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Abstract. The set disjointness problem features k communicating par-
ties and k subsets S1, S2, . . . , Sk ⊆ {1, 2, . . . , n}. No single party knows all
k subsets, and the objective is to determine with minimal communication
whether the k subsets have nonempty intersection. The important special
case k = 2 corresponds to two parties trying to determine whether their
respective sets intersect. The study of the set disjointness problem spans
almost four decades and offers a unique perspective on the remarkable
evolution of communication complexity theory. We discuss known results
on the communication complexity of set disjointness in the deterministic,
nondeterministic, randomized, unbounded-error, and multiparty models,
emphasizing the variety of mathematical techniques involved.
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1 Introduction

Communication complexity theory, initiated by Andrew Yao [52] thirty-five years
ago, is a central branch of theoretical computer science. The theory studies the
minimum amount of communication, measured in bits, required in order to com-
pute functions whose arguments are distributed among several parties. In addi-
tion to the basic importance of studying communication as a bottleneck resource,
the theory has found a vast number of applications to other research areas, in-
cluding mechanism design, streaming algorithms, machine learning, data struc-
tures, pseudorandom generators, and chip layout. Communication complexity
theory is an abundant source of fascinating research questions that can be easily
explained to a high school graduate but require deep mathematics and decades
of collective effort to resolve. Progress in this area over the years has been truly
remarkable, both in the depth and volume of research results obtained and in
the diversity of techniques invented to obtain them.
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Our survey focuses on a single communication problem, whose study began
with the theory’s inception in 1979 and actively continues to this day, with much
left to discover. This problem is set disjointness. Its simplest version features two
parties who are each given a subset of {1, 2, . . . , n} and asked to determine with
minimal communication whether the two subsets intersect. One can interpret the
problem as scheduling a meeting subject to the availability of the two parties—or
rather, checking whether such a meeting can be scheduled. The study of set dis-
jointness has had a significant impact on communication complexity theory and
has in many ways shaped it. First and foremost, the difficulty of determining the
communication requirements of set disjointness in all but the simplest models
has fueled a rapid development of the field’s techniques. Moreover, set disjoint-
ness has acquired special status in communication complexity theory in that it
often arises as an extremal example or as a problem separating one communica-
tion model from another. In what follows, we survey some of the highlights of
this story, from basic models such as nondeterminism to advanced formalisms
such as unbounded-error and multiparty communication.

2 Deterministic communication

The simplest model of communication is the two-party deterministic model.
Consider a function f : X × Y → {0, 1}, where X and Y are finite sets. The
model features two cooperating parties, traditionally called Alice and Bob. Alice
receives an input x ∈ X, Bob receives an input y ∈ Y, and their objective is
to compute f(x, y). To this end, Alice and Bob communicate back and forth
according to an agreed-upon protocol. The cost of a given communication pro-
tocol is the maximum number of bits exchanged on any input pair (x, y). The
deterministic communication complexity of f, denoted D(f), is the least cost of
a communication protocol for f. In this formalism, the set disjointness problem
corresponds to the function DISJn : P({1, 2, . . . , n})×P({1, 2, . . . , n})→ {0, 1}
given by

DISJn(A,B) =

{
1 if A ∩B = ∅,
0 otherwise,

where P refers as usual to the powerset operator.
We start by reviewing some fundamental notions, which are easiest to explain

in the deterministic model and become increasingly important in more advanced
models. A combinatorial rectangle on X × Y is any subset R of the form R =
A × B, where A ⊆ X and B ⊆ Y. For brevity, we will refer to such subsets
as simply rectangles. Given a communication problem f : X × Y → {0, 1}, a
rectangle R is called f -monochromatic if f is constant on R. Rectangles play
a central role in the study of communication complexity due to the following
fact [29], which shows among other things that an efficient deterministic protocol
for a given function f partitions the domain into a disjoint union of a small
number of f -monochromatic rectangles.
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Fact 1. Let Π : X × Y → {0, 1} be a deterministic communication protocol of
cost at most c. Then there exist pairwise disjoint rectangles R1, R2, R3, . . . , R2c

such that
2c⋃
i=1

Ri = X × Y

and Π is constant on each Ri.

Fooling set method. A straightforward technique for proving communication
lower bounds is the fooling set method [29], which works by identifying a large
set of inputs no two of which can occupy the same f -monochromatic rectangle.
Formally, a fooling set for f : X×Y → {0, 1} is any subset S ⊆ X×Y with the fol-
lowing two properties: (i) f is constant on S; and (ii) if (x, y) and (x′, y′) are two
distinct elements of S, then f is not constant on {(x, y), (x, y′), (x′, y), (x′, y′)}.
A moment’s reflection reveals that an f -monochromatic rectangle can contain
at most one element of S. Therefore, any partition (or even cover!) of X × Y
by f -monochromatic rectangles must feature a rectangle for each point in the
fooling set S, which in light of Fact 1 means that the deterministic communi-
cation complexity of f is at least log2 |S|. We summarize this discussion in the
following theorem.

Theorem 2 (Fooling set method). Let f : X × Y → {0, 1} be a given commu-
nication problem. If S is a fooling set for f, then

D(f) > log2 |S|.

