0m−i) E

x∈{0,1}n, |x|=i∆
[χS(x)];

(ii) G ∈ span{χS : |S| > d} if and only if g ∈ span{χS : |S| > d};
(iii) G ∈ Ψn,d whenever g ∈ Ψm,d.
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PROOF. (i) By the symmetry of g and G,

Ĝ(S) = 2−n
n∑
i=0

(
n

i

)
G(1i0n−i) E

|x|=i
[χS(x)]

= 2−n
m∑
i=0

(
m

i

)
g(1i0m−i) E

|x|=i∆
[χS(x)].

(ii) Since g is symmetric, g /∈ span{χS : |S| > d} if and only if∑
x∈{0,1}m

g(x)p(x1 + · · ·+ xm) 6= 0

for some univariate polynomial p of degree less than d. Analogously, G /∈ span{χS :
|S| > d} if and only if ∑

x∈{0,1}n
G(x)q(x1 + · · ·+ xn) 6= 0

for some univariate polynomial q of degree less than d. Finally, the definition of G
ensures that ∑

x∈{0,1}m
g(x)p(x1 + · · ·+ xm) =

∑
x∈{0,1}n

G(x)p

(
x1 + · · ·+ xn

∆

)
for every polynomial p, regardless of degree.

(iii) For nonempty pairwise disjoint subsets T1, T2, . . . , Tm ⊆ {1, 2, . . . , n}, define
LT1,...,Tm to be the linear transformation that sends a function φ : {0, 1}m → R into
the function LT1,...,Tmφ : {0, 1}n → R such that

(LT1,...,Tmφ)(u11T1
⊕ · · · ⊕ um1Tm) = φ(u), u ∈ {0, 1}m,

and (LT1,...,Tmφ)(x) = 0 whenever x 6= u11T1
⊕ · · · ⊕ um1Tm for any u. We claim that

G = E
T1,...,Tm

[LT1,...,Tmg], (18)

where the expectation is over pairwise disjoint subsets T1, T2, . . . , Tm ⊆ {1, 2, . . . , n} of
cardinality ∆ each. Indeed, the right-hand side of (18) is a function {0, 1}n → R that is
symmetric, sums to

(
m
i

)
g(1i0m−i) on inputs of Hamming weight i∆ (i = 0, 1, 2, . . . ,m),

and vanishes on all other inputs. There is only one function that has these three prop-
erties, namely, the function G in the statement of the lemma.

In view of (18) it suffices to show that under LT1,...,Tm , the image of an elementary
dual function {0, 1}m → R is an elementary dual function {0, 1}n → R of the same
order. By definition, the elementary dual function ψw,S1,...,Sd : {0, 1}m → R satisfies

ψw,S1,...,Sd(w ⊕ z11S1
⊕ · · · ⊕ zd1Sd) =

(−1)|z|

2d
, z ∈ {0, 1}d,

and vanishes on the remaining 2m−2d points of {0, 1}m. Thus, LT1,...,Tmψw,S1,...,Sd obeys

(LT1,...,Tmψw,S1,...,Sd)

(
m⊕
i=1

wi1Ti ⊕
d⊕
i=1

zi1Ri

)
=

(−1)|z|

2d
, z ∈ {0, 1}d,

and vanishes on the remaining 2n−2d points of {0, 1}n, where R1, . . . , Rd ⊆ {1, 2, . . . , n}
are the nonempty pairwise disjoint sets Ri =

⋃
j∈Si Tj . Therefore, LT1,...,Tmψw,S1,...,Sd is

an order-d elementary dual function.
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The next lemma takes as given the Fourier coefficients of the extended symmetric
function and solves for the values of the original symmetric function.

LEMMA 3.10. Let F : {0, 1}n → R be a symmetric function and m ∈ {1, 2, . . . , n}.
Then there exist reals g0, g1, . . . , gm such that

m∑
i=0

gi E
x∈{0,1}n
|x|=ibn/mc

[χS(x)] = F̂ (S) (|S| 6 m), (19)

m∑
i=0

|gi| 6 (8m − 1)‖F̂‖∞. (20)

PROOF. Abbreviate ∆ = bn/mc, so that m∆ 6 n 6 2m∆. The expectation in (19)
depends only on the cardinality of S. As a result, it suffices to prove the lemma for
S = ∅, {1}, {1, 2}, {1, 2, 3}, . . . , {1, 2, . . . ,m}. To that end, consider the matrix

A =

[
E

|x|=i∆
[χ{1,2,...,j}(x)]

]
j,i

,

where i, j = 0, 1, 2, . . . ,m. Then the sought reals g0, g1, . . . , gm are given by


g0

g1

g2

...
gm

 = A−1


F̂ (∅)

F̂ ({1})
F̂ ({1, 2})

...
F̂ ({1, 2, . . . ,m})


whenever A is nonsingular. Consequently, the proof will be complete once we show that
the inverse of A exists and obeys

‖A−1‖1 6 8m − 1. (21)

We will calculate A−1 explicitly. Consider polynomials p0, p1, . . . , pm : {0, 1}n → R, each
of degree m, given by

pj(x) =
(−1)m−j

m!∆m

(
m

j

) m∏
i=0
i6=j

(|x| − i∆), j = 0, 1, . . . ,m.

Then

pj(x) =

{
1 if |x| = j∆,

0 if |x| ∈ {0,∆, 2∆, . . . ,m∆} \ {j∆}.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



A:26 Alexander A. Sherstov

It follows that

δi,j = E
|x|=i∆

[pj(x)]

=

m∑
k=0

p̂j({1, 2, . . . , k}) E
|x|=i∆

 ∑
S⊆{1,2,...,n}
|S|=k

χS(x)


=

m∑
k=0

p̂j({1, 2, . . . , k})
(
n

k

)
E

|x|=i∆
[χ{1,...,k}(x)]

=

m∑
k=0

p̂j({1, 2, . . . , k})
(
n

k

)
Ak,i (i, j = 0, 1, . . . ,m),

where the second and third steps use the symmetry of pj and the symmetry of the
expectation operator, respectively. This gives the explicit form

A−1 =

[(
n

k

)
p̂j({1, 2, . . . , k})

]
j,k

,

showing in particular that A is nonsingular. It remains to prove (21). Applying Propo-
sition 2.2(iii)–(iv),

‖p̂j‖1 6
1

m!∆m

(
m

j

) m∏
i=0
i 6=j

‖ ̂|x| − i∆‖1

=
1

m!∆m

(
m

j

) m∏
i=0
i 6=j

(n
2

+
∣∣∣n
2
− i∆

∣∣∣)

6
1

m!∆m

(
m

j

) m∏
i=0
i 6=j

(
2m∆

2
+

∣∣∣∣2m∆

2
− i∆

∣∣∣∣) since n 6 2m∆

=
m

2m− j

(
2m

m

)(
m

j

)
.

Hence,

‖A−1‖1 =

m∑
j=0

‖p̂j‖1 6
(

2m

m

) m∑
j=0

(
m

j

)
= 2m

(
2m

m

)
6 8m − 1.

3.4. Bounding the global error
At this point, we have all the tools at our disposal to express ψ = 2−n

∑
|S|>d χS as a

linear combination of elementary dual functions of orders d, d+ 1, . . . , n with small co-
efficients. We do so by means of an iterative process that can be visualized as “chasing
the bulge,” to borrow the metaphor from linear algebra. Originally, the Fourier spec-
trum of ψ is supported on characters of degree d or higher. In the ith iteration, the
smallest degree of a nonzero Fourier coefficient grows by a factor of c, and the magni-
tude of the nonzero Fourier coefficients grows by a factor of at most 8c

id. In this way,
each iteration pushes the Fourier spectrum further back at the expense of a controlled
increase in the magnitude of the remaining coefficients, which results in a growing
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d cd c2d

1

8cd

8cdCc2d

Fig. 2. Chasing the bulge.

“bulge” of Fourier mass on characters of high degree. This process is shown schemati-
cally in Figure 2. The next lemma corresponds to a single iteration.

LEMMA 3.11. Let D be a given integer, 1 6 D 6 n. Let F : {0, 1}n → R be a sym-
metric function with F ∈ span{χS : |S| > D}. Then for every integer m > D, there is a
symmetric function G : {0, 1}n → R such that

G ∈ 2n 16m‖F̂‖∞Ψn,D, (22)
F −G ∈ span{χS : |S| > m+ 1}, (23)

‖F̂ −G‖∞ 6 8m‖F̂‖∞. (24)

PROOF. When m > n, Lemma 3.7(i) shows that F ∈ 2n‖F̂‖1Ψn,D ⊆
2n 2n‖F̂‖∞Ψn,D ⊆ 2n 16m‖F̂‖∞Ψn,D. As a result, the lemma holds in that case with
G = F .

In the remainder of the proof, we treat the complementary case m 6 n. Define ∆ =
bn/mc > 1. By Lemma 3.10, there exist reals g0, g1, . . . , gm that obey (19) and (20).
Let g : {0, 1}m → R be the symmetric function given by g(x) = 2n

(
m
|x|
)−1

g|x|. Then (19)
and (20) can be restated as

F̂ (S) = 2−n
m∑
i=0

(
m

i

)
g(1i0m−i) E

x∈{0,1}n
|x|=i∆

[χS(x)] (|S| 6 m), (25)

‖g‖1 6 2n(8m − 1)‖F̂‖∞. (26)

Now define G : {0, 1}n → R by (17). Then Lemma 3.9(i) gives

F̂ (S) = Ĝ(S), |S| 6 m. (27)

Since the Fourier spectrum of F is supported on characters of order D or higher (where
D 6 m), we conclude that G ∈ span{χS : |S| > D}. This results in the following chain
of implications:

G ∈ span{χS : |S| > D},
g ∈ span{χS : |S| > D} by Lemma 3.9(ii),
g ∈ 2m‖g‖1Ψm,D by Lemma 3.7(i),

g ∈ 2n 16m‖F̂‖∞Ψm,D by (26),

G ∈ 2n 16m‖F̂‖∞Ψn,D by Lemma 3.9(iii). (28)
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Finally,

‖F̂ −G‖∞ 6 ‖F̂‖∞ + ‖Ĝ‖∞
6 ‖F̂‖∞ + 2−n‖g‖1 by Lemma 3.9(i)

6 8m‖F̂‖∞ by (26). (29)

Now (22)–(24) follow from (28), (27), and (29), respectively.

By iteratively applying the previous lemma, we obtain the desired representation for
2−n

∑
|S|>d χS .

LEMMA 3.12. Let F : {0, 1}n → R be a symmetric function with F ∈ span{χS : |S| >
d}, where d is an integer with 1 6 d 6 n. Then for every real c > 1,

F ∈ 2n‖F̂‖∞
∞∑
i=0

(
2

4c2−c
c−1

)cid
Ψn,dcide. (30)

PROOF. We will construct symmetric functions F1, F2, . . . , Fi, . . . : {0, 1}n → R,
where

Fi ∈ 2n‖F̂‖∞
(

2
4c2−c
c−1

)ci−1d

Ψn,dci−1de, (31)

F − F1 − F2 − · · · − Fi ∈ span{χS : |S| > dcide}, (32)

‖
∧

F − F1 − F2 − · · · − Fi ‖∞ 6 8
ci+1d−cd

c−1 ‖F̂‖∞. (33)

Before carrying out the construction, let us finish the proof assuming the existence of
such a sequence. Since cid > n for all i sufficiently large, (31) implies that only finitely
many functions in the sequence {Fi}∞i=1 are nonzero. The series

∑∞
i=1 Fi is therefore

well-defined, and (32) gives F =
∑∞
i=1 Fi. Property (31) now settles (30).

We will construct F1, F2, . . . , Fi, . . . by induction. The base case i = 0 is immediate
from the assumed membership F ∈ span{χS : |S| > d}. For the inductive step, fix i > 1
and assume that the symmetric functions F1, F2, . . . , Fi−1 have been constructed. Then
by the inductive hypothesis,

F − F1 − · · · − Fi−1 ∈ span{χS : |S| > dci−1de},

‖
∧

F − F1 − · · · − Fi−1 ‖∞ 6 8
cid−cd
c−1 ‖F̂‖∞. (34)

There are two cases to consider. In the degenerate case when dci−1de = dcide, one
obtains (31)–(33) trivially by letting Fi = 0. In the complementary case when dci−1de <
dcide, we have dci−1de 6 bcidc. As a result, Lemma 3.11 is applicable with parameters
D = dci−1de and m = bcidc to the symmetric function F −F1−F2−· · ·−Fi−1 and yields
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a symmetric function Fi such that

Fi ∈ 2n 16bc
idc‖
∧

F − F1 − · · · − Fi−1 ‖∞Ψn,dci−1de,

(F − F1 − · · · − Fi−1)− Fi ∈ span{χS : |S| > bcidc+ 1},

‖
∧

(F − F1 − · · · − Fi−1)− Fi ‖∞ 6 8bc
idc‖
∧

F − F1 − · · · − Fi−1 ‖∞.

These three properties establish (31)–(33) in view of (34).

We have reached the main result of Section 3, stated earlier as (14).

THEOREM 3.13. Let c > 1 be a given real number. Then for every d = 1, 2, . . . , n and
every function f : {0, 1}n → R,

E(f, d− 1) 6

∥∥∥∥∥∥
∑
|S|>d

f̂(S)χS

∥∥∥∥∥∥
∞

6
∞∑
i=0

(
2

4c2−c
c−1

)cid
∆(f, dcide). (35)

In particular,

E(f, d− 1) 6
n∑
i=d

56i∆(f, i), (36)

E(f, d− 1) 6

blog n
d c∑

i=0

(
214
)

2id∆(f, 2id). (37)

PROOF. The function c 7→ 2(4c2−c)/(c−1) attains its minimum on (1,∞) at the
point c = 1 +

√
3/4 = 1.8660 . . . . Substituting this value in (35) and noting that

d(1 +
√

3/4)ide < d(1 +
√

3/4)i+1de gives (36). For the alternate bound (37), let c = 2
in (35).

It remains to prove (35). Abbreviate K = 2(4c2−c)/(c−1) and define ψ : {0, 1}n → R by
ψ(x) = 2−n

∑
|S|>d χS . Then by Lemma 3.12,

ψ ∈
∞∑
i=0

KcidΨn,dcide. (38)

As a result,∥∥∥∥∥∥
∑
|S|>d

f̂(S)χS

∥∥∥∥∥∥
∞

= ‖f ∗ ψ‖∞ by (11)

6
∞∑
i=0

Kcid max
ψ′∈Ψn,dcide

‖f ∗ ψ′‖∞ by (38)

6
∞∑
i=0

Kcid∆(f, dcide). by Lemma 3.7(iii).
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4. REPEATED DISCREPANCY OF SET DISJOINTNESS
Let G be a multiparty communication problem, such as set disjointness. The classic
notion of discrepancy, reviewed in Section 2, involves fixing a probability distribution
π on the domain of G and challenging a communication protocol to solve an instance
X of G chosen at random according to π. If some low-cost protocol solves this task
with nonnegligible accuracy, one says that G has high discrepancy with respect to π.
In this paper, we introduce a rather different notion which we call repeated discrep-
ancy. Here, one presents the communication protocol with arbitrarily many instances
X1, X2, X3, . . . of the given communication problem G, each chosen independently from
π conditioned on G(X1) = G(X2) = G(X3) = · · · . Thus, the instances are either all pos-
itive or all negative, and the protocol’s challenge is to tell which is the case. The formal
definition given next is somewhat more subtle, but the intuition is exactly the same.

Definition 4.1. Let G be a (possibly partial) k-party communication problem on
X = X1 × X2 × · · · × Xk and π a probability distribution on the domain of G. The
repeated discrepancy of G with respect to π is

rdiscπ(G) = sup
d,r∈Z+

max
χ

∣∣∣∣∣ E
...,Xi,j ,...

[
χ(. . . , Xi,j , . . .)

d∏
i=1

G(Xi,1)

]∣∣∣∣∣
1/d

,

where the maximum is over k-dimensional cylinder intersections χ on X dr = X dr
1 ×

X dr
2 × · · · × X dr

k , and the arguments Xi,j (i = 1, 2, . . . , d, j = 1, 2, . . . , r) are chosen
independently according to π conditioned on G(Xi,1) = G(Xi,2) = · · · = G(Xi,r) for each
i.

We focus on probability distributions π that are balanced on the domain of G, meaning
that negative and positive instances carry equal weight: π(G−1(−1)) = π(G−1(+1)).
We define

rdisc(G) = inf
π

rdiscπ(G),

where the infimum is over all probability distributions on the domain of G that are
balanced. Our motivation for studying repeated discrepancy comes from the approxi-
mation theoretic contribution of this paper, Theorem 3.13. Using it, we will now prove
that repeated discrepancy gives a highly efficient way to approximate multiparty pro-
tocols by polynomials.

THEOREM 4.2. Let G be a (possibly partial) k-party communication problem on
X = X1 ×X2 × · · · ×Xk. For an integer n > 1 and a balanced probability distribution
π on domG, consider the linear operator Lπ,n : RX n → R{0,1}n given by

(Lπ,nχ)(x) = E
X1∼πx1

· · · E
Xn∼πxn

χ(X1, . . . , Xn), x ∈ {0, 1}n,

where π0 and π1 are the probability distributions induced by π on G−1(+1) and
G−1(−1), respectively. Then for some absolute constant c > 0 and every k-dimensional
cylinder intersection χ on X n = X n

1 ×X n
2 × · · · ×X n

k ,

E(Lπ,nχ, d− 1) 6 (c rdiscπ(G))d, d = 1, 2, . . . , n.

