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Abstract. Let A1, . . . , An be events in a probability space. The ap-
proximate inclusion-exclusion problem, due to Linial and Nisan (1990),
is to estimate P[A1 ∪ · · · ∪ An] given P[

⋂
i∈S Ai] for |S| 6 k. Kahn et

al. (1996) solved this problem optimally for each k. We study the follow-
ing more general question: estimate P[f(A1, . . . , An)] given P[

⋂
i∈S Ai]

for |S| 6 k, where f : {0, 1}n → {0, 1} is a given symmetric function.
We solve this general problem for every f and k, giving an algorithm
that runs in polynomial time and achieves an approximation error that
is essentially optimal. We prove this optimal error to be 2−Θ̃(k2/n) for k
above a certain threshold, and Θ(1) otherwise.
As part of our solution, we analyze, for every nonconstant symmetric
f : {0, 1}n → {0, 1} and every ε ∈ [2−n, 1/3], the least degree degε(f)
of a polynomial that approximates f pointwise within ε. We show that
degε(f) = Θ̃(deg1/3(f) +

√
n log(1/ε)), where deg1/3(f) is well-known

for each f. Previously, the answer for vanishing ε was known only for
f = OR. We construct the approximating polynomial explicitly for all
f and ε.
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1. Introduction

Let A1, A2, . . . , An be events in a probability space. The well-known inclusion-
exclusion principle allows one to compute the probability of A1∪· · ·∪An using
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the probabilities of various intersections of A1, A2, . . . , An:

P[A1 ∪ · · · ∪ An] =
∑
i

P[Ai]−
∑
i<j

P[Ai ∩ Aj] +
∑
i<j<k

P[Ai ∩ Aj ∩ Ak]− · · ·

+(−1)n+1 P[A1 ∩ · · · ∩ An].

A moment’s reflection shows that knowledge of every term in this summation
is necessary in general for an exact answer (Linial & Nisan 1990). It is
therefore natural to wonder if one can closely approximate P[

⋃
Ai] using the

probabilities of intersections of up to k events, where k � n. This problem,
due to Linial and Nisan (1990), is known as approximate inclusion-exclusion.
Linial and Nisan studied this question and gave near-tight bounds on the least
approximation error as a function of k. A follow-up article by Kahn, Linial,
and Samorodnitsky (1996) improved those bounds to optimal.

While A1 ∪ · · · ∪ An is an important event, it is certainly not the only one
of interest. For example, we might be interested in the probability that most
of the events A1, . . . , An occur, or the probability that an odd number of the
events from among A1, . . . , An occur. More generally, let f : {0, 1}n → {0, 1}
be a given Boolean function. The problem of interest to us is that of estimating

P[f(A1, . . . , An)]

given P[
⋂
i∈S Ai] for |S| 6 k. Our approach is different from the previous

methods (Kahn et al. 1996; Linial & Nisan 1990), which are specialized to
the case f = OR. Our first contribution is to show that the inclusion/exclusion
problem for a given f is exactly equivalent to a classical approximation problem.
Specifically, define

δ∗(f, k) =
1

2
sup

{
P
P1

[f(A1, . . . , An)] − P
P2

[f(B1, . . . , Bn)]

}
,

where the supremum is over all probability spaces P1 and P2, over all events
A1, . . . , An in P1, and over all events B1, . . . , Bn in P2, such that

P
P1

[⋂
i∈S

Ai

]
= P

P2

[⋂
i∈S

Bi

]
for |S| 6 k.

In words, the quantity δ∗(f, k) is the optimal error achievable in approximating
P[f(A1, . . . , An)] in principle, information-theoretically, if unlimited computing
power is available. We prove:
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Theorem 1.1. Let f : {0, 1}n → {0, 1} be arbitrary and 0 6 k 6 n. Then

δ∗(f, k) = min
φ
‖f − φ‖∞,

where the minimum is over polynomials φ(x1, . . . , xn) of degree up to k.

Theorem 1.1 states that the approximate inclusion/exclusion problem for a
given f is equivalent to the problem of approximating f by a multivariate poly-
nomial of degree up to k. We are able to solve the approximation problem for
all symmetric functions, thereby solving the corresponding inclusion/exclusion
problem. The next three subsections give a detailed description of our results.

1.1. Inclusion/exclusion. Let f be a symmetric function, i.e., f(x) =
D(x1 + · · · + xn) for some predicate D : {0, 1, . . . , n} → {0, 1}. Our results
are in terms of the quantities

`0(D) ∈ {0, 1, . . . , bn/2c}, `1(D) ∈ {0, 1, . . . , dn/2e},

defined as the smallest integers such that D is constant in [`0(D), n − `1(D)].
These quantities arise frequently in the study of symmetric functions (Paturi
1992; Razborov 2002). The figure below illustrates this definition for a typical
predicate D:

1 2 n/2 n

!0(D) !1(D)

The key point is that `0(D)+ `1(D) is large if and only if D changes value near
the middle of the range. The first question that we settle is precisely how large
k needs to be for a good approximation to exist. Recall that the Θ̃ notation
indicates equality within a polylogarithmic factor. We prove:
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Theorem 1.2 (Existence of a good approximation). Let f(x) = D(x1 + · · ·+
xn), where D : {0, 1, . . . , n} → {0, 1} is a given nonconstant predicate. Put
` = `0(D) + `1(D). Then

δ∗(f, k) =

Θ(1), if k 6 Θ(
√
n`),

2−Θ̃(k2/n), if Θ̃(
√
n`) 6 k 6 Θ(n).

Theorem 1.2 states that a good approximation exists if and only if k > Θ̃(
√
n`),

where ` = `0(D) + `1(D). We now give an efficient way to actually construct a
near-optimal approximation for any given D and k.

Theorem 1.3 (Efficient approximation scheme). Let f(x) = D(x1+ · · ·+xn),
where D : {0, 1, . . . , n} → {0, 1} is a given nonconstant predicate. Put ` =
`0(D) + `1(D). Then for every k > Θ̃(

√
n`) there are reals

a0, a1, . . . , ak,

computable in time poly(n), such that∣∣∣∣∣∣ P[f(A1, . . . , An)] −
k∑
j=0

aj
∑

S:|S|=j

P

[⋂
i∈S

Ai

] ∣∣∣∣∣∣ 6 2−Θ̃(k2/n)

for any events A1, . . . , An in any probability space.