The fooling set method works perfectly for the set disjointness problem. Indeed,
the set {(A, {1, 2, . . . , n}\A) : A ⊆ {1, 2, . . . , n}} is easily seen to be a fooling set
for DISJn, whence D(DISJn) > n. A somewhat more careful accounting yields
the tight bound D(DISJn) = n+ 1.

Rank bound. A more versatile technique for deterministic communication com-
plexity was pioneered by Mehlhorn and Schmidt [33], who took an algebraic
view of the question. These authors associated to every communication problem
f : X×Y → {0, 1} its characteristic matrix Mf = [f(x, y)]x∈X,y∈Y and observed
that any partition of X × Y into 2c f -monochromatic rectangles gives an up-
per bound of 2c on the rank of the characteristic matrix over the reals. In view
of Fact 1, this gives the so-called rank bound on deterministic communication
complexity.

Theorem 3 (Mehlhorn and Schmidt). For any f : X × Y → {0, 1},

D(f) > log2(rkMf ).
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This method, too, works well for set disjointness. Indeed, the characteristic ma-
trix of DISJn is the Kronecker product of n matrices[

1 1
1 0

]
⊗
[
1 1
1 0

]
⊗ · · · ⊗

[
1 1
1 0

]
and therefore has full rank. As a result, D(DISJn) > n by the rank bound.

Log-rank conjecture. It is an instructive exercise [29] to prove that the rank
bound subsumes the fooling set method, in that every communication lower
bound obtained using the fooling set method can be rederived up to a constant
factor using the rank bound. As a matter of fact, the log-rank conjecture due
to Lovász and Saks [32] asserts that the rank bound is approximately tight for
every function:

D(f) 6 (log2(rkMf ))c1 + c2

for some universal constants c1, c2 > 0 and all f. This conjecture remains one
of the most intriguing open questions in the area. An earlier, stronger version
of the log-rank conjecture with c1 = 1 has been disproved. One counterexample,
due to Nisan and Wigderson [37], is a function f : {0, 1}n×{0, 1}n → {0, 1} with
D(f) = Ω(n) but log2(rkMf ) = O(n0.631...). As the reader might have guessed
from the title of our survey, Nisan and Wigderson’s construction crucially uses
results [40] on the communication complexity of the set disjointness function!

3 Nondeterminism

Nondeterminism plays an important role in the study of communication, both
as a natural model in its own right and as a useful intermediate formalism. In
a nondeterministic protocol for a given function f : X × Y → {0, 1}, Alice and
Bob start by guessing a bit string, visible to them both. From then on, they
communicate deterministically. A nondeterministic protocol for f must output
the correct answer for at least one guess string when f(x, y) = 1 and for all
guess strings when f(x, y) = 0. The cost of a nondeterministic protocol is de-
fined as the worst-case length of the guess string, plus the worst-case cost of
the deterministic phase. The nondeterministic communication complexity of f,
denoted N(f), is the least cost of a nondeterministic protocol for f. As usual,
the co-nondeterministic communication complexity of f is the quantity N(¬f).

The nondeterministic communication complexity of a given function f is es-
sentially characterized by the cover number of f, which is the smallest number
of f -monochromatic rectangles whose union is f−1(1). Indeed, it follows easily
from Fact 1 that any nondeterministic protocol of cost c gives rise to such a col-
lection of size at most 2c. Conversely, any size-2c collection of f -monochromatic
rectangles whose union is f−1(1) gives rise to a nondeterministic protocol for f
of cost c+ 2, in which Alice and Bob guess one of the rectangles and check with
two bits of deterministic communication whether it contains their input pair.
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Fooling set method. The fooling set method, reviewed in the previous section,
generalizes to the nondeterministic model. Indeed, as we have already observed,
no two points of a fooling set S ⊆ f−1(1) can reside in the same f -monochromatic
rectangle, which means that any cover of f−1(1) by f -monochromatic rectan-
gles must contain at least |S| rectangles. In the language of nondeterministic
communication complexity, we arrive at the following statement.

Theorem 4 (Fooling set method). Let f : X × Y → {0, 1} be a given commu-
nication problem. If S ⊆ f−1(1) is a fooling set for f, then

N(f) > log2 |S|.

Since the set disjointness function has a fooling set S ⊆ DISJ−1n (1) of size 2n,
we obtain N(DISJn) > n. Set disjointness should be contrasted in this regard
with its complement ¬DISJn, known as set intersection, whose nondeterministic
communication complexity is a mere log2 n+O(1). Indeed, Alice and Bob need
only guess an element i ∈ {1, 2, . . . , n} and verify with two bits of communication
that it belongs to their respective sets.

Rectangle size bound. The most powerful method for lower bounds on non-
deterministic communication complexity is the following beautiful technique,
known as the rectangle size bound [29].

Theorem 5 (Rectangle size bound). Let f : X×Y → {0, 1} be a given function.
Then for every probability distribution µ on f−1(1),

N(f) > log2

(
1

maxR µ(R)

)
,

where the maximum is over all rectangles R ⊆ f−1(1).