PROOF. Put ∆d = maxχ ∆(Lπ,nχ, d), where the maximum is over k-dimensional
cylinder intersections. In light of (36), it suffices to prove that

∆d 6 (2 rdiscπ(G))d, d = 1, 2, . . . , n. (39)
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Fix w ∈ {0, 1}n and pairwise disjoint sets S1, S2, . . . , Sd ⊆ {1, 2, . . . , n} such that

∆d = max
χ

∣∣∣∣ ∂d (Lπ,nχ)

∂S1 ∂S2 · · · ∂Sd
(w)

∣∣∣∣ , (40)

where the maximum is over k-dimensional cylinder intersections. Then by the defini-
tion of directional derivative,

∆d = max
χ

∣∣∣∣ E
z∈{0,1}d

E
X1,X2,...,Xn

χ(X1, X2, . . . , Xn) (−1)|z|
∣∣∣∣ , (41)

where

Xi ∼



πwi⊕z1 if i ∈ S1,

πwi⊕z2 if i ∈ S2,
...

...
πwi⊕zd if i ∈ Sd,
πwi otherwise.

In other words, the cylinder intersection χ receives zero or more arguments distributed
independently according to πz1 , zero or more arguments distributed independently ac-
cording to πz1 , zero or more arguments distributed independently according to πz2 ,
and so on, for a total of n arguments. To simplify the remainder of the proof, we will
manipulate the input to χ as follows.

(i) We will discard any arguments Xi whose probability distribution does not de-
pend on z, simply by fixing them so as to maximize the expectation in (41) with
respect to the remaining arguments. This simplification is legal because after
one or more arguments Xi are fixed, χ continues to be a cylinder intersection
with respect to the remaining arguments.

(ii) We will provide the cylinder intersection with additional arguments drawn inde-
pendently from each of the probability distributions πz1 , πz1 , . . . , πzd , πzd , so that
there are exactly n arguments per distribution. This simplification is legal be-
cause the cylinder intersection can always choose to ignore the newly provided
arguments.

Applying these two simplifications, we arrive at

∆d 6 max
χ

∣∣∣∣∣∣∣ E
z∈{0,1}d

E
X1,1,...,X1,n∼πz1
Y1,1,...,Y1,n∼πz1

· · · E
Xd,1,...,Xd,n∼πzd
Yd,1,...,Yd,n∼πzd

χ(. . . , Xi,1, . . . , Xi,n, Yi,1, . . . , Yi,n, . . . ) (−1)|z|

∣∣∣∣∣∣∣ . (42)
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It remains to eliminate πz1 , . . . , πzd . Rewriting (42) in tensor notation,

∆d 6 2−d max
χ

∣∣∣∣∣∣
∑

z∈{0,1}d
(−1)|z|

〈
χ,

d⊗
i=1

(π⊗nzi ⊗ π
⊗n
zi

)

〉∣∣∣∣∣∣
= 2−d max

χ

∣∣∣∣∣
〈
χ,

d⊗
i=1

(π⊗n0 ⊗ π⊗n1 − π⊗n1 ⊗ π⊗n0 )

〉∣∣∣∣∣
= 2−d max

χ

∣∣∣∣∣
〈
χ,

d⊗
i=1

(π⊗n0 ⊗ π⊗n0 − π⊗n1 ⊗ π⊗n0

− π⊗n0 ⊗ π⊗n0 + π⊗n0 ⊗ π⊗n1 )

〉∣∣∣∣∣
= 2−d max

χ

∣∣∣∣∣∣
∑

y∈{0,1}d
(−1)|y|

∑
z∈{0,1}d

(−1)|z|

〈
χ,

d⊗
i=1

(π⊗nzi∧yi ⊗ π
⊗n
zi∧yi)

〉∣∣∣∣∣∣
6 max
y∈{0,1}d

max
χ

∣∣∣∣∣∣
∑

z∈{0,1}d
(−1)|z|

〈
χ,

d⊗
i=1

(π⊗nzi∧yi ⊗ π
⊗n
zi∧yi)

〉∣∣∣∣∣∣ . (43)

For every y ∈ {0, 1}d, the probability distribution
⊗d

i=1(π⊗nzi∧yi ⊗ π
⊗n
zi∧yi) is the same as

(π⊗nz1 ⊗· · ·⊗π
⊗n
zd

)⊗ (π⊗n0 ⊗· · ·⊗π⊗n0 ), up to a permutation of the coordinates. The inner
maximum in (43) is therefore the same for all y, namely,

2d max
χ

∣∣∣∣ E
z∈{0,1}d

E
X1,1,...,X1,n∼πz1

· · · E
Xd,1,...,Xd,n∼πzd

E
Y1,1,...,Yd,n∼π0

χ(. . . , Xi,j , Yi,j , . . . ) (−1)|z|
∣∣∣∣ .

The variables Yi,j can be discarded, as argued in (i) at the beginning of this proof. This
leaves us with

∆d 6 2d max
χ

∣∣∣∣ E
z∈{0,1}d

E
X1,1,...,X1,n∼πz1

· · · E
Xd,1,...,Xd,n∼πzd

χ(. . . , Xi,j , . . . )

d∏
i=1

G(Xi,1)

∣∣∣∣∣ .
Since π is balanced, (39) follows immediately.

Theorem 1.1 gives a highly efficient way to transform communication protocols for
composed problems f ◦ G into approximating polynomials for f, as long as the base
communication problem G has repeated discrepancy smaller than a certain absolute
constant. This result is centrally relevant to the set disjointness problem in light of its
composed structure: DISJk,rs = ANDr ◦DISJk,s for any integers r, s. In the remainder
of this section, we will establish a near-tight upper bound on the repeated discrepancy
of set disjointness (Theorem 4.27 below), which will allow us to prove the main result
of this paper.

4.1. Key distributions and definitions
Let Fk be the k × 2k−1 matrix whose columns are the 2k−1 distinct columns of the
same parity as the all-ones vector 1k. Let Tk be the k× 2k−1 matrix whose columns are
the 2k−1 distinct columns of the same parity as the vector 01k−1. Thus, the columns
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of Tk and Fk form a partition of {0, 1}k. We use Tk and Fk to encode true and false
instances of set disjointness, respectively, hence the choice of notation. Let Hk be the
k × 2k matrix whose columns are the 2k distinct vectors in {0, 1}k, and let H ′k be the
k × (2k − 1) matrix whose columns are the 2k − 1 distinct vectors in {0, 1}k \ {1k}. The
choice of letter for Hk and H ′k is a reference to the hypercube. For definitiveness one
may assume that the columns of Tk, Fk,Hk, H

′
k are ordered lexicographically, although

the choice of ordering is immaterial for our purposes. For an integer m > 1, we define
shorthands

Hk,m =
[
Hk Hk . . . Hk︸ ︷︷ ︸

m

]
, H ′k,m =

[
H ′k H ′k . . . H ′k︸ ︷︷ ︸

m

]
.

For a Boolean matrix A, we define

A = A⊕


1 1 · · · 1
0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 . . . 0

 .
When A is a Boolean matrix of dimension 1×1, this notation is consistent with our ear-
lier shorthand a = a⊕ 1 for a ∈ {0, 1}. Observe that for any matrices A,A1, A2, . . . , An,

A = A, (44)[
A1 A2 · · · An

]
= [A1 A2 · · · An]. (45)

Moreover,

Hk,m =� Hk,m, (46)

Tk =� Fk, (47)

Fk =� Tk. (48)

In this section, we will encounter a variety of probability distributions on matrix
sequences. Describing them formulaically, using probability mass functions, is both
tedious and unenlightening. Instead, we will define each probability distribution algo-
rithmically, by giving a procedure for generating a random element. We refer to such a
specification as an algorithmic description. We will often use the following shorthand:
for fixed matrices A1, A2, . . . , At, the notation

(A�1 , A
�
2 , . . . , A

�
t ) (49)

stands for a random tuple of matrices obtained from (A1, A2, . . . , At) by permuting the
columns in each of the t matrices independently and uniformly at random. In other
words, (49) refers to a random tuple (σ1A1, σ2A2, . . . , σtAt), where σ1, σ2, . . . , σt are col-
umn permutations chosen independently and uniformly at random. We will also use
(49) to refer to the resulting probability distribution on matrix tuples, which will en-
able us to use shorthands like B ∼ A� and (B1, B2, . . . , Bt) ∼ (A�1 , A

�
2 , . . . , A

�
t ). As an

important special case, the � notation applies to row vectors, which are matrices with
a single row. On occasion, it will be necessary to apply the � notation to a submatrix
rather than the entire matrix. For example, [ [0m1m]� 0 0 1] refers to a random
row vector whose last three components are 0, 0, 1 and the first 2m components are a
uniformly random permutation of the row vector 0m1m.

We say that a probability distribution µ on matrix sequences (A1, A2, . . . , At) is in-
variant under column permutations if µ(A1, A2, . . . , At) = µ(σ1A1, σ2A2, . . . , σtAt) for
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Algorithm 1: Alternate algorithmic description of µk,m for k > 2

(i) Choose f ∈ {0, 1} uniformly at random.
(ii) Choose 2k row vectors a0k−1 , b0k−1 , . . . , a1k−1 , b1k−1 independently according to

a1k−1 ∼ [02m f ]�,

az ∼ [02m12m f⊕z1⊕· · ·⊕zk−1]�, z 6= 1k−1,

bz ∼ [0m1m f⊕z1⊕· · ·⊕zk−1]�, z ∈ {0, 1}k−1.

(iii) Define Az, Bz for z ∈ {0, 1}k−1 by

Az =


z1 z1 · · · z1

z2 z2 · · · z2

...
...

...
zk−1 zk−1 · · · zk−1

az

 , Bz =


z1 z1 · · · z1

z2 z2 · · · z2

...
...

...
zk−1 zk−1 · · · zk−1

bz

 .
(iv) Output ([A0k−1 · · · A1k−1 ]�, [B0k−1 · · · B1k−1 ]�).

every choice of column permutations σ1, σ2, . . . , σt. Most of the randomized proce-
dures in this section involve choosing (A1, A2, . . . , At) by some process and outputting
(A�1 , A

�
2 , . . . , A

�
t ), so that the resulting probability distribution on matrix sequences is

invariant under column permutations.
We now define the main probability distribution of interest to us, which we call

µk,m. Nearly all of the work in this section is devoted to understanding various metric
properties of µk,m and of probability distributions derived from it.

Definition 4.3. For positive integers k,m, let µk,m be the probability distribution
whose algorithmic description is as follows: choose M ∈ {Tk, Fk} uniformly at random
and output ([M H ′k,2m]�, [M Hk,m]�).

We will need to establish an alternate procedure for sampling from µk,m, whereby one
first chooses rows 1, 2, . . . , k−1 and then the remaining row according to the conditional
probability distribution. Such a procedure is given by Algorithm 1.

PROPOSITION 4.4. Algorithm 1 is a valid algorithmic description of µk,m for k > 2.

PROOF. By inspection, the output distribution of Algorithm 1 has the following
properties: (i) it is invariant under column permutations; (ii) with probability 1/2,
the output is a matrix pair (A,B) with A =� [Tk H ′k,2m] and B =� [Tk Hk,m];

(iii) with probability 1/2, the output is a matrix pair (A,B) with A =� [Fk H ′k,2m]

and B =� [Fk Hk,m]. There is only one probability distribution with these three prop-
erties, namely, µk,m.

We now define a key probability distribution λk,m derived from µk,m.

Definition 4.5. For integers k > 2 and m > 1, define λk,m to be the probability
distribution with the following algorithmic description:

(i) pick a matrix pair (A,B) ∈ {0, 1}k−1,∗ × {0, 1}k−1,∗ according to the marginal
distribution of µk,m on the first k − 1 rows;
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Algorithm 2: Alternate algorithmic description of λk,m
(i) Choose f, f ′ ∈ {0, 1} uniformly at random.

(ii) Choose 2k+1 row vectors az, a′z, bz, b′z, for z ∈ {0, 1}k−1, independently according
to

a1k−1 ∼ [02m f ]�,

a′1k−1 ∼ [02m f ′]�,

az ∼ [02m12m f⊕z1⊕· · ·⊕zk−1]�, z 6= 1k−1,

a′z ∼ [02m12m f ′⊕z1⊕· · ·⊕zk−1]�, z 6= 1k−1,

bz ∼ [0m1m f⊕z1⊕· · ·⊕zk−1]�, z ∈ {0, 1}k−1,

b′z ∼ [0m1m f ′⊕z1⊕· · ·⊕zk−1]�, z ∈ {0, 1}k−1.

(iii) Define Az, Bz for z ∈ {0, 1}k−1 by

Az=



z1 z1 · · · z1

z2 z2 · · · z2

...
...

...
zk−1 zk−1 · · · zk−1

az
a′z

 , Bz=



z1 z1 · · · z1

z2 z2 · · · z2

...
...

...
zk−1 zk−1 · · · zk−1

bz
b′z

 . (50)

(iv) Output ([A0k−1 · · · A1k−1 ]�, [B0k−1 · · · B1k−1 ]�).

(ii) consider the probability distribution induced by µk,m on matrix pairs of the form([
A
∗

]
,
[
B
∗

])
, and choose

([
A
a

]
,
[
B
b

])
,
([

A

a′
]
,
[
B

b′
])

independently according to that dis-
tribution;

(iii) output
([

A
a

a′

]
,
[
B
b

b′

])
.

By symmetry of the columns, λk,m is invariant under column permutations. To reason
effectively about λk,m, we need a more explicit algorithmic description.

PROPOSITION 4.6. Algorithm 2 is a valid algorithmic description of λk,m.

PROOF. Immediate from the description of µk,m given by Algorithm 1.

In analyzing the repeated discrepancy of set disjointness, we will need to argue that
the last two rows of a matrix pair drawn according to λk,m do not reveal too much
information about the remaining rows. We will do so by showing that λk,m is close in
statistical distance to certain probability distributions ν0

k,m, ν
1
k,m in which no informa-

tion is revealed.

Definition 4.7. For integers k > 2 and m > 1, define ν0
k,m and ν1

k,m to be the proba-
bility distributions whose algorithmic descriptions are given by Algorithm 3.

Comparing Algorithms 2 and 3, we see that the new distributions ν0
k,m and ν1

k,m differ
from λk,m exclusively in step (ii) of the algorithmic description. An alternate, global
view of ν0

k,m and ν1
k,m is given by the following proposition.

PROPOSITION 4.8. Algorithm 4 is a valid algorithmic description of ν0
k,m and ν1

k,m.
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Algorithm 3: Definition of νik,m (i = 0, 1)

(i) Choose f, f ′ ∈ {0, 1} uniformly at random.
(ii) Choose 2k+1 row vectors az, a′z, bz, b′z, for z ∈ {0, 1}k−1, independently according

to

a1k−1 = [02m−1 f 0],

a′1k−1 = [02m−1 0 f ′],

az ∼ [ [02m−112m−1]� 1 f⊕z1⊕· · ·⊕zk−1 0], z 6= 1k−1,

a′z ∼ [ [02m−112m−1]� 1 0 f ′⊕z1⊕· · ·⊕zk−1], z 6= 1k−1,

bz ∼ [ [0m−11m−1]� i f⊕z1⊕· · ·⊕zk−1 i], z ∈ {0, 1}k−1,

b′z ∼ [ [0m−11m−1]� i i f ′⊕z1⊕· · ·⊕zk−1], z ∈ {0, 1}k−1.

(iii) Define Az, Bz for z ∈ {0, 1}k−1 by (50).
(iv) Output ([A0k−1 · · · A1k−1 ]�, [B0k−1 · · · B1k−1 ]�).

Algorithm 4: Alternate algorithmic description of νik,m (i = 0, 1)

(i) Choose 2k+1 row vectors az, a′z, bz, b′z, for z ∈ {0, 1}k−1, independently according
to

a1k−1 = a′1k−1 = 02m−1,

az, a
′
z ∼ [02m−112m−1]�, z 6= 1k−1,

bz, b
′
z ∼ [0m−11m−1]�, z ∈ {0, 1}k−1.

(ii) Define Az, Bz for z ∈ {0, 1}k−1 by (50).
(iii) Choose M1,M2 ∈ {Tk−1, Fk−1} uniformly at random and output the matrix pair H ′k−1 M1 M1 M2 M2

11 . . . 1 11 . . . 1 00 . . . 0 00 . . . 0 00 . . . 0
11 . . . 1 00 . . . 0 00 . . . 0 11 . . . 1 00 . . . 0

A0k−1 · · · A1k−1

� ,
 Hk−1 M1 M1 M2 M2

i i . . . i 11 . . . 1 00 . . . 0 ii . . . i ii . . . i
i i . . . i ii . . . i ii . . . i 11 . . . 1 00 . . . 0

B0k−1 · · · B1k−1

� .
PROOF. Algorithm 4 is obtained from Algorithm 3 by reordering the columns prior

to the application of the � operator. Specifically, in the notation of Algorithm 3, the last
two columns of A1k−1 and the last three columns of each Az (z 6= 1k−1) are moved up
front and listed before any of the remaining columns; likewise, the last three columns
of each Bz (z ∈ {0, 1}k−1) are moved up front and listed before any of the remaining
columns. The subsequent application of the� operator in both algorithms ensures that
the output distributions are the same.