Theorem 1.3 gives the desired approximation algorithm. Note that it is not
necessary to know the individual probabilities P[

⋂
i∈S Ai]; it suffices to know

the k + 1 sums ∑
S:|S|=j

P

[⋂
i∈S

Ai

]
, j = 0, 1, . . . , k.

Our proof takes inspiration from the elegant papers of Linial and
Nisan (1990) and Kahn et al. (1996), who obtained analogues of Theorems 1.2
and 1.3 for the special case f = OR. Namely, we adopt the high-level strategy
of these works, which is to reduce the original problem via linear-programming
duality to a question in approximation theory. Implementing this strategy,
however, requires new and stronger techniques.

First of all, the linear-programming reductions of Linial & Nisan (1990)
and Kahn et al. (1996) are restricted to f = OR. To handle arbitrary
Boolean functions f, we start with a different and more versatile tool (Ioffe &
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Tikhomirov 1968), which gives a certain equivalence between approximation
and orthogonality in Euclidean space. With some work, this yields Theo-
rem 1.1, which is the desired reduction from the original problem to a question
in approximation theory. The new question amounts to determining, for each
predicate D and each ε ∈ [2−n, 1/3], the least degree of a polynomial that
approximates D pointwise within ε, and then constructing such a polynomial
explicitly. Previously, such a construction was known only for D = OR
(Buhrman et al. 1999; Kahn et al. 1996). We solve the general case for all
D and ε, with details to follow next.

1.2. Approximation by polynomials. As just outlined, a key part of
our proof is the following result of independent interest. For a predicate
D : {0, 1, . . . , n} → {0, 1}, its ε-approximate degree degε(D) is the smallest
degree of a univariate real polynomial p that approximates D pointwise to
within ε:

max
t=0,1,...,n

|D(t)− p(t)| 6 ε.

The approximation of predicates is synonymous with the approximation of
symmetric Boolean functions. Namely, it is well-known (Minsky & Papert
1988) that degε(D) is the least degree of a multivariate polynomial φ(x1, . . . , xn)
with

max
x∈{0,1}n

|f(x)− φ(x)| 6 ε,

where f(x) = D(x1 + · · · + xn) is the symmetric Boolean function that
corresponds to D. We prove:

Theorem 1.4 (Approximate degree of predicates). Let D : {0, 1, . . . , n} →
{0, 1} be a nonconstant predicate. Let ε ∈ [2−n, 1/3]. Then

degε(D) = Θ̃(
√
n(`0(D) + `1(D)) +

√
n log(1/ε)),

where the Θ̃ notation suppresses log n factors. Furthermore, the approximating
polynomial for each D and ε is given explicitly.

In words, Theorem 1.4 rather fully characterizes the `∞-approximation of
symmetric Boolean functions. Approximation of Boolean functions by real
polynomials in the `∞ norm is a fundamental subject in complexity theory, and
several studies have been made of the approximate degree of selected Boolean
functions (Aaronson & Shi 2004; Paturi 1992). In addition to its intrinsic value
as a subject in complexity theory, `∞-approximation has enabled substantial
progress on several important problems. Perhaps the most illustrative example
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is the study of quantum communication and query complexity (Beals et al.
2001; Buhrman et al. 1999; Razborov 2002; Sherstov 2008a; Shi & Zhu 2007).
More recently, `∞-approximation has played an increasing role in the study
of classical communication (Buhrman et al. 2007; Sherstov 2008b). Another
application is computational learning theory (Kalai et al. 2005; Klivans &
Servedio 2004; Klivans & Sherstov 2007), where `∞-approximation has con-
tributed both upper bounds and lower bounds. Finally, the inclusion/exclusion
problem (Kahn et al. 1996; Linial & Nisan 1990) illustrates the use of `∞-
approximation in algorithm design.

Theorem 1.4 is a broad generalization of several earlier results in the
literature. The first of these is due to Paturi (1992), who showed that

deg1/3(D) = Θ(
√
n(`0(D) + `1(D))) for all D.

Unfortunately, Paturi’s result and its proof give no insight into the behavior
of the ε-approximate degree for vanishing ε. Another relevant result is due to
Kahn et al. (1996), who conducted an in-depth study of the predicate D = OR,
defined as usual by OR(i) = 1 ⇔ i > 1. Kahn et al. showed that

degε(OR) = Θ̃(
√
n log(1/ε)) (2−n 6 ε 6 1/3),

where the Θ̃ notation hides log n factors. Using different techniques, Buhrman
et al. (1999) gave the final, exact answer for D = OR:

degε(OR) = Θ(
√
n log(1/ε)) (2−n 6 ε 6 1/3).

Thus, our work generalizes the above results to every predicate and every error
rate ε ∈ [2−n, 1/3].

Theorem 1.4 has another, more revealing interpretation. In view of Paturi’s
work, it can be restated as:

(1.5) degε(D) = Θ̃(deg1/3(D) +
√
n log(1/ε)) (2−n 6 ε 6 1/3),

where D is nonconstant. In words, past a certain threshold, the dependence
of the ε-approximate degree on ε is essentially the same for all nonconstant
predicates. This threshold varies from one predicate to another and equals the
degree required for a 1

3
-approximation.

Recent progress. Equation (1.5) in this paper determines the ε-approximate
degree of every predicate to within logarithmic factors. Ronald de Wolf (2008)
has recently improved our bounds to a final, tight answer: degε(D) =



Approximate Inclusion-Exclusion 7

Θ(deg1/3(D) +
√
n log(1/ε)) for every nonconstant D and every ε ∈ [2−n, 1/3].

In view of Theorem 1.1, this automatically leads to sharper bounds for the
inclusion/exclusion problem. De Wolf’s argument, short and elegant, is based
on quantum query complexity.

Proof outline. Our proof of Theorem 1.4 combines the work of Paturi
and Kahn et al. with new uses of Chebyshev polynomials and interpolation
techniques. We defer a more technical overview to Section 3. Although it may
seem that Theorem 1.4 has a more direct proof, the simpler ideas that come to
mind turn out to be useless. For example, an obvious approach is to start with
Paturi’s 1

3
-approximating polynomial p for the given predicate D and boost

its accuracy by composing it with another polynomial, q. Let ε ∈ (0, 1/3) be
the desired accuracy. For this approach to work, the polynomial q must send
[−1

3
, 1

3
] → [−ε, ε] and [2

3
, 4

3
] → [1 − ε, 1 + ε]. Up to translation/scaling, this

is equivalent to requiring that q approximate the sign function within ε on
the interval [−1,−1 + α] ∪ [1 − α, 1] for some constant α ∈ (0, 1). Eremenko
and Yuditskii (2007) show that the least degree of such a polynomial q is
Θ(log(1/ε)). Taking p(t) to be Paturi’s approximating polynomial for the given
predicate D, we see that the composition q(p(t)) has degree

Θ(
√
n(`0(D) + `1(D)) log(1/ε)).

