
Powering Requires Threshold Depth 3

Alexander A. Sherstov

The University of Texas at Austin, Department of Computer Sciences,
Austin, TX 78712 USA

Abstract

We study the circuit complexity of the powering function, defined as POWm(Z) = Zm for
an n-bit integer input Z and an integer exponent m 6 poly(n). Let L̂Td denote the class
of functions computable by a depth-d polynomial-size circuit of majority gates. We give
a simple proof that POWm 6∈ L̂T2 for any m > 2. Specifically, we prove a 2Ω(n/ logn) lower
bound on the size of any depth-2 majority circuit that computes POWm. This work gener-
alizes Wegener’s earlier result that the squaring function (i.e., POWm for the special case
m = 2) is not in L̂T2. Our depth lower bound is optimal due to Siu and Roychowdhury’s
matching upper bound: POWm ∈ L̂T3.

The second part of this research note presents several counterintuitive findings about
the membership of arithmetic functions in the circuit classes L̂T1 and L̂T2. For example,
we construct a function f (Z) such that f 6∈ L̂T1 but 5 f ∈ L̂T1. We obtain similar findings
for L̂T2. This apparent brittleness of L̂T1 and L̂T2 highlights a difficulty in proving lower
bounds for arithmetic functions.

Keywords: Computational complexity, threshold circuits, circuit lower bounds,
complexity of arithmetic operations.

1 Introduction

An essential problem in complexity theory is understanding the complexity of fun-
damental arithmetic operations. Among the most studied computational models in
this respect is that of a polynomial-size circuit of majority gates [2, 4, 7, 8, 9, 10].
This model is surprisingly powerful; in fact, it is conceivable that every function
in P is computable by a depth-3 polynomial-size majority circuit. Thus, a natural
complexity measure in this model is circuit depth. Let L̂Td denote the class of func-
tions computable by a depth-d polynomial-size circuit of majority gates. The exact

Email address: sherstov@cs.utexas.edu (Alexander A. Sherstov).

depth requirement (L̂T2, L̂T3, etc.) is known for most arithmetic operations; see
Table 1 for an overview, as well as similar surveys by Wegener [11] and Goldmann
and Karpinski [3].

Operation Lower Bound Upper Bound

Addition 2, folklore 2 [8]

Multiple addition 2, folklore 2 [10]

Multiplication 3 [4] 3 [10]

Multiple multiplication 3 [4] 4 [10]

Division 3 [11, 5] 3 [10]

Squaring 3 [11] 3 [10]

Powering 3, this paper 3 [10]

Table 1. Best upper and lower bounds on the depth of poly-size majority
circuits for basic arithmetic operations. All operations take n-bit integers
as arguments. Addition and multiplication take two arguments. Multiple
addition and multiple multiplication take poly(n) arguments. Division
returns the quotient bX/Yc of two integers X ,Y. Squaring computes X2

for an integer X . Powering computes the m-th power Xm of an integer X ,
where 2 6 m 6 poly(n).

This paper addresses one of the remaining questions in the complexity of arithmetic
operations. We study the powering function, defined as POWm(Z) = Zm for an n-
bit integer input Z and a fixed integer exponent m with 2 6 m 6 poly(n). Siu and
Roychowdhury [10] gave an explicit depth-3 polynomial-size majority circuit for
computing POWm, thus proving that POWm ∈ L̂T3. A natural question to ask is
whether depth 3 is in fact optimal. A concise proof due to Wegener [11] shows
that POW2 6∈ L̂T2, meaning that Siu and Roychowdhury’s construction has optimal
depth for the special case m = 2. Wegener leaves open the question for general m.

We settle this issue, proving that POWm 6∈ L̂T2 for all m. We actually prove the
following more delicate result:

Theorem 1.1 (Complexity of powering) Let POWm(Z) = Zm denote the power-
ing function, where Z is an n-bit integer and m is an arbitrary integer with
2 6 m 6 poly(n). Then any majority vote of linear threshold gates that computes
POWm has size 2Ω(n/ logn).