Closely related to ν0
k,m and ν1

k,m are the distributions ν0
k,P1,...,P8

and ν1
k,P1,...,P8

, defined
next.

Definition 4.9. Let P1, . . . , P8 ∈ {0, 1}k−1,∗. The probability distribution ν0
k,P1,...,P8

on matrix pairs is given by choosing M1,M2 ∈ {Tk−1, Fk−1} uniformly at random and
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outputting the pair M1 P1 M2 P2 M1 M2 P3 P4

111 . . . 1 000 . . . 0 00000000 . . . 0 11 . . . 1
000 . . . 0 111 . . . 1 00000000 . . . 0 11 . . . 1

� ,
M1 P5 M2 P6 M1 M2 P7 P8

111 . . . 1 000 . . . 0 00000000 . . . 0 11 . . . 1
000 . . . 0 111 . . . 1 00000000 . . . 0 11 . . . 1

� . (51)

The probability distribution ν1
k,P1,...,P8

on matrix pairs is given by choosing M1,M2 ∈
{Tk−1, Fk−1} uniformly at random and outputting the pairM1 P1 M2 P2 M1 M2 P3 P4

111 . . . 1 000 . . . 0 00000000 . . . 0 11 . . . 1
000 . . . 0 111 . . . 1 00000000 . . . 0 11 . . . 1

� ,
M2 P5 M1 P6 P7 M1 M2 P8

111 . . . 1 000 . . . 0 00 . . . 0 11111111 . . . 1
000 . . . 0 111 . . . 1 00 . . . 0 11111111 . . . 1

� .
It is not hard to see, as we will soon, that ν0

k,m is a convex combination of probability
distributions ν0

k,P1,...,P8
, and analogously for ν1

k,m. This will enable us to replace ν0
k,m

and ν1
k,m in our arguments by particularly simple and highly structured distributions.

Definition 4.10. A matrix pair (A,B) is (k,m, α)-good if H ′k−1,2m′ H ′k−1,2m′ Hk−1,2m′

11 . . . 1 00 . . . 0 00 . . . 0
00 . . . 0 11 . . . 1 00 . . . 0

 v A
and Hk+1,m′ v B, where m′ = d 1−α

2 ·me. A matrix pair (A,B) is (k,m, α)-bad if it is not
(k,m, α)-good.

It will be necessary to control the quantitative contribution of bad matrix pairs in the
analysis of set disjointness. In the definition that follows, we give a special name to
probability distributions νik,P1,...,P8

supported on good matrix pairs.

Definition 4.11. Let G 0
k,m,α denote the set of all probability distributions ν0

k,P1,...,P8

that are supported on (k,m, α)-good matrix pairs. Analogously, let G 1
k,m,α denote the

set of all probability distributions ν1
k,P1,...,P8

that are supported on (k,m, α)-good matrix
pairs.

The following proposition gives a convenient characterization of probability distribu-
tions in G 0

k,m,α and G 1
k,m,α.

PROPOSITION 4.12. Let k > 2 and m > 1 be integers, m′ = d 1−α
2 · me. Fix matri-

ces P1, . . . , P8 ∈ {0, 1}k−1,∗ and i ∈ {0, 1}. Then νik,P1,...,P8
∈ G i

k,m,α if and only if the
following three conditions hold:

(i) H ′k−1,2m′ v P1, P2,

(ii) Hk−1,2m′ v P3,
(iii) Hk−1,m′ v P5, P6, P7, P8.
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PROOF. Immediate from the definitions of νik,P1,...,P8
and (k,m, α)-good matrix

pairs.

4.2. Technical lemmas
We now establish key properties of the probability distributions introduced so far. Our
main result here, Theorem 4.17, will be an approximate representation of λk,m out of
the convex hulls of G 0

k,m,α and G 1
k,m,α, with careful control of the error term. We start

with an auxiliary lemma which we will use to show the proximity of λk,m, ν0
k,m, and

ν1
k,m in statistical distance.

LEMMA 4.13. For an integer m > 1, consider the probability distributions
αm,1, αm,2, βm on {1, 2, . . . ,m+ 2} given by

αm,j(i) =

(
m

i− j

)2(
2m

m

)−1

, j = 1, 2,

βm(i) =

(
m+ 2

i

)(
m+ 1

i− 1

)(
2m+ 3

m+ 1

)−1

.

Then there is an absolute constant c > 0 such that

H(αm,j , βm) 6
c√
m
, j = 1, 2.

That the functions αm,1, αm,2, βm are probability distributions follows from Vander-
monde’s convolution, (4).

PROOF OF LEMMA 4.13. For j = 1, 2, elementary arithmetic gives

1− c

m
−
c|i− m

2 |
m

6
αm,j(i)

βm(i)
6 1 +

c

m
+
c|i− m

2 |
m

(i = 1, 2, . . . ,m+ 2)

for some absolute constant c > 0, so that |1 −
√
αm,j(i)/βm(i)| 6 c

m (1 + |i − m
2 |). As a

result,

2H(αm,j , βm)2 = E
i∼βm

(1−

√
αm,j(i)

βm(i)

)2


6
c2

m2

{
1 + 2 E

βm

∣∣∣i− m

2

∣∣∣+ E
βm

[(
i− m

2

)2
]}

6
c2

m2

{
1 + 2

√
E
βm

[(
i− m

2

)2
]

+ E
βm

[(
i− m

2

)2
]}

, (52)
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where we used the fact that EX 6
√

E[X2] for a real random variableX. Furthermore,

E
βm

[i] =

(
2m+ 3

m+ 1

)−1 m+2∑
i=1

i

(
m+ 2

i

)(
m+ 1

i− 1

)

=

(
2m+ 3

m+ 1

)−1

(m+ 2)

m+2∑
i=1

(
m+ 1

i− 1

)2

=

(
2m+ 3

m+ 1

)−1

(m+ 2)

(
2m+ 2

m+ 1

)
=

(m+ 2)2

2m+ 3

and

E
βm

[i(i− 1)] =

(
2m+ 3

m+ 1

)−1 m+2∑
i=1

i(i− 1)

(
m+ 2

i

)(
m+ 1

i− 1

)

=

(
2m+ 3

m+ 1

)−1

(m+ 1)(m+ 2)

m+2∑
i=2

(
m

i− 2

)(
m+ 1

i− 1

)

=

(
2m+ 3

m+ 1

)−1

(m+ 1)(m+ 2)

m∑
i=0

(
m

i

)(
m+ 1

m− i

)

=

(
2m+ 3

m+ 1

)−1

(m+ 1)(m+ 2)

(
2m+ 1

m

)
=

(m+ 1)(m+ 2)2

2(2m+ 3)
,

whence

E
βm

[(
i− m

2

)2
]

=
m2

4
− (m− 1) E

βm
[i] + E

βm
[i(i− 1)] = O(m).

In view of (52), the proof is complete.

A fairly direct consequence of the previous lemma is that the probability distributions
λk,m, ν

0
k,m, and ν1

k,m are within O(2k/
√
m) of each other in statistical distance. In what

follows, we prove the better bound O(
√

2k/m), which is tight. The analysis exploits the
multiplicative property of Hellinger distance.

LEMMA 4.14. There is a constant c > 0 such that for all integers k > 2 and m > 1,

‖λk,m − νik,m‖1 6
√
c2k

m
, i = 0, 1.

PROOF. Throughout the proof, the term “algorithmic description” will refer to Algo-
rithm 2 in the case of λk,m and Algorithm 3 in the case of ν0

k,m and ν1
k,m. As we have

noted earlier, the algorithmic descriptions of these three distributions are identical

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



A:40 Alexander A. Sherstov

except for step (ii). In particular, observe that

λk,m =
1

4

∑
f,f ′∈{0,1}

λf,f
′

k,m,

νik,m =
1

4

∑
f,f ′∈{0,1}

νi,f,f
′

k,m , i = 0, 1,

where λf,f
′

k,m, ν
0,f,f ′

k,m , ν1,f,f ′

k,m are the distributions that result from λk,m, ν
0
k,m, ν

1
k,m, respec-

tively, when one conditions on the choice of f, f ′ in step (i) of the algorithmic descrip-
tion. Therefore,

‖λk,m − νik,m‖1 6 max
f,f ′

∥∥∥λf,f ′k,m − ν
i,f,f ′

k,m

∥∥∥
1

6 2
√

2 max
f,f ′

H
(
λf,f

′

k,m, ν
i,f,f ′

k,m

)
, i = 0, 1, (53)

where the second step uses Fact 2.1.
In the remainder of the proof, we consider f, f ′ fixed. Define the column histogram

of a matrix X ∈ {0, 1}k+1,∗ to be the vector of 2k+1 natural numbers indicating how
many times each string in {0, 1}k+1 occurs as a column of X. If D1 and D2 are two
probability distributions on {0, 1}k+1,∗ that are invariant under column permutations,
then the Hellinger distance between D1 and D2 is obviously the same as the Hellinger
distance between the column histograms of matrices drawn from D1 versus D2. An
analogous statement holds for probability distributions D1, D2 on matrix pairs. As
a result, we need only consider the column histograms of matrix pairs drawn from
λf,f

′

k,m, ν
0,f,f ′

k,m , ν1,f,f ′

k,m . Furthermore, for every matrix pair

(A,B) ∈ suppλf,f
′

k,m ∪ supp ν0,f,f ′

k,m ∪ supp ν1,f,f ′

k,m ,

the column histograms of A and B are uniquely determined by the number of occur-
rences of 

z1

z2

...
zk−1

f ⊕ z1 ⊕ z2 ⊕ · · · ⊕ zk−1

f ′ ⊕ z1 ⊕ z2 ⊕ · · · ⊕ zk−1

 (54)

as a column of A and B, respectively, for each z ∈ {0, 1}k−1. Thus, we need 2k−1 num-
bers per matrix, rather than 2k+1, to describe the column histograms of A and B.

With this in mind, for (A,B) ∼ λf,f
′

k,m, define aλ,z and bλ,z (where z ∈ {0, 1}k−1) to be
the number of occurrences of (54) as a column in A and B, respectively. Analogously,
for (A,B) ∼ νi,f,f

′

k,m , define aνi,z and bνi,z (z ∈ {0, 1}k−1) to be the number of occur-
rences of (54) as a column in A and B, respectively. By the preceding discussion, the
Hellinger distance between λf,f

′

k,m and νi,f,f
′

k,m is the same as the Hellinger distance be-
tween (. . . , aλ,z, bλ,z, . . . ) and (. . . , aνi,z, bνi,z, . . . ), viewed as random variables in N2k .
By step (ii) of the algorithmic description, the random variables

aλ,0k−1 , bλ,0k−1 , . . . , aλ,1k−1 , bλ,1k−1
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are independent. Similarly, for each i = 0, 1, the random variables

aνi,0k−1 , bνi,0k−1 , . . . , aνi,1k−1 , bνi,1k−1

are independent. Therefore,

H
(
λf,f

′

k,m, ν
i,f,f ′

k,m

)
= H((. . . , aλ,z, bλ,z, . . . ), (. . . , aνi,z, bνi,z, . . . ))

6

√√√√ ∑
z∈{0,1}k−1

H(aλ,z, aνi,z)2 +
∑

z∈{0,1}k−1

H(bλ,z, bνi,z)2, (55)

where the second step uses Fact 2.1. The probability distributions of these random
variables are easily calculated from step (ii) of the algorithmic description. From first
principles,

H(aλ,1k−1 , aνi,1k−1) 6

√√√√1

2

(
1−

√
1− 1

2m+ 1

)2

+
1

2

(
0−

√
1

2m+ 1

)2

= O

(
1√
m

)
. (56)

In the notation of Lemma 4.13, the remaining variables are governed by

aλ,z ∼ β2m−1,

aνi,z ∼ α2m−1,1 or aνi,z ∼ α2m−1,2

}
z 6= 1k−1,

bλ,z ∼ βm−1,

bνi,z ∼ αm−1,1 or bνi,z ∼ αm−1,2

}
z ∈ {0, 1}k−1,

where the precise distribution of aνi,z and bνi,z depends on f, f ′. By Lemma 4.13,

H(aλ,z, aνi,z) 6
c′√
m
, z 6= 1k−1, (57)

H(bλ,z, bνi,z) 6
c′√
m
, z ∈ {0, 1}k−1, (58)

for an absolute constant c′ > 0. By (53) and (55)–(58), the proof is complete.

Our next result shows that λk,m is supported almost entirely on good matrix pairs.

LEMMA 4.15. For 0 < α < 1, the probability distribution λk,m places at most
2−cα

2m+k probability mass on (k,m, α)-bad matrix pairs, where c > 0 is an absolute
constant.

PROOF. Define m′ = d(1 − α)m/2e. Throughout the proof, we will refer to the de-
scription of λk,m given by Algorithm 2. We may assume that m > 2, in which case
2m− 1 > 2m′ and the matrix A1k−1 in the algorithm is guaranteed to have at least 2m′

occurrences of the column 

1
1
...
1
0
0

 . (59)
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As a result, the output of the algorithm is (k,m, α)-good provided that the four vectors

z1

z2

...
zk−1

0
0

 ,


z1

z2

...
zk−1

0
1

 ,


z1

z2

...
zk−1

1
0

 ,


z1

z2

...
zk−1

1
1

 (60)

each occur at least 2m′ times as a column of Az (for z ∈ {0, 1}k−1, z 6= 1k−1) and at least
m′ times as a column of Bz (for z ∈ {0, 1}k−1). Let EAz and EBz be the events that Az
and Bz, respectively, enjoy this property. Then

P[¬EAz ] 6
(

4m+ 1

2m

)−1


2m′−1∑
i=0

(
2m

i

)(
2m+ 1

i+ 1

)

+

2m∑
i=2m−2m′+1

(
2m

i

)(
2m+ 1

i+ 1

)}

6

(
4m+ 1

2m

)−1(
2m+ 1

m

)
2m′−1∑
i=0

(
2m

i

)
+

2m∑
i=2m−2m′+1

(
2m

i

) 
6 2−Ω(α2m),

where the final step uses Stirling’s approximation and the Chernoff bound. Similarly,

P[¬EBz ] =

(
2m+ 1

m

)−1

m′−1∑
i=0

(
m

i

)(
m+ 1

i+ 1

)
+

m∑
i=m−m′+1

(
m

i

)(
m+ 1

i+ 1

) 
6 2−Ω(α2m).

Applying a union bound over all z, we find that a (k,m, α)-bad matrix pair is generated
with probability no greater than 2−cα

2m+k for some constant c > 0.

We now prove an analogous result for the probability distributions ν0
k,m and ν1

k,m, show-
ing along the way that νik,m can be accurately approximated by a convex combination
of probability distributions in G i

k,m,α.

LEMMA 4.16. For 0 < α < 1 and any integers k > 2 and m > 1, one has

νik,m = νi,good
k,m + νi,bad

k,m (i = 0, 1), (61)

where:

(i) νi,good
k,m is a conical combination of probability distributions νik,P1,...,P8

∈ G i
k,m,α

such that P1, P2, P4 do not contain an all-ones column,

(ii) ‖νi,good
k,m ‖1 6 1,

(iii) ‖νi,bad
k,m ‖1 6 2−cα

2m+k for an absolute constant c > 0.

PROOF. Fix i ∈ {0, 1} for the remainder of the proof and consider the description of
νik,m given by Algorithm 4. Conditioned on the choice of matrices Az, Bz in steps (i)–(ii)
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of the algorithm, the output is distributed according to νik,P1,...,P8
for some P1, . . . , P8

such that P1, P2, P4 do not contain an all-ones column. This gives the representa-
tion (61), where νi,good

k,m and νi,bad
k,m are conical combinations of probability distributions

νik,P1,...,P8
∈ G i

k,m,α and νik,P1,...,P8
/∈ G i

k,m,α, respectively, for which P1, P2, P4 do not con-
tain an all-ones column.

It remains to prove (iii). Define m′ = d(1 − α)m/2e. We may assume that m > 2,
in which case 2m − 1 > 2m′ and the vector (59) is guaranteed to occur at least 2m′

times as a column of A1k−1 in Algorithm 4. We infer that, conditioned on steps (i)–(ii)
of the algorithm, the output is (k,m, α)-good whenever the four vectors (60) each occur
at least 2m′ times as a column of Az (for z ∈ {0, 1}k−1, z 6= 1k−1) and at least m′ times
as a column of Bz (for z ∈ {0, 1}k−1). The 2k − 1 matrices Az, Bz simultaneously enjoy
this property with probability at least 1 − 2−cα

2m+k for an absolute constant c > 0, by
a calculation analogous to that in Lemma 4.15. It follows that

‖νi,bad
k,m ‖1 = 1− ‖νi,good

k,m ‖1 6 2−cα
2m+k.

We have reached the main result of this subsection, which states that λk,m can be
accurately approximated by a convex combination of probability distributions in G 0

k,m,α

or G 1
k,m,α, with the statistical distance supported almost entirely on good matrix pairs.