This is much worse than the near-optimal bound that we achieve, namely,

Θ̃(
√
n(`0(D) + `1(D)) +

√
n log(1/ε)).

Another tempting strategy is to view a given predicate D : {0, 1, . . . , n} →
{0, 1} as a continuous (piecewise-linear) function on [0, n] and then apply
Jackson’s fundamental theorems on uniform approximation (Jackson 1930).
Unfortunately, the continuous approximation problem is hard even for the
following simple predicate:

1 2 n/2 n

1

0
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It is obvious that an ε-approximating polynomial for this continuous function
yields (after translation) an ε-approximating polynomial of the same degree for
|x| on [−1, 1]. In his classical work, Bernstein (1914) proves that the latter
polynomial requires degree Ω(1/ε). In particular, this approach is entirely
useless once ε 6 Θ(1/n). Yet the predicate in question has an approximator of
degree Θ̃(

√
n), as we show. Clearly, the key is to exploit the discrete nature

of the problem: we are merely seeking an approximation over the finite set of
points {0, 1, . . . , n}, rather than the entire interval [0, n].

1.3. Agnostic learning. The proof technique of our main result addition-
ally gives new lower bounds for agnostic learning. The agnostic model, due to
Kearns et al. (1994), is among the most realistic ones in computational learning
theory. Designing efficient algorithms in this model is difficult even for the
simplest concept classes. Nevertheless, progress on proving lower bounds has
also been scarce. Some recent lower bounds are Klivans & Sherstov (2007);
Tarui & Tsukiji (1999).

A summary of this model is as follows. Let C be a concept class, i.e., some
set of Boolean functions {0, 1}n → {0, 1}. There is an unknown distribution λ
on {0, 1}n × {0, 1}, and the learner receives training examples(

x(1), y(1)
)
,
(
x(2), y(2)

)
, . . . ,

(
x(m), y(m)

)
,

independent and identically distributed according to λ. Let

opt = max
f∈C

{
P

(x,y)∼λ
[f(x) = y]

}
be the performance of the function f ∗ ∈ C that best agrees with the training
data. The learner needs to produce a hypothesis h : {0, 1}n → {0, 1} that
agrees with the training data almost as well as f ∗:

P
(x,y)∼λ

[h(x) = y] > opt− ε,

where ε is an error parameter fixed in advance. As usual, the goal is to find h
efficiently.

A natural approach to learning in this and other models is to consider
only those hypotheses that depend on few variables. One tests each such
hypothesis against the training data and outputs the one with the least error.
This technique is attractive in that the hypothesis space is small and well-
structured, making it possible to efficiently identify the best approximation to
the observed examples.
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The question then becomes, what advantage over random guessing can such
hypotheses guarantee? We prove that, when learning symmetric functions, one
is forced to use hypotheses that depend on many variables: all others will
generally work no better than random guessing.

Theorem 1.6 (Lower bound for agnostic learning). Let D : {0, 1, . . . , n} →
{0, 1} be a predicate and f(x) = D(x1 + · · · + xn). Let ε > 0 be an arbitrary
constant. Then there is a distribution λ on {0, 1}n × {0, 1} such that

P
(x,y)∼λ

[f(x) = y] > 1− ε

and

P
(x,y)∼λ

[g(x) = y] =
1

2

for every g : {0, 1}n → {0, 1} that depends on at most c
√
n(`0(D) + `1(D))

variables, where c = c(ε) is a constant.

To place Theorem 1.6 in the framework of agnostic learning, consider any
concept class C that contains many symmetric functions. For example, we
could fix a symmetric function f : {0, 1}n → {0, 1} and consider the concept
class C of

(
2n
n

)
functions, each being a copy of f applied to a separate set of n

variables from among x1, x2, . . . , x2n:

C =
{
f(xi1 , xi2 , . . . , xin) : 1 6 i1 < i2 < · · · < in 6 2n

}
.

Theorem 1.6 now supplies scenarios when some member of C matches the
training data almost perfectly (to within any ε > 0), and yet every hypothesis
that depends on few variables is completely useless.

We also show that the bound on the number of variables in Theorem 1.6
is optimal to within a multiplicative constant (see Theorem 5.5). Prior to our
work, Tarui and Tsukiji (1999) obtained the special case of Theorem 1.6 for
f = OR.

2. Preliminaries

A Boolean function is a mapping {0, 1}n → {0, 1}. A predicate is a mapping
{0, 1, . . . , n} → {0, 1}. The notation [n] stands for the set {1, 2, . . . , n}. The
symbol Pk stands for the set of all univariate real polynomials of degree up to
k. For a finite set X and a function φ : X → R, we define

‖φ‖∞ = max
x∈X

|φ(x)|.
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We now recall the Fourier transform on {0, 1}n. Consider the vector space
of functions {0, 1}n → R, equipped with the inner product

〈f, g〉 = 2−n
∑

x∈{0,1}n

f(x)g(x).

For S ⊆ [n], define χS : {0, 1}n → {−1,+1} by

χS(x) = (−1)
P

i∈S xi .

Then {χS}S⊆[n] is an orthonormal basis for the inner-product space in question.
As a result, every function f : {0, 1}n → R has a unique Fourier representation

f(x) =
∑
S⊆[n]

f̂(S)χS(x),

where f̂(S) = 〈f, χS〉. The reals f̂(S) are called the Fourier coefficients of f.

2.1. Approximation vs. orthogonality. Crucial to our work is a classical
result from approximation theory (Ioffe & Tikhomirov 1968), recently used
by the author in a different context (Sherstov 2008a). This result establishes
an equivalence between approximation and orthogonality in Euclidean space.
Relevant definitions and statements from Sherstov (2008a) follow.

Let X be a finite set. Consider RX , the linear space of functions X → R.
For φ ∈ RX , recall the notation ‖φ‖∞ = maxx∈X |φ(x)|. Then (RX , ‖ · ‖∞) is a
real normed linear space.