The rectangle size bound is a generalization of the fooling set method. Indeed,
letting µ be the uniform distribution over a given fooling set S ⊆ f−1(1), we
immediately recover Theorem 4. The proof of Theorem 5 is straightforward: any
cover of f−1(1) by f -monochromatic rectangles must cover a set of µ-measure 1,
which means that the total number of rectangles in the cover must be no less than
the reciprocal of the largest µ-measure of a rectangle R ⊆ f−1(1). Theorem 5 is of
interest in two ways. First of all, it characterizes nondeterministic communication
complexity up to a small additive term [29]. Second, as we will see in the next
section, ideas analogous to the rectangle size bound play a key role in the study
of randomized communication complexity.

It is instructive to rederive the nondeterministic lower bound for set disjoint-
ness using the rectangle size bound. One approach is to simply consider the uni-
form distribution over the fooling set {(A, {1, 2, . . . , n} \A) : A ⊆ {1, 2, . . . , n}},
which gives N(DISJn) > n. A more revealing choice [29] is to let µ be the uniform
distribution over DISJ−1n (1), so that

µ(A,B) =

{
3−n if A ∩B = ∅,
0 otherwise.
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Now, let R = A ×B be any rectangle in DISJ−1n (1). Then it is straightforward
to check that the larger rectangle P(S) × P(T ), where S =

⋃
A∈A A and

T =
⋃
B∈B B, must also be contained in DISJ−1n (1). It follows that S ∩ T = ∅

and therefore |R| 6 |P(S)×P(T )| 6 2n. In summary, we have shown that every
rectangle R ⊆ DISJ−1n (1) contains at most 2n inputs, whence µ(R) 6 (2/3)n.
Applying the rectangle size bound, we arrive at N(DISJn) > n log2(3/2). While
this bound is weaker than the previous bound N(DISJn) > n, the analysis just
given is more broadly applicable and is good preparation for the next section on
randomized communication.

Complexity classes. In a seminal paper, Babai, Frankl, and Simon [5] initiated
a systematic study of communication from the standpoint of complexity classes.
Analogous to computational complexity, the focus here is on the asymptotic
communication requirements of a family of functions, one function for each input
size. Specifically, one considers families {fn}∞n=1 where fn : {0, 1}n × {0, 1}n →
{0, 1}. Among the complexity classes defined in [5] are Pcc,NPcc, and coNPcc,
corresponding to function families with efficient deterministic, nondeterministic,
and co-nondeterministic protocols, respectively. Formally, Pcc is the class of all
families {fn}∞n=1 for which D(fn) 6 logc n + c for some constant c > 0 and
all n. The classes NPcc and coNPcc are defined analogously with respect to the
requirements N(fn) 6 logc n + c and N(¬fn) 6 logc n + c. Set disjointness is
helpful in characterizing the relations among these classes. Indeed, recall that
D(DISJn) > N(DISJn) > n and N(¬DISJn) 6 log2 n + O(1). An immediate
consequence is that Pcc ( NPcc, with an exponential gap between deterministic
and nondeterministic complexity achieved for ¬DISJn. One analogously obtains
NPcc 6= coNPcc, with an exponential gap for DISJn. The significance of set
disjointness in the study of nondeterminism is no accident: Babai et al. show
that it is a complete problem for the class coNPcc.

We conclude with yet another use of set disjointness. A fundamental result
due to Aho, Ullman, and Yannakakis [2] states that D(f) 6 cN(f)N(¬f) for
some absolute constant c > 0 and every function f. In particular, one obtains
the surprising equality Pcc = NPcc ∩ coNPcc. A variant of the set disjointness
problem, known as k-set disjointness [39], shows that the upper bound of Aho
et al. is tight up to a constant factor.

4 Randomized communication

In many ways, the randomized model is the most realistic abstraction of two-
party communication. As usual, consider a function f : X × Y → {0, 1}, where
X and Y are finite sets. Alice receives an input x ∈ X, Bob receives an input
y ∈ Y, and their objective is to compute f(x, y) by communicating back and
forth according to an agreed-upon protocol. In addition, Alice and Bob share an
unlimited supply of uniformly random bits, which they can use in deciding what
messages to send. The cost of a randomized protocol is the maximum number
of bits exchanged on any input pair (x, y). Since the random bits are shared,
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they do not count toward the protocol cost. A protocol is said to compute f with
error ε if on every input pair (x, y), the output of the protocol is correct with
probability at least 1− ε. The ε-error randomized communication complexity of
f, denoted Rε(f), is the least cost of a randomized protocol that computes f
with error ε. The canonical quantity to study is R1/3(f). This setting of the error
parameter is without loss of generality. Indeed, for any constants ε, ε′ ∈ (0, 1/2),
the error of a communication protocol can be reduced from ε to ε′ by running
the protocol constantly many times and outputting the majority answer.

There are several other ways to formalize randomized communication, all of
which turn out to be equivalent [29]. Most notably, one can consider a model
where Alice and Bob each have a private source of random bits, known as the
private-coin model. A fundamental theorem due to Newman [34] shows that
whether the random bits are shared or private affects the communication com-
plexity of any given function f : {0, 1}n×{0, 1}n → {0, 1} by at most an additive
term of O(log n).

Corruption bound. The randomized communication complexity of a function
can be vastly smaller than its deterministic or nondeterministic complexity. For
example, the problem of checking two n-bit strings for equality has randomized
communication complexity O(1), in contrast to its Ω(n) complexity in the deter-
ministic and nondeterministic models. The fact that randomized protocols can
be so powerful means that proving lower bounds in this model is correspondingly
more difficult. The most common method for lower bounds on randomized com-
munication complexity the corruption bound due to Yao [53]. As we shall soon
see, this technique is strong enough to yield the celebrated Ω(n) lower bound
for set disjointness.