THEOREM 4.17. Let c > 0 be a sufficiently small absolute constant. Then for every
α ∈ (0, 1), the probability distribution λk,m can be expressed as

λk,m = λi1 + λi2 + λi3 (i = 0, 1), (62)

where:

(i) λi1 is a conical combination of probability distributions νik,P1,...,P8
∈ G i

k,m,α such
that P1, P2, P4 do not contain an all-ones column, and moreover ‖λi1‖1 6 1;

(ii) λi2 is a real function such that ‖λi2‖1 6
√

2k/(cm) + 2−cα
2m+k, with support on

(k,m, α)-good matrix pairs;

(iii) λi3 is a real function with ‖λi3‖1 6 2−cα
2m+k.

PROOF. Decompose

νik,m = νi,good
k,m + νi,bad

k,m

as in Lemma 4.16, so that

‖νi,bad
k,m ‖1 6 2−c

′α2m+k (63)

for some absolute constant c′ > 0. Analogously, write

λk,m = λgood
k,m + λbad

k,m,

where λgood
k,m and λbad

k,m are nonnegative functions supported on (k,m, α)-good and
(k,m, α)-bad matrix pairs, respectively. Then

‖λbad
k,m‖1 6 2−c

′α2m+k (64)
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by Lemma 4.15. Letting

λi1 = νi,good
k,m ,

λi2 = λgood
k,m − ν

i,good
k,m ,

λi3 = λbad
k,m,

we immediately have (62). Furthermore,

‖λi2‖1 = ‖(λk,m − λbad
k,m)− (νik,m − ν

i,bad
k,m )‖1

6 ‖λk,m − νik,m‖1 + ‖λbad
k,m‖1 + ‖νi,bad

k,m ‖1

6

√
2k

c′′m
+ 2 · 2−c

′α2m+k (65)

for an absolute constant c′′ > 0, where the final step uses (63), (64), and Lemma 4.14.
Now items (i)–(iii) follow from Lemma 4.16(i)–(ii), (65), and (64), respectively, by taking
c = c(c′, c′′) > 0 small enough.

We close this subsection with a few basic observations regarding k-party protocols.
On several occasions in this manuscript, we will need to argue that a communication
problem does not become easier from the standpoint of communication complexity if we
manipulate the protocol’s input in a particular way. The input will always come in the
form of a matrix sequence (X1, X2, . . . , Xn), and manipulations that we will encounter
include discarding one or more of the arguments, reordering the arguments, applying a
uniformly random column permutation to one of the arguments, adding a fixed matrix
to one of the arguments, and so on. Rather than treat these instances individually as
they arise, we find it more economical to address them all at once.

Definition 4.18. Let (X1, X2, . . . , Xn) be a random variable with range {0, 1}k×m1 ×
{0, 1}k×m2 × · · · × {0, 1}k×mn . The following random variables are said to be derivable
from (X1, X2, . . . , Xn) in one step without communication:

(i) (X2, . . . , Xn);
(ii) (X1, . . . , Xn, X1);

(iii) (Xσ(1), . . . , Xσ(n)), where σ ∈ Sn is a fixed permutation;
(iv) (σ1X1, . . . , σnXn), where σ1, . . . , σn are fixed column permutations;
(v) (X1, . . . , Xn, σX1), where σ is a uniformly random column permutation, indepen-

dent of any other variables;
(vi) (X1, . . . , Xn, A), where A is a fixed Boolean matrix;

(vii) ([X1 A1], . . . , [Xn An]), where A1, . . . , An are fixed Boolean matrices;
(viii) (X1 ⊕A1, . . . , Xn ⊕An), where A1, . . . , An are fixed Boolean matrices;

(ix) (X1, . . . , Xn, σ[X1 A]), where A is a fixed Boolean matrix and σ is a uniformly
random column permutation, independent of any other variables.

A random variable (Y1, . . . , Yr) is said to be derivable from (X1, . . . , Xn) with no com-
munication, denoted (X1, . . . , Xn) ; (Y1, . . . , Yr), if there exists a finite sequence of
random variables starting with (X1, . . . , Xn) and ending with (Y1, . . . , Yr), where every
random variable in the sequence is derivable in one step with no communication from
the one immediately preceding it.

If (Y1, . . . , Yr) is a random variable derivable from (X1, . . . , Xn) with no communication,
then the former is the result of deterministic or randomized processing of the latter.
The following proposition shows that there is no advantage to providing a communica-
tion protocol with (Y1, . . . , Yr) instead of (X1, . . . , Xn).
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PROPOSITION 4.19. Consider random variables

X = (X1, . . . , Xn) ∈ {0, 1}k×m1 × · · · × {0, 1}k×mn ,

X ′ = (X ′1, . . . , X
′
n′) ∈ {0, 1}k×m

′
1 × · · · × {0, 1}k×m

′
n′ ,

X ′′ = (X ′′1 , . . . , X
′′
n′′) ∈ {0, 1}k×m

′′
1 × · · · × {0, 1}k×m

′′
n′′ ,

where X ; X ′ ; X ′′. Then for every real function f,

max
χ
|Eχ(X ′′)f(X)| 6 max

χ
|Eχ(X ′)f(X)| , (66)

where the maximum is over k-dimensional cylinder intersections χ.

PROOF. By induction, we may assume that X ′′ is derivable from X ′ in one step
with no communication. In other words, it suffices to consider cases (i)–(ix) in Defini-
tion 4.18. In what follows, we let γ denote the right-hand side of (66).

Cases (i)–(iv) are trivial because as a function family, cylinder intersections are
closed under the operations of removing, duplicating, and reordering columns of the
input matrix. For (v), we have

max
χ

∣∣∣∣Eσ E
X,X′

χ(X ′1, . . . , X
′
n′ , σX

′
1)f(X)

∣∣∣∣ 6 E
σ

max
χ

∣∣∣∣ E
X,X′

χ(X ′1, . . . , X
′
n′ , σX

′
1)f(X)

∣∣∣∣ .
The final expression is at most γ, by a combination of (ii) followed by (iv). For (vi),

max
χ

∣∣∣∣ E
X,X′

χ(X ′1, . . . , X
′
n′ , A)f(X)

∣∣∣∣ 6 max
χ

∣∣∣∣ E
X,X′

χ(X ′1, . . . , X
′
n′)f(X)

∣∣∣∣
because with A fixed, χ is a cylinder intersection with respect to the remaining argu-
ments X ′1, . . . , X ′n′ . The proof for (vii) is analogous. Case (viii) is immediate because
as a function family, cylinder intersections are closed under the operation of adding a
fixed matrix to the input matrix. Finally, (ix) is a combination of (ii), (vii), and (v), in
that order.

4.3. Discrepancy analysis
Building on the work in the previous two subsections, we will now prove the desired
upper bound on the repeated discrepancy of set disjointness. We start by defining the
probability distribution that we will work with.

Definition 4.20. For positive integers k,m, let πk,m be the probability distribution
whose algorithmic description is as follows: choose M ∈ {Tk, Fk} uniformly at random
and output [M H ′k,m]�.

In words, we are interested in the probability distribution whereby true and false
instances of set disjointness are generated by randomly permuting the columns of
[Tk H ′k,m] and [Fk H ′k,m], respectively. For our purposes, a vital property of πk,m is
the equivalence of the following tasks from the standpoint of communication complex-
ity:

(i) for X drawn according to πk,m, determine DISJ(X);
(ii) for X1, X2, . . . , Xi, . . . drawn independently according to πk,m conditioned on

DISJ(X1) = DISJ(X2) = · · · = DISJ(Xi) = · · · , determine DISJ(X1).

Thus, it does not help to have access to additional instances of set disjointness with
the same truth status as the given instance. This is a very unusual property for a
probability distribution to have, and in particular the probability distribution used in
the previous best lower bound for set disjointness [49] fails badly in this regard.
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This property of πk,m comes at a cost: the columns of X ∼ πk,m are highly interde-
pendent, and the inductive analysis of the discrepancy is considerably more involved
than in [49]. As a matter of fact, πk,m is not directly usable in an inductive argument
because it does not lead to a decomposition into subproblems with like distributions.
(To be more precise, forcing an inductive argument with πk,m would result in a much
weaker bound on the repeated discrepancy of set disjointness than what we prove.)
Instead, we will need to analyze the discrepancy of set disjointness under a distribu-
tion more exotic than πk,m, which provides the communication protocol with additional
information.

A description of this exotic distribution is as follows. We will analyze the XOR of sev-
eral independent instances of set disjointness, rather than a single instance. Fix a non-
negative integer d and subsets Z1, Z2, . . . , Zn ⊆ {0, 1}d. Given matrix pairs (At,z, Bt,z),
where t = 1, 2, . . . , n and z ∈ Zt, the symbol

enc(. . . , At,z, Bt,z, . . . )

shall denote the following ordered list of matrices:

(i) the matrices At,z, listed in lexicographic order by (t, z);
(ii) followed by the matrices [Bt,z Bt,z′ ] for all t and all z, z′ ∈ Zt such that |z⊕z′| =

1, listed in lexicographic order by (t, z, z′);
(iii) followed by the matrices [Bt,z Bt,z′ ] for all t and all z, z′ ∈ Zt such that |z⊕z′| =

1, listed in lexicographic order by (t, z, z′).

The abbreviation enc stands for “encoding” and highlights the fact that the communi-
cation protocol does not have direct access to the matrix pairs At,z, Bt,z. In particular,
for d = 0 the matrices Bt,z do not appear on the list enc(. . . , At,z, Bt,z, . . . ) at all. The
symbol

σ enc(. . . , At,z, Bt,z, . . . ) (67)

shall refer to the result of permuting the columns for each of the ma-
trices in the ordered list enc(. . . , At,z, Bt,z, . . . ) according to σ, where σ =
(. . . , σt,z, . . . , σt,z,z′ , . . . , σ

′
t,z,z′ , . . . ) is an ordered list of column permutations, one for

each of the matrices on the list. In our analysis, σ will always be chosen uniformly
at random, so that (67) is simply the result of permuting the columns for each of the
matrices on the list independently and uniformly at random. With these notations in
place, we define

Γ(k,m, d, Z1, . . . , Zn)

= max
χ

∣∣∣∣∣ E
...,(At,z,Bt,z),...

E
σ
χ(σ enc(. . . , At,z, Bt,z, . . . ))

n∏
t=1

∏
z∈Zt

DISJ(At,z)

∣∣∣∣∣ ,
where: the maximum is over k-dimensional cylinder intersections χ; the first expecta-
tion is over the matrix pairs (At,z, Bt,z) distributed independently according to µk,m;
and the second expectation is over column permutations chosen independently and
uniformly at random for each matrix on the list enc(. . . , At,z, Bt,z, . . . ). This completes
the description of the “exotic” distribution that governs the input to χ.

For nonnegative integers `1, `2, . . . , `n, we let

Γ(k,m, d, `1, . . . , `n) = max
|Z1|=`1

· · · max
|Zn|=`n

Γ(k,m, d, Z1, . . . , Zn),

where the maximum is over all possible subsets Z1, Z2, . . . , Zn ⊆ {0, 1}d of cardi-
nalities `1, `2, . . . , `n, respectively. Observe that Γ(k,m, d, `1, . . . , `n) is only defined
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for `1, . . . , `n ∈ {0, 1, 2, 3, . . . , 2d}. The only setting of interest to us is d = 0 and
`1 = `2 = · · · = `n = 1, in which case enc(. . . , At,z, Bt,z, . . . ) = (. . . , At,z, . . . ) and

Γ(k,m, 0, 1, . . . , 1︸ ︷︷ ︸
n

) = max
χ

∣∣∣∣∣ E
X1,...,Xn∼πk,2m

χ(X1, . . . , Xn)

n∏
i=1

DISJ(Xi)

∣∣∣∣∣ . (68)

However, the inductive analysis below requires consideration of Γ(k,m, d, `1, . . . , `n) for
all possible parameters. We start by deriving a recurrence relation for Γ.

LEMMA 4.21. Let c > 0 be the absolute constant from Theorem 4.17. Then for k > 2
and 0 < α < 1, and the quantity Γ(k,m, d, `1, . . . , `n)2 does not exceed

`1∑
i1,j1=0

· · ·
`n∑

in,jn=0


n∏
t=1

(
`t
it

)(
`t − it
jt

)(√
2k

cm
+

2k

2cα2m

)it (
2k

2cα2m

)jt 
× max

`′1>2 max{0,`1−i1−(d+1)j1}
...

`′n>2 max{0,`n−in−(d+1)jn}

Γ

(
k − 1,

⌈
(1− α)m

2

⌉
, d+ 1, `′1, . . . , `

′
n

)
.

Moreover,

Γ(1,m, d, `1, . . . , `n) =

{
0 if `1 + · · ·+ `n > 0,

1 otherwise.

PROOF. The claim regarding Γ(1,m, d, `1, . . . , `n) is obvious because the probability
distribution µk,m places equal weight on the positive and negative instances of set
disjointness. In what follows, we prove the recurrence relation.

Abbreviate Γ = Γ(k,m, d, `1, . . . , `n). Let Z1, . . . , Zn ⊆ {0, 1}d be subsets of cardi-
nalities `1, . . . , `n, respectively, such that Γ(k,m, d, Z1, . . . , Zn) = Γ. Let χ be a k-
dimensional cylinder intersection for which

Γ =

∣∣∣∣∣∣ E
...,

[
At,z
at,z

]
,
[
Bt,z
bt,z

]
,...

E
σ

χ

(
σ enc

(
. . . ,

[
At,z
at,z

]
,

[
Bt,z
bt,z

]
, . . .

)) n∏
t=1

∏
z∈Zt

DISJ
[
At,z
at,z

]∣∣∣∣∣ ,
where the inner expectation is over the independent permutation of the columns for
each of the matrices on the encoded list, and the outer expectation is over matrix pairs([

At,z
at,z

]
,

[
Bt,z
bt,z

])
, t = 1, 2, . . . , n, z ∈ Zt,

each drawn independently according to µk,m (as usual, at,z and bt,z denote row vec-
tors). The starting point in the proof is a reduction to (k − 1)-dimensional cylinder
intersections using the Cauchy-Schwarz inequality, a technique due to Babai, Nisan,
and Szegedy [7]. Rearranging,

Γ 6 E
σ

E
...,At,z,Bt,z,...

∣∣∣∣∣∣ E
...,at,z,bt,z,...

χ

(
σ enc

(
. . . ,

[
At,z
at,z

]
,

[
Bt,z
bt,z

]
, . . .

))

×
n∏
t=1

∏
z∈Zt

DISJ
[
At,z
at,z

]∣∣∣∣∣ , (69)
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where the second expectation is over the marginal probability distribution on the pairs
(At,z, Bt,z), and the third expectation is over the conditional probability distribution on
the pairs (at,z, bt,z) for fixed (At,z, Bt,z). Recall that χ is the pointwise product of two
functions χ = φ · χ′, where φ depends only on the first k − 1 rows and has range {0, 1},
and χ′ is a (k − 1)-dimensional cylinder intersection with respect to the first k − 1
rows for any fixed value of the kth row. Since the innermost expectation in (69) is over
(. . . , at,z, bt,z, . . . ) for fixed (. . . , At,z, Bt,z, . . . ), the function φ can be taken outside the
innermost expectation and absorbed into the absolute value operator:

Γ 6 E
σ

E
...,At,z,Bt,z,...

∣∣∣∣∣∣ E
...,at,z,bt,z,...

χ′
(
σ enc

(
. . . ,

[
At,z
at,z

]
,

[
Bt,z
bt,z

]
, . . .

))

×
n∏
t=1

∏
z∈Zt

DISJ
[
At,z
at,z

]∣∣∣∣∣ .
Squaring both sides and applying the Cauchy-Schwarz inequality,

Γ2 6 E
σ

E
...,At,z,Bt,z,...

 E
...,at,z,bt,z,...

χ′
(
σ enc

(
. . . ,

[
At,z
at,z

]
,

[
Bt,z
bt,z

]
, . . .

))

×
n∏
t=1

∏
z∈Zt

DISJ
[
At,z
at,z

]}2 ]

= E

...,

[
At,z
at,z
a′t,z

]
,

[
Bt,z
bt,z
b′t,z

]
,...

E
σ

χ′
(
σ enc

(
. . . ,

[
At,z
at,z

]
,

[
Bt,z
bt,z

]
, . . .

))
×

χ′
(
σ enc

(
. . . ,

[
At,z
a′t,z

]
,

[
Bt,z
b′t,z

]
, . . .

)) n∏
t=1

∏
z∈Zt

DISJ
[
At,z
at,z

]
DISJ

[
At,z
a′t,z

]
,

where the outer expectation is over matrix pairs drawn according to λk,m. Since the
product of two cylinder intersections is a cylinder intersection, we arrive at

Γ2 6 E

...,

[
At,z
at,z
a′t,z

]
,

[
Bt,z
bt,z
b′t,z

]
,...

E
σ

χ′′

σ enc

. . . ,
At,zat,z
a′t,z

 ,
Bt,zbt,z
b′t,z

 , . . .


×
n∏
t=1

∏
z∈Zt

DISJ
[
At,z
at,z

]
DISJ

[
At,z
a′t,z

]
, (70)

where χ′′ is a (k − 1)-dimensional cylinder intersection with respect to the first k − 1
rows for any fixed values of the kth and (k + 1)st rows. This completes the promised
reduction to the (k − 1)-dimensional case.