Definition 2.1 (Least error). For f : X → R and Φ ⊆ RX , define

ε∗(f,Φ) = min
φ∈span(Φ)

‖f − φ‖∞.

In words, ε∗(f,Φ) is the least error in an approximation of f by a linear
combination of functions in Φ. Since span(Φ) has finite dimension, a best
approximation to f out of span(Φ) always exists (Rivlin 1981, Thm. I.1),
justifying our use of “min” instead of “inf” in the above definition.

We now introduce a closely related quantity, γ∗(f,Φ), that measures how
well f correlates with a real function that is orthogonal to all of Φ.
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Definition 2.2 (Modulus of orthogonality). LetX be a finite set, f : X → R,
and Φ ⊆ RX . The modulus of orthogonality of f with respect to Φ is:

(2.3) γ∗(f,Φ) = max
ψ

{∑
x∈X

f(x)ψ(x)

}
,

where the maximum is over all ψ : X → R such that
∑

x∈X |ψ(x)| 6 1 and∑
x∈X φ(x)ψ(x) = 0 for all φ ∈ Φ.

The maximization in (2.3) is over a nonempty compact set that contains ψ = 0.
Also, the use of “max” instead of “sup” is legitimate because (2.3) maximizes
a continuous function over a compact set. To summarize, the modulus of
orthogonality is a well-defined nonnegative real number for every function
f : X → R.

A key fact is that the least error and the modulus of orthogonality are
always equal:

Theorem 2.4. Let X be a finite set, Φ ⊆ RX , and f : X → R. Then

ε∗(f,Φ) = γ∗(f,Φ).

For the reader’s convenience, we give a short and elementary proof of
Theorem 2.4. In much greater generality, it is a classical result from functional
analysis, due to Ioffe and Tikhomirov (1968). Proofs in the context of a
Banach space are available in recent textbooks (DeVore & Lorentz 1993,
p. 61, Thm. 1.3).

Proof (of Theorem 2.4). The theorem holds trivially when span(Φ) = {0}.
In the contrary case, let φ1, . . . , φk be a basis for span(Φ). Our first observation
is that ε∗(f,Φ) is the optimum of the following linear program in the variables
ε, α1, . . . , αk:

minimize: ε

subject to:

∣∣∣∣∣f(x)−
k∑
i=1

αiφi(x)

∣∣∣∣∣ 6 ε for each x ∈ X,

αi ∈ R for each i,

ε > 0.
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Standard manipulations reveal the dual:

maximize:
∑
x∈X

βxf(x)

subject to:
∑
x∈X

|βx| 6 1,∑
x∈X

βxφi(x) = 0 for each i,

βx ∈ R for each x ∈ X.

Both programs are clearly feasible and thus have the same finite optimum.
We have already observed that the optimum of first program is ε∗(f,Φ). Since
φ1, . . . , φk form a basis for span(Φ), the optimum of the second program is by
definition γ∗(f,Φ). �

2.2. Approximation by polynomials. Let f : {0, 1}n → R. As we saw
above, any such function f has an exact representation as a linear combination
of χS, where S ⊆ [n]. A fundamental question to ask is how closely f can be
approximated by a linear combination of functions χS with |S| small.

Definition 2.5 (Approximate degree of functions). Let f : {0, 1}n → R and
ε > 0. The ε-approximate degree degε(f) of f is the minimum integer k, 0 6
k 6 n, for which there exists φ ∈ span{χS : |S| 6 k} with

max
x∈{0,1}n

|f(x)− φ(x)| 6 ε.

We will be primarily interested in the approximate degree of Boolean
functions. As a first observation, degε(f) = degε(¬f) for all such functions
and all ε > 0. Second, degε(f) is not substantially affected by the choice of a
constant ε ∈ (0, 1/2). More precisely, we have:

Proposition 2.6 (Folklore). Let f : {0, 1}n → {0, 1} be arbitrary, ε a con-
stant with 0 < ε < 1/2. Then

degε(f) = Θ(deg1/3(f)).

Proof (folklore). Assume that ε 6 1/3; the case ε ∈ (1/3, 1/2) has a closely
analogous proof, and we omit it. Put k = deg1/3(f) and fix φ ∈ span{χS :
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|S| 6 k} such that maxx∈{0,1}n |f(x) − φ(x)| 6 1/3. By basic approximation
theory (Rivlin 1981, Cor. 1.4.1), there exists a univariate polynomial p of degree
O(1/ε) that sends [−1

3
, 1

3
] → [−ε, ε] and [2

3
, 4

3
] → [1− ε, 1 + ε]. Then p(φ(x)) is

the sought approximator of f. �

In view of Proposition 2.6, the convention is to work with deg1/3(f) by de-
fault. Determining this quantity for a given Boolean function f can be difficult.
There is, however, a family of Boolean functions whose approximate degree is
analytically manageable. This is the family of symmetric Boolean functions,
i.e., functions f : {0, 1}n → {0, 1} whose value f(x) is uniquely determined by
x1 + · · · + xn. Equivalently, a Boolean function f is symmetric if and only
if f(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n)) for all inputs x ∈ {0, 1}n and
all permutations σ : [n] → [n]. Note that there is a one-to-one correspondence
between predicates and symmetric Boolean functions. Namely, one associates
a predicate D with the symmetric function f(x) = D(x1 + · · ·+ xn). To carry
our discussion further, we extend the notion of approximation to predicates.

Definition 2.7. For D : {0, 1, . . . , n} → {0, 1}, define the ε-approximate
degree degε(D) to be the minimum degree of a univariate real polynomial p
with

max
i=0,1,...,n

|D(i)− p(i)| 6 ε.

Analyzing the approximate degree of predicates is a much simpler task. It is
therefore fortunate that the ε-approximate degree of a symmetric function is the
same as the ε-approximate degree of its associated predicate. This equivalence
follows from the symmetrization argument of Minsky and Papert (1988). Before
we can state this theorem, we introduce some helpful notation.

Definition 2.8. For f : {0, 1}n → {0, 1} and D : {0, 1, . . . , n} → {0, 1},
define

ε∗(f, {χS : |S| 6 k}) = min
φ∈span{χS :|S|6k}

max
x∈{0,1}n

|f(x)− φ(x)|,

ε∗(D,Pk) = min
p∈Pk

max
i=0,1,...,n

|D(i)− p(i)|.