Our proof uses a reduction from IP (inner product mod 2), a function whose hard-
ness for threshold circuits has been extensively studied. Given a circuit C that com-
putes powering, we show how to compute IP by padding the input to C with zeroes
in a suitable way. This general approach is a natural one to pursue since reductions

2

from IP underlie all other lower bounds in Table 1, except those for addition and
multiple addition.

The second part of this paper (Section 4) documents a counterintuitive fact we dis-
covered while studying the complexity of powering. Suppose we have an arithmetic
function f : N → N with f 6∈ L̂T2, i.e., not every output bit of f can be computed
by an L̂T2 circuit. Can we claim that likewise k f 6∈ L̂T2 for every rational constant
k > 0? (Here k f stands for the usual product k · f (x).) One is tempted to answer
“yes,” but we show several counterexamples. We obtain similar results for L̂T1.
Specifically, we prove the following:

Theorem 1.2 (L̂T1 and L̂T2 not closed under scaling) There are (explicitly
given) functions f ,g,h : {0,1}2n →{0,1}poly(n) such that

(a) f 6∈ L̂T1 but 5 f ∈ L̂T1;
(b) g 6∈ L̂T1 but 1

5g ∈ L̂T1 (here g always outputs a multiple of 5);
(c) h 6∈ L̂T2 but (1+2n + · · ·+2(n−1)n)−1h ∈ L̂T2 (here h always outputs a mul-

tiple of 1+2n + · · ·+2(n−1)n).

In other words, multiplying a hard arithmetic function by a constant can make
it easy. This unexpected fact shows that L̂T1 and L̂T2 lack basic closure proper-
ties when it comes to arithmetic functions, which complicates proving good lower
bounds.

2 Preliminaries

We view Boolean functions as mappings {0,1}n →{0,1}, and arithmetic functions
as mappings {0,1}n → {0,1}poly(n). A linear threshold gate with Boolean inputs
f1, f2, . . . , ft ∈ {0,1} is a Boolean function of the form

a1 f1 +a2 f2 + · · ·+at ft > θ

for some reals a1,a2, . . . ,at ,θ . In particular, every a majority gate is a linear thresh-
old gate. The size of a circuit is the number of gates in it. An arithmetic function f
is computable in L̂Td if every output bit of f is computable by an L̂Td circuit.

Our main result exploits a reduction from inner product mod 2, defined as

IP(x1,y1,x2,y2, . . . ,xn/2,yn/2) = ∑xiyi mod 2.

The complexity of IP for depth-2 threshold circuits is well understood:

Theorem 2.1 (Nisan [6]) Any majority vote of linear threshold gates that com-
putes IP on n variables has size 2Ω(n).

3

We follow the typographical convention of denoting poly(n)-bit integers by capital
letters (such as Z), and O(logn)-bit integers by small letters (such as m).

3 Complexity of Powering

As outlined in the Introduction, our strategy will be to reduce the task of computing
IP to that of computing POWm. We accomplish this by first reducing IP to an inter-
mediate problem, that of “generalized” squaring, and then reducing from squaring
to POWm. This first reduction, Lemma 3.1 below, is a slight generalization of We-
gener’s IP-to-squaring reduction [11].

Lemma 3.1 (From IP to squaring; cf. Wegener [11]) Consider the function
f (Z) = kZ2, where k > 1 is an integer and Z is an n-bit input. Any circuit that
computes f (Z) can also compute IP on Ω

(
n

logk+logn

)
bits.

Proof: We are given a circuit that computes f (Z) = kZ2. To compute
IP(x1,y1, . . . ,xt ,yt), we construct the input Z as follows:

Z = y1 00 . . .0︸ ︷︷ ︸
`

y2 00 . . .0︸ ︷︷ ︸
`

. 00 . . .0︸ ︷︷ ︸
`

yt 00 . . .0︸ ︷︷ ︸
`

xt 00 . . .0︸ ︷︷ ︸
`

. 00 . . .0︸ ︷︷ ︸
`

x2 00 . . .0︸ ︷︷ ︸
`

x1.