Theorem 4.17 states that

λk,m = λi1 + λi2 + λi3 (i = 0, 1), (71)

where: λi1 is a conical combination of probability distributions νik,P1,...,P8
∈ G i

k,m,α for
which P1, P2, P4 do not contain an all-ones column; λi2 is a real function supported on
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(k,m, α)-good matrix pairs; and furthermore

‖λi1‖1 6 1 (i = 0, 1), (72)

‖λi2‖1 6
√

2k

cm
+

2k

2cα2m
(i = 0, 1), (73)

‖λi3‖1 6
2k

2cα2m
(i = 0, 1). (74)

Define

Φ

. . . ,
At,zat,z
a′t,z

 ,
Bt,zbt,z
b′t,z

 , . . .
 = E

σ
χ′′

σ enc

. . . ,
At,zat,z
a′t,z

 ,
Bt,zbt,z
b′t,z

 , . . .


×
n∏
t=1

∏
z∈Zt

DISJ
[
At,z
at,z

]
DISJ

[
At,z
a′t,z

]
.

CLAIM 4.22. Fix functions ιt : Zt → {1, 2, 3} (t = 1, 2, . . . , n). Define it = |ι−1
t (2)| and

jt = |ι−1
t (3)|. Then〈

Φ,

n⊗
t=1

⊗
z∈Zt

λ
PARITY∗(z)
ιt(z)

〉
6


n∏
t=1

(√
2k

cm
+

2k

2cα2m

)it (
2k

2cα2m

)jt 
× max

`′1>2 max{0,`1−i1−(d+1)j1}
...

`′n>2 max{0,`n−in−(d+1)jn}

Γ

(
k − 1,

⌈
(1− α)m

2

⌉
, d+ 1, `′1, . . . , `

′
n

)
.

Before settling the claim, we will finish the proof of the lemma:

Γ2 6

〈
Φ,

n⊗
t=1

⊗
z∈Zt

λk,m

〉
by (70)

=

〈
Φ,

n⊗
t=1

⊗
z∈Zt

(
λ

PARITY∗(z)
1 + λ

PARITY∗(z)
2 + λ

PARITY∗(z)
3

)〉
by (71)

=
∑

ι1,ι2,...,ιn

〈
Φ,

n⊗
t=1

⊗
z∈Zt

λ
PARITY∗(z)
ιt(z)

〉
,

where the sum is over all possible functions ι1, ι2, . . . , ιn with domains Z1, Z2, . . . , Zn,
respectively, and range {1, 2, 3}. Using the bound of Claim 4.22 for the inner products
in the final expression, one immediately arrives at the recurrence in the statement of
the lemma.

PROOF OF CLAIM 4.22. For t = 1, 2, . . . , n, define Yt to be the collection of all z ∈
ι−1
t (1) for which {z′ ∈ Zt : |z ⊕ z′| = 1} ∩ ι−1

t (3) = ∅. This set Yt ⊆ Zt has the following
intuitive interpretation. View Zt as an undirected graph in which two vertices z, z′ ∈ Zt
are connected by an edge if and only if they are neighbors in the ambient hypercube,
i.e., |z⊕z′| = 1.We will refer to the vertices in ι−1

t (1), ι−1
t (2), and ι−1

t (3) as good, neutral,
and bad, respectively. In this terminology, Yt is simply the set of all good vertices that
do not have a bad neighbor. Since the degree of every vertex in the graph is at most d,
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we obtain

|Yt| > |ι−1
t (1)| − d|ι−1

t (3)|
= (|Zt| − |ι−1

t (2)| − |ι−1
t (3)|)− d|ι−1

t (3)|
= `t − it − (d+ 1)jt, t = 1, 2, . . . , n. (75)

Now, consider the quantity

γ = max

∣∣∣∣∣∣∣∣ E

...,

[
At,z
at,z
a′t,z

]
,

[
Bt,z
bt,z
b′t,z

]
,...

E
σ

χ′′

σ enc

. . . ,
At,zat,z
a′t,z

 ,
Bt,zbt,z
b′t,z

 , . . .


×
n∏
t=1

∏
z∈Zt

DISJ
[
At,z
at,z

]
DISJ

[
At,z
a′t,z

]∣∣∣∣∣∣∣∣ , (76)

where: the maximum is over all matrix pairsAt,zat,z
a′t,z

 ,
Bt,zbt,z
b′t,z

 , t = 1, 2, . . . , n, z ∈ (ι−1
t (1) \ Yt) ∪ ι−1

t (2) (77)

that are (k,m, α)-good and over all possible matrix pairsAt,zat,z
a′t,z

 ,
Bt,zbt,z
b′t,z

 , t = 1, 2, . . . , n, z ∈ ι−1
t (3), (78)

and the outer expectation is over the remaining matrix pairsAt,zat,z
a′t,z

 ,
Bt,zbt,z
b′t,z

 , t = 1, 2, . . . , n, z ∈ Yt (79)

which are distributed independently, each according to some distribution ν
PARITY∗(z)
k,P1,...,P8

∈
G

PARITY∗(z)
k,m,α such that P1, P2, P4 do not contain an all-ones column. Since λPARITY∗(z)

2 is
supported on (k,m, α)-good matrix pairs and since λPARITY∗(z)

1 is a conical combination
of probability distributions νPARITY∗(z)

k,P1,...,P8
∈ G

PARITY∗(z)
k,m,α such that P1, P2, P4 do not contain

an all-ones column, it follows by convexity that〈
Φ,

n⊗
t=1

⊗
z∈Zt

λ
PARITY∗(z)
ιt(z)

〉
6 γ

n∏
t=1

∏
z∈Zt

∥∥∥λPARITY∗(z)
ιt(z)

∥∥∥
1

6 γ
n∏
t=1

(√
2k

cm
+

2k

2cα2m

)it (
2k

2cα2m

)jt
,
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where the second step uses the estimates (72)–(74). As a result, the proof will be com-
plete once we show that

γ 6 max
`′1>2 max{0,`1−i1−(d+1)j1}

...
`′n>2 max{0,`n−in−(d+1)jn}

Γ(k − 1,m′, d+ 1, `′1, . . . , `
′
n), (80)

where m′ = d(1 − α)m/2e. In the remainder of the proof, we will fix an assignment
to the matrix pairs (77) and (78) for which the maximum is achieved in (76). The
argument involves three steps: splitting the input to χ′′ into tuples of smaller matrices,
determining the individual probability distribution of each tuple, and recombining the
results to characterize the joint probability distribution of the input to χ′′.

Step I: partitioning into submatrices. Think of every matrix M on the encoded
matrix list in (76) as partitioned into four submatricesM00,M01,M10,M11 ∈ {0, 1}k+1,∗

of the form  *
0 0 · · · 0
0 0 · · · 0

 ,
 *

0 0 · · · 0
1 1 · · · 1

 ,
 *

1 1 · · · 1
0 0 · · · 0

 ,
 *

1 1 · · · 1
1 1 · · · 1

 ,
respectively, with the relative ordering of columns in each submatrix inherited from
the original matrix M . A uniformly random column permutation of M can be realized
as

υ
[
σ00M00 σ01M01 σ10M10 σ11M11

]
,

where σ00, . . . , σ11 are uniformly random column permutations of the four submatrices
and υ is a uniformly random column permutation of the entire matrix. We will reveal
υ completely to the cylinder intersection (this corresponds to allowing the cylinder
intersection to depend on υ) but keep σ00, . . . , σ11 secret.

In more detail, define

A00
t,z = At,z|at,z∧a′t,z , B00

t,z = Bt,z|bt,z∧b′t,z ,

A01
t,z = At,z|at,z∧a′t,z , B01

t,z = Bt,z|bt,z∧b′t,z ,

A10
t,z = At,z|at,z∧a′t,z , B10

t,z = Bt,z|bt,z∧b′t,z ,

A11
t,z = At,z|at,z∧a′t,z , B11

t,z = Bt,z|bt,z∧b′t,z ,
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where t = 1, 2, . . . , n and z ∈ Zt. Then by the argument of the previous paragraph,

γ 6

∣∣∣∣∣∣∣∣ E

...,

[
At,z
at,z
a′t,z

]
,

[
Bt,z
bt,z
b′t,z

]
,...

E
υ

E
σ00,...,σ11

n∏
t=1

∏
z∈Zt

DISJ
[
At,z
at,z

]
DISJ

[
At,z
a′t,z

]
×

×χ′′υ(σ00 enc(. . . , A00
t,z, B

00
t,z, . . . ),

σ01 enc(. . . , A01
t,z, B

01
t,z, . . . ),

σ10 enc(. . . , A10
t,z, B

10
t,z, . . . ),

σ11 enc(. . . , A11
t,z, B

11
t,z, . . . ))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where σ00, σ01, σ10, σ11 are permutation lists chosen independently and uniformly at
random, υ is a joint column permutation from an appropriate probability distribution,
and each χ′′υ is a (k− 1)-dimensional cylinder intersection. Note that the final property
crucially uses the fact that χ′′ is a (k − 1)-dimensional cylinder intersection for any
fixed value of the bottom two rows. Taking the expectation with respect to υ outside
the absolute value operator, we conclude that there is some (k−1)-dimensional cylinder
intersection χ′′′ such that

γ 6

∣∣∣∣∣∣∣∣ E

...,

[
At,z
at,z
a′t,z

]
,

[
Bt,z
bt,z
b′t,z

]
,...

E
σ00,σ01,σ10,σ11

n∏
t=1

∏
z∈Zt

DISJ
[
At,z
at,z

]
DISJ

[
At,z
a′t,z

]
×

×χ′′′(σ00 enc(. . . , A00
t,z, B

00
t,z, . . . ),

σ01 enc(. . . , A01
t,z, B

01
t,z, . . . ),

σ10 enc(. . . , A10
t,z, B

10
t,z, . . . ),

σ11 enc(. . . , A11
t,z, B

11
t,z, . . . ))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (81)

Step II: distribution of the induced matrix sequences. We will now take a
closer look at the matrix sequence (A00

t,z, A
01
t,z, A

10
t,z, A

11
t,z, B

00
t,z, B

01
t,z, B

10
t,z, B

11
t,z) and charac-

terize its distribution depending on t, z. In what follows, the symbol ∗ denotes a fixed
Boolean matrix, and the symbol ? denotes a fixed Boolean matrix without an all-ones
column. We will use ∗ and ? to designate matrices whose entries are immaterial to the
proof. It is important to remember that ∗ and ? are semantic shorthands rather than
variables, i.e., every occurrence of ∗ and ? may refer to a different matrix.

(a) Sequences with t = 1, 2, . . . , n, z ∈ (ι−1
t (1)\Yt)∪ ι−1

t (2). For such t, z, the matrices
(At,z, Bt,z) are fixed to some (k,m, α)-good matrix pairs, which by definition forces

A00
t,z =� [∗ Hk−1,2m′ ] , B00

t,z =� [∗ Hk−1,m′ ] ,

A01
t,z =�

[
∗ H ′k−1,2m′

]
, B01

t,z =� [∗ Hk−1,m′ ] ,

A10
t,z =�

[
∗ H ′k−1,2m′

]
, B10

t,z =� [∗ Hk−1,m′ ] ,

A11
t,z =� [∗] , B11

t,z =� [∗ Hk−1,m′ ] .
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(b) Sequences with t = 1, 2, . . . , n, z ∈ ι−1(3). Each such sequence is fixed to some
unknown tuple of matrices over which we have no control:

A00
t,z = [∗] , B00

t,z = [∗] ,
A01
t,z = [∗] , B01

t,z = [∗] ,
A10
t,z = [∗] , B10

t,z = [∗] ,
A11
t,z = [∗] , B11

t,z = [∗] .

(c) Sequences with t = 1, 2, . . . , n, z ∈ Yt. Each such sequence is distributed in-
dependently of the others. The exact distribution of a given sequence depends on the
parity of z and is given by the following table, where Mt,z0,Mt,z1 refer to independent
random variables distributed uniformly in {Tk−1, Fk−1}.

Distribution for |z| even Distribution for |z| odd

A00
t,z

[
∗ Hk−1,2m′ Mt,z0 Mt,z1

]
�

[
∗ Hk−1,2m′ Mt,z0 Mt,z1

]
�

A01
t,z

[
? H ′k−1,2m′ Mt,z0

]
�

[
? H ′k−1,2m′ Mt,z1

]
�

A10
t,z

[
? H ′k−1,2m′ Mt,z1

]
�

[
? H ′k−1,2m′ Mt,z0

]
�

A11
t,z [?]� [?]�

B00
t,z

[
∗ Hk−1,m′ Mt,z0 Mt,z1

]�
[∗ Hk−1,m′ ]�

B01
t,z [∗ Hk−1,m′ Mt,z0]

� [
∗ Hk−1,m′ Mt,z0

]
�

B10
t,z [∗ Hk−1,m′ Mt,z1]

� [
∗ Hk−1,m′ Mt,z1

]
�

B11
t,z [∗ Hk−1,m′ ]

�
[∗ Hk−1,m′ Mt,z0 Mt,z1]�

To verify, recall that each matrix pair in (79) is distributed independently according to
ν

PARITY∗(z)
k,P1,...,P8

∈ G
PARITY∗(z)
k,m,α for some P1, . . . , P8, where P1, P2, P4 do not contain an all-ones

column. The stated description is now immediate by letting

(M1,M2) =

{
(Mt,z1,Mt,z0) if |z| is even,
(Mt,z0,Mt,z1) if |z| is odd

in Definition 4.9 and recalling that P1, . . . , P8 have submatrix structure given by Propo-
sition 4.12.

An important consequence of the newly obtained characterization is that

DISJ
[
At,z
at,z

]
DISJ

[
At,z
a′t,z

]
= DISJ

[
A10
t,z A11

t,z

]
DISJ

[
A01
t,z A11

t,z

]
= DISJ(Mt,z0) DISJ(Mt,z1)
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for all z ∈ Yt. Since for z /∈ Yt the values At,z, at,z, a′t,z are fixed, (81) simplifies to

γ 6

∣∣∣∣∣∣∣∣ E

...,

[
At,z
at,z
a′t,z

]
,

[
Bt,z
bt,z
b′t,z

]
,...

E
σ00,σ01,σ10,σ11

n∏
t=1

∏
z∈Yt

DISJ(Mt,z0)DISJ(Mt,z1)×

×χ′′′(σ00 enc(. . . , A00
t,z, B

00
t,z, . . . ),

σ01 enc(. . . , A01
t,z, B

01
t,z, . . . ),

σ10 enc(. . . , A10
t,z, B

10
t,z, . . . ),

σ11 enc(. . . , A11
t,z, B

11
t,z, . . . ))

∣∣∣∣∣∣∣∣∣∣∣∣
. (82)

Step III: recombining. Having examined the new submatrices, we are now in a
position to fully characterize the probability distribution of the input to χ′′′ in (82). To
start with, χ′′′ receives as input the matrices A00�

t,z , A
01�
t,z , A

10�
t,z , A

11�
t,z . If z ∈ Yt, then by

Step II (c) each of them is distributed according to one of the distributions

[
∗ Hk−1,2m′ Mt,z0 Mt,z1

]
�, (83)[

∗ H ′k−1,2m′ Mt,z0

]
�, (84)[

∗ H ′k−1,2m′ Mt,z1

]
�, (85)

[∗]� . (86)

If z /∈ Yt, then each of the matrices in question is distributed according to (86). The
only other input to χ′′′ is

[Bε1ε2t,z Bε1ε2t,z′ ]�, [Bε1ε2t,z Bε1ε2t,z′ ]�, (87)

where ε1, ε2 ∈ {0, 1} and the strings z, z′ ∈ Zt satisfy |z ⊕ z′| = 1. If z, z′ ∈ Yt, then
Step II (c) reveals that each of the matrices in (87) is distributed according to one of
the probability distributions

[∗ Hk−1,2m′ Mt,w Mt,w′ ]
�, (88)[

∗ Hk−1,2m′ Mt,w Mt,w′
]
�, (89)[

∗ Hk−1,2m′ Mt,w Mt,w′
]
�, (90)

where w,w′ ∈ Yt×{0, 1} are some Boolean strings with |w⊕w′| = 1. If z /∈ Yt and z′ /∈ Yt,
then each of the matrices in (87) is distributed according to (86). In the remaining case
when z ∈ Yt and z′ /∈ Yt, we have by definition of Yt that z′ ∈ (ι−1

t (1) \ Yt) ∪ ι−1
t (2), and

therefore by Step II (a)(c) each of the matrices in (87) is distributed according to one of
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the probability distributions

[∗]� , (91)

[∗ Hk−1,2m′ Mt,z0 Mt,z1]
�
, (92)[

∗ Hk−1,2m′ Mt,z0 Mt,z1

]�
, (93)

[∗ Hk−1,2m′ Mt,z0]
�
, (94)[

∗ Hk−1,2m′ Mt,z0

]�
, (95)

[∗ Hk−1,2m′ Mt,z1]
�
, (96)[

∗ Hk−1,2m′ Mt,z1

]�
. (97)

In the terminology of Definition 4.18, each of the random variables (83)–(86),
(88)–(97) is derivable with no communication from

[
Mt,w H ′k−1,2m′

]�
,[

Mt,w Hk−1,m′ Mt,w′ Hk−1,m′
]�
,[

Mt,w Hk−1,m′ Mt,w′ Hk−1,m′
]�
,

where t = 1, 2, . . . , n and w,w′ range over all strings in Yt × {0, 1} at Hamming dis-
tance 1. This follows easily from (44)–(48). As a result, the input to χ′′′ in (82) is deriv-
able with no communication from σ enc(. . . , [Mt,w H ′k−1,2m′ ], [Mt,w Hk−1,m′ ], . . . ),

where t = 1, 2, . . . , n, w ∈ Yt × {0, 1}, and σ is chosen uniformly at random. Then
by Proposition 4.19,

γ 6 max
χ

∣∣∣∣∣∣ E
...,Mt,w,...