Definition 2.8 merely instantiates the symbol ε∗(φ,Φ) from Section 2.1 to the
special cases φ = f and φ = D. We have:



14 Alexander A. Sherstov

Proposition 2.9 (Minsky & Papert 1988). Let f : {0, 1}n → {0, 1} be a
symmetric Boolean function. Let D be the predicate with f(x) ≡ D(x1 +
· · ·+ xn). Then

ε∗(f, {χS : |S| 6 k}) = ε∗(D,Pk) for all k = 0, 1, . . . , n.

In particular,

degε(f) = degε(D) for all ε > 0.

For a symmetric f : {0, 1}n → {0, 1}, put `0(f) = `0(D) and `1(f) = `1(D),
where `0(D), `1(D) were defined in the Introduction and D is the predicate
for which f(x) ≡ D(x1 + · · · + xn). Using Proposition 2.9 and tools from
approximation theory, Paturi (1992) gave an asymptotically tight estimate of
deg1/3(f) for every symmetric Boolean function:

Theorem 2.10 (Paturi 1992). Let f : {0, 1}n → {0, 1} be a symmetric func-
tion. Then

deg1/3(f) = Θ(
√
n`0(f) + n`1(f)).

In words, Theorem 2.10 states that the 1
3
-approximate degree is Ω(

√
n) for every

nonconstant predicate and is higher for those predicates that change value near
the middle of the range {0, 1, . . . , n}.

3. Best approximation by polynomials

The purpose of this section is to establish Theorem 1.4. We prove the upper
and lower bounds in this result separately, as Lemma 3.11 and Lemma 3.14, in
the two subsections that follow.

3.1. Upper bound on the approximate degree. Our construction makes
heavy use of Chebyshev polynomials, which is not surprising given their
fundamental role in approximation. The other key ingredient is interpolation,
which here amounts to multiplying an imperfect approximator p(t) by another
polynomial q(t) that zeroes out p’s mistakes. This interpolation technique is
well-known (Aspnes et al. 1994; Kahn et al. 1996) and is vital to exploiting the
discrete character of the problem: we are interested in approximation over the
discrete set of points {0, 1, . . . , n} rather than the stronger continuous setting,
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[0, n]. Kahn et al. (1996), who obtained the special case of Theorem 1.4 for
D = OR, also used Chebyshev polynomials and interpolation, although in a
simpler and much different way.

We start by recalling a few properties of Chebyshev polynomials, whose
proofs can be found in any standard textbook on approximation theory,
e.g., Cheney (1982); Rivlin (1981).

Fact 3.1 (Chebyshev polynomials). The dth Chebyshev polynomial, Td(t),
has degree d and satisfies the following properties:

Td(1) = 1(3.2)

|Td(t)| 6 1 (−1 6 t 6 1)(3.3)

T ′
d(t) > d2 (t > 1)(3.4)

Td(1 + δ) > 1
2
· 2d

√
2δ (0 6 δ 6 1/2)(3.5)

2 6 Tdae

(
1 + 1

a2

)
6 7 (a > 1)(3.6)

At the heart of our construction is the following technical lemma, which
gives an efficient method for approximating a given predicate D everywhere
except in the vicinity of points where D changes value.

Lemma 3.7. Let ` > 0, ∆ > 1, and d > 1 be integers with ` + ∆ 6
n/2. Then there is an (explicitly given) polynomial p(t) of degree at most
22(d+ 1)

√
n(`+ ∆)/∆ with

p(n− `) = 1

and

|p(t)| 6 2−d for t ∈ [0, n] \ (n− `−∆, n− `+ ∆).

Proof. Define

p1(t) = Tlq
n−`−∆

`+∆

m ( t

n− `−∆

)
.
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One readily verifies the following properties of p1:

(3.8)



p1([0, n− `−∆]) ⊆ [−1, 1] by (3.3);

p1([n− `−∆, n]) ⊆ [1, 7] by (3.2), (3.4), (3.6);

p′1(t) >
1

`+ ∆
for t > n− `−∆ by (3.4);

p1(n− `)− p1(n− `−∆) >
∆

`+ ∆
by previous line;

p1(n− `+ ∆)− p1(n− `) >
∆

`+ ∆
likewise.

Now consider the polynomial defined by

p2(t) =

(
p1(t)− p1(n− `)

8

)2

.

In view of (3.8), this new polynomial satisfies

p2(n− `) = 0

and

p2(t) ∈
[

∆2

64(`+ ∆)2
, 1

]
for t ∈ [0, n] \ (n− `−∆, n− `+ ∆).

Finally, define

p3(t) = Tl
8(d+1)(`+∆)√

2∆

m (1 +
∆2

64(`+ ∆)2
− p2(t)

)
.

Using (3.5) and the properties of p2, one sees that p(t) = p3(t)/p3(n− `) is the
desired polynomial. �

There are a large number of distinct predicates on {0, 1, . . . , n}. To simplify
the analysis, we would like to work with a small family of predicates that
have simple structure yet allow us to efficiently express any other predicate. A
natural choice is the family of predicates EXACT` for ` = 0, 1, . . . , n, where

EXACT`(t) =

{
1 if t = `,

0 otherwise.

For a moment, we shall focus on an explicit construction for EXACT`.
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Lemma 3.9. Let 0 6 ` 6 n/2. Then for any ε 6 1/3,

degε(EXACT`) = degε(EXACTn−`) = O(
√
n(`+ 1) log n+

√
n log(1/ε) log n).

Proof. The first equality in the statement of the lemma is obvious, and we
concentrate on the second. We may assume that ` 6 n/ log2 n and log(1/ε) 6
n/ log n, since otherwise the claim is trivial. Set

∆ =

⌈
log(1/ε)

log n

⌉
, d = 3∆ dlog ne.

Our assumptions about ` and ε imply that `+ ∆ � n/2, and thus Lemma 3.7
is applicable. Denote by p(t) the polynomial constructed in Lemma 3.7. Define

q(t) =
∏

i=−(∆−1),...,(∆−1)
i6=0

(t− (n− `+ i)).

We claim that the polynomial given by

r(t) =
1

q(n− `)
· p(t)q(t)

is the sought approximation to EXACTn−`. Indeed, it is easy to verify that r(t)
has the desired degree. For t ∈ {0, 1, . . . , n}\{n−`−(∆−1), . . . , n−`+(∆−1)},

|r(t)− EXACTn−`(t)| = |r(t)| 6 n2(∆−1) · 1

2d
6 ε.