Theorem 6 (Corruption bound). Let f : X × Y → {0, 1} be a given function,
α, β > 0 given parameters. Let µ be a probability distribution on X × Y such
that every rectangle R obeys

µ(R ∩ f−1(0)) > αµ(R)− β.

Then for all ε > 0,

Rε(f) > log2

(
αµ(f−1(1))− ε

β

)
.

The technical details of this theorem are somewhat tedious, but the intuition is
entirely straightforward. Fix a probability distribution µ on the domain of the
given communication problem f. The hypothesis of the theorem states that with
respect to µ, the “0” entries make up at least an α fraction of any rectangle—
except for particularly small rectangles, with measure on the order of β. As a
result, any cover of f−1(1) by rectangles that are “almost” f -monochromatic
requires roughly µ(f−1(1))/β rectangles, for a communication cost of roughly
log2(µ(f−1(1))/β). It is not too difficult to turn this informal discussion into a
rigorous proof of the corruption bound, by using Fact 1 and viewing a randomized
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protocol of a given cost as a probability distribution on deterministic protocols
of the same cost.

An Ω(
√
n) lower bound. The randomized communication complexity of set

disjointness has been extensively studied. A variety of proof techniques have been
brought to bear on this question, including Kolmogorov complexity, information
theory, matrix analysis, and approximation theory. The first strong result in
this line of work is an Ω(

√
n) lower bound on the randomized communication

complexity of DISJn, due to Babai, Frankl, and Simon [5]. Their proof, presented
below in its entirety, uses nothing but basic combinatorics and is exceedingly
elegant.

Theorem 7 (Babai, Frankl, and Simon). R1/3(DISJn) > Ω(
√
n).

Proof. Without loss of generality, we may assume that n is a perfect square
divisible by 12. We will work with a restriction of the set disjointness problem,
in which Alice and Bob’s inputs are sets of size exactly

√
n. Let µ denote the

uniform probability distribution over all such inputs. Then

µ(DISJ−1n (1)) =

(n−√n√
n

)(
n√
n

) = Ω(1).

The crux of the proof is the following purely combinatorial fact:

Claim. Let R = A ×B be any rectangle with P(A,B)∈R[A ∩ B = ∅] > 1 − α
and |A | > 2−δ

√
n
(
n√
n

)
, where α > 0 and δ > 0 are sufficiently small absolute

constants. Then

|B| 6 2−δ
√
n

(
n√
n

)
.

Let us finish the proof of the theorem before moving on to the claim itself.
The claim is logically equivalent to the following statement: there exist absolute
constants α > 0 and δ > 0 such that any rectangle R with µ(R) > 2−δ

√
n

satisfies
µ(R ∩DISJ−1n (0)) > αµ(R).

Applying the corruption bound (Theorem 6) with β = 2−δ
√
n, we conclude that

Rε(DISJn) = Ω(
√
n) for sufficiently small ε = ε(α, δ) > 0. By error reduction,

this implies the conclusion of the theorem.

Proof of Claim. Consider the matrix M = [DISJn(A,B)]A∈A ,B∈B. By hypoth-
esis, the “0” entries make up at most an α fraction of M. Without loss of gen-
erality, we may assume that the fraction of “0” entries is at most 2α in every
row of M (if not, simply remove the offending rows, which reduces the size of A
by at most a factor of 2). Now, abbreviate k =

√
n/3 and inductively find sets

A1, A2, . . . , Ak ∈ A that are well separated, in the sense that for all i,

|Ai \ (A1 ∪A2 ∪ · · · ∪Ai−1)| >
√
n

2
.
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That such sets must exist is a straightforward exercise in counting, with α > 0
small enough.

Recall that the “0” entries make up at most a 2α fraction of the entries in
[DISJn(Ai, B)]i=1,2,...,k; B∈B. In particular, at least half of the sets B ∈ B must
satisfy

P
i=1,2,...,k

[Ai ∩B 6= ∅] 6 4α.

But by the well-separated property of A1, A2, . . . , Ak, the number of such sets

B is at most
(
k

4αk

)(n−(1−4α)k√n/2√
n

)
. (Verify this!) For α > 0 and δ > 0 small

enough, this estimate does not exceed 1
2 · 2

−δ
√
n
(
n√
n

)
, which gives the claimed

upper bound on |B|.
This lower bound on the randomized communication complexity of set dis-

jointness has an important implication for communication complexity classes.
Analogous to Pcc,NPcc, coNPcc, Babai et al. [5] defined BPPcc as the class of
all communication problems {fn}∞n=1 for which R1/3(fn) 6 logc n + c for some
constant c > 0 and all n. Theorem 7 shows that {DISJn}∞n=1 /∈ BPPcc, thus
separating the classes NPcc and coNPcc from BPPcc.

