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Abstract. The threshold degree of a Boolean function f is the minimum degree of a real
polynomial p that represents f in sign: f(x) ≡ sgn p(x). In a seminal 1969 monograph, Minsky and
Papert constructed a polynomial-size constant-depth {∧,∨}-circuit in n variables with threshold
degree Ω(n1/3). This lower bound underlies some of today’s strongest results on constant-depth
circuits. It has since been an open problem (O’Donnell and Servedio, STOC 2003) to improve
Minsky and Papert’s bound to nΩ(1)+1/3.

We give a detailed solution to this problem. For any fixed k > 1, we construct an {∧,∨}-formula
of size n and depth k with threshold degree Ω(n(k−1)/(2k−1)). This lower bound nearly matches a
known O(

√
n) upper bound for arbitrary formulas, and is exactly tight for “regular” formulas. Our

result proves a conjecture due to O’Donnell and Servedio (STOC 2003) and a different conjecture due
to Bun and Thaler (2013). Applications to communication complexity and computational learning
are given.
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1. Introduction. Let f : {0, 1}n → {0, 1} be a given Boolean function. A real
polynomial p is said to represent f in sign if

sgn p(x) =

{
−1 if f(x) = 0,

+1 if f(x) = 1,

for every input x ∈ {0, 1}n. The main complexity measure of interest is the degree of
p. The minimum degree of a sign-representing polynomial for f is called the threshold
degree of f , denoted deg±(f). This notion was introduced in 1969 in the seminal
work of Minsky and Papert [34], who proved that the parity function on n variables
has threshold degree n and examined the threshold degree of several other functions.
Sign-representing polynomials quickly found a variety of applications in theoretical
computer science, the first of which were size-depth trade-offs [37, 53] and lower
bounds [29, 30] for various types of threshold circuits, oracle separations [4] for PP,
and the famous proof that PP is closed under intersection [8].

Sign-representing polynomials have been especially useful in the study of constant-
depth circuits, leading to algorithmic and complexity-theoretic breakthroughs in the
area. One such example is the fastest known algorithm for learning DNF formulas,
due to Klivans and Servedio [25], with running time exp{Õ(n1/3)}. The authors
of [25] obtained their algorithm by proving an upper bound of O(n1/3 log n) on the
threshold degree of polynomial-size DNF formulas, essentially matching a classic lower
bound due to Minsky and Papert [34]. Another success story is the fastest known
algorithm for learning read-once formulas, due to Ambainis et al. [3], with running
time exp{Õ(

√
n)}. That algorithm, too, follows from an upper bound of O(

√
n)
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on the threshold degree of read-once formulas, obtained in a series of breakthrough
papers [36, 15, 3, 32] by learning theorists and quantum researchers.

Sign-representing polynomials have been equally influential in the complexity-
theoretic study of constant-depth circuits. Recall that AC0 denotes the class of
{∧,∨,¬}-circuits of constant depth and polynomial size. Aspnes et al. [4] used the
notion of threshold degree and its relaxations to give an ingenious new proof that AC0

circuits cannot compute or even approximate the parity function. Another contribu-
tion [42, 43] in which threshold degree played a central role is the first construction of
an AC0 circuit with exponentially small discrepancy and hence maximum communica-
tion complexity in nearly every model. This discrepancy result was used in [42] to show
the optimality of Allender’s classic simulation of AC0 functions by majority circuits,
solving the open problem [29] on the relation between these two circuit classes. Sub-
sequent work generalized the threshold degree method of [42, 43] to communication
models with three or more parties, resolving well-known questions [33, 14, 6, 50, 49]
in communication complexity and circuit complexity. Yet another example of the use
of threshold degree in complexity theory is the first exponential lower bound on the
sign-rank of AC0 circuits [40], posed as a challenge by Babai et al. [5] twenty-two years
earlier.

1.1. Our results. In light of these algorithmic and complexity-theoretic appli-
cations, the problem of determining the threshold degree of constant-depth circuits
has attracted considerable attention. Forty-five years ago, Minsky and Papert [34]
proved an Ω(n1/3) lower bound on the threshold degree of the constant-depth circuit

f(x) =

n1/3∧
i=1

n2/3∨
j=1

xij .

The only subsequent progress was a lower bound of Ω(n1/3 logk n) for an arbitrary
constant k, due to O’Donnell and Servedio [36]. In other words, it has been open
since 1969 to obtain a polynomial improvement on Minsky and Papert’s lower bound.
We give a detailed solution to this problem. Our main result is as follows:

Theorem 1.1. Let k > 1 be any fixed integer. Define f : {0, 1}n → {0, 1} by

f = NOR
n

1
2k−1

◦NOR
n

2
2k−1

◦ · · · ◦NOR
n

2
2k−1︸ ︷︷ ︸

k−1

.

Then
deg±(f) = Ω

(
n
k−1
2k−1

)
.

As usual, the symbol ◦ denotes function composition. Thus, the function f above is a
depth-k tree of NOR gates, with top fan-in n1/(2k−1) and all other fan-ins n2/(2k−1).
Recall that by De Morgan’s law, a tree of NOR gates is equivalent to a tree of alter-
nating AND and OR gates of the same depth and size. For typesetting convenience,
we work with NOR trees throughout this manuscript.

Several remarks are in order. For depth k = 2, Theorem 1.1 gives a new and
entirely different proof of Minsky and Papert’s classic Ω(n1/3) lower bound. For
depth k = 3, Theorem 1.1 proves a conjecture of O’Donnell and Servedio [36] who
proposed the function ANDn1/5 ◦ORn2/5 ◦ANDn2/5 as a candidate for threshold degree
Ω(n2/5). Finally, the lower bound of Theorem 1.1 is essentially optimal. As k grows,
the bound approaches Ω(

√
n), nearly matching a well-known O(

√
n) upper bound on
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the threshold degree of arbitrary read-once Boolean formulas [32]. Moreover, we show
that for any fixed depth k, the lower bound of Theorem 1.1 is tight for a large class
Boolean formulas:

Theorem 1.2. Let k > 1 be any fixed integer. Define f : {0, 1}n → {0, 1} by

f = NORn1
◦NORn2

◦ · · · ◦NORnk ,

where n1, n2, . . . , nk are arbitrary integers with n1n2 · · ·nk = n. Then

deg±(f) = O
(
n
k−1
2k−1 log n

)
.

Our techniques allow us to prove another conjecture on the threshold degree
of constant-depth circuits. The element distinctness function EDn : {0, 1}ndlogne →
{0, 1} is given by

EDn(x) =
∧

i,j=1,2,...,n:
i 6=j

dlogne∨
k=1

xi,k ⊕ xj,k.

Viewing the arguments to EDn as dlog ne-bit integers, the function evaluates to true
if and only if these n integers are pairwise distinct. A moment’s reflection reveals
that EDn is a CNF formula of polynomial size. Bun and Thaler [13] proposed the
composed function ORn2/5 ◦EDn3/5 as another candidate for threshold degree Ω(n2/5),
a conjecture that we prove in this paper:

Theorem 1.3. Consider the depth-3 polynomial-size {∧,∨}-circuit f given by

f = ORn2/5 ◦ EDn3/5 .

Then
deg±(f) > Ω(n2/5).

The lower bound in this theorem is optimal up to a logarithmic factor. This function is
quite different from the corresponding construction of Theorem 1.1 for depth k = 3.
Remarkably, the threshold degree in both cases turns out to be the same up to a
logarithmic factor: Ω(n2/5) versus Ω(n/ log n)2/5, where n denotes the total number
of variables.

1.2. Further applications. Lower bounds on the threshold degree translate in
a black-box manner into various lower bounds in computational learning theory and
communication complexity. We focus on two illustrative applications in these research
areas. By the pattern matrix method [42, 43, 50, 49], Theorem 1.1 gives an improved
construction of a constant-depth circuit with exponentially small discrepancy:

Theorem 1.4. For every ε > 0, there is an (explicitly given) two-party commu-
nication problem f : {0, 1}n × {0, 1}n → {0, 1}, representable by a read-once {∧,∨}-
formula of constant depth, with discrepancy

disc(f) 6 exp
(
−Ω

(
n

1
2−ε
))
.

The best previous upper bound was exp(−Ω(n/ log n)2/5), due to Bun and Thaler [13],
preceded by an upper bound of exp(−Ω(n1/3)) due to Buhrman et al. [11] and
Sherstov [42, 43]. By the results of [50, 49], Theorem 1.4 generalizes to three or
more parties.
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As a second application, we consider the notions of threshold weight and threshold
density, defined for a given Boolean function f : {0, 1}n → {0, 1} as the minimum
size of a majority-of-parity and threshold-of-parity circuit for f , respectively. Both
quantities play a prominent role in computational learning theory. By the black-box
reduction in [29], Theorem 1.1 in this paper implies:

Theorem 1.5. For every ε > 0, there is an (explicitly given) read-once {∧,∨}-
formula f : {0, 1}n → {0, 1} of constant depth with threshold weight and threshold
density

exp
(

Ω
(
n

1
2−ε
))

.

Prior to Theorem 1.5, the best lower bounds for circuits of constant depth were
as follows: exp(Ω(n/ log n)2/5) for threshold weight, due to Bun and Thaler [13], and
exp(Ω(n1/3)) for threshold density, due to Krause and Pudlák [29]. We defer a detailed
exposition of these and other applications to Section 8.

1.3. Proof overview. Sign-representation is a particularly powerful analytic
model, which explains the difficulty of proving lower bounds on the threshold degree.
A much weaker model is that of uniform approximation, whereby a real polynomial
represents a Boolean function f if it approximates f pointwise within 1/3, ranging in
[−1/3, 1/3] on f−1(0) and in [2/3, 4/3] on f−1(1). Central to our proof is a hybrid
model, best thought of as one-sided approximation [16, 12, 45, 13], in which the
representing polynomial ranges in [−1/3, 1/3] on f−1(0) and in [2/3,+∞) on f−1(1).
The complexity measure of a Boolean function f in each of these cases is the minimum
degree of a real polynomial that represents f : the threshold degree, approximate
degree, and one-sided approximate degree of f, respectively.

We obtain our results by proving the following more general statement.

Theorem 1.6. Let f be an arbitrary Boolean function, with one-sided approxi-
mate degree d. Then for all integers n, k > 0,

(1.1) deg±(NORcn ◦NORcn2 ◦ · · · ◦NORcn2︸ ︷︷ ︸
k

◦f) > nk min{n, d},

where c > 1 is an absolute constant.

Theorem 1.6 gives the best possible lower bound on the threshold degree of the com-
position (1.1) in terms of the one-sided approximate degree of f. We consider this
result to be of independent interest. It allows one to start with a function f that has
high one-sided approximate degree—a weak notion of hardness—and transform it into
a vastly harder function, with high threshold degree. We deduce our lower bounds in
Theorems 1.1 and 1.3 from Theorem 1.6 by letting f be either the NOR function or
the element distinctness function, for both of which the one-sided approximate degree
is known.

We give three different proofs of Theorem 1.6, one for arbitrary k and two simpler
ones for the special case k = 0. We describe all three below. While the main result
of this paper (Theorem 1.1) requires the full power of Theorem 1.6 for arbitrary k,
the case k = 0 is already sufficient to prove an Ω(n2/5) lower bound on the threshold
degree of constant-depth circuits.

Proof for arbitrary k. The search for a sign-representing polynomial for a
given Boolean function f can be formulated as a linear program. By strong duality,
the nonexistence of a sign-representing polynomial is therefore equivalent to the ex-
istence of a certain dual object. This dual point of view has been influential in past
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research [36, 42, 46, 44, 12, 45] and plays a central role in our paper as well. Put
another way, we prove Theorem 1.6 constructively, by exhibiting a feasible object in
the dual space. This object must be a nonzero function that agrees with f in sign
and is additionally orthogonal to low-degree polynomials.

The key challenge is ensuring the agreement in sign between the dual object
and the Boolean function f. This contrasts with simpler settings such as uniform
approximation, where the dual object is allowed to disagree with f on a small fraction
of inputs. The vast majority of methods developed to date, including most recently
the paper of Bun and Thaler [13], only work for uniform approximation.

We pursue a different approach. At a high level, the proof proceeds by induction
on circuit depth. For each depth, we do more than rule out a sign-representing poly-
nomial—rather, we construct a pair of highly structured dual objects that imply high
threshold degree and additionally allow for induction. A recurring technique in this
paper is the construction of dual objects with desired analytic or metric properties
by taking convex combinations of dual objects that almost have the desired proper-
ties. The technical part of the paper includes intuitive descriptions at each level of
granularity.

Proofs for k = 0. This case corresponds to compositions of the form NORn ◦f,
where f is an arbitrary Boolean function. Equivalently, we may speak of ORn ◦ f
since threshold degree is invariant under negation. We are able to fully characterize
the threshold degree of any such composition.

To build intuition for our result, suppose that∥∥∥∥f − p

q

∥∥∥∥
∞
<

1

2n
,

where p and q are polynomials. Then ORn ◦ f is sign-represented by

n∑
i=1

p(xi)

q(xi)
− 1

2
.

To obtain a sign-representing polynomial for ORn ◦ f, it suffices to multiply through
by the positive quantity

∏
q(xi)

2. In summary, the threshold degree of ORn ◦ f is at
most deg p+ 2n deg q. This construction is due to Beigel et al. [8], who used it in an
ingenious way to prove the closure of PP under intersection. In previous work [46],
we showed that this construction is optimal for n = 2, i.e., the threshold degree of
OR2 ◦ f equals (up to a small multiplicative constant) the least degree of a rational
function that approximates f pointwise. However, no characterization was known for
growing n.

Observe that the above construction works even if p/q approximates f in a one-
sided manner. In fact, we prove that this modified construction achieves the smallest
possible degree. Our proof works by manipulating a feasible solution to the dual of
the one-sided rational approximation problem for f, in order to construct a feasible
solution to the dual of the sign-representation problem for ORn ◦ f. The proof in this
paper is unrelated to the earlier work [46] for n = 2. As a corollary to the newly
obtained characterization of the threshold degree of ORn ◦ f, we recover the special
case of Theorem 1.6 for k = 0.

We give yet another proof of Theorem 1.6 for k = 0 by combining our techniques
with a construction due to Bun and Thaler [13]. Specifically, the authors of [13]
proved that ORn ◦ f cannot be approximated uniformly within 1

2 − exp(−Ω(n)) by



6 ALEXANDER A. SHERSTOV

a polynomial of degree less than the one-sided approximate degree of f, a form of
hardness amplification for uniform approximation. In and of itself, that result does
not imply anything about the threshold degree of ORn ◦f. Indeed, there are examples
of functions [38, 39, 48] with threshold degree 1 that cannot be approximated uni-
formly within 1

2 − exp(−Ω(n)) by a polynomial of degree cn for some constant c > 0.
Nevertheless, we are able to adapt the techniques of this work to the setting of Bun
and Thaler [13] and thereby obtain another proof of Theorem 1.6 for k = 0.