Since r(t) = EXACTn−`(t) for all remaining t, the proof is complete. �

Remark 3.10. Applying Lemma 3.7 with ∆ = 1 and d = dlog(1/ε)e shows
that

degε(EXACT`) = degε(EXACTn−`) = O(
√
n(`+ 1) log(1/ε)),

which slightly improves on the bound of Lemma 3.9 when ε > 1/n. For
simplicity and conciseness, however, we prefer to work with Lemma 3.9 for
all ε.

We now prove the sought upper bound for an arbitrary predicate by
repeatedly applying Lemma 3.9.
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Lemma 3.11 (Upper bound on the approximate degree). Let
D : {0, 1, . . . , n} → {0, 1}. Then for any ε 6 1/3,

degε(D) 6 O(
√
n(`0(D) + `1(D)) log n+

√
n log(1/ε) log n).

Moreover, the approximating polynomial is given explicitly.

Proof. Without loss of generality, we can assume that D(dn/2e) = 0
(otherwise, work with the negation of D). For ` = 0, 1, . . . , n, let p`(t) denote
the polynomial that approximates EXACT`(t) pointwise to within ε/n, as
constructed in Lemma 3.9. Put

p(t) =
∑

` : D(`)=1

p`(t).

Then clearly p(t) approximates D pointwise to within ε. It remains to place an
upper bound on the degree of p:

degε(D) 6 deg p

6 max
` : D(`)=1,
`<dn/2e

{deg p`} + max
` : D(`)=1,
`>dn/2e

{deg pn−`}

6 O((
√
n`0(D) +

√
n`1(D)) log n+

√
n log(n/ε) log n)

6 O(
√
n(`0(D) + `1(D)) log n+

√
n log(1/ε) log n),

where the third inequality follows by Lemma 3.9. �

3.2. Lower bound on the approximate degree. Our lower bounds follow
by a reduction to EXACT0, the simplest nonconstant predicate, for which Kahn
et al. (1996) have already obtained a near-tight lower bound.

Theorem 3.12 (Kahn et al. 1996, Thm. 2.1 and its proof). For every poly-
nomial p of degree k = 0, 1, . . . , n− 1,

max
i=0,1,...,n

|EXACT0(i)− p(i)| > n−Θ(k2/n).

Theorem 3.12 has the following immediate corollary:
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Corollary 3.13. Let ε be given with 2−Θ(n logn) 6 ε 6 1/3. Then

degε(EXACT0) > Ω

(√
n log(1/ε)

log n

)
.

We are now in a position to prove the desired lower bound on the approximate
degree of any given predicate.

Lemma 3.14 (Lower bound on the approximate degree). Let
D : {0, 1, . . . , n} → {0, 1} be a nonconstant predicate. Then for each ε
with 2−Θ(n logn) 6 ε 6 1/3,

degε(D) > Ω

(√
n(`0(D) + `1(D)) +

√
n log(1/ε)

log n

)
.

Proof. In view of Paturi’s result (Theorem 2.10), it suffices to show that

(3.15) degε(D) > Ω

(√
n log(1/ε)

log n

)
.

Abbreviate ` = `0(D) and assume w.l.o.g. that ` > 1 (otherwise work with
` = `1(D)). We can additionally assume that ` 6 n/5 since otherwise the
claim follows trivially from Theorem 2.10. Consider the predicate EXACT0 on
bn/5c bits. By Corollary 3.13,

(3.16) degε(EXACT0) > Ω

(√
n log(1/ε)

log n

)

On the other hand,

EXACT0(t) = (1− 2D(`)) ·D(t+ `− 1) +D(`),

so that

(3.17) degε(EXACT0) 6 degε(D).

Equations (3.16) and (3.17) imply (3.15), thereby completing the proof. �
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4. Approximating a function of events

We now turn to the proof of our main results, Theorems 1.2 and 1.3. Fix an
arbitrary function f : {0, 1}n → {0, 1}. Our discussion will revolve around the
quantity δ∗(f, k), whose definition we restate from the Introduction.

Definition 4.1. Let f : {0, 1}n → {0, 1} and 0 6 k 6 n. Define

δ∗(f, k) =
1

2
sup

{
P
P1

[f(A1, . . . , An)] − P
P2

[f(B1, . . . , Bn)]

}
,

where the supremum is taken over all probability spaces P1 and P2, over all
events A1, . . . , An in P1, and over all events B1, . . . , Bn in P2, such that

(4.2) P
P1

[⋂
i∈S

Ai

]
= P

P2

[⋂
i∈S

Bi

]
for |S| 6 k.

Our immediate goal is to understand the quantitative behavior of δ∗(f, k).
To this end, we will first show that the arbitrary probability spaces in the
definition of δ∗(f, k) can be restricted to probability distributions on {0, 1}n.

Definition 4.3 (Induced distribution). Let E1, . . . , En be events in a proba-
bility space P . The distribution on {0, 1}n induced by P , E1, . . . , En is defined
as

µ(x) = P

[ ⋂
i:xi=0

Ei
⋂
i:xi=1

Ei

]
.

Proposition 4.4. Let E1, . . . , En be events in a probability space P . Let
µ be the distribution on {0, 1}n induced by P , E1, . . . , En. Then for every
g : {0, 1}n → {0, 1},

P[g(E1, . . . , En)] = E
x∼µ

[g(x)].

Proof.

P[g(E1, . . . , En)] =
∑

x∈{0,1}n

g(x) ·P

[ ⋂
i:xi=0

Ei
⋂
i:xi=1

Ei

]
=

∑
x∈{0,1}n

g(x)µ(x)

= E
x∼µ

[g(x)]. �
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For a set S ⊆ [n], define ANDS : {0, 1}n → {0, 1} by ANDS(x) =
∧
i∈S xi =∏

i∈S xi. In particular, AND∅ ≡ 1.

Lemma 4.5. Let f : {0, 1}n → {0, 1} and 0 6 k 6 n. Then

(4.6) δ∗(f, k) =
1

2
max
α,β

{
E
x∼α

[f(x)]− E
x∼β

[f(x)]

}
,

where the maximum is taken over all probability distributions α, β on {0, 1}n
such that Ex∼α[ANDS(x)] = Ex∼β[ANDS(x)] for |S| 6 k.