Tight lower bound. The problem of determining the randomized communi-
cation complexity of set disjointness remained open for several years after the
work of Babai et al. It was finally resolved by Kalyanasundaram and Schnit-
ger [24], who used Kolmogorov complexity to obtain the tight lower bound
R1/3(DISJn) = Ω(n). Shortly thereafter, Razborov [40] gave a celebrated alter-
nate proof of the linear lower bound for set disjointness. In fact, Razborov consid-
ered an easier communication problem known as unique set disjointness, in which
Alice and Bob’s input sets A,B ⊆ {1, 2, . . . , n} are either disjoint or intersect in
a unique element. He studied the probability distribution µ that places weight
3/4 on disjoint pairs (A,B) of cardinality |A| = |B| = bn/4c, and weight 1/4 on
uniquely intersecting pairs again of cardinality |A| = |B| = bn/4c; in both cases,
each such pair is equally likely. He proved that µ(R∩DISJ−1(0)) > αµ(R)−2−δn

for some constants α > 0 and δ > 0 and every combinatorial rectangle R, from
which the tight lower bound R1/3(DISJn) = Ω(n) follows immediately by The-
orem 6. Razborov’s analysis is based on an entropy argument along with an
ingenious use of conditioning.

Razborov’s result as well as his proof inspired much follow-up work. The fact
that the lower bound holds even for unique set disjointness was a crucial ingre-
dient in Nisan and Wigderson’s counterexample to the “strong” log-rank conjec-
ture (see Section 3). The linear lower bound on the randomized communication
complexity of set disjointness has found several surprising applications, includ-
ing streaming algorithms [4] and combinatorial auctions [35]. In a testament
to the mathematical richness of this problem, Bar-Yossef et al. [7] discovered a
simpler yet, information-theoretic proof of the linear lower bound. This line of
work is still active, with a recent paper by Braverman et al. [13] determining
the randomized communication complexity of set disjointness up to lower-order
terms.
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5 Unbounded-error communication

The unbounded-error model, due to Paturi and Simon [38], is a fascinating model
of communication with applications to matrix analysis, circuit complexity, and
learning theory [38, 3, 11, 19, 20, 28, 31, 43, 46, 42]. Let f : X × Y → {0, 1} be a
communication problem of interest. As usual, Alice and Bob receive inputs x ∈ X
and y ∈ Y, respectively, and their objective is to compute f(x, y) with minimal
communication. They each have an unlimited private source of random bits.
Their protocol is said to compute f in the unbounded-error model if on every
input (x, y), the output is correct with probability strictly greater than 1/2. The
unbounded-error communication complexity of f, denoted U(f), is the least cost
of a protocol that computes f.

Observe that the unbounded-error model is the same as the private-coin ran-
domized model discussed in Section 4, with one exception: in the latter case the
protocol must produce the correct answer with probability at least 2/3, whereas
in the former case the probability of correctness merely needs to exceed 1/2, by
an arbitrarily small amount. This difference has far-reaching implications. For
example, the fact that the parties in the unbounded-error model do not have a
shared source of random bits is crucial: it is a good exercise to check that allowing
shared randomness in the unbounded-error model would make the complexity
of every function a constant. This contrasts with the randomized model, where
making the randomness public has almost no effect on the complexity of any
given function.

There are several reasons why the unbounded-error model occupies a spe-
cial place in communication complexity theory. To start with, it is vastly more
powerful than the deterministic, nondeterministic, randomized, and quantum
models [42]. Another compelling reason is that unbounded-error communication
complexity is closely related to the fundamental matrix-theoretic notion of sign-
rank, which is defined for a Boolean matrix M = [Mij ] as the minimum rank of
a real matrix R = [Rij ] such that sgnRij = (−1)Mij for all i, j. In other words,
the sign-rank of a Boolean matrix M is the minimum rank of real matrix R that
sign-represents it, with negative and positive entries in R corresponding to the
true and false entries in M, respectively. We let rk±M denote the sign-rank of
M. Paturi and Simon [38] proved the following beautiful theorem, which shows
that unbounded-error communication and sign-rank are equivalent notions.

Fact 8 (Paturi and Simon). For some absolute constant c and every function
f : X × Y → {0, 1},

U(f)− c 6 log2(rk±Mf ) 6 U(f) + c.

Proving lower bounds on sign-rank is difficult. Indeed, obtaining a strong
lower bound on the unbounded-error communication complexity of any explicit
function was a longstanding problem until the breakthrough work of Forster [19]
several years ago. Fortunately, the unbounded-error complexity of set disjoint-
ness is easy to analyze. The following two theorems give a complete answer, up
to an additive constant.
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Theorem 9 (Folklore). U(DISJn) 6 log2 n+O(1).

Proof. Consider the following randomized protocol, where A and B denote Alice
and Bob’s input sets, respectively. The players pick an index i ∈ {1, 2, . . . , n}
uniformly at random and verify with two bits of communication whether i ∈
A∩B. If so, they output 0. In the complementary case i /∈ A∩B, they output 1
with probability n/(2n−1) and 0 otherwise. It is easy to verify that this protocol
is correct with probability at least n/(2n− 1) > 1/2 on every input. Moreover,
it clearly has cost at most log2 n+O(1) in the private-coin model.

Theorem 10 (Paturi and Simon). U(DISJn) > log2 n−O(1).

Proof. We will give a linear-algebraic proof of this result, as opposed to the
geometric argument of Paturi and Simon [38]. By Fact 8, it suffices to show
that the characteristic matrix of set disjointness has sign-rank at least n. We
will actually prove the claim for the submatrix M = [xi]x∈{0,1}n,i=1,2,...,n, whose
rows are the 2n distinct Boolean vectors of length n.