E
σ

n∏
t=1

∏
w∈Yt×{0,1}

DISJ(Mt,w)

× χ(σ enc(. . . , [Mt,w H ′k−1,2m′ ], [Mt,w Hk−1,m′ ], . . . ))

∣∣∣∣∣ ,
where the maximum is over (k − 1)-dimensional cylinder intersections χ. The right-
hand side is by definition Γ(k − 1,m′, d + 1, Y1 × {0, 1}, . . . , Yn × {0, 1}). Recalling the
lower bound (75) on the size of Y1, . . . , Yn, we arrive at the desired inequality (80).

This completes the proof of Lemma 4.21. To solve the newly obtained recurrence for Γ,
we prove a technical result.

LEMMA 4.23. Fix reals p1, p2, . . . > 0 and q1, q2, . . . > 0. Let A : Z+ × Nn+1 → [0, 1] be
any function that satisfies

A(1, d, `1, `2, . . . , `n) =

{
0 if `1 + `2 + · · ·+ `n > 0,

1 otherwise,
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and for k > 2,

A(k, d, `1, `2, . . . , `n)2 6
`1∑

i1,j1=0

· · ·
`n∑

in,jn=0

{
n∏
t=1

(
`t
it

)(
`t − it
jt

)
pitk q

jt
k

}
× sup

`′1>2 max{0,`1−i1−(d+1)j1}
...

`′n>2 max{0,`n−in−(d+1)jn}

A(k − 1, d+ 1, `′1, . . . , `
′
n).

Then

A(k, d, `1, `2, . . . , `n) 6

(
k∑
i=1

pi + 8

k∑
i=1

q
1/(d+k−i+1)
i

) `1+`2+···+`n
2

. (98)

PROOF. The proof is by induction on k. In the base case k = 1, the bound (98) follows
immediately from the definition of A(1, d, `1, `2, . . . , `n). For the inductive step, fix k > 2
and define

a =

k−1∑
i=1

pi + 8

k−1∑
i=1

q
1/(d+k−i+1)
i .

We may assume that a 6 1 since (98) is trivial otherwise. Then from the inductive
hypothesis,
A(k, d, `1, `2, . . . , `n)2

6
`1∑

i1,j1=0

· · ·
`n∑

in,jn=0

{
n∏
t=1

(
`t
it

)(
`t − it
jt

)
pitk q

jt
k

}
a
∑n
t=1 max{0,`t−it−(d+1)jt}

=

n∏
t=1


`t∑

i,j=0

(
`t
i

)(
`t − i
j

)
pikq

j
ka

max{0,`t−i−(d+1)j}

 . (99)

CLAIM 4.24. For any integers ` > 0 and D > 1 and a real number 0 < q 6 1,∑̀
j=0

(
`

j

)
qjamax{0,`−Dj} 6 (a+ 8q1/D)`.

PROOF.∑̀
j=0

(
`

j

)
qjamax{0,`−Dj} =

∑
j>b`/Dc+1

(
`

j

)
qj + a`−Db`/Dc

b`/Dc∑
j=0

(
`

j

)
qj(aD)b`/Dc−j

6 2`q`/D + a`−Db`/Dc
b`/Dc∑
j=0

(
b`/Dc
j

)
(2eDq)j(aD)b`/Dc−j

= 2`q`/D + a`−Db`/Dc(aD + 2eDq)b`/Dc

6 2`q`/D + a`−Db`/Dc(a+ (2eDq)1/D)Db`/Dc

6 2`q`/D + (a+ (2eDq)1/D)`

6 (2q1/D + a+ (2eDq)1/D)`

6 (a+ 8q1/D)`.
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We may assume that qk 6 1 since (98) is trivial otherwise. Invoking the above claim
with ` = `t − i, q = qk, D = d+ 1, we have from (99) that

A(k, d, `1, `2, . . . , `n)2 6
n∏
t=1

{
`t∑
i=0

(
`t
i

)
pik

(
a+ 8q

1/(d+1)
k

)`t−i }

=

n∏
t=1

(
a+ pk + 8q

1/(d+1)
k

)`t
,

completing the inductive step.

Using the previous two lemmas, we will now obtain a closed-form upper bound on Γ.

THEOREM 4.25. There exists an absolute constant C > 1 such that

Γ(k,m, d, `1, . . . , `n) 6

C√k22k

m
+ C exp

{
− m

C2k(d+ k)

}(`1+···+`n)/2

.

PROOF. It follows from Proposition 4.19 that Γ is monotonically decreasing in the
second argument, a fact that we will use several times without further mention. Let m
be an arbitrary positive integer. Set ε = 3/4 and define

mk =

⌈
2km

(1− ε)(1− ε2) · · · (1− εk)

⌉
, k = 1, 2, 3, . . . ,

pk =

√
2k

cmk
+

2k

2cε2kmk
, k = 1, 2, 3, . . . ,

qk =
2k

2cε2kmk
, k = 1, 2, 3, . . . ,

where c > 0 is the absolute constant from Theorem 4.17. Consider the real function
A : Z+ × Nn+1 → [0, 1] given by

A(k, d, `1, . . . , `n) =

{
Γ(k,mk, d, `1, . . . , `n) if `1, . . . , `n ∈ {0, 1, . . . , 2d},
0 otherwise.

Taking α = εk in Lemma 4.21 shows that A(k, d, `1, . . . , `n) obeys the recurrence in
Lemma 4.23. In particular, on the domain of Γ one has

Γ(k,mk, d, `1, . . . , `n) = A(k, d, `1, . . . , `n)

6

(
k∑
i=1

pi + 8

k∑
i=1

q
1/(d+k−i+1)
i

)(`1+···+`n)/2

(100)

by Lemma 4.23.
One easily verifies that pi 6 (cm)−1/2 + 2−cm(9/8)i+i and qi 6 2−cm(9/8)i+i. Substitut-

ing these estimates in (100) gives

Γ(k,mk, d, `1, . . . , `n) 6

(
k√
cm

+ c′ exp

{
− c′′m

d+ k

})(`1+···+`n)/2

for some absolute constants c′, c′′ > 0. Since mk = Θ(2km), the proof is complete.
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COROLLARY 4.26. For every n and every k-dimensional cylinder intersection χ,∣∣∣∣∣ E
X1,...,Xn∼πk,m

[
χ(X1, . . . , Xn)

n∏
i=1

DISJ(Xi)

]∣∣∣∣∣ 6
(
ck22k

m

)n/4
, (101)

where c > 0 is an absolute constant.

PROOF. By Proposition 4.19, the left-hand side of (101) cannot decrease if we replace
πk,m with πk,m−1. As a result, we may assume that m is even (if not, replace πk,m with
πk,m−1 in what follows). As we have already pointed out in (68), in this case the left-
hand side of (101) does not exceed

Γ

(
k,
m

2
, 0, 1, 1, . . . , 1︸ ︷︷ ︸

n

)
.

The claimed bound is now immediate from Theorem 4.25.

We have reached the main result of this section, an upper bound on the repeated dis-
crepancy of set disjointness.

THEOREM 4.27. For some absolute constant c > 0 and all positive integers k,m,

rdisc(UDISJk,m) 6

(
ck2k√
m

)1/2

.

PROOF. We will prove the equivalent bound

rdisc(UDISJk,M ) 6

(
ck22k

m

)1/4

, (102)

where c > 0 is an absolute constant and M = m(2k − 1) + 2k−1. We will work with the
probability distribution πk,m, which is balanced on the domain of UDISJk,M . By the
definition of repeated discrepancy,

rdiscπk,m(UDISJk,M ) = sup
n,r∈Z+

max
χ

∣∣∣∣∣ E
...,Xi,j ,...

χ(. . . , Xi,j , . . .)

n∏
i=1

DISJ(Xi,1)

∣∣∣∣∣
1/n

, (103)

where Xi,j (i = 1, 2, . . . , n, j = 1, 2, . . . , r) are chosen independently according to πk,m
conditioned on DISJ(Xi,1) = DISJ(Xi,2) = · · · = DISJ(Xi,r) for all i. Recall that πk,m is
a convex combination of [Tk H ′k,m]� and [Fk H ′k,m]�. In particular,

Xi,2, Xi,3, . . . , Xi,r ∼ X�i,1
for each i. This means that the input to χ in (103) is derivable with no communication
from (X1,1, X2,1, . . . , Xn,1). As a result, Proposition 4.19 implies that

rdiscπk,m(UDISJk,M ) 6 sup
n∈Z+

max
χ

∣∣∣∣∣ E
X1,1,X2,1,...,Xn,1∼πk,m

χ(X1,1, X2,1, . . . , Xn,1)

n∏
i=1

DISJ(Xi,1)

∣∣∣∣∣
1/n

.

The claimed upper bound (102) is now immediate by Corollary 4.26.
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5. RANDOMIZED COMMUNICATION
In the remainder of the paper, we will derive lower bounds for multiparty communica-
tion using the reduction to polynomials given by Theorems 4.2 and 4.27. The proofs of
these applications are similar to those in [49], the main difference being the use of the
newly obtained passage from protocols to polynomials in place of the less efficient re-
duction in [49]. We start with randomized communication, which covers protocols with
small constant error as well as those with vanishing advantage over random guessing.

5.1. A master theorem
We will derive most of our results on randomized communication from a single “mas-
ter” theorem, which we are about to prove. Following [49], we present two proofs for it,
one based on the primal view of the problem and the other, on the dual view. The idea
of the primal proof is to convert a communication protocol for f ◦UDISJk,m into a low-
degree polynomial approximating f in the infinity norm. The dual proof proceeds in
the opposite direction and manipulates explicit witness objects, in the sense of Fact 2.3
and Theorem 2.10. The primal proof is probably more intuitive, whereas the dual proof
is more versatile. Each of the proofs will be used in later sections to obtain additional
results.

THEOREM 5.1. Let f be a (possibly partial) Boolean function on {0, 1}n. For every
(possibly partial) k-party communication problem G and all ε, δ > 0,

Rε(f ◦G) > degδ(f) log

(
1

c rdisc(G)

)
− log

1

δ − 2ε
, (104)

where c > 0 is an absolute constant. In particular,

Rε(f ◦UDISJk,m) >
degδ(f)

2
log

( √
m

c2kk

)
− log

1

δ − 2ε
(105)

for some absolute constant c > 0.

PROOF OF THEOREM 5.1 (primal version). Abbreviate F = f ◦G. Let π be any bal-
anced probability distribution on the domain of G and define the linear operator Lπ,n
as in Theorem 4.2, so that Lπ,nF = f on the domain of f. Corollary 2.7 gives an ap-
proximation to F by a linear combination of cylinder intersections Π =

∑
χ aχχ with∑

χ |aχ| 6 2Rε(F )/(1− ε), in the sense that ‖Π‖∞ 6 1/(1− ε) and |F − Π| 6 ε/(1− ε) on
the domain of F. It follows that ‖Lπ,nΠ‖∞ 6 1/(1− ε) and |f −Lπ,nΠ| = |Lπ,n(F −Π)| 6
ε/(1− ε) on the domain of f, whence

E(f, d− 1) 6
ε

1− ε
+ E(Lπ,nΠ, d− 1)

for any positive integer d. By Theorem 4.2,

E(Lπ,nΠ, d− 1) 6
∑
χ

|aχ|E(Lπ,nχ, d− 1) 6
2Rε(F )

1− ε
(c rdiscπ(G))d

for some absolute constant c > 0, whence

E(f, d− 1) 6
ε

1− ε
+

2Rε(F )

1− ε
(c rdiscπ(G))d.

For d = degδ(f), the left-hand side of this inequality must exceed δ, forcing (104). The
other lower bound (105) now follows immediately by Theorem 4.27.
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We now present an alternate proof, which is based directly on the generalized dis-
crepancy method.

PROOF OF THEOREM 5.1 (dual version). Again, it suffices to prove (104). We closely
follow the proof in [49] except at the end. Let X = X1 ×X2 × · · · ×Xk be the input
space of G. Let π be an arbitrary balanced probability distribution on the domain of G,
and define d = degδ(f). By Fact 2.3, there exists a function ψ : {0, 1}n → R with∑

x∈dom f

f(x)ψ(x)−
∑

x/∈dom f

|ψ(x)| > δ, (106)

‖ψ‖1 = 1, (107)

ψ̂(S) = 0, |S| < d. (108)

Define Ψ: X n → R by

Ψ(X1, . . . , Xn) = 2nψ(G∗(X1), . . . , G∗(Xn))

n∏
i=1

π(Xi)

and let F = f ◦G. Since π is balanced on the domain of G,

‖Ψ‖1 = 2n E
x∈{0,1}n

[|ψ(x)|] = 1 (109)

and analogously∑
domF

F (X1, . . . , Xn)Ψ(X1, . . . , Xn)−
∑

domF

|Ψ(X1, . . . , Xn)|

=
∑

x∈dom f

f(x)ψ(x)−
∑

x/∈dom f

|ψ(x)|

> δ, (110)

where the final step in the two derivations uses (106) and (107). It remains to bound
the inner product of Ψ with a k-dimensional cylinder intersection χ. We have

〈Ψ, χ〉 = 2n E
X1,...,Xn∼π

[ψ(G∗(X1), . . . , G∗(Xn))χ(X1, . . . , Xn)]

=
∑

x∈{0,1}n
ψ(x) E

X1∼πx1
· · · E

Xn∼πxn
χ(X1, . . . , Xn)

= 〈ψ,Lπ,nχ〉,

where π0 and π1 are the probability distributions induced by π on G−1(+1) and
G−1(−1), respectively, and Lπ,n is as defined in Theorem 4.2. Continuing,

|〈Ψ, χ〉| 6 ‖ψ‖1E(Lπ,nχ, d− 1) by (108)

6 (c rdiscπ(G))d by (107) and Theorem 4.2, (111)

where c > 0 is an absolute constant. Now (104) is immediate by (109)–(111) and the
generalized discrepancy method (Theorem 2.10).

5.2. Bounded-error communication
Specializing the master theorem to bounded-error communication gives the following
lower bound for composed communication problems in terms of 1/3-approximate de-
gree.
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THEOREM 5.2. There exists an absolute constant c > 0 such that for every (possibly
partial) Boolean function f on {0, 1}n,

R1/3(f ◦UDISJk,c4kk2) > deg1/3(f).

PROOF. Take ε = 1/7, δ = 1/3, and m = c′4kk2 in the lower bound (105) of Theo-
rem 5.1, where c′ > 0 is a sufficiently large integer constant.

As a consequence we obtain the main result of this paper, stated in the Introduction as
Theorem 1.1.

COROLLARY 5.3.

R1/3(DISJk,n) > R1/3(UDISJk,n) = Ω

(√
n

2kk

)
.

PROOF. Recall that UDISJk,nm = ÃNDn ◦ UDISJk,m for all integers n,m. Theo-
rem 2.5 shows that deg1/3(ÃNDn) = Ω(

√
n). Thus, taking f = ÃNDn in Theorem 5.2

gives R1/3(UDISJk,c4kk2n) = Ω(
√
n) for some absolute constant c > 0, which is equiva-

lent to the claimed bound.

Remark 5.4. As shown by the dual proof of Theorem 5.1, we obtain the Ω(
√
n/2kk)

lower bound for set disjointness using the generalized discrepancy method. By the
results of [38; 14], the generalized discrepancy method applies to quantum mul-
tiparty protocols as well. In particular, Corollary 5.3 in this paper gives a lower
bound of Ω(

√
n/2kk) − O(k4) on the bounded-error k-party quantum communication

complexity of set disjointness. This lower bound nearly matches the well-known up-
per bound of d

√
n/2ke logO(1) n due to Buhrman, Cleve, and Wigderson [16]. For the

reader’s convenience, we include a sketch of the protocol. Let G be any k-party com-
munication problem and f : {0, 1}n → {−1,+1} a given function. An elegant simula-
tion in [16] shows that f ◦ G has bounded-error quantum communication complex-
ity O(Q1/3(f)D(G)k2 log n), where Q1/3(f) and D(G) are the bounded-error quantum
query complexity of f and the deterministic classical communication complexity of
G, respectively. Letting DISJk,n = ANDn/2k ◦ DISJk,2k , we have Q1/3(ANDn/2k) =

O(
√
n/2k) by Grover’s search algorithm [29] and D(DISJk,2k) = O(k2) by Grolmusz’s

result [28]. Therefore, set disjointness has bounded-error quantum communication
complexity at most d

√
n/2ke logO(1) n.