2. Preliminaries. We use the term Euclidean space to refer to Rn for some
positive integer n. Throughout this paper, Boolean functions are mappings X →
{0, 1} for some finite subset X of Euclidean space, most often X = {0, 1}n. For
Boolean functions f : {0, 1}n → {0, 1} and g : X → {0, 1}, we let f ◦ g denote the
componentwise composition of f with g, i.e., the Boolean function on Xn that sends
(x1, x2, . . . , xn) 7→ f(g(x1), g(x2), . . . , g(xn)). By associativity, this definition extends
unambiguously to compositions f1 ◦ f2 ◦ · · · ◦ fk of three or more functions.

For a bit string x ∈ {0, 1}n, we let |x| = x1 + x2 + · · · + xn denote the Ham-
ming weight of x. The kth level of the Boolean hypercube {0, 1}n is the subset
{x ∈ {0, 1}n : |x| = k}. The notation log x refers to the logarithm of x to base 2.
The negation of a Boolean function f : X → {0, 1} is denoted ¬f and defined as usual
by (¬f)(x) = ¬f(x). The functions ANDn,ORn,NORn : {0, 1}n → {0, 1} have their
standard definitions:

ANDn(x) =

n∧
i=1

xi, ORn(x) =

n∨
i=1

xi, NORn = ¬ORn.

The element distinctness function EDn : ({0, 1}dlogne)n → {0, 1} is given by

EDn(x) =
∧

i,j=1,2,...,n:
i 6=j

dlogne∨
k=1

xi,k ⊕ xj,k.

Viewing the arguments to EDn as dlog ne-bit integers, the function evaluates to true
if and only if these n integers are pairwise distinct. The sign function is denoted

sgn t =


−1 if t < 0,

0 if t = 0,

1 if t > 0.

For a multivariate real polynomial p : Rn → R, we let deg p denote the total degree
of p, i.e., the largest degree of any monomial of p. We use the terms degree and total
degree interchangeably in this paper. The following simple but fundamental fact, due
to Minsky and Papert [34], allows one to transform a multivariate real polynomial on
{0, 1}n into a related univariate real polynomial on {0, 1, 2, . . . , n} without an increase
in degree.

Proposition 2.1 (Minsky and Papert). Let p : {0, 1}n → R be an arbitrary poly-
nomial. Then the mapping

m 7→ E
x∈{0,1}n
|x|=m

p(x) (m = 0, 1, 2, . . . , n)

is a univariate real polynomial of degree at most deg p.

We adopt the convention that 00 = 1, justified by continuity.
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2.1. Norms and products. For a finite set X, we let RX denote the linear
space of functions f : X → R. This space is equipped with the usual norms and inner
product:

‖f‖∞ = max
x∈X
|f(x)|,

‖f‖1 =
∑
x∈X
|f(x)|,

〈f, g〉 =
∑
x∈X

f(x)g(x).

The tensor product of f ∈ RX and g ∈ RY is the real function f ⊗ g ∈ RX×Y
defined by (f ⊗ g)(x, y) = f(x)g(y). The tensor product f ⊗ f ⊗ · · · ⊗ f (n times) is
abbreviated f⊗n. The pointwise product of f, g ∈ RX is denoted f · g ∈ RX and is
given by (f ·g)(x) = f(x)g(x). Note that as functions, f ·g is a restriction of f⊗g. The
support of a function f : X → R is denoted supp f = {x ∈ X : f(x) 6= 0}. A convex
combination of f1, f2, . . . , fk ∈ RX is any function of the form λ1f1+λ2f2+· · ·+λkfk,
where λ1, λ2, . . . , λk are nonnegative and sum to 1. The convex hull of F ⊆ RX ,
denoted convF, is the set of all convex combinations of functions in F.

For f : X → R, the symbols |f | and sgn f have their usual meanings as the
real functions given by |f |(x) = |f(x)| and (sgn f)(x) = sgn f(x). In the context of
functions, the relational operators 6,=, and > and arithmetic operations are applied
pointwise. For example, the phrase “f > 2|g| on X” means that f(x) > 2|g(x)| for
every x ∈ X.

Throughout this manuscript, we view probability distributions as real functions,
which allows us to use the various notational devices introduced above. In particular,
for probability distributions µ and λ, the symbol suppµ denotes the support of µ,
and µ⊗λ denotes the probability distribution given by (µ⊗λ)(x, y) = µ(x)λ(y). If µ
is a probability distribution on X, we consider µ to be defined on any superset of X
with the understanding that µ = 0 outside X.

2.2. Approximation by polynomials. Let f : X → {0, 1} be given, for a finite
subset X ⊂ Rn. The ε-approximate degree of f, denoted degε(f), is the least degree
of a real polynomial p such that ‖f − p‖∞ 6 ε. We refer to any such polynomial for
f as a uniform approximant with error ε. Define

E(f, d) = min
p:deg p6d

‖f − p‖∞,

where the minimum is over polynomials of degree at most d. In words, E(f, d) is the
least error to which f can be approximated by a real polynomial of degree no greater
than d. In this notation, degε(f) = min{d : E(f, d) 6 ε}. In the study of Boolean
functions, the standard setting of the error parameter is ε = 1/3.

Observe that deg1/2(f) = 0 for every Boolean function f , the approximant in
question being the constant polynomial 1/2. While the 1/2-approximate degree of a
Boolean function is always a trivial concept, the limit of the ε-approximate degree as
ε↗ 1/2 turns out to be a fundamental and mathematically rich notion. It is known
as the threshold degree of f, denoted

deg±(f) = lim
ε↗1/2

degε(f).

It is a simple but instructive exercise to verify that deg±(f) is precisely the least
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degree of a real polynomial p that represents f in sign:

sgn p(x) =

{
−1 if f(x) = 0,

+1 if f(x) = 1.

Clearly,

deg±(f) 6 degε(f), 0 6 ε <
1

2
.

Key to our work is a hybrid notion of approximation whereby a Boolean function
f is approximated uniformly on f−1(0) and represented in sign on f−1(1). Formally,
the one-sided ε-approximate degree of f, denoted deg+

ε (f), is the least degree of a real
polynomial p such that

f(x)− ε 6 p(x) 6 f(x) + ε, x ∈ f−1(0),

f(x)− ε 6 p(x), x ∈ f−1(1).

We refer to any such polynomial for f as a one-sided approximant with error ε.
Again, the canonical setting of the error parameter is ε = 1/3. Threshold degree and
ε-approximate degree are invariant under function negation:

deg±(f) = deg±(¬f),(2.1)

degε(f) = degε(¬f)(2.2)

for every Boolean function f and every ε. In contrast, the gap between the one-sided
approximate degree of a Boolean function f : {0, 1}n → R versus its negation ¬f can
be as large as 1 versus Ω(

√
n), achieved for f = ORn.

We will need tight bounds on the one-sided approximate degree of several func-
tions. The following theorem, due to Nisan and Szegedy [35], was one of the first
results in this line of work.

Theorem 2.2 (Nisan and Szegedy).

deg1/3(NORn) = Θ(
√
n),

deg+
1/3(NORn) = Θ(

√
n).

The following result, obtained recently by Bun and Thaler [13, Appendix A], gen-
eralizes earlier work [1, 2] on the approximate degree of element distinctness to the
one-sided case.

Theorem 2.3 (Bun and Thaler).

deg+
1/3(EDn) = Ω(n2/3).

2.3. Dual characterizations. Each of the approximation-theoretic notions re-
viewed in the previous section has a dual characterization, obtained by an appeal to
linear programming duality. For threshold degree, we have:

Theorem 2.4. Let f : X → {0, 1} be given. Then deg±(f) > d if and only if
there exists ψ : X → R such that

(i) ψ(x) > 0 whenever f(x) = 1,
(ii) ψ(x) 6 0 whenever f(x) = 0,
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(iii) 〈ψ, p〉 = 0 for every polynomial p of degree less than d, and
(iv) ψ 6≡ 0.

A convenient shorthand for (i) and (ii), which we use often, is (−1)1−fψ > 0. We
refer the reader to [4, 36, 46] for a proof of Theorem 2.4. Analogously, approximate
degree has the following dual characterization [43, 52]:

Theorem 2.5. Let f : X → {0, 1} be given. Then degε(f) > d if and only if there
exists ψ : X → R such that

(i) 〈f, ψ〉 > ε‖ψ‖1,
(ii) 〈ψ, p〉 = 0 for every polynomial p of degree less than d.

Finally, the dual characterization of one-sided approximate degree is as follows [13].

Theorem 2.6. Let f : X → {0, 1} be given. Then deg+
ε (f) > d if and only if

there exists ψ : X → R such that
(i) 〈f, ψ〉 > ε‖ψ‖1,

(ii) 〈ψ, p〉 = 0 for every polynomial p of degree less than d, and
(iii) ψ(x) > 0 whenever f(x) = 1.

The dual objects that arise in Theorems 2.4 to 2.6 share the following metric proper-
ties.

Proposition 2.7. Let ψ : X → R be given with 〈ψ, 1〉 = 0. Then
(i)

∑
x:ψ(x)>0 |ψ(x)| = ‖ψ‖1/2,

(ii) ‖ψ‖∞ 6 ‖ψ‖1/2,
(iii) 〈f, ψ〉 6 ‖ψ‖1/2 for every Boolean function f : X → {0, 1}.

Proof. (i) We have∑
x:ψ(x)>0

|ψ(x)| = 〈|ψ|+ ψ, 1〉
2

=
〈|ψ|, 1〉

2
=
‖ψ‖1

2
.

(ii) For every x∗ ∈ X,

0 = |〈ψ, 1〉| > |ψ(x∗)| −
∑
x6=x∗

|ψ(x)| = 2|ψ(x∗)| − ‖ψ‖1.

(iii) Immediate from (i) since f ranges in {0, 1}.
Most proofs in this paper involve explicit constructions of dual objects ψ as in

Theorems 2.4 to 2.6. A common step in such constructions is verifying that a candi-
date object ψ is orthogonal to polynomials of low degree. We will make frequent use
of the following observation.

Proposition 2.8. Let n, k, d be nonnegative integers, where n > 1. Let ψ : X →
R be a function on a finite subset X of Euclidean space such that

〈ψ, p〉 = 0

for every polynomial p of degree less than d. Let g : Xn → R be given by

g(x1, x2, . . . , xn) =
∑

i1<i2<···<ik

gi1,i2,...,ik(xi1 , xi2 , . . . , xik),

for some functions gi1,i2,...,ik : Xk → R. Then

〈ψ⊗n · g, P 〉 = 0

for every polynomial P of degree less than (n− k)d.
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Proof. By linearity, it suffices to prove the proposition for factored polynomials
P (x1, x2, . . . , xn) =

∏n
i=1 pi(xi). By hypothesis, the degrees of p1, p2, . . . , pn sum to

less than (n−k)d. In particular, every subset S ⊆ {1, 2, . . . , n} of cardinality |S| > n−k
obeys mini∈S deg pi < d and therefore∏

i∈S
〈ψ, pi〉 = 0.

We conclude that

〈ψ⊗n · g, P 〉 =
∑

i1<i2<···<ik

〈ψ⊗k · gi1,i2,...,ik , pi1 ⊗ pi2 ⊗ · · · ⊗ pik〉
∏

i/∈{i1,i2,...,ik}

〈ψ, pi〉

= 0.

We will also need an explicit dual object for the NOR function, in the sense of
Theorem 2.6. There are known constructions of such objects, due to Špalek [54] and
Bun and Thaler [12], but we require additional properties not ensured by previous
work.

Theorem 2.9. Let ε be given, 0 < ε < 1. Then for some δ = δ(ε) > 0 and every
n > 2, there exists an (explicitly given) function ω : {0, 1, 2, . . . , n} → R such that

ω(0) >
1− ε

2
· ‖ω‖1,

(−1)n+tω(t) >
ε

4t2
· ‖ω‖1 (t = 1, 2, . . . , n),

deg p <
√
δn =⇒ 〈ω, p〉 = 0.

The proof of this result is an adaptation of previous analyses [54, 12] and can be found
in Appendix A.

2.4. Robust polynomials. A natural approach to approximating a composed
function f ◦ g is to approximate f and g separately and compose the resulting approx-
imants. For this approach to work, the approximating polynomial for f needs to be
robust to noise in the inputs, i.e., it needs to approximate f not only on the Boolean
hypercube but also on any perturbation of a Boolean vector. The following result
from [47] gives an efficient procedure for making any polynomial robust to noise.

Theorem 2.10 (Sherstov). Let p : {0, 1}n → [−1, 1] be a given polynomial. Then
for every δ > 0, there is a polynomial probust : Rn → R of degree O(deg p+ log 1

δ ) such
that

|p(x)− probust(x+ ε)| < δ

for every x ∈ {0, 1}n and ε ∈ [−1/3, 1/3]n.

Note that the degree of the robust polynomial grows additively rather than multiplica-
tively with the error parameter δ. This fact will play a crucial role in the next section,
where we prove our upper bound on the threshold degree of constant-depth circuits.
It follows from the above result that the approximate degree is always well-behaved
under function composition [47]:

Corollary 2.11 (Sherstov). Let f : {0, 1}n → {0, 1} and g : X → {0, 1} be
given. Then

deg1/3(f ◦ g) 6 cdeg1/3(f) deg1/3(g)

for some absolute constant c > 0 independent of f, g, n.
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3. The upper bound. Consider an AND-OR tree of depth k on n variables,
in which the fan-in may vary from level to level but is the same for all gates at any
given level. O’Donnell and Servedio [36] made the following ingenious observation in
a footnote of their paper: either the product of the odd-level fan-ins is at most

√
n or

the product of the even-level fan-ins is at most
√
n, which means that the standard

arithmetization of the AND-OR tree gives a sign-representing polynomial of degree
at most

√
n.

While O’Donnell and Servedio’s construction falls short of achieving our desired

bound of O(n
k−1
2k−1 log n), the trick of odd- versus even-level fan-ins plays an essential

role in our proof. The other key ingredient is work on robust approximation [47],
which allows one to make a polynomial robust to noise with essentially no overhead
in degree. We start by calculating the parameters in the above construction.