For the sake of contradiction, assume that rk±M 6 n − 1. Then there are
vectors u1, u2, . . . , un−1 ∈ Rn such that every σ ∈ {−1,+1}n is the (compo-
nentwise) sign of some linear combination of u1, u2, . . . , un−1. Let w ∈ Rn be a
nonzero vector in the orthogonal complement of span{u1, u2, . . . , un−1}. Define
σ ∈ {−1,+1}n by

σi =

{
sgnwi if wi 6= 0,

1 otherwise.

Then σ = sgn(
∑n−1
i=1 λiui) for some reals λ1, . . . , λn−1, where the sign function is

applied componentwise. In particular, 〈w,
∑n−1
i=1 λiui〉 > 0. But this is impossible

since w was chosen to be orthogonal to u1, u2, . . . , un−1.

The above theorem was in fact the first lower bound on unbounded-error com-
munication complexity.

6 Multiparty communication

We now move on to multiparty communication, a topic that is particularly re-
warding in its mathematical depth and its applications to many other areas of
theoretical computer science. In this setting, k communicating parties need to
compute a Boolean-valued function f(x1, x2, . . . , xk) with k arguments. Each
party knows one or more of the arguments to f, but not all. The more informa-
tion the parties have available to them, the less communication is required. In the
extreme setting known as the number-on-the-forehead model, each party knows
exactly k−1 arguments, namely x1, . . . , xi−1, xi+1, . . . , xk in the ith party’s case.
One can visualize this model by thinking of the k parties as seated in a circle,
with x1, x2, . . . , xk written on the foreheads of parties 1, 2, . . . , k, respectively.
Any given party sees all the arguments except for the one on the party’s own
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forehead, hence the terminology. The number-on-the-forehead model, introduced
by Chandra, Furst, and Lipton [16], is the most powerful model of multiparty
communication and is therefore the standard setting in which to prove commu-
nication lower bounds.

In this model, the parties communicate via a broadcast channel, with a bit
sent by any party instantly reaching everyone else. They also share an unlimited
supply of random bits. Analogous to the two-party case, a multiparty commu-
nication protocol computes f with error ε if on every input (x1, x2, . . . , xk), it
outputs the correct answer f(x1, x2, . . . , xk) with probability at least 1− ε. The
cost of a protocol is the total number of broadcasts on the worst-case input; as
usual, the shared randomness does not count toward the communication cost.
The ε-error randomized communication complexity of f, denoted Rε(f), is the
least cost of an ε-error communication protocol for f in this model. Again, the
canonical quantity to study is R1/3(F ), where the choice of 1/3 is largely arbi-
trary and can be replaced by any other constant in (0, 1/2) without affecting the
theory in any way.

Multiparty set disjointness. The multiparty set disjointness problem is by
far the most studied problem in this line of work. In the k-party setting, the
inputs to the problem are sets S1, S2, . . . , Sk ⊆ {1, 2, . . . , n}, and the ith party
knows all the inputs except for Si. Their goal is to determine whether the sets
have empty intersection: S1 ∩S2 ∩ · · · ∩Sk = ∅. When specialized to k = 2, this
definition is entirely consistent with the two-party set disjointness problem in
Sections 1–4. It is common to represent the input to multiparty set disjointness
as a k×n Boolean matrix X = [xij ], whose rows correspond to the characteristic
vectors of the input sets. In this notation, set disjointness is given by the simple
formula

DISJk,n(X) =

n∧
j=1

k∨
i=1

xij . (1)

Progress on the communication complexity of set disjointness for k > 3 par-
ties is summarized in Table 1. In a surprising result, Grolmusz [22] proved an
upper bound of O(log2 n + k2n/2k). Proving a strong lower bound, even for
k = 3, turned out to be difficult. Tesson [51] and Beame et al. [9] obtained a
lower bound of Ω

(
1
k log n

)
for randomized protocols. Four years later, Lee and

Shraibman [30] and Chattopadhyay and Ada [18] gave an improved result. These
authors generalized the pattern matrix method of [44, 45] to k > 3 parties and

thereby obtained a lower bound of Ω(n/22
kk)1/(k+1) on the randomized commu-

nication complexity of set disjointness. Their lower bound was strengthened by

Beame and Huynh-Ngoc [8] to (nΩ(
√
k/ logn)/2k

2

)1/(k+1), which is an improve-
ment for k large enough. All lower bounds listed up to this point are weaker
than Ω(n/2k

3

)1/(k+1), which means that they become subpolynomial as soon as
the number of parties k starts to grow. Three years later, we obtained [47] a
lower bound of Ω(n/4k)1/4 on the randomized communication complexity of set
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Bound Reference

O

(
log2 n+

k2n

2k

)
Grolmusz [22]

Ω

(
logn

k

)
Tesson [51]
Beame, Pitassi, Segerlind, and Wigderson [9]

Ω

(
n

22kk

) 1
k+1 Lee and Shraibman [30]

Chattopadhyay and Ada [18](
nΩ(
√
k/ logn)

2k2

) 1
k+1

Beame and Huynh-Ngoc [8]

Ω
( n

4k

)1/4
Sherstov [47]

Ω

(√
n

2kk

)
Sherstov [49]

Table 1. Communication complexity of k-party set disjointness.

disjointness, which remains polynomial for up to k ≈ 1
2 log n and comes close to

matching Grolmusz’s upper bound. Most recently [49], we improved the lower
bound quadratically to Ω(

√
n/2kk), which is the strongest bound known. This

lower bound also holds for quantum multiparty protocols, in which case it is
tight. However, it is conceivable that the classical randomized communication
complexity of set disjointness is Ω(n/ck) for some constant c > 1. Proving such
a lower bound, or showing that it does not hold, is a fascinating open problem.