Theorem 5.2 gives a lower bound on bounded-error communication complexity for com-
positions f ◦G, where G is a gadget whose size grows exponentially with the number of
parties. Following [49], we will derive an alternate lower bound, in which the gadget G
is essentially as simple as possible and in particular depends on only 2k variables. The
resulting lower bound will be in terms of approximate degree as well as two combina-
torial complexity measures, defined next. The block sensitivity of a Boolean function
f : {0, 1}n → {−1,+1}, denoted bs(f), is the maximum number of nonempty pairwise
disjoint subsets S1, S2, S3, . . . ⊆ {1, 2, . . . , n} such that f(x) 6= f(x⊕ 1S1) = f(x⊕ 1S2) =
f(x ⊕ 1S3) = · · · for some string x ∈ {0, 1}n. The decision tree complexity of f, denoted
dt(f), is the minimum depth of a decision tree for f. We have:

THEOREM 5.5. For every f : {0, 1}n → {−1,+1},

R1/3(f ◦ (ORk ∨ ANDk)) > Ω

(√
bs(f)

2kk

)
> Ω

(
dt(f)1/6

2kk

)
> Ω

(
deg1/3(f)1/6

2kk

)
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and

max{R1/3(f ◦ORk), R1/3(f ◦ ANDk)}

> Ω

(
bs(f)1/4

2kk

)
> Ω

(
dt(f)1/12

2kk

)
> Ω

(
deg1/3(f)1/12

2kk

)
.

Here ORk and ANDk refer to the k-party communication problems x 7→
∨k
i=1 xi and

x 7→
∧k
i=1 xi, where the ith party sees all the bits except for xi. Analogously, ORk ∨

ANDk refers to the k-party communication problem x 7→ x1 ∨ · · · ∨ xk ∨ (xk+1 ∧ · · · ∧
x2k) in which the ith party sees all the bits except for xi and xk+i. It is clear that
the composed communication problems f ◦ ORk, f ◦ ANDk, and f ◦ (ORk ∨ ANDk)
each have a deterministic k-party communication protocol with cost 3 dt(f). The above
theorem shows that this upper bound is reasonably close to tight, even for randomized
protocols. Note that it is impossible to go beyond Theorem 5.5 and bound R1/3(f ◦
ANDk) from below in terms of the approximate degree of f : taking f = ANDn shows
that the gap between R1/3(f ◦ ANDk) and deg1/3(f) can be as large as Θ(1) versus
Θ(
√
n). Theorem 5.5 is a quadratic improvement on the lower bounds in [49].

PROOF OF THEOREM 5.5. Identical to the proofs of Theorems 5.3 and 5.4 in [49],
with Corollary 5.3 used instead of the earlier lower bound for set disjointness
in [49].

5.3. Small-bias communication and discrepancy
We now specialize Theorem 5.1 to the setting of small-bias communication, where the
protocol is only required to produce the correct output with probability vanishingly
close to 1/2.

THEOREM 5.6. Let f be a (possibly partial) Boolean function on {0, 1}n. For every
(possibly partial) k-party communication problem G and all ε, γ > 0,

R 1
2−

ε
2
(f ◦G) > deg1−γ(f) log

(
1

c rdisc(G)

)
− log

1

ε− γ
, (112)

R 1
2−

ε
2
(f ◦G) > deg±(f) log

(
1

c rdisc(G)

)
− log

1

ε
, (113)

where c > 0 is an absolute constant. In particular,

R 1
2−

ε
2
(f ◦UDISJk,c4kk2) > deg1−γ(f)− log

1

ε− γ
, (114)

R 1
2−

ε
2
(f ◦UDISJk,c4kk2) > deg±(f)− log

1

ε
(115)

for an absolute constant c > 0.

PROOF. One obtains (112) by taking δ = 1 − γ in (104). Letting γ ↘ 0 in (112)
gives (113). The remaining two lower bounds are now immediate in view of Theo-
rem 4.27.

The method of Theorem 5.1 allows one to directly prove upper bounds on discrepancy,
a complexity measure of interest in its own right.
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THEOREM 5.7. For every (possibly partial) Boolean function f on {0, 1}n, every (pos-
sibly partial) k-party communication problem G, and every γ > 0, one has

disc(f ◦G) 6 (c rdisc(G))deg1−γ(f) + γ, (116)

disc(f ◦G) 6 (c rdisc(G))deg±(f), (117)
where c > 0 is an absolute constant. In particular,

disc(f ◦UDISJk,m) 6

(
c2kk√
m

)deg1−γ(f)/2

+ γ, (118)

disc(f ◦UDISJk,m) 6

(
c2kk√
m

)deg±(f)/2

(119)

for an absolute constant c > 0.

PROOF. The proof is virtually identical to that in [49], with the difference that we
use Theorems 4.2 and 4.27 in place of the earlier passage from protocols to polynomials.
For the reader’s convenience, we include a complete proof.

Let X = X1 × X2 × · · · × Xk be the input space of G, and let π be an arbitrary
balanced probability distribution on the domain of G. Take δ = 1− γ, d = degδ(f), and
define Ψ: X n → R as in the dual proof of Theorem 5.1. Then (109) shows that Ψ is the
pointwise product Ψ = H ·P, where H is a sign tensor and P a probability distribution.
Abbreviating F = f ◦G, we can restate (110) and (111) as∑

domF

F (X)H(X)P (X)− P (domF ) > 1− γ, (120)

discP (H) 6 (c rdiscπ(G))d, (121)
respectively, where c > 0 is an absolute constant. For every cylinder intersection χ,∣∣∣∣∣ ∑

domF

F (X)P (X)χ(X)

∣∣∣∣∣
=

∣∣∣∣∣∣〈H · P, χ〉+
∑

domF

(F (X)−H(X))P (X)χ(X)−
∑

domF

H(X)P (X)χ(X)

∣∣∣∣∣∣
6 discP (H) +

∑
domF

|F (X)−H(X)|P (X) + P (domF )

= discP (H) + P (domF )−
∑

domF

F (X)H(X)P (X) + P (domF )

< discP (H) + P (domF )− 1 + γ, (122)
where the last step uses (120). Therefore,

discP (f ◦G) = max
χ

∣∣∣∣∣ ∑
domF

F (X)P (X)χ(X)

∣∣∣∣∣+ P (domF )

< discP (H) + γ

6 (c rdiscπ(G))d + γ,

where the second step uses (122) and the third uses (121). This completes the proof
of (116). Letting γ ↘ 0, one arrives at (117). The remaining two lower bounds (118)
and (119) are now immediate by Theorem 4.27.
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COROLLARY 5.8. Consider the Boolean function

Fk,n(x) =

n∨
i=1

4kk2n2∧
j=1

(xi,j,1 ∨ xi,j,2 ∨ · · · ∨ xi,j,k),

viewed as a k-party communication problem in which the rth party (r = 1, 2, . . . , k) is
missing the bits xi,j,r for all i, j. Then

disc(Fk,n) 6 2−Ω(n),

R 1
2−

γ
2
(Fk,n) > Ω(n)− log

1

γ
(γ > 0).

PROOF. Let MPn be given by Theorem 2.4, so that deg±(MPn) = n. Let c > 0 be
the constant from (119). Since MPn ◦DISJk,c24k+1k2 is a subfunction of Fk,d4cen(x), The-
orem 5.7 yields the discrepancy bound. The communication lower bound follows by
Theorem 2.9.

Corollary 5.8 gives a hard k-party communication problem computable by an AC0 cir-
cuit family of depth 3. This depth is optimal because AC0 circuits of smaller depth have
multiparty discrepancy 1/nO(1), regardless of how the bits are assigned to the parties.
Quantitatively, the corollary gives an upper bound of exp(−Ω(n/4kk2)1/3) on the dis-
crepancy of a size-nk circuit family in AC0, considerably improving on the previous
best bound of exp(−Ω(n/4k)1/7) in [49], itself preceded by exp(−Ω(n/231k)1/29) in [10].
Corollary 5.8 settles Theorem 1.4 from the Introduction.

6. ADDITIONAL APPLICATIONS
We conclude this paper with several additional results on communication complexity.
In what follows, we give improved XOR lemmas and direct product theorems for com-
posed communication problems, as well as a quadratically stronger lower bound on
the nondeterministic and Merlin-Arthur complexity of set disjointness. Lastly, we give
applications of our work to circuit complexity.

6.1. XOR lemmas
In Section 5, we proved an Ω(

√
n/2kk) communication lower bound for solving the set

disjointness problem DISJk,n with probability of correctness 2/3. Here we consider the
communication problem DISJk,n⊗`. As one would expect, we show that its randomized
communication complexity is `·Ω(

√
n/2kk).More interestingly, we show that this lower

bound holds even for probability of correctness 1
2 +2−Ω(`).We prove an analogous result

for the unique set disjointness problem and more generally for composed problems
f ◦G, where G has small repeated discrepancy. Our proofs are nearly identical to those
in [49], the main difference being the use of Theorems 4.2 and 4.27 in place of the
earlier and less efficient passage from protocols to polynomials.

We first recall an XOR lemma for polynomial approximation, proved in [50, Cor. 5.2].

THEOREM 6.1 (Sherstov). Let f be a (possibly partial) Boolean function on {0, 1}n.
Then for some absolute constant c > 0 and every `,

deg1−2−`−1(f⊗`) > c`deg1/3(f).

Using the small-bias version of the master theorem (Theorem 5.6), we are able to im-
mediately translate this result to communication.
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THEOREM 6.2. For every (possibly partial) Boolean function f on {0, 1}n and every
(possibly partial) k-party communication problem G,

R 1
2−( 1

2 )
`+1((f ◦G)⊗`) > c`deg1/3(f) · log

c

rdisc(G)
, (123)

where c > 0 is an absolute constant. In particular,

R 1
2−( 1

2 )
`+1((f ◦UDISJk,c4kk2)⊗`) > `deg1/3(f) (124)

for an absolute constant c > 0.

PROOF. Theorem 6.1 provides an absolute constant c1 > 0 such that
deg1−2−`−1(f⊗`) > c1`deg1/3(f). Applying Theorem 5.6 to f⊗` ◦ G = (f ◦ G)⊗` with
parameters ε = 2−` and γ = 2−`−1, one arrives at

R 1
2−( 1

2 )
`+1((f ◦G)⊗`) > c1`deg1/3(f) · log

(
1

c2 rdisc(G)

)
− `− 1

for some absolute constant c2 > 0. This conclusion is logically equivalent to (123). In
view of Theorem 4.27, the other lower bound (124) is immediate from (123).

COROLLARY 6.3.

R 1
2−( 1

2 )
`+1(UDISJk,n⊗`) > ` · Ω

(√
n

2kk

)
.

PROOF. Theorem 2.5 shows that deg1/3(ÃNDn) > Ω(
√
n). Thus, letting f = ÃNDn

in (124) gives

R 1
2−( 1

2 )
`+1(UDISJk,c4kk2n

⊗`) > ` · Ω(
√
n)

for a constant c > 0, which is equivalent to the claimed bound.

The above corollary settles Theorem 1.2(i) from the Introduction. It is a quadratic
improvement on the previous best XOR lemma for multiparty set disjointness [49]. As
a consequence, we obtain stronger XOR lemmas for arbitrary compositions of the form
f ◦ (ORk ∨ ANDk), improving quadratically on the work in [49].

THEOREM 6.4. Let f : {0, 1}n → {−1,+1} be given. Then the k-party communica-
tion problem F = f ◦ (ORk ∨ ANDk) obeys

R 1
2−( 1

2 )
`+1(F⊗`) > ` · Ω

(√
bs(f)

2kk

)
> ` · Ω

(
dt(f)1/6

2kk

)
> ` · Ω

(
deg1/3(f)1/6

2kk

)
.

PROOF. The argument is identical to that in [49, Theorem 5.3]. As argued there,
any communication protocol for f ◦ (ORk ∨ ANDk) also solves UDISJk,bs(f), so that
the first inequality is immediate from the newly obtained XOR lemma for unique set
disjointness. The other two inequalities follow from general relationships among bs(f),
dt(f), and deg1/3(f); see [49, Theorem 5.3].

6.2. Direct product theorems
Given a (possibly partial) k-party communication problem F on X = X1 ×X2 × · · · ×
Xk, consider the task of simultaneously solving ` instances of F. More formally, the
communication protocol now receives ` inputs X1, . . . , X` ∈ X and outputs a string
{−1,+1}`, representing a guess at (F (X1), . . . , F (X`)). An ε-error protocol is one whose
output differs from the correct answer with probability no greater than ε on any given
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input X1, . . . , X` ∈ domF. We let Rε(F, F, . . . , F ) denote the least cost of such a protocol
for solving ` instances of F , where the number of instances will always be specified
with an underbrace.

It is also meaningful to consider communication protocols that solve almost all `
instances. In other words, the protocol receives instances X1, . . . , X` and is required to
output, with probability at least 1 − ε, a vector z ∈ {−1,+1}` such that zi = F (Xi) for
at least `−m indices i. We let

Rε,m(F, F, . . . , F︸ ︷︷ ︸
`

)

stand for the least cost of such a protocol. When referring to this formalism, we will
write that a protocol “solves with probability 1 − ε at least ` − m of the ` instances.”
The parameter m, for “mistake,” should be thought of as a small constant fraction of `.
This regime corresponds to threshold direct product theorems, as opposed to the more
restricted notion of strong direct product theorems for which m = 0. All of our results
belong to the former category. The following definition from [50] analytically formalizes
the simultaneous solution of ` instances.

Definition 6.5 (Sherstov). Let f be a (possibly partial) Boolean function on a finite
set X . A (σ,m, `)-approximant for f is any system {φz} of functions φz : X ` → R,
z ∈ {−1,+1}`, such that∑

z∈{−1,+1}`
|φz(x1, . . . , x`)| 6 1, x1, . . . , x` ∈X ,

∑
z∈{−1,+1}`
|{i:zi=−1}|6m

φ(z1f(x1),...,z`f(x`))(x1, . . . , x`) > σ, x1, . . . , x` ∈ dom f.

The following result [50, Corollary 5.7] on polynomial approximation can be thought
of as a threshold direct product theorem in that model of computation.

THEOREM 6.6 (Sherstov). There exists an absolute constant α > 0 such that for ev-
ery (possibly partial) Boolean function f on {0, 1}n and every (2−α`, α`, `)-approximant
{φz} for f,

max
z∈{−1,+1}`

{deg φz} > α`deg1/3(f).

We will now translate this result to multiparty communication complexity. Our proof
is closely analogous to that in [49, Theorem 6.7], the main difference being our use of
Theorems 4.2 and 4.27 in place of the earlier and less efficient passage from protocols
to polynomials.

THEOREM 6.7. There is an absolute constant 0 < c < 1 such that for every (possibly
partial) Boolean function f on {0, 1}n and every (possibly partial) k-party communica-
tion problem G,

R1−2−c`,c` (f ◦G, . . . , f ◦G︸ ︷︷ ︸
`

) > c`deg1/3(f) · log
c

rdisc(G)
. (125)

In particular,

R1−2−c`,c`

(
f ◦UDISJ

k,
⌈

4kk2

c

⌉ . . . , f ◦UDISJ
k,
⌈

4kk2

c

⌉︸ ︷︷ ︸
`

)
> ` deg1/3(f)
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for some absolute constant 0 < c < 1.

PROOF. Let X = X1 × X2 × · · · × Xk be the input space of G. Let α > 0 be the
absolute constant from Theorem 6.6, and let c ∈ (0, α) be a sufficiently small absolute
constant to be named later. Consider any randomized protocol Π which solves with
probability 2−c` at least (1 − c)` from among ` instances of f ◦ G, and let r denote the
cost of this protocol. For z ∈ {−1,+1}`, let Πz denote the protocol with Boolean output
which on input from (X n)` runs Π and outputs −1 if and only if Π outputs z. Let
φz : (X n)` → [0, 1] be the acceptance probability function for Πz. Then φz =

∑
aχχ by

Corollary 2.8, where the sum is over k-dimensional cylinder intersections and
∑
|aχ| 6

2r.
Now let π be any balanced probability distribution on the domain of G and define

the linear operator Lπ,`n : R(X n)` → R({0,1}n)` as in Theorem 4.2. By Theorem 4.2 and
linearity,

E(Lπ,`n φz, D − 1) 6 2r
(

rdiscπ(G)

c′

)D
for every z and every positive integer D, where c′ > 0 is an absolute constant. Abbre-
viate d = deg1/3(f) in what follows. Letting D = dα`de, we arrive at

E(Lπ,`n φz, dα`de − 1) 6 2r
(

rdiscπ(G)

c′

)dα`de
(126)

for every z. On the other hand, we claim that

E(Lπ,`n φz, dα`de − 1) >
2−c` − 2−α`

2`(1 + 2−α`)
(127)

for at least one value of z. To see this, observe that {φz} is a (2−c`, α`, `)-approximant
for f ◦ G, and analogously {Lπ,`n φz} is a (2−c`, α`, `)-approximant for f. As a result,
if every function Lπ,`n φz can be approximated within ε by a polynomial of degree less
than α`d, one obtains a ((2−c`− 2`ε)/(1 + 2`ε), α`, `)-approximant for f with degree less
than α`d. The inequality (127) now follows from Theorem 6.6, which states that f does
not admit a (2−α`, α`, `)-approximant of degree less than α`d.

Comparing (126) and (127) yields the claimed lower bound (125) on r, provided that
c = c(c′, α) > 0 is small enough. The other lower bound in the theorem statement
follows from (125) by Theorem 4.27.

Theorem 6.7 readily generalizes to compositions of the form f ◦ (ORk ∨ ANDk), as
illustrated above for XOR lemmas.

COROLLARY 6.8. For some absolute constant 0 < c < 1 and every `,

R1−2−c`,c`(UDISJk,n, . . . ,UDISJk,n︸ ︷︷ ︸
`

) > ` · Ω
(√

n

2kk

)
.