Each pair of consecutive bits above is separated by ` = 2+dlogk + log te zeroes. It
is easy to check that the binary representation of kZ2 will contain the integer

2k(x1y1 + x2y2 + · · ·+ xtyt)

as a block starting in the (2t − 1)(` + 1)th bit position. In particular, the binary
representation of kZ2 features IP(x1,y1, . . . ,xt ,yt) in some fixed bit position. To
finish the proof, we set t as large as possible while keeping the bit length of Z at
most n. This yields t = Ω(n/(logk + logn)). �

We now proceed to the crux of our proof, the squaring-to-powering reduction.

Lemma 3.2 (From squaring to powering) Consider the function POWm(Z) =
Zm, where m > 2 is an integer and Z is an n-bit input. Any circuit that computes
POWm(Z) can also compute f (W) =

(m
2

)
W 2, where W is up to 1

3n− 2
3dlogme bits

long.

Proof: We are given a circuit that computes POWm(Z) = Zm. To compute f (W) =(m
2

)
W 2 on t bits, we construct its input as follows:

Z = W 000 . . .0001︸ ︷︷ ︸
`

.

4

Then

Zm = (2`W +1)m =
m

∑
i=0

(
m
i

)
2i`W i

= 1+2`mW︸ ︷︷ ︸
A

+ 22`

(
m
2

)
W 2︸ ︷︷ ︸

f (W)

+ 23`
m

∑
i=3

(
m
i

)
2(i−3)`W i

︸ ︷︷ ︸
B

.

It is easy to verify that for ` = 2t + 2dlogme, the integers A, f (W), and B above
occur as disjoint blocks in the binary representation of Zm in positions 0,2`, and
3`, respectively. In particular, the circuit computes f (W) as desired. To finish the
proof, we set t as large as possible while keeping the bit length of Z at most n. This
yields t = 1

3n− 2
3dlogme. �

Combining Lemmas 3.1 and 3.2 immediately yields the following IP-to-powering
reduction:

Theorem 3.3 Any circuit that computes POWm(Z) = Zm, where m > 2 is an integer
and Z is an n-bit input, can also compute IP on Ω

(
n

logm+logn

)
bits.

Recalling the hardness result for IP from Section 2, we readily deduce our main
theorem:

Theorem 1.1. (Restated from page 2.) Let POWm(Z) = Zm denote the powering
function, where Z is an n-bit integer and m is an arbitrary integer with 2 6 m 6
poly(n). Then any majority vote of linear threshold gates that computes POWm has
size 2Ω(n/ logn).

Proof: Immediate from Theorems 2.1 and 3.3. �

4 L̂T1 and L̂T2 Not Closed Under Scaling

In Section 3, we used a reduction from IP to prove that the generalized squaring
function kZ2 is hard for L̂T2. It may seem that we could have achieved the same
result simply by invoking Wegener’s proof [11] that the squaring function Z2 is
hard for L̂T2. Unfortunately, this approach does not work: there are functions f :
{0,1}n → {0,1}poly(n) such that f 6∈ L̂T2 but k f ∈ L̂T2 for some rational k > 0.
Demonstrating this phenomenon is the subject of this section.

We adopt vector notation for specifying a concrete function f : {0,1}n →
{0,1}poly(n). For example, we write f (x) = (x1 ∧ x2,0,x1 ⊕ x2) to define a func-
tion f : {0,1}n → {0,1}3 whose output bits are, from most to least significant,

5

x1∧ x2,0,x1⊕ x2.

Theorem 1.2. (Restated from page 3.) There are (explicitly given) functions
f ,g,h : {0,1}2n →{0,1}poly(n) such that

(a) f 6∈ L̂T1 but 5 f ∈ L̂T1;
(b) g 6∈ L̂T1 but 1

5g ∈ L̂T1 (here g always outputs a multiple of 5);
(c) h 6∈ L̂T2 but (1+2n + · · ·+2(n−1)n)−1h ∈ L̂T2 (here h always outputs a mul-

tiple of 1+2n + · · ·+2(n−1)n).