Lemma 3.1 (cf. O’Donnell and Servedio). Let f = NORnk ◦ NORnk−1
◦ · · · ◦

NORn1
, where n1n2 · · ·nk = n. Then

(3.1) E(f, n2n4n6 · · · ) 6
1

2
− 1

2nn2n4n6···
.

Proof. By working with the negation of f if necessary, we may assume that

f(x) = · · ·
n3∨
i3=1

n2∧
i2=1

n1∨
i1=1︸ ︷︷ ︸

k

xi1,i2,...,ik .

Consider the polynomial

p(x) = · · ·
n3∑
i3=1

n2∏
i2=1

n1∑
i1=1

xi1,i2,...,ik .

It is clear that deg p = n2n4n6 · · · . Moreover, f(x) = 0 forces p(x) = 0, whereas
f(x) = 1 forces

1 6 p(x) 6 ((nn2
1 n3)

n4 n5)
n6 . . . 6 nn2n4n6···.

Now (3.1) is immediate, the approximant in question being

1

2
+

1

nn2n4n6···

(
p(x)− 1

2

)
.

Equation (3.1) shows that O’Donnell and Servedio’s approach gives a uniform ap-
proximant with reasonable accuracy, rather than just a sign-representing polynomial.
Combining this fact with results on robust approximation, we obtain a robust sign-
representing polynomial for the AND-OR tree:

Corollary 3.2. Let f = NORnk ◦NORnk−1
◦· · ·◦NORn1

, where n1n2 · · ·nk = n.
Then there is a polynomial probust : Rn → R such that

(3.2) deg probust 6 (n2n4n6 · · · ) · c log n

for some absolute constant c > 0, and

(3.3) |f(x)− probust(x+ ε)| 6 1

2
− 1

4nn2n4n6···

for every x ∈ {0, 1}n and ε ∈ [−1/3, 1/3]n.
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Proof. By Lemma 3.1, there is a polynomial p : {0, 1}n → [−2, 2] of degree at
most n2n4n6 · · · such that

‖f − p‖∞ 6
1

2
− 1

2nn2n4n6···
.

Invoking Theorem 2.10 with δ = 1/8nn2n4n6··· gives a polynomial probust : Rn → R of
degree O(deg p+ log 1

δ ) such that

|p(x)− probust(x+ ε)| 6 1

4nn2n4n6···

for every x ∈ {0, 1}n and ε ∈ [−1/3, 1/3]n. Now (3.2) and (3.3) are immediate.

We are now in a position to describe the final construction. We start by splitting
the NOR tree at some level into a top part and a bottom part. Next, we construct
a robust sign-representing polynomial for the top part, and a uniform approximant
with error 1/3 for the bottom part. Finally, we compose the resulting polynomials
to obtain a sign-representing polynomial for the original tree. This approach is made
precise in the following theorem.

Theorem 3.3. Let f = NORnk ◦NORnk−1
◦ · · · ◦NORn1

, where n1n2 · · ·nk = n.
Then

(3.4) deg±(f) 6 ck min
i=0,1,...,k−1

{
√
n1n2 · · ·ni ni+2ni+4ni+6 · · · } log n,

for some absolute constant c > 1.

Proof. Fix i arbitrarily and write f = f ′ ◦ f ′′, where

f ′ = NORnk ◦NORnk−1
◦ · · · ◦NORni+1

,

f ′′ = NORni ◦NORni−1
◦ · · · ◦NORn1

.

Corollary 3.2 provides a polynomial p′robust of degree at most (ni+2ni+4ni+6 · · · ) ·
c′ log n for some absolute constant c′ > 1 such that

(3.5) |f ′(x)− p′robust(x+ ε)| < 1

2

for every x ∈ {0, 1}ni+1ni+2···nk and ε ∈ [−1/3, 1/3]ni+1ni+2···nk .
On the other hand, Theorem 2.2 states that deg1/3(NORm) = O(

√
m), whence

by Corollary 2.11 the 1/3-approximate degree of f ′′ does not exceed (c′′)i
√
n1n2 · · ·ni

for some absolute constant c′′ > 1. Fix a polynomial p′′ of that degree, with

(3.6) ‖f ′′ − p′′‖∞ 6
1

3
.

By (3.5) and (3.6),

‖f ′ ◦ f ′′ − p′robust ◦ p′′‖∞ <
1

2
.

In summary, the threshold degree of f = f ′ ◦ f ′′ is at most the product of the degrees
of p′robust and p′′, whence (3.4).

We have arrived at the main result of this section, which settles Theorem 1.2 from
the Introduction.
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Theorem 3.4. Let f = NORnk ◦NORnk−1
◦ · · · ◦NORn1

, where n1n2 · · ·nk = n.
Then

deg±(f) 6 ck · n
k−1
2k−1 log n

for some absolute constant c > 1.

Proof. The idea is to carefully optimize the choice of i in the previous theorem, by
replacing the minimum with a geometric mean. Specifically, let c > 1 be the absolute
constant from Theorem 3.3. Then

deg±(f)

ck log n
6 min
i=0,1,...,k−1

{
√
n1n2 · · ·ni ni+2ni+4ni+6 · · · }

6 (n2n4n6 · · · )
1

2k−1

k−1∏
i=1

(
√
n1n2 · · ·ni ni+2ni+4ni+6 · · · )

2
2k−1 ,

where the second inequality is obtained by replacing the minimum with a weighted
geometric mean of the quantities involved. Raising both sides to the power 2k − 1
and simplifying,(

deg±(f)

ck log n

)2k−1

6 (n2n4n6 · · · )

(
k−1∏
i=1

n1n2 · · ·ni

)(
k−1∏
i=1

n2i+2n
2
i+4n

2
i+6 · · ·

)

=

 k∏
j=1

n
j−1−2b j−1

2 c
j

 k∏
j=1

nk−jj

 k∏
j=1

n
2b j−1

2 c
j


=

k∏
j=1

nk−1j

= nk−1.

4. The lower bound. We prove our lower bound on the threshold degree of
constant-depth circuits by induction on circuit depth. The notion of a dual pair,
defined next, plays a central role in this inductive argument.

Definition 4.1. Let f : X → {0, 1} be given. A (d0, d1, ε)-dual pair for f is any
pair of functions ψ0, ψ1 : X → R such that:

(i) 〈f, ψ1〉 > 1−ε
2 ‖ψ1‖1,

(ii) ψ1(x) > 0 whenever f(x) = 1,
(iii) 〈ψ1, p〉 = 0 for every polynomial p of degree less than d1,
(iv) 〈ψ0, p〉 = 0 for every polynomial p of degree less than d0,
(v)

ψ0(x)

{
= max{ψ1(x), 0} if f(x) = 0,

∈ [−ε|ψ1(x)|, ε|ψ1(x)|] if f(x) = 1.

In the final property, the absolute value |ψ1(x)| can be replaced with ψ1(x) in view of
part (ii). This definition is monotonic in ε, in the sense that a (d0, d1, ε)-dual pair is a
(d0, d1, ε

′)-dual pair for every ε′ > ε. In our applications, we will always take ε = 1/3.
Properties (i)–(iii) can be summarized by saying that the function f of interest

has one-sided 1−ε
2 -approximate degree at least d1. The dual object ψ1 witnesses this

fact, in the sense of linear programming duality (Theorem 2.6). The key difficulty
is that ψ1 need not always agree in sign with f : while such agreement is assured on
f−1(1), there may well be inputs in f−1(0) on which ψ1 is positive. The role of the
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accompanying object ψ0 is to eliminate those errors without introducing new ones.
For this to work efficiently, ψ0 needs to be orthogonal to polynomials of sufficiently
high degree d0. The challenge in our proof is to inductively construct new dual pairs
from old ones, while ensuring sufficiently rapid growth of d0, d1.

The following lemma shows how we obtain our first dual pair. It corresponds to
the base case of the inductive argument.

Lemma 4.2. Let f : X → {0, 1} be a given Boolean function, deg+
ε (f) > 0. Then

f has a (1,deg+
ε (f), 1

2ε − 1)-dual pair.

Proof. Abbreviate d = deg+
ε (f). By Theorem 2.6, there exists ψ1 : X → R such

that

〈f, ψ1〉 > ε‖ψ1‖1(4.1)

as well as

f(x) = 1 =⇒ ψ1(x) > 0,(4.2)

deg p < d =⇒ 〈ψ1, p〉 = 0.(4.3)

Define ψ0 : X → R by

ψ0(x) =


max{ψ1(x), 0} if f(x) = 0,(

1− ‖ψ1‖1
2〈f, ψ1〉

)
ψ1(x) if f(x) = 1.

With properties (4.1)–(4.3) already established, the proof will be complete once we
show that ∣∣∣∣1− ‖ψ1‖1

2〈f, ψ1〉

∣∣∣∣ 6 1

2ε
− 1,(4.4)

〈ψ0, 1〉 = 0.(4.5)

By (4.3) and Proposition 2.7 (i), (iii),∑
x:ψ1(x)>0

ψ1(x) =
‖ψ1‖1

2
,(4.6)

〈f, ψ1〉 6
‖ψ1‖1

2
.(4.7)

Now the upper bound (4.4) is immediate from (4.1) and (4.7). The remaining prop-
erty (4.5) can be verified as follows:

〈ψ0, 1〉 =
∑

x:f(x)=0

ψ0(x) +
∑

x:f(x)=1

ψ0(x)

=
∑

x:ψ1(x)>0

(1− f(x))ψ1(x) +
∑
x∈X

f(x)

(
1− ‖ψ1‖1

2〈f, ψ1〉

)
ψ1(x)

=
∑

x:ψ1(x)>0

ψ1(x)

︸ ︷︷ ︸
=‖ψ1‖1/2

−
∑

x:ψ1(x)>0

f(x)ψ1(x)

︸ ︷︷ ︸
=〈f,ψ1〉

+

(
1− ‖ψ1‖1

2〈f, ψ1〉

)
〈f, ψ1〉,

where the final calculations use (4.2) and (4.6).
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The inductive step in our proof is realized by the following “amplification theorem,”
which transforms a dual pair for a given function f into a dual pair for the composed
function NOR(f, f, . . . , f).

Theorem 4.3. Let ε, δ ∈ (0, 1) be arbitrary. Let f : X → {0, 1} be any function
that has a (d0, d1, ε)-dual pair, where d0, d1 > 1. Then the function

F = NORcn ◦ f

has a (min{nd0, d1},min{nd0,
√
nd1}, δ)-dual pair, where c = c(ε, δ) > 0 is a constant

independent of f, n, d0, d1.

The proof of Theorem 4.3 is lengthy and technical, and we defer it to section 5.
To complete our program, we need to bridge the notions of dual pairs and sign-
representation. The following lemma does just that.

Lemma 4.4. Let f : X → {0, 1} be any function that has a (d0, d1, ε)-dual pair for
some 0 6 ε < 1. Then

deg±(f) > min{d0, d1}.

Proof. Let (ψ0, ψ1) be a (d0, d1, ε)-dual pair for f. By definition,

deg p < d0 =⇒ 〈ψ0, p〉 = 0,(4.8)

deg p < d1 =⇒ 〈ψ1, p〉 = 0,(4.9)

f(x) = 1 =⇒ ψ1(x) > 0,(4.10)

f(x) = 1 =⇒ |ψ0(x)| 6 ε|ψ1(x)|,(4.11)

f(x) = 0 =⇒ ψ0(x) = max{ψ1(x), 0},(4.12)

〈f, ψ1〉 >
1− ε

2
‖ψ1‖1.(4.13)

Letting ψ = ψ1 − ψ0, we have

deg p < min{d0, d1} =⇒ 〈ψ, p〉 = 0,(4.14)

f(x) = 1 =⇒ ψ(x) > 0,(4.15)

f(x) = 0 =⇒ ψ(x) 6 0,(4.16)

where the first item holds by (4.8) and (4.9), the second by (4.10) and (4.11), and the
third by (4.12). Finally, we claim that

ψ 6≡ 0.(4.17)

Indeed, (4.13) implies that ψ1 is not identically zero on f−1(1), whereas (4.11) ensures
that sgnψ(x) = sgnψ1(x) on f−1(1). By (4.14)–(4.17) and Theorem 2.4, the proof is
complete.

Combining the above three results, we arrive at the technical centerpiece of this paper,
stated previously as Theorem 1.6 in the Introduction:

Theorem 4.5. Let f : X → {0, 1} be given. Then for all integers n, k > 0,

deg±(NORcn ◦NORcn2 ◦ · · · ◦NORcn2︸ ︷︷ ︸
k

◦f) > nk min{n,deg+
1/3(f)},

where c > 1 is an absolute constant, independent of f, n, k.
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Proof. Take c > 1 sufficiently large, and abbreviate m = min{n, deg+
1/3(f)}. We

need only consider the case m > 1, the lower bound being trivial otherwise. We claim
that for each k = 0, 1, 2, . . . , the function

NORcn2 ◦ · · · ◦NORcn2︸ ︷︷ ︸
k

◦f

has a (dmnk−1e,mnk, 1/2)-dual pair. This claim holds by induction on k, with the
base case k = 0 settled by Lemma 4.2 and the inductive step realized by Theorem 4.3.
Applying Theorem 4.3 once more shows that the function

(4.18) NORcn ◦NORcn2 ◦ · · · ◦NORcn2︸ ︷︷ ︸
k

◦f

has an (mnk,mnk, 1/2)-dual pair. It follows by Lemma 4.4 that the composition
(4.18) has threshold degree at least mnk, as was to be shown.

Corollary 4.6. There exists an absolute constant c > 0 such that for all integers
n, k > 0,

deg±(NORn ◦NORn2 ◦ · · · ◦NORn2︸ ︷︷ ︸
k

) > (cn)k.

Proof. Immediate from Theorems 2.2 and 4.5.

This corollary settles our main result, stated as Theorem 1.1 in the Introduction.
We note that all parts of our argument (Lemmas 4.2 and 4.4 and Theorems 2.2, 4.3
and 4.5) are constructive in that they produce explicit solutions to corresponding dual
linear programs. In particular, our proof produces an explicit dual object, in the sense
of Theorem 2.4, that witnesses the lower bound in Corollary 4.6.

Corollary 4.7. For every Boolean function f : X → {0, 1} and every n > 1,

deg±(ORn ◦ f) > min{cn,deg+
1/3(f)},

where c > 0 is an absolute constant. In particular,

deg±(ORn2/5 ◦ EDn3/5) = Ω(n2/5).

Proof. The first claim holds by taking k = 0 in Theorem 4.5 and recalling that
threshold degree is invariant under function negation. The second claim is immediate
from the first in light of Theorem 2.3.