PROOF. Theorem 2.5 shows that deg1/3(ÃNDn) > Ω(
√
n). As a result, Theorem 6.7

for f = ÃNDn gives

R1−2−c`,c`

(
UDISJ

k,n
⌈

4kk2

c

⌉, . . . ,UDISJ
k,n

⌈
4kk2

c

⌉︸ ︷︷ ︸
`

)
= ` · Ω(

√
n),

which is equivalent to the claimed bound.
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This settles Theorem 1.2(ii) from the Introduction.

6.3. Nondeterministic and Merlin-Arthur communication
We now turn to the nondeterministic and Merlin-Arthur communication complexity
of set disjointness. The best lower bounds [49] prior to this paper were Ω(n/4k)1/4 for
nondeterministic protocols and Ω(n/4k)1/8 for Merlin-Arthur protocols, both of which
are tight up to a polynomial. In what follows, we prove quadratically stronger lower
bounds in both models. The proof in this paper is nearly identical to those in [24; 49],
the only difference being the passage from communication protocols to polynomials.
We use Theorems 4.2 and 4.27 for this purpose, in place of the less efficient passage in
previous works.

THEOREM 6.9. There exists an absolute constant c > 0 such that for every (possibly
partial) k-party communication problem G,

N(ANDn ◦G) > Ω

(√
n log

1

c rdisc(G)

)
, (128)

MA1/3(ANDn ◦G) > Ω

(√
n log

1

c rdisc(G)

)1/2

. (129)

In particular,

N(DISJk,n) > Ω

(√
n

2kk

)
,

MA1/3(DISJk,n) > Ω

(√
n

2kk

)1/2

.

PROOF. Define f = ANDn, F = f ◦ G, and d = deg1/3(ANDn). As shown in [24]
and [49, Theorem 7.2], there exists a function ψ : {0, 1}n → R that obeys (107), (108),
and

ψ(1, 1, . . . , 1) < −1

6
. (130)

Now fix an arbitrary balanced probability distribution π on the domain of G and define

Ψ(X1, . . . , Xn) = 2nψ(G∗(X1), . . . , G∗(Xn))

n∏
i=1

π(Xi),

as in the dual proof of Theorem 5.1. Then (109) shows that Ψ is the pointwise product
Ψ = H · P for some sign tensor H and probability distribution P. In particular, (111)
asserts that

discP (H) 6 (c rdiscπ(G))d (131)

for an absolute constant c > 0. By (130), we have ψ(x) < 0 whenever f(x) = −1, so that

P (F−1(−1) ∩H−1(+1)) = 0. (132)

Also,

P (F−1(−1) ∩H−1(−1)) = P (F−1(−1)) = |ψ(1, 1, . . . , 1)| > 1

6
, (133)

where the first step uses (132), the second step uses the fact that π is balanced on the
domain of G, and the final inequality uses (130). By Theorem 2.5,

d = Ω(
√
n). (134)
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Now (128) and (129) are immediate from (131)–(134) and Theorem 2.11.
Taking G = DISJk,c′4kk2 in (128) for a sufficiently large integer constant c′ > 1 gives

N(DISJk,c′4kk2n) > Ω

(√
n log

1

c rdisc(DISJk,c′4kk2)

)
> Ω(

√
n),

where the second inequality uses Theorem 4.27. Analogously MA1/3(DISJk,c′4kk2n) >
Ω(n1/4). These lower bounds on the nondeterministic and Merlin-Arthur complexity of
set disjointness are equivalent to those in the theorem statement.

This settles Theorem 1.3 from the Introduction.

6.4. Circuit complexity
Circuits of majority gates are a biologically inspired computational model whose study
spans several decades and several disciplines. Research has shown that majority cir-
cuits of depth 3 already are surprisingly powerful. In particular, Allender [2] proved
that depth-3 majority circuits of quasipolynomial size can simulate all of AC0, the class
of {∧,∨,¬}-circuits of constant depth and polynomial size. Allender’s result prompted a
study of the computational limitations of depth-2 majority circuits and more generally
of depth-3 majority circuits with restricted bottom fan-in. Most of the results in this
line of work exploit the following reduction to multiparty communication complexity,
where the shorthand MAJ ◦SYMM ◦ANY refers to the family of circuits with a major-
ity gate at the top, arbitrary symmetric gates at the middle level, and arbitrary gates
at the bottom.

PROPOSITION 6.10 (Håstad and Goldmann). Let f be a Boolean function com-
putable by a MAJ ◦ SYMM ◦ ANY circuit, where the top gate has fan-in m, the middle
gates have fan-in at most s, and the bottom gates have fan-in at most k − 1. Then the
k-party number-on-the-forehead communication complexity of f obeys

R 1
2−

1
2(m+1)

(f) 6 kdlog(s+ 1)e,

regardless of how the bits are assigned to the parties.

Using Håstad and Goldmann’s observation, a series of papers [17; 47; 48; 19; 10; 49]
have studied the circuit complexity of AC0 functions, culminating in a proof [49] that
MAJ◦SYMM◦ANY circuits with bottom fan-in ( 1

2 − ε) log n require exponential size to
simulate AC0 functions, for any ε > 0. This circuit lower bound comes close to matching
Allender’s simulation of AC0 by quasipolynomial-size depth-3 majority circuits, where
the bottom fan-in is logO(1) n. Table III gives a quantitative summary of this line of
research. We are able to contribute the following sharper lower bound.

THEOREM 6.11. There is an (explicitly given) read-once {∧,∨}-formula
Hk,n : {0, 1}nk → {−1,+1} of depth 3 such that any circuit of type MAJ ◦ SYMM ◦ ANY
with bottom fan-in at most k − 1 computing Hk,n has size

exp

{
1

k
· Ω
( n

4kk2

)1/3
}
.

PROOF. Define
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Table III. Lower bounds for computing functions in AC0 by circuits of type MAJ ◦ SYMM ◦ ANY with
bottom fan-in k − 1. All functions are on nk bits.

Depth Circuit lower bound Reference

3 exp{Ω(n1/3)}, k = 2 Buhrman, Vereshchagin, and de Wolf [17]
Sherstov [47; 48]

3 exp

{
Ω
( n

4k

)1/(6k2k)
}

Chattopadhyay [19]

6 exp

{
1

k
· Ω
( n

231k

)1/29
}

Beame and Huynh-Ngoc [10]

3 exp

{
1

k
· Ω
( n

4k

)1/7
}

Sherstov [49]

3 exp

{
1

k
· Ω
( n

4kk2

)1/3
}

This paper

Fk,n(x) =

n∨
i=1

4kk2n2∧
j=1

(xi,j,1 ∨ xi,j,2 ∨ · · · ∨ xi,j,k).

We interpret Fk,n as the k-party communication problem in Corollary 5.8. Let C be a
circuit of type MAJ ◦SYMM ◦ANY that computes Fk,n, where the bottom fan-in of C is
at most k − 1. Let s denote the size of C. The proof will be complete once we show that
s > 2Ω(n/k).

Since C has size s, the fan-in of the gates at the top and middle levels is bounded by
s, which in view of Proposition 6.10 gives

R 1
2−

1
2(s+1)

(Fk,n) 6 kdlog(s+ 1)e.

By Corollary 5.8, this leads to the desired lower bound: s > 2Ω(n/k).

REFERENCES
[1] A. N. Alekseichuk. On complexity of computation of partial derivatives of Boolean functions realized by

Zhegalkin polynomials. Cybernetics and Systems Analysis, 37(5):648–653, 2001.
[2] E. Allender. A note on the power of threshold circuits. In Proceedings of the Thirtieth Annual IEEE

Symposium on Foundations of Computer Science (FOCS), pages 580–584, 1989.
[3] L. Babai. Trading group theory for randomness. In Proceedings of the Seventeenth Annual ACM Sympo-

sium on Theory of Computing (STOC), pages 421–429, 1985.
[4] L. Babai, P. Frankl, and J. Simon. Complexity classes in communication complexity theory. In Proceed-

ings of the Twenty-Seventh Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 337–347, 1986.

[5] L. Babai, T. P. Hayes, and P. G. Kimmel. The cost of the missing bit: Communication complexity with
help. Combinatorica, 21(4):455–488, 2001.

[6] L. Babai and S. Moran. Arthur-Merlin games: A randomized proof system, and a hierarchy of complexity
classes. J. Comput. Syst. Sci., 36(2):254–276, 1988.

[7] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols, pseudorandom generators for logspace, and
time-space trade-offs. J. Comput. Syst. Sci., 45(2):204–232, 1992.

[8] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An information statistics approach to data
stream and communication complexity. J. Comput. Syst. Sci., 68(4):702–732, 2004.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



Communication Lower Bounds Using Directional Derivatives A:71

[9] B. Barak, M. Hardt, I. Haviv, A. Rao, O. Regev, and D. Steurer. Rounding parallel repetitions of unique
games. In Proceedings of the Forty-Ninth Annual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), pages 374–383, 2008.

[10] P. Beame and D.-T. Huynh-Ngoc. Multiparty communication complexity and threshold circuit com-
plexity of AC0. In Proceedings of the Fiftieth Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 53–62, 2009.

[11] P. Beame, T. Pitassi, N. Segerlind, and A. Wigderson. A strong direct product theorem for corruption
and the multiparty communication complexity of disjointness. Computational Complexity, 15(4):391–
432, 2006.

[12] A. Ben-Aroya, O. Regev, and R. de Wolf. A hypercontractive inequality for matrix-valued functions
with applications to quantum computing and LDCs. In Proceedings of the Forty-Ninth Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 477–486, 2008.

[13] E. Boros and P. L. Hammer. Pseudo-Boolean optimization. Discrete Applied Mathematics, 123(1-
3):155–225, 2002.

[14] J. Briet, H. Buhrman, T. Lee, and T. Vidick. Multiplayer XOR games and quantum communication
complexity with clique-wise entanglement. Manuscript at http://arxiv.org/abs/0911.4007, 2009.

[15] H. Buhrman, R. Cleve, R. de Wolf, and C. Zalka. Bounds for small-error and zero-error quantum algo-
rithms. In Proceedings of the Fortieth Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 358–368, 1999.

[16] H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs. classical communication and computation. In
Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing (STOC), pages 63–68,
1998.

[17] H. Buhrman, N. K. Vereshchagin, and R. de Wolf. On computation and communication with small bias.
In Proceedings of the Twenty-Second Annual IEEE Conference on Computational Complexity (CCC),
pages 24–32, 2007.

[18] A. K. Chandra, M. L. Furst, and R. J. Lipton. Multi-party protocols. In Proceedings of the Fifteenth
Annual ACM Symposium on Theory of Computing (STOC), pages 94–99, 1983.

[19] A. Chattopadhyay. Discrepancy and the power of bottom fan-in in depth-three circuits. In Proceedings
of the Forty-Eighth Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
449–458, 2007.

[20] A. Chattopadhyay. Circuits, Communication, and Polynomials. PhD thesis, McGill University, 2008.
[21] A. Chattopadhyay and A. Ada. Multiparty communication complexity of disjointness. In Electronic

Colloquium on Computational Complexity (ECCC), January 2008. Report TR08-002.
[22] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic commu-

nication complexity. SIAM J. Comput., 17(2):230–261, 1988.
[23] Á. M. del Rey, G. R. Sánchez, and A. de la Villa Cuenca. On the Boolean partial derivatives and their

composition. Appl. Math. Lett., 25(4):739–744, 2012.
[24] D. Gavinsky and A. A. Sherstov. A separation of NP and coNP in multiparty communication complexity.

Theory of Computing, 6(10):227–245, 2010.
[25] P. Gopalan, A. Shpilka, and S. Lovett. The complexity of Boolean functions in different characteristics.

Computational Complexity, 19(2):235–263, 2010.
[26] B. Green. Finite field models in additive combinatorics. Surveys in Combinatorics, London Math. Soc.

Lecture Notes, 327:1–27, 2005.
[27] B. Green and T. Tao. An inverse theorem for the Gowers U3-norm, with applications. Proc. Edinburgh

Math. Soc., 51(1):73–153, 2008.
[28] V. Grolmusz. The BNS lower bound for multi-party protocols in nearly optimal. Inf. Comput.,

112(1):51–54, 1994.
[29] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-

Eighth Annual ACM Symposium on Theory of Computing (STOC), pages 212–219, 1996.
[30] J. Håstad and M. Goldmann. On the power of small-depth threshold circuits. Computational Complex-

ity, 1:113–129, 1991.
[31] R. Jain, H. Klauck, and A. Nayak. Direct product theorems for classical communication complexity via

subdistribution bounds. In Proceedings of the Fortieth Annual ACM Symposium on Theory of Comput-
ing (STOC), pages 599–608, 2008.

[32] B. Kalyanasundaram and G. Schnitger. The probabilistic communication complexity of set intersection.
SIAM J. Discrete Math., 5(4):545–557, 1992.

[33] H. Klauck. Lower bounds for quantum communication complexity. In Proceedings of the Forty-Second
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 288–297, 2001.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

http://arxiv.org/abs/0911.4007


A:72 Alexander A. Sherstov

[34] H. Klauck. A strong direct product theorem for disjointness. In Proceedings of the Forty-Second Annual
ACM Symposium on Theory of Computing (STOC), pages 77–86, 2010.

[35] H. Klauck, R. Špalek, and R. de Wolf. Quantum and classical strong direct product theorems and
optimal time-space tradeoffs. SIAM J. Comput., 36(5):1472–1493, 2007.

[36] E. Kushilevitz and N. Nisan. Communication complexity. Cambridge University Press, 1997.
[37] L. Le Cam and G. L. Yang. Asymptotics in Statistics: Some Basic Concepts. Springer, 2nd edition, 2000.
[38] T. Lee, G. Schechtman, and A. Shraibman. Lower bounds on quantum multiparty communication com-

plexity. In Proceedings of the Twenty-Fourth Annual IEEE Conference on Computational Complexity
(CCC), pages 254–262, 2009.

[39] T. Lee and A. Shraibman. Disjointness is hard in the multiparty number-on-the-forehead model. Com-
putational Complexity, 18(2):309–336, 2009.

[40] N. Linial and A. Shraibman. Lower bounds in communication complexity based on factorization norms.
Random Struct. Algorithms, 34(3):368–394, 2009.

[41] M. L. Minsky and S. A. Papert. Perceptrons: An Introduction to Computational Geometry. MIT Press,
Cambridge, Mass., 1969.

[42] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. Computational
Complexity, 4:301–313, 1994.

[43] D. Pollard. A User’s Guide to Measure Theoretic Probability. Cambridge University Press, 2001.
[44] R. Raz. A counterexample to strong parallel repetition. SIAM J. Comput., 40(3):771–777, 2011.
[45] A. A. Razborov. On the distributional complexity of disjointness. Theor. Comput. Sci., 106(2):385–390,

1992.
[46] A. A. Razborov. Quantum communication complexity of symmetric predicates. Izvestiya of the Russian

Academy of Sciences, Mathematics, 67:145–159, 2002.
[47] A. A. Sherstov. Separating AC0 from depth-2 majority circuits. SIAM J. Comput., 38(6):2113–2129,

2009. Preliminary version in Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of
Computing (STOC), 2007.

[48] A. A. Sherstov. The pattern matrix method. SIAM J. Comput., 40(6):1969–2000, 2011. Preliminary
version in Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing (STOC), 2008.

[49] A. A. Sherstov. The multiparty communication complexity of set disjointness. In Proceedings of the
Forty-Fourth Annual ACM Symposium on Theory of Computing (STOC), pages 525–544, 2012.

[50] A. A. Sherstov. Strong direct product theorems for quantum communication and query complexity.
SIAM J. Comput., 41(5):1122–1165, 2012. Preliminary version in Proceedings of the Forty-Third An-
nual ACM Symposium on Theory of Computing (STOC), 2011.

[51] Y. Shi and Y. Zhu. Quantum communication complexity of block-composed functions. Quantum Infor-
mation & Computation, 9(5–6):444–460, 2009.

[52] P. Tesson. Computational complexity questions related to finite monoids and semigroups. PhD thesis,
McGill University, 2003.

[53] P. S. Thomas W. Cusick. Cryptographic Boolean Functions and Applications. Academic Press, 2009.
[54] G. Y. Vichniac. Boolean derivatives on cellular automata. Physica D, 45:63–74, 1990.
[55] E. Viola and A. Wigderson. One-way multiparty communication lower bound for pointer jumping with

applications. Combinatorica, 29(6):719–743, 2009.
[56] A. C.-C. Yao. Theory and applications of trapdoor functions. In Proceedings of the Twenty-Third Annual

IEEE Symposium on Foundations of Computer Science (FOCS), pages 80–91, 1982.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.


	Introduction
	Preliminaries
	Norms and products
	Matrices
	Probability
	Fourier transform
	Approximation by polynomials
	Multiparty communication
	Discrepancy and generalized discrepancy

	Directional derivatives and approximation
	Definition and basic properties
	Elementary dual functions
	Symmetric extensions
	Bounding the global error

	Repeated discrepancy of set disjointness
	Key distributions and definitions
	Technical lemmas
	Discrepancy analysis

	Randomized communication
	A master theorem 
	Bounded-error communication
	Small-bias communication and discrepancy 

	Additional applications
	XOR lemmas
	Direct product theorems
	Nondeterministic and Merlin-Arthur communication
	Circuit complexity