Proof: To prove (a), consider the function f (x) = (x1,0,x1 ⊕ x2,0,x2). Then f 6∈
L̂T1 because the parity x1 ⊕ x2 cannot be computed by a linear threshold gate [1].
However, 5 f (x) = 4 f (x)+ f (x) = (x1, x1∧x2, x2, x1∧x2, x1, 0, x2), and thus 5 f ∈
L̂T1.

To prove (b), consider the function g(x) = (x1, x1 ∧ x2, x1 ⊕ x2, 0, x2). Clearly
g 6∈ L̂T1 because x1⊕ x2 6∈ L̂T1. However, g(x) = (0,0,x1,0,x2)+(x1,0,x2,0,0) =
5(0,0,x1,0,x2), and thus 1

5g(x) = (0,0,x1,0,x2), which is in L̂T1.

To prove (c), consider the function

h′(x,y) = (xn∧ yn, 0,0, . . . ,0︸ ︷︷ ︸
n−1

, xn−1∧ yn−1, 0,0, . . . ,0︸ ︷︷ ︸
n−1

, . . . , 0,0, . . . ,0︸ ︷︷ ︸
n−1

, x1∧ y1),

which is in L̂T2. Note that the number k
 1 + 2n + · · ·+ 2(n−1)n has the binary
representation

k =
n ones︷ ︸︸ ︷

100 . . .0︸ ︷︷ ︸
n−1

100 . . .0︸ ︷︷ ︸
n−1

. . .100 . . .0︸ ︷︷ ︸
n−1

1 .

Now define h(x,y) = kh′(x,y). It is easy to verify that the (n− 1)nth bit of h(x,y)
is IP(x,y), and thus h 6∈ L̂T2 by Theorem 2.1. To summarize, h 6∈ L̂T2 but 1

k h = h′ ∈
L̂T2, as desired. �

Acknowledgments

I would like to thank Adam Klivans and Ingo Wegener for helpful feedback on
earlier versions of this manuscript.

6

References

[1] J. Aspnes, R. Beigel, M. Furst, and S. Rudich. The expressive power of voting poly-
nomials. In STOC ’91: Proceedings of the twenty-third annual ACM symposium on
Theory of computing, pages 402–409, New York, NY, USA, 1991. ACM Press.

[2] M. Goldmann, J. Håstad, and A. A. Razborov. Majority gates vs. general weighted
threshold gates. Computational Complexity, 2:277–300, 1992.

[3] M. Goldmann and M. Karpinski. Simulating threshold circuits by majority circuits.
SIAM J. Comput., 27(1):230–246, 1998.

[4] A. Hajnal, W. Maass, P. Pudlák, G. Turán, and M. Szegedy. Threshold circuits of
bounded depth. J. Comput. Syst. Sci., 46(2):129–154, 1993.

[5] T. Hofmeister and P. Pudlák. A proof that division is not in TC0
2. Research Report

447, University of Dortmund, Dept. of Computer Science, 1992.
[6] N. Nisan. The communication complexity of threshold gates. In Proceedings of

“Combinatorics, Paul Erdos is Eighty”, pages 301–315, 1993.
[7] A. A. Razborov. On small depth threshold circuits. In SWAT ’92: Proceedings of

the Third Scandinavian Workshop on Algorithm Theory, pages 42–52, London, UK,
1992. Springer-Verlag.

[8] K.-Y. Siu and J. Bruck. On the power of threshold circuits with small weights. SIAM
J. Discrete Math., 4(3):423–435, 1991.

[9] K.-Y. Siu, J. Bruck, T. Kailath, and T. Hofmeister. Depth efficient neural networks for
division and related problems. IEEE Transactions on Information Theory, 39(3):946–
956, 1993.

[10] K.-Y. Siu and V. P. Roychowdhury. On optimal depth threshold circuits for multipli-
cation and related problems. SIAM J. Discrete Math., 7(2):284–292, 1994.

[11] I. Wegener. Optimal lower bounds on the depth of polynomial-size threshold circuits
for some arithmetic functions. Inf. Process. Lett., 46(2):85–87, 1993.

7