Proof. Fix probability spaces P1,P2, events A1, . . . , An in P1, and events
B1, . . . , Bn in P2, such that (4.2) holds. Let α and β be the distributions on
{0, 1}n induced by P1, A1, . . . , An and P2, B1, . . . , Bn, respectively. Then by
Proposition 4.4,

E
x∼α

[f(x)]− E
x∼β

[f(x)] = P
P1

[f(A1, . . . , An)]− P
P2

[f(B1, . . . , Bn)]

and

E
x∼α

[ANDS(x)] = E
x∼β

[ANDS(x)] for |S| 6 k.

Letting δ stand for the right-hand side of (4.6), we conclude that δ∗(f, k) 6 δ.

It remains to show that δ∗(f, k) > δ. Given a probability distribution µ on
{0, 1}n, there is an obvious discrete probability space P and events E1, . . . , En
in it that induce µ: simply let P = {0, 1}n with Ei defined to be the event
that xi = 1, where x ∈ {0, 1}n is distributed according to µ. This allows us to
reverse the argument of the previous paragraph (again using Proposition 4.4)
and show that δ∗(f, k) > δ. �

With δ∗(f, k) thus simplified, we relate it to a quantity that is easy to
estimate.

Theorem 1.1 (Restated from p. 3). Let f : {0, 1}n → {0, 1} be arbitrary and
0 6 k 6 n. Then

δ∗(f, k) = ε∗(f,Φ),

where Φ = {ANDS : |S| 6 k}.
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Proof. In view of Theorem 2.4, it suffices to prove that

δ∗(f, k) = γ∗(f,Φ).

The remainder of the proof establishes this equality.
To rephrase Lemma 4.5,

(4.7) δ∗(f, k) =
1

2
max
α,β

 ∑
x∈{0,1}n

[α(x)− β(x)]f(x)

 ,

where the maximum is over distributions α and β on {0, 1}n such that∑
x∈{0,1}n

[α(x)− β(x)] ANDS(x) = 0 for |S| 6 k.

Let α, β be distributions for which the maximum is attained in (4.7). Setting
ψ = (α− β)/2, we see that

∑
x∈{0,1}n |ψ(x)| 6 1 and thus δ∗(f, k) 6 γ∗(f,Φ).

It remains to show that γ∗(f,Φ) 6 δ∗(f, k). Suppose first that γ∗(f,Φ) = 0.
Since δ∗(f, k) > 0 always, the theorem is true in this case.

Finally, suppose that γ∗(f,Φ) > 0 and let ψ be a real function for which the
maximum is achieved in (2.3). Then necessarily

∑
x∈{0,1}n |ψ(x)| = 1. Since ψ

is orthogonal to the constant function 1 ∈ Φ, we also have
∑

x∈{0,1}n ψ(x) = 0.
The last two sentences allow us to write

ψ =
1

2
(α− β),

where α and β are suitable probability distributions over {0, 1}n. Then (4.7)
shows that γ∗(f,Φ) 6 δ∗(f, k), as desired. �

Theorem 1.1, which we have just proved, is the crux of our argument. It
shows that δ∗(f, k) measures how well f can be approximated by a multivariate
polynomial in x1, . . . , xn of degree k. Observe that Theorem 1.1 holds for every
function f : {0, 1}n → {0, 1}. For the special case of symmetric functions, we
have already estimated the least error achievable by a polynomial of a given
degree k. By combining these estimates with Theorem 1.1, we now prove the
main result of the paper.

Theorem 4.8 (Restatement of Theorems 1.2 and 1.3). Let f : {0, 1}n →
{0, 1} be a nonconstant symmetric function. Put ` = `0(f) + `1(f). Then

δ∗(f, k) = Θ(1) if k 6 Θ(
√
n`),

δ∗(f, k) ∈

[
2
−Θ

„
k2 log n

n

«
, 2

−Θ
“

k2

n log n

”]
if Θ(

√
n` log n) 6 k 6 Θ(n).
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Furthermore, for every k > Θ(
√
n` log n), there are reals a0, a1, . . . , ak, com-

putable in time poly(n), such that

∣∣∣∣∣∣ P[f(A1, . . . , An)] −
k∑
j=0

aj
∑

S:|S|=j

P

[⋂
i∈S

Ai

] ∣∣∣∣∣∣ 6 2
−Θ

“
k2

n log n

”

for any events A1, . . . , An in any probability space P .

Proof. By hypothesis, f(x) ≡ D(x1 + · · · + xn) for a suitable nonconstant
predicate D : {0, 1, . . . , n} → {0, 1}. Put Φ = {ANDS : |S| 6 k}. We have:

δ∗(f, k) = ε∗(f,Φ) by Theorem 1.1

= ε∗(f, {χS : |S| 6 k}) since span(Φ) = span{χS : |S| 6 k}
= ε∗(D,Pk) by Proposition 2.9.(4.9)

By Theorem 2.10 and Lemmas 3.11 and 3.14,

ε∗(D,Pk) ∈


Θ(1) if k 6 Θ(

√
n`),[

2
−Θ

„
k2 log n

n

«
, 2

−Θ
“

k2

n log n

”]
if Θ(

√
n` log n) 6 k 6 Θ(n).

In view of (4.9), this proves the claim regarding δ∗(f, k).

We now turn to the claim regarding a0, a1, . . . , ak. For k > Θ(
√
n` log n),

Lemma 3.11 gives an explicit univariate polynomial p(t) of degree at most k
such that

(4.10) |f(x)− p(x1 + · · ·+ xn)| 6 2
−Θ

“
k2

n log n

”
for all x ∈ {0, 1}n.

Fix a probability space P and events A1, . . . , An in it. Let µ be the distribution
on {0, 1}n induced by P , A1, . . . , An. We claim that the quantity

E
x∼µ

[p(x1 + · · ·+ xn)]
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is the desired approximator of P[f(A1, . . . , An)]. Indeed,

E
x∼µ

[p(x1 + · · ·+ xn)] = E
x∼µ

 k∑
j=0

aj
∑
|S|=j

∏
i∈S

xi


=

k∑
j=0

aj
∑
|S|=j

E
x∼µ

[∏
i∈S

xi

]

=
k∑
j=0

aj
∑
|S|=j

P

[⋂
i∈S

Ai

]
by Proposition 4.4,

where the reals a0, a1, . . . , ak are uniquely determined by the polynomial p,
itself explicitly given. It is also clear that a0, a1, . . . , ak can be computed
from the coefficients of p in time polynomial in n. Therefore, the quantity
Ex∼µ[p(x1 + · · ·+ xn)] has the desired representation. It remains to verify that
it approximates P[f(A1, . . . , An)] as claimed:∣∣∣∣P[f(A1, . . . , An)]− E

x∼µ
[p(x1 + · · ·+ xn)]

∣∣∣∣ =

∣∣∣∣ Ex∼µ[f(x)− p(x1 + · · ·+ xn)]

∣∣∣∣
6 2

−Θ
“

k2

n log n

”
,

where the equality holds by Proposition 4.4 and the inequality by (4.10). �

5. Lower bounds for agnostic learning

We now use the proof technique of the previous section to obtain new lower
bounds for agnostic learning (Theorem 1.6). The following definition formalizes
the subject of our study.