This settles Theorem 1.3 from the Introduction. In sections 6 and 7 we will present
two alternate proofs of Corollary 4.7, completely different from the proof just given.
In fact, we will fully characterize the threshold degree of ORn ◦ f for every f .

5. Proof of Theorem 4.3. The objective of this section is to prove Theorem 4.3
(the “amplification theorem”), which transforms a dual pair for a given Boolean func-
tion into a dual pair of higher degree for the composed function NOR(f, f, . . . , f). We
start by reviewing the notation and hypothesis of the theorem. We then introduce
auxiliary dual objects and establish their properties. In the final subsection, we put
these ingredients together to obtain the desired dual pair.
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5.1. Notation. We adopt verbatim the notation and hypothesis of Theorem 4.3.
Specifically, f is an arbitrary Boolean function on a finite subset X of Euclidean space;
the reals 0 < ε < 1 and 0 < δ < 1 are arbitrary parameters; and it is assumed that f
has a (d0, d1, ε)-dual pair (ψ0, ψ1), for some positive integers d0, d1. By definition,

deg p < d0 =⇒ 〈ψ0, p〉 = 0,(5.1)

deg p < d1 =⇒ 〈ψ1, p〉 = 0,(5.2)

f(x) = 1 =⇒ ψ1(x) > 0,(5.3)

f(x) = 1 =⇒ |ψ0(x)| 6 ε|ψ1(x)|,(5.4)

f(x) = 0 =⇒ ψ0(x) = max{ψ1(x), 0},(5.5)

and

(5.6) 〈f, ψ1〉 >
1− ε

2
‖ψ1‖1.

A simple but vital consequence of (5.2) is that

(5.7) 〈ψ1, 1〉 = 0.

It follows from (5.6) that

(5.8) ψ1 6≡ 0,

whence by homogeneity we may assume that

(5.9) ‖ψ1‖1 = 1.

Define α by

(5.10) 〈f, ψ1〉 =
1− α

2
.

Then

(5.11) 0 6 α < ε,

where the upper bound is immediate from (5.6) and (5.9), whereas the lower bound
holds by (5.7), (5.9), and Proposition 2.7 (iii).

The objective of the proof is to construct a dual pair (Ψ0,Ψ1) with sufficiently
high degrees for the Boolean function F : XN → {0, 1} given by

F = NORN ◦ f,

where N = cn for some constant c = c(ε, δ) > 0. The construction will proceed in
stages, shown schematically in Figure 5.1. The inputs to the construction, shaded
in gray, are the function f, its dual pair (ψ0, ψ1), and the parameters n, ε, δ. These
are combined to build more complex intermediate objects, resulting eventually in the
desired dual pair (Ψ0,Ψ1) for F. To be precise, the intermediate objects are function
families, indexed by nonnegative integers as in ωn, Ld,Λ

N
k,m. Throughout the proof,

small letters (f, ψ0, ψ1, µ0, µ1, µ∗, p) are reserved for functions on X, whereas capital
letters (Ψ0,Ψ1, L,Λ, Λ̃, P, P0, P1) refer to functions on XN .
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ψ1

µ1 µ0µ∗ ψ0 f

Λ Λ̃δεn

L ω

Ψ0,Ψ1

Fig. 5.1. Construction of the dual pair (Ψ0,Ψ1). Arrows indicate dependencies.

5.2. Fundamental distributions. We start by examining several probability
distributions induced on X by the sign behavior of ψ1. By (5.9), the function |ψ1| is
a probability distribution on X, legitimizing the following definition.

Definition 5.1. Let µ0 and µ1 be the probability distributions induced by |ψ1| on
the sets {x ∈ X : ψ1(x) < 0} and {x ∈ X : ψ1(x) > 0}, respectively.

Equations (5.7) and (5.8) guarantee that {x : ψ1(x) < 0} and {x : ψ1(x) > 0} are
nonempty, so that µ0 and µ1 are well-defined. By (5.7),

ψ1 =
1

2
µ1 −

1

2
µ0.(5.12)

We now claim that

deg p < d1 =⇒ 〈µ0, p〉 = 〈µ1, p〉,(5.13)

f(x) = 1 =⇒ 2ψ1(x) = µ1(x),(5.14)

f(x) = 1 =⇒ 2|ψ0(x)| 6 εµ1(x),(5.15)

f(x) = 0 =⇒ 2ψ0(x) = µ1(x).(5.16)

The first item is a direct consequence of (5.2) and (5.12); the second follows from
(5.3) and (5.12); the third follows from (5.4) and (5.14); and the final item holds by
(5.5).

Definition 5.2. Define µ∗ : X → [0, 1] by µ∗(x) = (1− f(x))µ1(x).
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We have

〈1− f, µ1〉 = 1− 〈f, µ1〉
= 1− 〈f, µ1 − µ0〉 since suppµ0 ⊆ f−1(0)

= 1− 2〈f, ψ1〉 by (5.12)

= α by (5.10),(5.17)

whence

(5.18) ‖µ∗‖1 = α.

We will need the following technical result from [45, Claim 3.3], which continues to
hold with µ∗ replaced by any function.

Lemma 5.3. For every polynomial P : XN → R and every k = 0, 1, 2, . . . , N, the
mapping

z 7→

〈
µ⊗k∗ ⊗

N−k⊗
i=1

µzi , P

〉
, z ∈ {0, 1}N−k,(5.19)

is a polynomial of degree at most (degP )/d1.

Proof (adapted from [45]). By linearity, it suffices to consider factored polyno-
mials of the form P (x1, . . . , xN ) = p1(x1) · · · pN (xN ). In this case (5.19) simplifies
to

z 7→
k∏
i=1

〈µ∗, pi〉 ·
N−k∏
i=1

〈µzi , pk+i〉, z ∈ {0, 1}N−k.(5.20)

By (5.13), polynomials pi of degree less than d1 satisfy 〈µ0, pi〉 = 〈µ1, pi〉 and therefore
do not contribute to the degree of (5.20) as a real function on {0, 1}N−k. It follows
that the degree of (5.20) is at most |{i : deg pi > d1}| 6 (degP )/d1.

5.3. Auxiliary objects in the tensor space. The fundamental distributions
µ0 and µ1 on X naturally give rise to the following family of functions ΛNk,m : XN →
[0, 1].

Definition 5.4. For nonnegative integers k,m with k +m 6 N, define

(5.21) ΛNk,m(x1, x2, . . . , xN ) = E
S,T

[∏
i∈S

µ∗(xi) ·
∏
i∈T

µ1(xi) ·
∏

i/∈S∪T

µ0(xi)

]
,

where the expectation is with respect to a uniformly random pair of disjoint sets S, T ⊆
{1, 2, . . . , N} of size |S| = k and |T | = m.

We proceed to examine basic analytic and metric properties of ΛNk,m.

Lemma 5.5.
(i) supp ΛNk,0 ⊆ F−1(1),

(ii) 〈ΛNk,m, 1〉 = ‖ΛNk,m‖1 = αk,

(iii) ΛNk,m = ΛNk′,m′ on F−1(1) whenever k +m = k′ +m′,

(iv) 〈F,ΛNk,m〉 = αk+m,

(v) ΛNk,m(x) 6= 0 only if |{i : ψ1(xi) > 0}| = k +m.
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Proof. (i) Immediate from the fact that suppµ0 ⊆ f−1(0) and suppµ∗ ⊆ f−1(0).
(ii) The first equality holds because ΛNk,m is nonnegative, whereas the second is

immediate from the fact that the nonnegative functions µ0, µ1, µ∗ satisfy ‖µ0‖1 =
‖µ1‖1 = 1 by definition and ‖µ∗‖1 = α by (5.18).

(iii) Recall that µ∗ = µ1 on f−1(0). Since F−1(1) = f−1(0)N , the claim follows.
(iv) We have

〈F,ΛNk,m〉 = 〈F,ΛNk+m,0〉 by (iii)

= 〈1,ΛNk+m,0〉 by (i)

= αk+m by (ii).

(v) Immediate from the fact that suppµ∗ ⊆ suppµ1 = {x ∈ X : ψ1(x) > 0} and
suppµ0 = {x ∈ X : ψ1(x) < 0}.

Lemma 5.6. For any polynomial P : XN → R, the mapping

m 7→ 〈ΛNk,m, P 〉 (m = 0, 1, 2, . . . , N − k)(5.22)

is a univariate polynomial of degree at most (degP )/d1.

Proof. For S ⊆ {1, 2, . . . , N} with |S| = k, define

ΛNS,m(x) = E
T

[∏
i∈T

µ1(xi) ·
∏

i/∈S∪T

µ0(xi)

]∏
i∈S

µ∗(xi),

where the expectation is over a uniformly random subset T ⊆ {1, 2, . . . , N} \ S of
cardinality |T | = m. It is clear that ΛNk,m = E|S|=k ΛNS,m, and therefore (5.22) is a
convex combination of mappings

m 7→ 〈ΛNS,m, P 〉 (m = 0, 1, 2, . . . , N − k)(5.23)

as S ranges over k-element subsets. As a result, the proof will be complete once we
show that (5.23) is a polynomial of degree at most (degP )/d1.

By symmetry, we may assume that S = {1, 2, . . . , k}. By Lemma 5.3, the function
φ : {0, 1}N−k → R given by

φ(z) =

〈
µ⊗k∗ ⊗

N−k⊗
i=1

µzi , P

〉

has degree at most (degP )/d1. Therefore by Proposition 2.1,

m 7→ E
z∈{0,1}N−k
|z|=m

φ(z) (m = 0, 1, 2, . . . , N − k)(5.24)

is a univariate polynomial of degree at most (degP )/d1. It remains to note that the
right-hand side of (5.24) is precisely 〈ΛNS,m, P 〉.

We now define a real function Λ̃N,rk that approximates ΛNk,0 pointwise and is addition-
ally orthogonal to low-degree polynomials. The parameter r controls the accuracy of
the approximation.



BREAKING THE MINSKY–PAPERT BARRIER 21

Definition 5.7. For integers k, r with 0 6 k 6 N and 0 6 r < k, define
Λ̃N,rk : XN → R by

Λ̃N,rk (x) =
2k

(k − r − 1)!
E
|S|=k

∏
i∈S

ψ0(xi) ·
k−r−1∏
i=1

i−∑
j∈S

f(xj)

 ·∏
i/∈S

µ0(xi)

 ,
(5.25)

where the expectation is over a uniformly random S ⊆ {1, 2, . . . , N} of size |S| = k.

Lemma 5.8.

(i) 〈Λ̃N,rk , P 〉 = 0 for every polynomial P of degree less than (r + 1)d0,

(ii) Λ̃N,rk (x) 6= 0 only if |{i : ψ1(xi) > 0}| = k,

(iii) Λ̃N,rk = ΛN0,k on F−1(1),

(iv) |Λ̃N,rk | 6 εk−r
(
k
r

)
ΛN0,k on F−1(0).

Proof. (i) For t = 0, 1, 2, . . . , it follows from (5.1) that ψ0
⊗t is orthogonal to every

polynomial of degree less than td0. Now Proposition 2.8 implies that the function

x 7→
∏
i∈S

ψ0(xi) ·
k−r−1∏
i=1

i−∑
j∈S

f(xj)

 ·∏
i/∈S

µ0(xi),

where S ⊆ {1, 2, . . . , N} is a given subset, is orthogonal to every polynomial of degree

less than (|S| − (k − r − 1))d0. Since Λ̃N,rk is a linear combination of such functions
with |S| = k, the claim follows.

(ii) We have suppψ0 ⊆ {x ∈ X : ψ1(x) > 0} by (5.3)–(5.5), and suppµ0 =
{x ∈ X : ψ1(x) < 0} by definition. The claim is now immediate from the defining
equation, (5.25).

(iii) For every x ∈ F−1(1), we have f(xi) = 0 and 2ψ0(xi) = µ1(xi) for ev-
ery i, where the former holds by definition and the latter by (5.16). Making these
substitutions in (5.25),

Λ̃N,rk (x) = E
|S|=k

[∏
i∈S

µ1(xi) ·
∏
i/∈S

µ0(xi)

]
= ΛN0,k(x).

(iv) Fix any x with F (x) = 0. We claim that for every subset S ⊆ {1, 2, . . . , N}
of size |S| = k,

(5.26)
2k

(k − r − 1)!

∏
i∈S
|ψ0(xi)| ·

k−r−1∏
i=1

∣∣∣∣∣∣i−
∑
j∈S

f(xj)

∣∣∣∣∣∣ ·
∏
i/∈S

µ0(xi)

6 εk−r
(
k

r

)∏
i∈S

µ1(xi) ·
∏
i/∈S

µ0(xi).

To see this, consider the nonempty set A = {i : f(xi) = 1}. There are three possibil-
ities.

• If A * S, then both sides of (5.26) vanish because µ0 is supported on f−1(0).

• If A ⊆ S and 1 6 |A| 6 k− r− 1, then
∏k−r−1
i=1 |i−

∑
j∈S f(xj)| = 0 and the

left-hand side of (5.26) vanishes.
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• If A ⊆ S and k − r 6 |A| 6 k, then the left-hand side of (5.26) simplifies to(
|A| − 1

k − r − 1

) ∏
i∈S
|2ψ0(xi)| ·

∏
i/∈S

µ0(xi)

6

(
k

r

)∏
i∈S
|2ψ0(xi)| ·

∏
i/∈S

µ0(xi)

=

(
k

r

)∏
i∈A
|2ψ0(xi)| ·

∏
i∈S\A

|2ψ0(xi)| ·
∏
i/∈S

µ0(xi)

=

(
k

r

)∏
i∈A
|2ψ0(xi)| ·

∏
i∈S\A

µ1(xi) ·
∏
i/∈S

µ0(xi) by (5.16)

6

(
k

r

)
εk−r

∏
i∈A

µ1(xi) ·
∏

i∈S\A

µ1(xi) ·
∏
i/∈S

µ0(xi) by (5.15).

This completes the proof of (5.26). One now obtains |Λ̃N,rk (x)| 6 εk−r
(
k
r

)
ΛN0,k(x) by

passing to expectations on both sides of (5.26) with respect to a uniformly random
subset S of cardinality k.

5.4. Simulating symmetric structure. The next step in our construction is a
family of real functions L1, L2, . . . , Lm, . . . with pairwise disjoint support whose role
is to mimic the levels of the Boolean hypercube, in the sense that inner product with
Lm roughly corresponds to the averaging operation on the mth level of the hypercube.
In this way, we are able to simulate symmetric structure in a context with little actual
symmetry.