The lower bound from [49] is too demanding to discuss in this survey. In
what follows, we will instead focus on the next best lower bound Ω(n/4k)1/4.

Anatomy of multiparty protocols. Recall that the building blocks of two-
party communication protocols are combinatorial rectangles. The corresponding
objects in k-party communication are called cylinder intersections [6]. For a k-
party problem with domain X1 × X2 × · · · × Xk, a cylinder intersection is an
arbitrary function χ : X1 ×X2 × · · · ×Xk → {0, 1} of the form

χ(x1, . . . , xk) =

k∏
i=1

χi(x1, . . . , xi−1, xi+1, . . . , xk),

where χi : X1 × · · · × Xi−1 × Xi+1 × · · · × Xk → {0, 1}. In other words, a k-
dimensional cylinder intersection is the product of k Boolean functions, where the
ith function does not depend on the ith coordinate but may depend arbitrarily
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on the other k − 1 coordinates. As one would expect, combinatorial rectangles
are cylinder intersections for k = 2. The following fundamental result is the
multiparty analogue of Fact 1.

Fact 11 (Babai, Nisan, and Szegedy). Let Π : X1 × X2 × · · · × Xk → {0, 1}
be a deterministic k-party communication protocol with cost c. Then there exist
cylinder intersections χ1, . . . , χ2c with pairwise disjoint support such that

Π =

2c∑
i=1

χi.

By viewing a randomized protocol with cost c as a probability distribution on
deterministic protocols of cost at most c, one obtains the following corollary,
where ‖ · ‖∞ denotes as usual the `∞ norm.

Corollary 12. Let f : X1×X2× · · · ×Xk → {0, 1} be a given communication
problem. If Rε(f) = c, then there exists a linear combination Π =

∑
χ aχχ of

cylinder intersections with
∑
χ |aχ| 6 2c such that

‖f −Π‖∞ 6 ε.

Analytic preliminaries. For the past few years, analytic tools have played an
increasingly important role in communication complexity theory. We will need
two such tools, the Fourier transform and polynomial approximation theory.
Consider the real vector space of functions φ : {0, 1}n → R. For S ⊆ {1, 2, . . . , n},
define χS : {0, 1}n → {−1,+1} by χS(x) =

∏
i∈S(−1)xi . Then every function

φ : {0, 1}n → R has a unique representation of the form φ =
∑
S φ̂(S)χS , where

φ̂(S) = 2−n
∑
x∈{0,1}n φ(x)χS(x). The reals φ̂(S) are called the Fourier coeffi-

cients of φ, and the mapping φ 7→ φ̂ is the Fourier transform of φ.
The ε-approximate degree of a function φ : {0, 1}n → R, denoted degε(φ), is

the least degree of a multivariate real polynomial p that approximates φ within ε
pointwise: ‖φ−p‖∞ 6 ε. We also define E(φ, d) = minp ‖φ−p‖∞, where the min-
imum is over multivariate real polynomials p of degree at most d. Thus, E(φ, d)
is the least error to which φ can be approximated pointwise by a polynomial of
degree at most d. In this notation, degε(φ) = min{d : E(φ, d) 6 ε}. The approx-
imate degree is an extensively studied complexity measure of Boolean functions.
The first result in this line of work is due to Nisan and Szegedy [36], who studied
the function ANDn(x) =

∧n
i=1 xi.

Theorem 13 (Nisan and Szegedy). deg1/3(ANDn) = Θ(
√
n).

The Ω(n/4k)1/4 lower bound. We are now in a position to present the
lower bound on the randomized communication complexity of multiparty set
disjointness from [47]. The technical centerpiece of this result is the following
lemma, which analyzes the correlation of cylinder intersections with the XOR of
several independent copies of set disjointness.
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Lemma 14 (Sherstov). Let k and r be given parameters. Then there is a proba-
bility distribution µ on the domain of DISJk,r such that

µ(DISJ−1k,r(0)) = µ(DISJ−1k,r(1))

and

∣∣∣∣∣ E
X1,...,Xn∼µ

[
χ(X1, . . . , Xn)

n∏
i=1

(−1)DISJk,r(Xi)

]∣∣∣∣∣ 6
(

2k−1√
r

)n

for every n and every k-party cylinder intersection χ.