Definition 5.1. Let f : {0, 1}n → {0, 1} and 0 6 k 6 n. Define

Γ∗(f, k) = max
λ

{
P

(x,y)∼λ
[f(x) = y]

}
,

where the maximum is taken over all distributions λ on {0, 1}n × {0, 1} such
that

(5.2) P
(x,y)∼λ

[g(x) = y] =
1

2

for every g : {0, 1}n → {0, 1} that depends on k or fewer variables.
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Observe that the maximization in Definition 5.1 is over a nonempty compact
set that contains the uniform distribution. Our goal will be to show that

Γ∗
(
f, Θ(

√
n(`0(f) + `1(f)))

)
> 1− ε

for every symmetric function f and every constant ε > 0. In other words,
even though the training examples agree with f to within ε, no hypothesis that
depends on few variables can match the data better than random. Our strategy
will be to relate Γ∗(f, k) to the least error and modulus of orthogonality,
quantities for which we have developed considerable intuition.

Lemma 5.3. Let λ be a distribution on {0, 1}n × {0, 1}. Then for every
f : {0, 1}n → {0, 1},

P
(x,y)∼λ

[f(x) = y] = P
(x,y)∼λ

[y = 0] +
∑

x∈{0,1}n

(λ(x, 1)− λ(x, 0))f(x).

Proof.

P
(x,y)∼λ

[f(x) = y] = P
(x,y)∼λ

[f(x) = y = 0] + P
(x,y)∼λ

[f(x) = y = 1]

=
∑
x

λ(x, 0)(1− f(x)) +
∑
x

λ(x, 1)f(x)

=
∑
x

(λ(x, 1)− λ(x, 0))f(x) + P
(x,y)∼λ

[y = 0]. �

We are now in a position to express Γ∗(f, k) in terms of a quantity that is
easy to estimate.

Theorem 5.4. Let f : {0, 1}n → {0, 1} and 0 6 k 6 n. Then

Γ∗(f, k) =
1

2
+ ε∗(f,Φ),

where Φ = {χS : |S| 6 k}.

Proof. By Theorem 2.4, it suffices to show that

Γ∗(f, k) =
1

2
+ γ∗(f,Φ).
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Let λ be a distribution on {0, 1}n × {0, 1} for which (5.2) holds. Setting g = 0
gives:

P
(x,y)∼λ

[y = 0] =
1

2
.

Lemma 5.3 now leads to the following convenient characterization of Γ∗(f, k):

Γ∗(f, k) =
1

2
+ max

λ

{∑
x

(λ(x, 1)− λ(x, 0))f(x)

}
,

where the maximum is over all distributions λ on {0, 1}n × {0, 1} such that∑
x

(λ(x, 1)− λ(x, 0))g(x) = 0

for every function g : {0, 1}n → {0, 1} that depends on k or fewer variables.
With this new characterization, it is not difficult to show that Γ∗(f, k) = 1

2
+

γ∗(f,Φ). The argument is closely analogous to the one in Theorem 1.1, and we
do not repeat it here. �

Theorem 5.4 is the backbone of this section and holds for arbitrary func-
tions. In view of Paturi’s work, it yields our sought result for symmetric
functions.

Theorem 1.6 (Restated from p. 9). Let D : {0, 1, . . . , n} → {0, 1} be a pred-
icate and f(x) = D(x1 + · · · + xn). Let ε > 0 be an arbitrary constant. Then
there is a distribution λ on {0, 1}n × {0, 1} such that

P
(x,y)∼λ

[f(x) = y] > 1− ε

and

P
(x,y)∼λ

[g(x) = y] =
1

2

for every g : {0, 1}n → {0, 1} that depends on at most c
√
n(`0(D) + `1(D))

variables, where c = c(ε) is a constant.

Proof. In view of Theorem 5.4, we need only show that ε∗(f,Φ) > 1
2
− ε,

where Φ = {χS : |S| 6 c
√
n(`0(f) + `1(f))} for a suitably small constant c.

But this is immediate from Proposition 2.6 and Theorem 2.10. �

Theorem 1.6 is best possible, as we now show.
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Theorem 5.5 (On the tightness of Thm. 1.6). Let f : {0, 1}n → {0, 1} be a
symmetric function and ε ∈ (0, 1/2) be a given constant. Let λ be a distribution
on {0, 1}n × {0, 1} with

P
(x,y)∼λ

[g(x) = y] =
1

2

for every g : {0, 1}n → {0, 1} that depends on at most C
√
n(`0(f) + `1(f))

variables, where C = C(ε) is a large enough constant. Then

P
(x,y)∼λ

[f(x) = y] 6 1− ε.

Proof. To rephrase the theorem, we need to show that Γ∗(f, k) 6 1 − ε,
where k = C

√
n(`0(f) + `1(f)). In view of Theorem 5.4, this is equivalent to

the inequality ε∗(f, {χS : |S| 6 k}) 6 1
2
− ε. The latter is certainly true for a

large enough constant C, by Proposition 2.6 and Theorem 2.10. �

Remark 5.6. Let f be an arbitrary symmetric function. Theorem 5.5 tells
us that if all hypotheses that depend on at most k = Θ(

√
n(`0(f) + `1(f)))

variables have zero advantage over random guessing, then the function f itself
cannot be a high-accuracy classifier. What if we additionally know that all
hypotheses that depend on at most K variables, where

K � Θ
(√

n(`0(f) + `1(f))
)
,

have zero advantage over random guessing? It turns out that in this case, the
function f itself cannot have considerable advantage over random guessing (let
alone be a high-accuracy classifier). The proof is entirely analogous to that of
Theorem 5.5, except in place of Paturi’s result we would use our bounds on the
approximate degree (Theorem 1.4) that work in the full range [2−n, 1/3].
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