Let c′ = c′(δ) > 0 be a sufficiently large even integer. Then for each k =
0, 1, 2, . . . , n, Theorem 2.9 gives an explicit function ωk : {0, 1, 2, . . . , c′n − k} → R
such that

‖ωk‖1 = 1,(5.27)

ωk(0) >
1

2
− δ

12
,(5.28)

|ωk(t)| > δ

24t2
(t > 1),(5.29)

sgnωk(t) =

{
1 if t = 0,

(−1)k+t otherwise,
(5.30)

deg p <
√
n =⇒ 〈ωk, p〉 = 0.(5.31)

By Proposition 2.7 (ii),

‖ωk‖∞ 6
1

2
.(5.32)

We will work with the following integer parameters:

c′′ = min

{
c > 2 : εc−12cH(1/c) <

δ

20

}
,(5.33)

N = c′c′′n,(5.34)
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where H is the binary entropy function. Observe that c′′ = c′′(ε, δ) > 0 is a constant.

Definition 5.9. Define L1, L2, . . . , Lc′n : XN → R by

Lm =

m−1∑
k=0

(
4

δ

)k
ωk(m− k)ΛNc′′k,c′′(m−k) (m 6 n),

Lm =

n∑
k=0

(
4

δ

)k
ωk(m− k)

(
ΛNc′′k,c′′(m−k) − Λ̃N,nc′′m

)
(m > n+ 1).

The following lemma collects key properties of this function family.

Lemma 5.10.
(i) Lm(x) 6= 0 only if |{i : ψ1(xi) > 0}| = c′′m,

(ii) Lm = 0 on F−1(1) for every m > n+ 1,
(iii) (−1)mLm > 0,

(iv) Lm =
∑m−1
k=0 (4/δ)kωk(m− k)ΛNc′′m,0 on F−1(1) for every m = 1, 2, . . . , n,

(v) ‖Lm‖1 =
∑min{m−1,n}
k=0 (4αc

′′
/δ)k|ωk(m− k)|.

Proof. (i) Immediate from Lemma 5.5 (v) and Lemma 5.8 (ii).
(ii) On F−1(1), we have the following identity for every k:

ΛNc′′k,c′′(m−k) − Λ̃N,nc′′m = ΛN0,c′′m − Λ̃N,nc′′m = 0,

where the first step uses Lemma 5.5 (iii), and the second Lemma 5.8 (iii). The claim
is now immediate from the defining equation of Lm for m > n+ 1.

(iii) For m = 1, 2, . . . , n, the claim follows directly from (5.30) and the nonneg-
ativity of ΛNc′′k,c′′(m−k). Consider now Lm for m > n + 1 and fix an arbitrary point

x ∈ suppLm. Then F (x) = 0 by (ii). As a result,

(5.35) |Λ̃N,nc′′m(x)| 6 εc
′′m−n

(
c′′m

n

)
ΛN0,c′′m(x)

by Lemma 5.8 (iv). In light of (5.30), the defining equation of Lm for m > n+1 gives

(−1)mLm(x) =

n∑
k=0

(
4

δ

)k
|ωk(m− k)|

(
ΛNc′′k,c′′(m−k)(x)− Λ̃N,nc′′m(x)

)
=

n∑
k=1

(
4

δ

)k
|ωk(m− k)|ΛNc′′k,c′′(m−k)(x)

+

{
|ω0(m)|ΛN0,c′′m(x)−

n∑
k=0

(
4

δ

)k
|ωk(m− k)|Λ̃N,nc′′m(x)

}
.

Using the estimates (5.29), (5.32), and (5.35), we arrive at

(−1)mLm(x) >
n∑
k=1

(
4

δ

)k
|ωk(m− k)|ΛNc′′k,c′′(m−k)(x)

+

{
δ

24m2
−
(

4

δ

)n
· εc
′′m−n

(
c′′m

n

) }
ΛN0,c′′m(x).
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The terms in the summation are nonnegative. Thus, the proof will be complete once
we show that the expression in braces is nonnegative as well, which is accomplished
by the following calculation:(

4

δ

)n
· εc
′′m−n

(
c′′m

n

)
6

(
4

δ

)m−1
· εc
′′m−m

(
c′′m

m

)
since m > n+ 1 and c′′ > 2

6
δ

4

(
4

δ
· εc
′′−12c

′′H(1/c′′)

)m
6

δ

4 · 5m
by (5.33)

6
δ

24m2
since m > 2.

(iv) Immediate from Lemma 5.5 (iii).
(v) For m = 1, 2, . . . , n,

‖Lm‖1 = 〈Lm, sgnLm〉
= (−1)m〈Lm, 1〉 by (iii)

= (−1)m
m−1∑
k=0

(
4

δ

)k
ωk(m− k)〈ΛNc′′k,c′′(m−k), 1〉

= (−1)m
m−1∑
k=0

(
4αc

′′

δ

)k
ωk(m− k) by Lemma 5.5 (ii)

=

m−1∑
k=0

(
4αc

′′

δ

)k
|ωk(m− k)| by (5.30).

The analysis for m > n+ 1 is similar but has an additional step:

‖Lm‖1 = 〈Lm, sgnLm〉
= (−1)m〈Lm, 1〉 by (iii)

= (−1)m
n∑
k=0

(
4

δ

)k
ωk(m− k)〈ΛNc′′k,c′′(m−k) − Λ̃N,nc′′m, 1〉

= (−1)m
n∑
k=0

(
4

δ

)k
ωk(m− k)〈ΛNc′′k,c′′(m−k), 1〉 by Lemma 5.8 (i)

= (−1)m
n∑
k=0

(
4αc

′′

δ

)k
ωk(m− k) by Lemma 5.5 (ii)

=
n∑
k=0

(
4αc

′′

δ

)k
|ωk(m− k)| by (5.30).
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5.5. Constructing the dual objects. We are finally in a position to construct
the claimed dual pair (Ψ0,Ψ1) for F. Let

Ψ0 =
∑

m=1,2,...,c′n:
m even

Lm +

n∑
m=0

(
4

δ

)m(
ωm(0)− 1

2

)
ΛNc′′m,0,(5.36)

Ψ1 =

c′n∑
m=1

Lm +

n∑
m=0

(
4

δ

)m
ωm(0)ΛNc′′m,0.(5.37)

The next two lemmas establish useful facts about these functions.

Lemma 5.11. There are Λ̃0, Λ̃1 ∈ span{Λ̃N,nm : n+ 1 6 m 6 N} such that

Ψ0 =
n∑
k=0

(
4

δ

)k(ωk(0)− 1

2

)
ΛNc′′k,0 +

∑
m=1,2,...,c′n−k:
m≡k (mod 2)

ωk(m)ΛNc′′k,c′′m

+ Λ̃0,

(5.38)

Ψ1 =

n∑
k=0

(
4

δ

)k c′n−k∑
m=0

ωk(m)ΛNc′′k,c′′m + Λ̃1.

(5.39)

Proof. Substituting the defining equation for Lm in (5.36),

Ψ0 =
∑

m=1,2,...,c′n:
m even

min{m−1,n}∑
k=0

(
4

δ

)k
ωk(m− k)ΛNc′′k,c′′(m−k)

+

n∑
m=0

(
4

δ

)m(
ωm(0)− 1

2

)
ΛNc′′m,0 + Λ̃0

=

n∑
k=0

∑
m=1,2,...,c′n−k:
m≡k (mod 2)

(
4

δ

)k
ωk(m)ΛNc′′k,c′′m

+

n∑
m=0

(
4

δ

)m(
ωm(0)− 1

2

)
ΛNc′′m,0 + Λ̃0,

where Λ̃0 is as claimed in the lemma statement. Now (5.38) is immediate.
The proof for Ψ1 is analogous. Substituting the defining equation for Lm in (5.37),

Ψ1 =

c′n∑
m=1

min{m−1,n}∑
k=0

(
4

δ

)k
ωk(m− k)ΛNc′′k,c′′(m−k)

+

n∑
m=0

(
4

δ

)m
ωm(0)ΛNc′′m,0 + Λ̃1

=

c′n∑
m=0

min{m,n}∑
k=0

(
4

δ

)k
ωk(m− k)ΛNc′′k,c′′(m−k) + Λ̃1,
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where Λ̃1 is as claimed in the lemma statement. The final expression is equivalent
to (5.39) by basic algebra.

Lemma 5.12. On F−1(1), one has

Ψ0 =
∑

m=0,1,...,n:
m even

(
−1

2

(
4

δ

)m
+

m∑
k=0

(
4

δ

)k
ωk(m− k)

)
ΛNc′′m,0(5.40)

+
∑

m=0,1,...,n:
m odd

(
4

δ

)m(
ωm(0)− 1

2

)
ΛNc′′m,0,

Ψ1 =

n∑
m=0

(
m∑
k=0

(
4

δ

)k
ωk(m− k)

)
ΛNc′′m,0.(5.41)

Proof. For any input x with F (x) = 1,

Ψ0(x) =
∑

m=1,2,...,c′n:
m even

Lm(x) +

n∑
m=0

(
4

δ

)m(
ωm(0)− 1

2

)
ΛNc′′m,0(x)

=
∑

m=1,2,...,n:
m even

(
m−1∑
k=0

(
4

δ

)k
ωk(m− k)

)
ΛNc′′m,0(x)

+

n∑
m=0

(
4

δ

)m(
ωm(0)− 1

2

)
ΛNc′′m,0(x),

where the first equality holds by definition, and the second by Lemma 5.10 (ii), (iv).
This proves (5.40).

The proof of (5.41) is closely analogous. For x ∈ F−1(1),

Ψ1(x) =

c′n∑
m=1

Lm(x) +

n∑
m=0

(
4

δ

)m
ωm(0)ΛNc′′m,0(x)

=

n∑
m=1

(
m−1∑
k=0

(
4

δ

)k
ωk(m− k)

)
ΛNc′′m,0(x) +

n∑
m=0

(
4

δ

)m
ωm(0)ΛNc′′m,0(x),

where the first equality holds by definition, and the second equality is valid by
Lemma 5.10 (ii), (iv).

We are now in a position to establish one by one the properties required of Ψ0,Ψ1 to be
a dual pair for F. The five lemmas that follow, Lemmas 5.13 to 5.17, are independent
and can be read in any order.

Lemma 5.13. 〈F,Ψ1〉 > 1−δ
2 ‖Ψ1‖1.
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Proof. We have

〈F,Ψ1〉 =

n∑
m=0

m∑
k=0

(
4

δ

)k
ωk(m− k)〈F,ΛNc′′m,0〉 by (5.41)

=

n∑
m=0

m∑
k=0

(
4

δ

)k
ωk(m− k)αc

′′m by Lemma 5.5 (iv)

=

n∑
k=0

(
4αc

′′

δ

)k n−k∑
m=0

αc
′′mωk(m) by basic algebra

>
n∑
k=0

(
4αc

′′

δ

)k (
ωk(0)− αc

′′
‖ωk‖1

)

>

n∑
k=0

(
4αc

′′

δ

)k (
1

2
− δ

12
− αc

′′
)

by (5.27) and (5.28)

>
n∑
k=0

(
4αc

′′

δ

)k
1− δ

2
by (5.11) and (5.33).

On the other hand,

‖Ψ1‖1 6
c′n∑
m=1

‖Lm‖1 +

n∑
m=0

(
4

δ

)m
|ωm(0)|‖ΛNc′′m,0‖1 by (5.37)

=

c′n∑
m=1

min{m−1,n}∑
k=0

(
4αc

′′

δ

)k
|ωk(m− k)|

+

n∑
m=0

(
4αc

′′

δ

)m
|ωm(0)| by Lemma 5.10(v) and 5.5(ii)

=

n∑
k=0

(
4αc

′′

δ

)k c′n−k∑
m=0

|ωk(m)| by basic algebra

=

n∑
k=0

(
4αc

′′

δ

)k
by (5.27).

Lemma 5.14. Ψ1(x) > 0 whenever F (x) = 1.

Proof. By (5.41), it suffices to show that(
4

δ

)m
ωm(0) >

m−1∑
k=0

(
4

δ

)k
|ωk(m− k)| (m = 0, 1, . . . , n).(5.42)

This relation follows directly from the properties of ωk. Specifically, by (5.28) the
left-hand side of (5.42) is at least (4/δ)m(1 − δ/6)/2 > (4/δ)m/3, whereas by (5.32)

the right-hand side of (5.42) is at most
∑m−1
k=0 (4/δ)k/2 6 (4/δ)m/6.

Lemma 5.15. Let P0, P1 : XN → R be polynomials with

degP0 < min{nd0, d1},
degP1 < min{nd0,

√
nd1}.
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Then

〈Ψ0, P0〉 = 〈Ψ1, P1〉 = 0.

Proof. Lemma 5.6 ensures the existence of univariate polynomials p0, p1, . . . , pn
such that

〈ΛNc′′k,m, P1〉 = pk(m) (k = 0, 1, . . . , n; m = 0, 1, . . . , N − c′′k),(5.43)

deg pk <
√
n (k = 0, 1, . . . , n).(5.44)

Thus,

〈Ψ1, P1〉 =

n∑
k=0

(
4

δ

)k c′n−k∑
m=0

ωk(m)〈ΛNc′′k,c′′m, P1〉 by Lemma 5.11 and Lemma 5.8 (i)

=

n∑
k=0

(
4

δ

)k c′n−k∑
m=0

ωk(m)pk(c′′m) by (5.43)

=

n∑
k=0

(
4

δ

)k
· 0 by (5.31) and (5.44)

= 0.

We now prove the claim for Ψ0. By (5.27), (5.31), and Proposition 2.7 (i),

∑
m:ωk(m)>0

ωk(m) =
1

2

for every k, which in view of (5.30) is equivalent to

(5.45) ωk(0) +
∑

m=1,2,...,c′n−k:
m≡k (mod 2)

ωk(m) =
1

2
.

From this point on, the analysis is similar to the one above for Ψ1. By Lemma 5.6,
there are reals a0, a1, . . . , an (i.e., zero-degree polynomials) such that

〈ΛNc′′k,m, P0〉 = ak (k = 0, 1, . . . , n; m = 0, 1, . . . , N − c′′k).(5.46)
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By Lemma 5.11 and Lemma 5.8 (i),

〈Ψ0, P0〉 =

n∑
k=0

(
4

δ

)k(ωk(0)− 1

2

)
〈ΛNc′′k,0, P0〉+

∑
m=1,2,...,c′n−k:
m≡k (mod 2)

ωk(m)〈ΛNc′′k,c′′m, P0〉



=

n∑
k=0

(
4

δ

)kωk(0)− 1

2
+

∑
m=1,2,...,c′n−k:
m≡k (mod 2)

ωk(m)

 ak by (5.46)

=

n∑
k=0

(
4

δ

)k
· 0 by (5.45)

= 0.