A few general remarks are in order before we delve into the proof of the
communication lower bound for set disjointness. The proof is best understood
by abstracting away from the set disjointness problem and considering arbitrary
composed functions. Specifically, let G be a k-party communication problem,
with domain X = X1×X2×· · ·×Xk. We refer to G as a gadget. We are interested
in the communication complexity of functions of the form F = f(G,G, . . . , G),
where f : {0, 1}n → {0, 1}. Thus, F is a k-party communication problem with
domain Xn = Xn

1 × Xn
2 × · · · × Xn

k . The motivation for studying such com-
positions is clear from the defining equation (1) for multiparty set disjointness,
which shows that DISJk,nr = ANDn(DISJk,r, . . . ,DISJk,r). A recent line of re-
search [45, 50, 30, 18, 8, 17, 47, 49] gives communication lower bounds for compo-
sitions f(G,G, . . . , G) in terms of the approximate degree of f. For the purpose
of proving communication lower bounds for set disjointness, the gadget G needs
to be representable as G = DISJk,r with r = r(n, k) as small as possible. This
miniaturization challenge quickly becomes hard.

Theorem 15 (Sherstov). Let f : {0, 1}n → {0, 1} be given. Consider the k-party
communication problem F = f(DISJk,r, . . . ,DISJk,r) Then for all ε, δ > 0,

2Rε(F ) > (δ − ε)
(

degδ(f)
√
r

2ken

)degδ(f)

. (2)

Proof. Let µ be the probability distribution from Lemma 14. Let µ0 and µ1 stand
for the probability distributions induced by µ on DISJ−1k,r(0) and DISJ−1k,r(1),
respectively. Consider the following averaging operator L, which linearly sends
real functions χ on ({0, 1}k×r)n to real functions on {0, 1}n:

(Lχ)(z) = E
X1∼µz1

· · · E
Xn∼µzn

[χ(X1, . . . , Xn)] .
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Observe that LF = f. When χ is a k-party cylinder intersection, the Fourier
coefficients of Lχ obey

|L̂χ(S)| =

∣∣∣∣∣ E
z∈{0,1}n

E
X1∼µz1

· · · E
Xn∼µzn

[
χ(X1, . . . , Xn)

∏
i∈S

(−1)zi

]∣∣∣∣∣
=

∣∣∣∣∣ E
X1,...,Xn∼µ

[
χ(X1, . . . , Xn)

∏
i∈S

(−1)DISJk,r(Xi)

]∣∣∣∣∣
6

(
2k−1√
r

)|S|
, (3)

where the second equality uses the fact that µ places equal weight on DISJ−1k,r(0)

and DISJ−1k,r(1), and the final step follows by Lemma 14.
Fix a randomized protocol for F with error ε and cost c = Rε(F ). Approx-

imate F as in Corollary 12 by a linear combination of cylinder intersections
Π =

∑
χ aχχ, where

∑
χ |aχ| 6 2c. For any positive integer d, the triangle

inequality gives

E(f, d− 1) 6 ‖f − LΠ‖∞ + E(LΠ, d− 1). (4)

We proceed to bound the two terms on the right-hand side of this inequality.

(i) By the linearity of L,

‖f − LΠ‖∞ = ‖L(F −Π)‖∞ 6 ε, (5)

where the last step uses the bound ‖F −Π‖∞ 6 ε from Corollary 12.

(ii) Discarding the Fourier coefficients of LΠ of order d and higher gives

E(LΠ, d− 1) 6 min

1,
∑
χ

|aχ|
∑
|S|>d

|L̂χ(S)|


6 min

{
1, 2c

n∑
i=d

(
n

i

)(
2k−1√
r

)i}

6 2c
(

2ken

d
√
r

)d
, (6)

where the second step uses (3).

Substituting the newly obtained estimates (5) and (6) into (4),

E(f, d− 1) 6 ε+ 2c
(

2ken

d
√
r

)d
.

For d = degδ(f), the left-hand side must exceed δ, forcing (2).
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As an immediate consequence, we obtain the claimed lower bound on the mul-
tiparty communication complexity of set disjointness [47]:

Corollary (Sherstov).

R1/3(DISJk,n) > Ω
( n

4k

)1/4
. (7)

Proof. Recall that DISJk,nr = ANDn(DISJk,r, . . . ,DISJk,r) for all integers n, r.
Theorem 13 guarantees that deg1/3(ANDn) > c

√
n for some constant c > 0.

Thus, letting f = ANDn, δ = 1/3, ε = 1/4, and r = 4k+2d
√
n/ce2 in Theorem 15

gives

R1/4(DISJk,4k+2nd
√
n/ce2)

= R1/4(ANDn(DISJk,4k+2d
√
n/ce2 , . . . ,DISJk,4k+2d

√
n/ce2)) > Ω(

√
n),

which is logically equivalent to (7).

7 Other gems

We have only focused on a small sample of results on the set disjointness problem.
Prominently absent in our survey is the fascinating and influential body of work
on the quantum communication complexity of set disjointness [14, 41, 1, 45, 50].
Much can also be said about deterministic, nondeterministic, and Merlin-Arthur
multiparty protocols [25, 21, 47, 49]. Another compelling topic is the multiparty
communication complexity of the set disjointness problem in the number-in-hand
model [7, 15, 12], where each party sees only one of the input sets S1, S2, . . . , Sk
as opposed to all but one. Lower bounds for such multiparty protocols play
an important role in the study of streaming algorithms. Finally, we have not
discussed XOR lemmas and direct product theorems, which deal with the com-
munication complexity of simultaneously solving several independent copies of
set disjointness [27, 9, 10, 23, 26, 48, 47, 49].
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