Lemma 5.16. Ψ0 = max{Ψ1, 0} on F−1(0).

Proof. Recall from Lemma 5.5 (i) that for any k, the support of ΛNk,0 is contained

in F−1(1). As a result, the defining equations (5.36) and (5.37) simplify on F−1(0) to

Ψ0 =
∑

m=1,2,...,c′n:
m even

Lm, Ψ1 =

c′n∑
m=1

Lm.

This completes the proof since by Lemma 5.10 (i), (iii), the functions in question
L1, L2, . . . , Lm, . . . have pairwise disjoint support, with sgnLm = (−1)m on the sup-
port of Lm.

Lemma 5.17. |Ψ0| 6 δΨ1 on F−1(1).

Proof. Recall from Lemma 5.5 (v) that the functions ΛNc′′m,0 for m = 0, 1, 2, . . . , n
have pairwise disjoint support. Therefore, the claimed result will follow immediately
from Lemma 5.12 once we verify the inequality

(5.47) max

{∣∣∣∣∣−1

2

(
4

δ

)m
+

m∑
k=0

(
4

δ

)k
ωk(m− k)

∣∣∣∣∣ ,
(

4

δ

)m ∣∣∣∣12 − ωm(0)

∣∣∣∣
}

6 δ

m∑
k=0

(
4

δ

)k
ωk(m− k)

for every m = 0, 1, . . . , n. We have∣∣∣∣ωm(0)− 1

2

∣∣∣∣ 6 δ

12
by (5.28) and (5.32),

|ωk(m− k)| 6 1

2
by (5.32).
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Thus, the left-hand side of (5.47) is at most

(
4

δ

)m ∣∣∣∣12 − ωm(0)

∣∣∣∣+

m−1∑
k=0

(
4

δ

)k
|ωk(m− k)| 6

(
4

δ

)m(
δ

12
+

δ

8− 2δ

)

6

(
4

δ

)m−1
,

whereas the right-hand side of (5.47) is at least

δ

(
4

δ

)m
ωm(0)− δ

m−1∑
k=0

(
4

δ

)k
|ωk(m− k)| > δ

(
4

δ

)m(
1

2
− δ

12
− δ

8− 2δ

)

>

(
4

δ

)m−1
.

Lemmas 5.13 to 5.17 establish that (Ψ0,Ψ1) is a (min{nd0, d1},min{nd0,
√
nd1}, δ)-

dual pair for F. This completes the proof of Theorem 4.3.

5.6. Generalizations. The proof of Theorem 4.3 presented in this section can
be generalized in several ways. As a concrete example, define a generalized (d0, d1, ε)-
dual pair for f : X → {0, 1} to be any pair of real functions ψ0, ψ1 : X → R such
that

(i) 〈f, ψ1〉 > 1−ε
2 ‖ψ1‖1,

(ii) ψ1(x) > 0 whenever f(x) = 1,
(iii) 〈ψ1, p〉 = 0 for every polynomial p of degree less than d1,
(iv) 〈ψ0, p〉 = 0 for every polynomial p of degree less than d0,
(v)

ψ0(x) ∈

{
[ψ1(x), 2ψ1(x)] if f(x) = 0 and ψ1(x) > 0,

[−ε|ψ1(x)|, ε|ψ1(x)|] otherwise.

This definition extends the notion of a (d0, d1, ε)-dual pair from section 4. Indeed, re-
quirements (i)–(iv) are unchanged but the final requirement (v) is significantly weaker
than before. It is not hard to adapt our proof of Theorem 4.3 to this alternate defi-
nition of a dual pair, for a small absolute constant ε > 0.

6. A complete characterization of the threshold degree. In this section,
we study composed functions of the form ORn◦f . We fully characterize the threshold
degree of any such composition in terms of an approximation-theoretic property of f.
Specifically, we show that up to a logarithmic factor, the threshold degree of ORn ◦ f
for n > 2 equals

min
d0,d1

{nd0 + d1} ,

where the minimum is over all d0, d1 > 0 such that f can be approximated in a
one-sided manner to within 1/3 by a rational function with denominator degree d0
and numerator degree d1. As a limiting case, we show that the threshold degree of
ORn ◦ f for n large essentially coincides with the one-sided approximate degree of f .
The work in this section gives a different proof of Corollary 4.7.

6.1. One-sided rational approximation. Analogous to the one-sided approx-
imation of Boolean functions by polynomials, reviewed in section 2, the definition
below formalizes one-sided approximation by rational functions.
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Definition 6.1. For d0 > 0 and a Boolean function f : X → {0, 1}, define
deg+

ε (f, d0) to be the smallest d1 > 0 for which there exist polynomials p0, p1 of degree
at most d0, d1, respectively, with

f(x) = 0 =⇒
∣∣∣∣p1(x)

p0(x)

∣∣∣∣ 6 ε,

f(x) = 1 =⇒ p1(x)

p0(x)
> 1− ε.

Implicit in this definition is the requirement that p0(x) 6= 0 for every x ∈ X. Since a
polynomial can be viewed as a rational function with denominator degree 0, we have

deg+
ε (f) = deg+

ε (f, 0).

There is a partial equivalence between one-sided and two-sided approximation by
rational functions. Specifically, any one-sided rational approximant for f with denom-
inator degree d0 and numerator degree d1 gives a two-sided (`∞-norm) approximant
for the same function with a numerator and denominator of degree at most 2d0 +2d1.
This equivalence has no bearing on our paper because we treat numerator degree and
denominator degree as distinct complexity measures—indeed, our interest is precisely
in the trade-off between them. Nevertheless, we include a proof of this interesting
fact for the sake of completeness.

Proposition 6.2. For every function f : X → {0, 1} and every 0 < ε < 1/2,

M 6 min
p,q

{
deg p+ deg q :

∥∥∥∥f − p

q

∥∥∥∥
∞

6 ε

}
6 4M,

where
M = min

d=0,1,2,...
{d+ deg+

ε (f, d)}.

Proof. The lower bound is trivial since one-sided approximation is a weaker re-
quirement than approximation in the `∞ norm. In the other direction, fix an integer
d > 0 and polynomials p0, p1 of degree at most d and deg+

ε (f, d), respectively, with
|p1/p0| 6 ε on f−1(0) and p1/p0 > 1− ε on f−1(1). Letting

f̃ =
p21

p21 + ε(1− ε)p20
,

we have 0 6 f̃ 6 ε on f−1(0) and 1− ε 6 f̃ 6 1 on f−1(1).

Analogous to polynomial approximation, there is a generic way to rapidly reduce the
error in a one-sided approximation by rational functions.

Proposition 6.3. For any function f : X → {0, 1} and any k = 1, 2, 3, . . . ,

deg+
εk

εk+(1−ε)k
(f, kd) 6 k deg+

ε (f, d).

Proof. Fix d > 0 and polynomials p0, p1 of degree at most d and deg+
ε (f, d),

respectively, such that |p1/p0| 6 ε on f−1(0) and p1/p0 > 1 − ε on f−1(1). Letting
q0 = pk0 and q1 = pk1/(ε

k + (1− ε)k), we obtain∣∣∣∣q1q0
∣∣∣∣ 6 εk

εk + (1− ε)k
on f−1(0),

q1
q0

> 1− εk

εk + (1− ε)k
on f−1(1).
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A substantial disadvantage of one-sided approximate degree, in the setting of rational
functions, is its lack of a clean and exact dual characterization. We therefore consider
a closely related quantity that admits such a characterization.

Definition 6.4. For d0, d1 > 0 and a Boolean function f : X → {0, 1}, define
R(f, d0, d1) as the infimum over all ε > 0 for which there exist polynomials p0, p1 of
degree at most d0, d1, respectively, such that

f(x) = 0 =⇒ |p1(x)| < εp0(x),(6.1)

f(x) = 1 =⇒ |p0(x)| < εp1(x).(6.2)

It is clear that R(f, d0, d1) is always well-defined and ranges in [0, 1]. We now have
two notions of error for the one-sided rational approximation of Boolean functions:
one-sided approximate degree and the new quantity R(f, d0, d1). Fortunately, the two
notions are equivalent, with deg+

ε (f, d0) > d1 roughly corresponding to R(f, d0, d1) >√
ε/(1− ε). The proposition below makes this correspondence formal.

Proposition 6.5. For d0, d1 > 0 and every Boolean function f : X → {0, 1},

deg+
ε (f, d0) > d1 =⇒ R

(
f,
d0
2
,
d1
2

)
> 4

√
ε

1− ε
,(6.3)

deg+
ε (f, d0) 6 d1 =⇒ R (f, 2d0, 2d1) 6

ε

1− ε
.(6.4)

Proof. Assume that deg+
ε (f, d0) > d1 and fix δ > R(f, d0/2, d1/2) arbitrarily.

Then by definition, there are polynomials p0, p1 of degree at most d0/2 and d1/2,
respectively, such that |p1| < δp0 on f−1(0) and |p0| < δp1 on f−1(1). In particular,
the infimum

inf
ζ>0

{
δ2

1 + δ4
· p21(x)

p20(x) + ζ

}
has absolute value less than δ4/(1 + δ4) on f−1(0) and exceeds 1/(1 + δ4) on f−1(1).
We obtain

deg+
δ4

1+δ4

(f, d0) 6 d1,

whence

δ > 4

√
ε

1− ε

by the premise of (6.3). Since δ > R(f, d0/2, d1/2) was chosen arbitrarily, (6.3)
follows.

In the other direction, assume that deg+
ε (f, d0) 6 d1. Then for every δ > ε, there

are polynomials p0, p1 of degree at most d0, d1, respectively, such that |p1/p0| < δ on
f−1(0) and p1/p0 > 1− δ on f−1(1). Letting q0 = p20 and q1 = p21/(δ− δ2), we obtain
|q1| < q0δ/(1− δ) on f−1(0) and |q0| < q1δ/(1− δ) on f−1(1). Put another way,

R(f, 2d0, 2d1) 6
δ

1− δ
.

Since the choice of δ > ε was arbitrary, (6.4) follows.
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6.2. Passing to the dual program. One-sided rational approximation, as for-
malized by the quantity R(f, d0, d1), admits the following intuitive dual characteriza-
tion.

Theorem 6.6. Let f : X → {0, 1} be a given Boolean function, d0, d1 > 0. Then
for every ε > 0, the nonexistence of polynomials p0, p1 such that

(i) |p1| < εp0 on f−1(0),
(ii) |p0| < εp1 on f−1(1),
(iii) deg p0 6 d0,
(iv) deg p1 6 d1,

is equivalent to the existence of ψ0, ψ1 : X → R such that
(v) ψ0 > ε|ψ1| on f−1(0),
(vi) ψ1 > ε|ψ0| on f−1(1),

(vii) deg p 6 d0 =⇒ 〈ψ0, p〉 = 0,
(viii) deg p 6 d1 =⇒ 〈ψ1, p〉 = 0,
(ix) ψ0 6≡ 0,
(x) ψ1 6≡ 0.

Proof. Let P0 and P1 denote the linear subspaces of real polynomials on X of
degree at most d0 and d1, respectively. Conditions (i) and (ii) can be rewritten as

ε1−fp0 + εfp1 > 0,

(−ε)1−fp0 + (−ε)fp1 < 0

on X. By linear programming duality, this system of inequalities in p0 ∈ P0, p1 ∈ P1

is infeasible if and only if there exist nonnegative functions µ, λ on X, not both
identically zero, such that

ε1−fµ− (−ε)1−fλ ∈ P⊥0 ,(6.5)

εfµ− (−ε)fλ ∈ P⊥1 .(6.6)

The existence of such µ and λ is in turn equivalent to the existence of ψ0, ψ1 : X → R,
not both identically zero, that obey (v)–(viii), where we identify ψ0 and ψ1 with the
left-hand sides of (6.5) and (6.6), respectively.

Finally, the requirement that at least one of ψ0, ψ1 be not identically zero is
logically equivalent to the requirement that ψ0 6≡ 0 and ψ1 6≡ 0 simultaneously.
Indeed, if exactly one of ψ0, ψ1 were identically zero, then by (v)–(vi) the other would
have to be a nonnegative function, contradicting 〈ψ0, 1〉 = 〈ψ1, 1〉 = 0.

Corollary 6.7. Let f : X → {0, 1} be a given function, R(f, d0, d1) > 0. Then
R(f, d0, d1) is the supremum over all ε > 0 for which there exist ψ0, ψ1 : X → R with

(i) ψ0 > ε|ψ1| on f−1(0),
(ii) ψ1 > ε|ψ0| on f−1(1),
(iii) deg p 6 d0 =⇒ 〈ψ0, p〉 = 0,
(iv) deg p 6 d1 =⇒ 〈ψ1, p〉 = 0,
(v) ψ0 6≡ 0,
(vi) ψ1 6≡ 0.

6.3. Lower bound on the threshold degree. We are now in a position to
prove a lower bound on the threshold degree of any composition ORn◦f. The following
first-principles construction plays an important role in the proof.
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Lemma 6.8. For integers n, d with n > 1 and 0 6 d 6 n, let

pn,d(t) =

n∏
i=n−d+1

i− t
i
.

Then

pn,d(0) = 1,

|pn,d(t)| 6
(

1− d

n

)t
, t = 1, 2, . . . , n.

Proof. The cases t = 0 and t > n− d are straightforward, with pn,d evaluating to
1 in the former case and vanishing in the latter. For t = 1, 2, . . . , n − d, we have the
closed form

pn,d(t) =

(
n− t
d

)(
n

d

)−1
,

whence

|pn,d(t)| =
n− d
n
· n− d− 1

n− 1
· · · · · n− d− t+ 1

n− t+ 1
6

(
n− d
n

)t
.

We have reached the main technical result of this section.

Theorem 6.9. Let d0, d1 > 0 be integers, f : X → {0, 1} a given Boolean func-
tion. If R(f, d0, d1) > ε, then

deg±(ORn ◦ f) > min{bε2nc(d0 + 1), d1 + 1}, n = 1, 2, 3, . . . .

Proof. Abbreviate F = ORn ◦ f. We need only consider the case ε > 0, the
theorem being trivial otherwise. Since R(f, d0, d1) > δ for sufficiently small δ > ε,
Corollary 6.7 guarantees the existence of ψ0, ψ1 : X → R such that

f(x) = 0 =⇒ ψ0(x) > δ|ψ1(x)|,(6.7)

f(x) = 1 =⇒ ψ1(x) > δ|ψ0(x)|,(6.8)

deg p < d0 + 1 =⇒ 〈ψ0, p〉 = 0,(6.9)

deg p < d1 + 1 =⇒ 〈ψ1, p〉 = 0,(6.10)

ψ0 6≡ 0.(6.11)

For integers n, d, let pn,d denote the degree-d polynomial constructed in Lemma 6.8.
Define A,B : Xn → R by

A(x) = pn,n−bε2nc

(
n∑
i=1

f(xi)

)
n∏
i=1

ψ0(xi),

B(x) =
∏

i:f(xi)=0

|ψ0(xi)| ·
∏

i:f(xi)=1

δψ1(xi)

−
n∏
i=1

(1− f(xi)) ·
n∏
i=1

(|ψ0(xi)| − δψ1(xi)).
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We have

F (x) = 0 =⇒ A(x) =

n∏
i=1

|ψ0(xi)|,(6.12)

F (x) = 1 =⇒ |A(x)| 6 ε2
∑
f(xi)

n∏
i=1

|ψ0(xi)|,(6.13)

where the first item follows from Lemma 6.8 and the nonnegativity of ψ0 on f−1(0),
and the second is immediate from Lemma 6.8. Continuing, (6.7) and (6.8) imply

F (x) = 0 =⇒ B(x) 6
n∏
i=1

|ψ0(xi)|,(6.14)

F (x) = 1 =⇒ B(x) > δ2
∑
f(xi)

n∏
i=1

|ψ0(xi)|,(6.15)

respectively. Finally, we claim that

degP < bε2nc(d0 + 1) =⇒ 〈A,P 〉 = 0,(6.16)

degP < d1 + 1 =⇒ 〈B,P 〉 = 0.(6.17)

The first claim follows directly from (6.9) and Proposition 2.8, whereas the second
follows from (6.10) once one rewrites

B(x) =

n∏
i=1

{δψ1(xi) + (1− f(xi))(|ψ0(xi)| − δψ1(xi))}

−
n∏
i=1

(1− f(xi))(|ψ0(xi)| − δψ1(xi))

=
∑

S⊆{1,2,...,n}
S 6=∅

∏
i∈S

δψ1(xi) ·
∏
i/∈S

(1− f(xi))(|ψ0(xi)| − δψ1(xi)).

By (6.12)–(6.15), the function Ψ = 1
δB −

1
εA satisfies

(−1)1−F (x)Ψ(x) > (δ − ε)2n
n∏
i=1

|ψ0(xi)|.

Recalling (6.11), we obtain (−1)1−FΨ > 0 and Ψ 6≡ 0. Moreover, equations (6.16)
and (6.17) ensure that Ψ is orthogonal to every polynomial of degree less than
min{bε2nc(d0 + 1), d1 + 1}. By the dual characterization of threshold degree (Theo-
rem 2.4), the proof is complete.

We now reword the previous theorem in terms of one-sided approximate degree.

Corollary 6.10. Let f : X → {0, 1} be given. Then for all ε > 0 and all integers
n > 1 and d > 0,

deg±(ORn ◦ f) > min

{⌊
n
√
ε(1 + ε)

⌋⌈d+ 1

2

⌉
,

⌈
deg+

ε (f, d)

2

⌉ }
.(6.18)
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Proof. If ε = 0 or deg+
ε (f, d) = 0, then the right-hand side of (6.18) vanishes, and

the claim is trivially true. As a result, we may assume that ε > 0 and deg+
ε (f, d) > 1.

Consider the nonnegative integers d0 = b 12dc and d1 = b 12 deg+
ε (f, d) − 1

2c. Then

deg+
ε (f, 2d0) > 2d1 by definition, whence

R(f, d0, d1) > 4

√
ε

1− ε
> 4
√
ε(1 + ε)

by Proposition 6.5. Therefore, Theorem 6.9 implies that

deg±(ORn ◦ f) > min
{⌊
n
√
ε(1 + ε)

⌋
(d0 + 1), d1 + 1

}
= min

{⌊
n
√
ε(1 + ε)

⌋⌈d+ 1

2

⌉
,

⌈
deg+

ε (f, d)

2

⌉ }
.

As a special case, we recover Corollary 4.7 with an entirely new proof:

Corollary 6.11. Let f : X → {0, 1} be given. Then

deg±(ORn ◦ f) >
1

2
min{n, deg+

1/3(f)}.

In particular,
deg±(ORn2/5 ◦ EDn3/5) = Ω(n2/5).

Proof. The first assertion is trivial for n = 1, whereas for n > 2 it follows by
taking d = 0 and ε = 1/3 in Corollary 6.10. The second assertion follows from the
first by Theorem 2.3.

6.4. Upper bound on the threshold degree. We now recall a matching
upper bound on the threshold degree of any composition ORn ◦ f . This result was al-
ready implicit in the original paper of Beigel et al. [8], with various related statements
obtained in subsequent work [24, 46, 48].

Theorem 6.12 (cf. Beigel et al.). Let f : X → {0, 1} be given. Then for all
integers n > 1,

deg±(ORn ◦ f) 6 min
06ε< 1

2n

min
d=0,1,2,...

{
2nd+ deg+

ε (f, d)
}

(6.19)

6 dlog 2ne min
d=0,1,2,...

{2nd+ deg+
1/3(f, d)}.(6.20)

Proof (cf. [8, 24]). Abbreviate F = ORn ◦ f , and fix an integer d > 0 and a real
number 0 6 ε < 1

2n . By definition, there are polynomials p0, p1 of degree at most d

and deg+
ε (f, d), respectively, such that∣∣∣∣p1p0

∣∣∣∣ < 1

2n
on f−1(0),

p1
p0

> 1− 1

2n
on f−1(1).

Then

sgn

(
n∑
i=1

p1(xi)

p0(xi)
− 1

2

)
=

{
−1 if F (x1, x2, . . . , xn) = 0,

1 otherwise.
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Multiplying the expression in parentheses by the positive quantity
∏
p0(xi)

2 gives a
sign-representing polynomial for F of degree at most 2nd+ deg+

ε (f, d), namely,

n∑
i=1

p0(xi)p1(xi)

n∏
j=1
j 6=i

p0(xj)
2 − 1

2

n∏
j=1

p0(xj)
2.

This completes the proof of (6.19). Now (6.20) can be verified as follows:

deg±(ORn ◦ f) 6 min
d=0,1,2,...

{
2n · dlog 2ned+ deg+

1
2n+1

(f, dlog 2ned)
}

6 dlog 2ne min
d=0,1,2,...

{2nd+ deg+
1/3(f, d)},

where the first inequality follows by taking ε = 1
2n+1 in (6.19), and the second follows

by taking ε = 1
3 and k = dlog 2ne in Proposition 6.3.

6.5. The final characterization. It remains to show that our lower and upper
bounds on the threshold degree of ORn ◦ f essentially coincide. We start with a
technical observation.

Proposition 6.13. Let G : N→ R and g : N→ R be given functions, where
(i) G is nondecreasing and unbounded,

(ii) g is nonincreasing,
(iii) G(0) 6 g(0).

Then

max
i=0,1,2,...

min{G(i+ 1), g(i)} > 1

2
min

i=0,1,2...
{G(i) + g(i)}.

Proof. We will prove the claimed result under much weaker assumptions on G
and g. Specifically, the only consequence of (i)–(iii) that we will use is the existence
of i∗ > 0 such that G(i∗) 6 g(i∗) and G(i∗ + 1) > g(i∗ + 1). We have:

2 max
i>0

min{G(i+ 1), g(i)} > min{2G(i∗ + 1), 2g(i∗)}

> min{2G(i∗ + 1), G(i∗) + g(i∗)}
> min{G(i∗ + 1) + g(i∗ + 1), G(i∗) + g(i∗)}
> min

i>0
{G(i) + g(i)}.

The desired characterization of the threshold degree of ORn ◦ f is as follows.

Theorem 6.14. For every function f : X → {0, 1} and every n > 2,

D

8
6 deg±(ORn ◦ f) 6 D · 2dlog 2ne,

where
D = min

d=0,1,2,...

{
nd+ deg+

1/3(f, d)
}
.

Proof. The upper bound on the threshold degree follows directly from Theo-
rem 6.12. The lower bound can be verified as follows:

deg±(ORn ◦ f) > max
d>0

min

{
n(d+ 1)

4
,

deg+
1/3(f, d)

2

}

> min
d>0

{
nd

8
+

deg+
1/3(f, d)

4

}
,
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where the first inequality holds by taking ε = 1/3 in Corollary 6.10, and the second
follows by Proposition 6.13.

Prior to our work, the characterization in Theorem 6.14 was only known for n = 2,
with the upper and lower bounds for that case obtained by Beigel et al. [8] and
Sherstov [46], respectively. Specifically, those authors showed that up to a small
multiplicative constant, the threshold degree of OR2 ◦ f equals the smallest degree of
a rational function that approximates f pointwise within 1/3:

deg±(OR2 ◦ f) = Θ

(
min
p,q

{
deg p+ deg q :

∥∥∥∥f − p

q

∥∥∥∥
∞
6

1

3

})
.

By Proposition 6.2, this characterization is equivalent to Theorem 6.14 for n = 2.
It is instructive to examine the behavior of the threshold degree as n→∞:

Theorem 6.15. Let f : X → {0, 1} be given. Then for all n large enough,

deg±(ORn ◦ f) 6 deg+
1/3(f) · dlog 2ne,

deg±(ORn ◦ f) >
deg+

1/3(f)

2
.

Proof. The upper bound holds for all n by taking d = 0 in Theorem 6.12. Taking
ε = 1/3 and d = 0 in Corollary 6.10 shows that the lower bound holds for n large
enough.

In other words, for n sufficiently large the threshold degree of ORn ◦ f essentially
equals the one-sided polynomial approximate degree of f. This conclusion is intuitively
satisfying in light of the construction of Theorem 6.12, in which rational approximants
with nonconstant denominators become inefficient for large n.

7. A simpler proof for depth 2. In Corollary 4.7, we proved that

deg±(ORn ◦ f) = cmin{n, deg+
1/3(f)}

for some absolute constant c > 0 and every function f : X → {0, 1}, with the following
important special case:

deg±(ORn2/5 ◦ EDn3/5) = Ω(n2/5).

We gave an alternate proof of these results in the previous section, using our charac-
terization of the threshold degree for compositions ORn ◦ f . We will now present a
third and simpler yet proof, which combines the techniques of this paper with a con-
struction due to Bun and Thaler [13]. Unfortunately, this proof does not generalize
to compositions of greater depth and does not allow us to recover the general result
of Theorem 4.5 nor the main result of this paper, Theorem 1.1.

Theorem 7.1. Let f : X → {0, 1} be given. Suppose that there exist ψ0, ψ1 : X →
R such that

(i) ψ1 > |ψ0| on f−1(1),
(ii) ψ0 = max{ψ1, 0} on f−1(0),
(iii) deg p < d0 =⇒ 〈ψ0, p〉 = 0,
(iv) deg p < d1 =⇒ 〈ψ1, p〉 = 0,
(v) ψ1 6≡ 0.
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Then

deg±(ORn ◦ f) > min{nd0, d1} (n = 1, 2, 3, . . . ).

Proof. We may assume that d1 > 0, the claimed lower bound being trivial oth-
erwise. Write ψ1 = µ+ − µ−, where µ+ = max{ψ1, 0} and µ− = max{−ψ1, 0} are
the positive and negative parts of ψ1, respectively. Observe that µ+ 6≡ 0 and µ− 6≡ 0
by (iv), (v). As usual, we need to decide what dual object to use for the function in
question, F = ORn ◦ f. Bun and Thaler [13] used µ⊗n+ − µ⊗n− for this purpose, an
elegant choice that works well in the setting of pointwise approximation. Since our
interest is in sign-representation instead, we must additionally ensure agreement in
sign with F. To this end, we define our dual object to be

Ψ = µ⊗n+ − µ⊗n− − ψ0
⊗n.

By (i) and (ii),

|ψ0| 6 µ+ on f−1(1),(7.1)

ψ0 = µ+ on f−1(0),(7.2)

suppµ− ⊆ f−1(0).(7.3)

On F−1(1),

Ψ(x) =

n∏
i=1

µ+(xi)−
n∏
i=1

µ−(xi)−
n∏
i=1

ψ0(xi) by definition

=

n∏
i=1

µ+(xi)−
n∏
i=1

ψ0(xi) by (7.3)

> 0 by (7.1) and (7.2).

On F−1(0),

Ψ(x) =

n∏
i=1

µ+(xi)−
n∏
i=1

µ−(xi)−
n∏
i=1

ψ0(xi) by definition

= −
n∏
i=1

µ−(xi) by (7.2).

Since µ− 6≡ 0, the last equation additionally shows that Ψ 6≡ 0.
Summarizing, we have shown that (−1)1−FΨ > 0 and Ψ 6≡ 0. In light of Theo-

rem 2.4, the claimed lower bound on the threshold degree of F will follow once we
show that Ψ is orthogonal to every polynomial P of degree less than min{nd0, d1}.
By linearity, it suffices to consider factored polynomials

P (x1, x2, . . . , xn) = p1(x1)p2(x2) · · · pn(xn).

Use a telescoping sum to write

µ⊗n+ − µ⊗n− =

n∑
j=1

µ+ ⊗ · · · ⊗ µ+︸ ︷︷ ︸
j−1

⊗(µ+ − µ−)⊗ µ− ⊗ · · · ⊗ µ−︸ ︷︷ ︸
n−j

.
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Then

〈Ψ, P 〉 =

n∑
j=1

〈µ+, p1〉 · · · 〈µ+, pj−1〉 〈ψ1, pj〉︸ ︷︷ ︸
=0

〈µ−, pj+1〉 · · · 〈µ−, pn〉

− 〈ψ0
⊗n, P 〉︸ ︷︷ ︸
=0

,

where the marked inner products are zero by (iii) and (iv).

Corollary 7.2. For every f : X → {0, 1},

deg±(ORn ◦ f) > min{n,deg+
1/4(f)}.

In particular,
deg±(ORn2/5 ◦ EDn3/5) = Ω(n2/5).

Proof. We may assume that deg+
1/4(f) > 0, the claim being trivial otherwise.

Then Lemma 4.2 guarantees that f has a (1,deg+
1/4(f), 1)-dual pair, which means in

particular that the hypothesis of Theorem 7.1 holds with d0 = 1 and d1 = deg+
1/4(f).

This proves the first claim. The second claim follows from the first in view of Theo-
rem 2.3.

8. Additional applications. In this concluding section, we examine additional
applications of our main result and in particular prove Theorems 1.4 and 1.5 from
the Introduction. We assume basic familiarity with communication complexity theory
and computational learning. For a concise introduction to these research areas, we
refer the reader to the monographs by Kushilevitz and Nisan [31] and Kearns and
Vazirani [23].

8.1. Communication complexity. Let f : X × Y → {0, 1} be a given two-
party communication problem. The ε-error randomized communication complexity
of f , denoted Rε(f), is the minimum cost of a communication protocol with public
randomness that computes f with error at most ε on every input. For a probability
distribution µ on X × Y, the discrepancy of f with respect to µ is given by

discµ(f) = max
X′⊆X
Y ′⊆Y

∣∣∣∣∣∣
∑
x∈X′

∑
y∈Y ′

(−1)f(x,y)µ(x, y)

∣∣∣∣∣∣ .
The minimum discrepancy of f over all probability distributions is denoted

disc(f) = min
µ

discµ(f).

Discrepancy plays a central role in communication complexity theory because it im-
plies communication lower bounds in almost every model, with low discrepancy cor-
responding to high communication complexity. In particular, the randomized com-
munication complexity of every function f obeys

(8.1) Rε(f) > log
1− 2ε

disc(f)
,

a fundamental inequality known as the discrepancy method [31, section 3.5].
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Discrepancy is difficult to analyze, except in a handful of canonical cases. A
useful technique in this context is the pattern matrix method [42, 43], which among
other things translates lower bounds on approximate degree into upper bounds on
discrepancy. We will use the following version [43, Theorem 7.3] of the pattern matrix
method.

Theorem 8.1 (Sherstov). Let f : {0, 1}n → {0, 1} be a given Boolean function.
Define F : {0, 1}4n × {0, 1}4n → {0, 1} by

F (x, y) = f

. . . , 4∨
j=1

(xi,j ∧ yi,j), . . .

 .

Then

disc(F ) 6 2− deg±(f)/2.

Combining this theorem with our main result, we obtain:

Theorem 8.2. Fix an arbitrary constant k > 1 and define fn : {0, 1}n → {0, 1}
by

fn = NOR
n

1
2k−1

◦NOR
n

2
2k−1

◦ · · · ◦NOR
n

2
2k−1︸ ︷︷ ︸

k−1

.

Consider the two-party communication problem Fn : {0, 1}n × {0, 1}n → {0, 1} given
by Fn(x, y) = fn(x ∧ y). Then for some constant c = c(k) > 0 and all n,

disc(Fn) 6 exp
(
−cn

k−1
2k−1

)
,

R
1
2−exp

(
−cn

k−1
2k−1

)(Fn) > cn
k−1
2k−1 .

Proof. By the discrepancy method (8.1), it suffices to prove the discrepancy upper
bound. The identity NORs ◦ ORt = NORst implies that fn ◦ OR4 ◦ AND2 is a
subfunction of F42k−1n. Therefore,

disc(F42k−1n) 6 disc(fn ◦OR4 ◦AND2)

6 2− deg±(fn)/2

6 exp(−Ω(n
k−1
2k−1 )),

where the last two inequalities use Theorem 8.1 and Theorem 1.1, respectively.

This settles Theorem 1.4 from the Introduction. For any d > 3, Theorem 8.2 gives an
explicit two-party communication problem F : {0, 1}n×{0, 1}n → {0, 1}, computable
by a read-once {∧,∨}-formula of depth d, with discrepancy

exp
(
−Ω

(
n

1
2−

1
4d−6

))
.

This result matches all previous lower bounds for {∧,∨}-circuits of polynomial size
and depth d = 3, and strictly improves on previous work for depth d > 3. Table 8.1
gives a quantitative and bibliographic summary of this line of research. Finally, we
remark that Theorem 8.2 generalizes to three or more parties, by the multiparty
version of the pattern matrix method [49].
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Table 8.1
Discrepancy of {∧,∨}-circuits of constant depth and polynomial size.

Depth Discrepancy Reference

3 exp{−Ω(n1/3)} [11, 42, 43]

4 exp{−Ω(n/ log n)2/5} [13]

d > 3 exp{−Ω(n
1
2−

1
4d−6 )} this paper

8.2. Computational learning. Apart from threshold degree, several other
complexity measures are of interest when representing a function f : {0, 1}n → {0, 1}
by the sign of a real polynomial. Two such are the density and weight of the sign-
representing polynomial. Unlike threshold degree, these measures depend on the exact
choice of basis for the subspace of real polynomials of a given degree. The canonical
choice is the parity basis χS for S ⊆ {1, 2, . . . , n}, where χS : {0, 1}n → {−1,+1} is
given by

χS(x) = (−1)
∑
i∈S xi .

This basis derives its name from the fact that χS computes the parity of the bits in
S, with output values −1 and +1 corresponding to odd and even parity, respectively.
The threshold density of f, denoted dns(f), is the minimum size of a set family S
such that

sgn

(∑
S∈S

λSχS

)
≡

{
−1 if f(x) = 0,

+1 if f(x) = 1

for some reals λS . A more subtle complexity measure is the threshold weight of f,
denoted W (f) and defined as the minimum sum

∑
S⊆{1,2,...,n} |λS | over all integers

λS such that

sgn

 ∑
S⊆{1,2,...,n}

λSχS

 ≡ {−1 if f(x) = 0,

+1 if f(x) = 1.

In other words, dns(f) is the minimum number of functions χS in any linear com-
bination that sign-represents f, whereas W (f) is the minimum sum of coefficients
in any integer linear combination of χS that sign-represents f. In circuit complex-
ity terms, the threshold density and threshold weight of f exactly correspond to the
minimum size of a threshold-of-parity and threshold-of-majority circuit for f, respec-
tively. It is clear that dns(f) 6 W (f) for every f, and a little more thought reveals
that 1 6 dns(f) 6 2n and 1 6 W (f) 6 (2

√
2)n. These complexity measures have

been extensively studied [9, 10, 17, 20, 7, 22, 29, 24, 28, 26, 27, 11, 39], motivated by
applications to computational learning and circuit complexity.

The following ingenious theorem, due to Krause and Pudlák [29, Proposition 2.1],
translates lower bounds on threshold degree into lower bounds on threshold density.
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Table 8.2
Threshold weight and threshold density of {∧,∨}-circuits of constant depth and polynomial size.

Depth Threshold weight Threshold density Reference

3 exp{Ω(n1/3)} exp{Ω(n1/3)} [29]

4 exp{Ω(n/ log n)2/5} no bound [13]

d > 3 exp{Ω(n
1
2−

1
4d−6 )} exp{Ω(n

1
2−

1
4d−6 )} this paper

Theorem 8.3 (Krause and Pudlák). Let f : {0, 1}n → {0, 1} be a given Boolean
function. Define F : ({0, 1}n)3 → {0, 1} by F (x, y, z) = f(. . . , (zi∧xi)∨ (zi∧yi), . . . ).
Then

dns(F ) > 2deg±(f).

Combining Krause and Pudlák’s technique with the main result of this paper, we
obtain the desired lower bound on the threshold density of constant-depth circuits.

Theorem 8.4. Fix an arbitrary constant k > 1 and define Fn : {0, 1}2n → {0, 1}
by

Fn = NOR
n

1
2k−1

◦NOR
n

2
2k−1

◦ · · · ◦NOR
n

2
2k−1︸ ︷︷ ︸

k−1

◦ NOR2.

Then
W (Fn) > dns(Fn) > exp

(
Ω
(
n
k−1
2k−1

))
.

Proof. Define fn : {0, 1}n → {0, 1} by

fn = NOR
n

1
2k−1

◦NOR
n

2
2k−1

◦ · · · ◦NOR
n

2
2k−1︸ ︷︷ ︸

k−1

.

The identity NORs ◦ORt = NORst implies that fn ◦OR2 ◦AND2 is a subfunction of
F22k−1n. The claimed lower bound for Fn now follows from

dns(F22k−1n) > dns(fn ◦OR2 ◦AND2)

> 2deg±(fn)

> exp(Ω(n
k−1
2k−1 )),

where the last two inequalities use Theorem 8.3 and Theorem 1.1, respectively.

This establishes Theorem 1.5 from the Introduction. For any d > 3, Theorem 8.4 gives
a read-once {∧,∨}-formula F : {0, 1}n → {0, 1} of depth d with threshold weight and
threshold density

exp
(

Ω
(
n

1
2−

1
4d−6

))
.
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This result matches all previous lower bounds for {∧,∨}-circuits of polynomial size
and depth d = 3, and strictly improves on previous work for depth d > 3. The reader
will find a quantitative and bibliographic summary of this line of research in Table 8.2.

Remark 8.5. Threshold weight and threshold density are sometimes defined in
terms of a different monomial basis, whose elements are the conjunction functions
x 7→

∏
i∈S xi for S ⊆ {1, 2, . . . , n}. Krause and Pudlák’s theorem easily generalizes to

that setting, as does Theorem 8.4.

8.3. Approximate degree of AND-OR trees. The approximate degree of
AND-OR trees has been the focus of much work over the past two decades. A series
of breakthroughs [19, 21, 15, 3, 41] in quantum query complexity have culminated
in an O(

√
n) upper bound on the 1/3-approximate degree of every AND-OR tree

on n variables. Obtaining a matching lower bound has turned out to be surpris-
ingly difficult, even for trees as simple as NORn1

◦ NORn2
on n = n1n2 variables.

This depth-2 tree was finally shown to have approximate degree Ω(
√
n) by Bun and

Thaler [12] and independently by the author [45], closing a long line of incremental
improvements [35, 51, 2, 46, 12, 45]. In follow-up work, Bun and Thaler [13] gen-
eralized this lower bound to arbitrary constant depth k > 2, showing that the tree
NORn1

◦ NORn2
◦ · · · ◦ NORnk on n = n1n2 · · ·nk variables has approximate degree

Ω(
√
n/ log(k−2)/2 n). Our amplification theorem sharpens this lower bound to a tight

Ω(
√
n) for the depth-k tree with all fan-ins n1/k:

Theorem 8.6. Let k > 1 be an arbitrary integer constant. Then for all n > 1,
the composition

f = NORn1/k ◦NORn1/k ◦ · · · ◦NORn1/k︸ ︷︷ ︸
k

obeys

deg1/3(f) > deg+
1/3(f) = Ω(

√
n).

Proof. We will prove that

deg+
1/4(NORcn ◦NORcn ◦ · · · ◦NORcn︸ ︷︷ ︸

k

) > nk/2(8.2)

for a sufficiently large absolute constant c > 1 and all positive integers k and n.
This suffices to prove the theorem because the error in a one-sided approximation
of any given Boolean function can be reduced from 1/3 to 1/4 at the expense of a
constant-factor increase in the degree of the approximant.

We claim that for all n and k, the function in (8.2) has a (n(k−1)/2, nk/2, 1/2)-dual
pair. Indeed, the base case k = 1 of this claim is immediate from Theorem 2.2 and
Lemma 4.2, whereas the inductive step follows from Theorem 4.3. Now (8.2) follows
directly from the dual characterization of one-sided approximate degree (Theorem 2.6)
and the definition of a dual pair.

9. Open problems. There are several natural directions for future work. The
most obvious open problem is to obtain improved lower and upper bounds on the max-
imum threshold degree of constant-depth circuits. In particular, is there a constant-
depth circuit f : {0, 1}n → {0, 1} with threshold degree Ω(n)? An analogous question
for approximate degree is also of great interest. A related open problem, discussed
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in the previous section, concerns the approximate degree of arbitrary AND-OR trees
on n variables. As of this writing, matching lower and upper bounds are known
only for AND-OR trees of constant depth. Finally, it is a fascinating open prob-
lem to determine whether approximate degree is multiplicative in the sense that
deg1/3(f ◦g) = Θ(deg1/3(f) deg1/3(g)) for all Boolean functions f, g : {0, 1}n → {0, 1}.
Currently, only the upper bound is known to hold (Corollary 2.11).

Appendix A. Constructing a dual object for NOR. The purpose of this
appendix is to prove Theorem 2.9, which gives a dual object for the NOR function
with a number of additional properties. The development here closely follows earlier
work by Špalek [54] and Bun and Thaler [12]. The main points of departure are a
more careful choice of roots for the dual object and the use of shifts, to induce the
desired sign behavior and metric properties. We start with a well-known binomial
identity [18].

Fact A.1. For every polynomial p of degree less than n,

n∑
t=0

(−1)t
(
n

t

)
p(t) = 0.

The next lemma constructs a dual object for NOR that has the sign behavior claimed
in Theorem 2.9 but may lack the corresponding metric properties.

Lemma A.2. Let ε be given, 0 < ε < 1. Then for some δ = δ(ε) > 0 and every
n > 2, there exists an (explicitly given) function ω : {0, 1, 2, . . . , n} → R such that

ω(0) >
1− ε

2
· ‖ω‖1,(A.1)

(−1)n+tω(t) > 0 (t = 1, 2, . . . , n),(A.2)

deg p <
√
δn =⇒ 〈ω, p〉 = 0.(A.3)

Proof. We first consider the case of n odd. Let m = 2d4/εe+1 and d = b
√
n/mc.

Define S = {2} ∪ {i2m : i = 0, 1, 2, . . . , d}, so that S ⊆ {0, 1, 2, . . . , n}. Consider the
function ω : {0, 1, 2, . . . , n} → R given by

ω(t) =
(−1)n+t+|S|+1

n!

(
n

t

) ∏
i=0,1,2,...,n:

i/∈S

(t− i).

Fact A.1 implies that ω is orthogonal to every polynomial of degree at most d, so that
(A.3) holds with

δ =
1

2d4/εe+ 1
.

A routine calculation reveals that

ω(t) =


(−1)|{i∈S:i<t}|

∏
i∈S\{t}

1

|t− i|
if t ∈ S,

0 otherwise.

(A.4)

In particular,

ω(0)

|ω(2)|
=

d∏
i=1

i2m− 2

i2m
> 1−

d∑
i=1

2

i2m
> 1− 2

m

∞∑
i=1

1

i2
= 1− π2

3m
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and

ω(0)

|ω(i2m)|
=
i2m− 2

4
· (d− i)! (d+ i)!

d! d!
>
i2m− 2

4
(i = 1, 2, . . . , d).

Hence,

‖ω‖1
ω(0)

= 1 +
|ω(2)|
ω(0)

+

d∑
i=1

|ω(i2m)|
ω(0)

6 2 +
π2

3m− π2
+

d∑
i=1

4

i2m− 2

6 2 +
π2

3m− π2
+

4

m− 2

∞∑
i=1

1

i2

= 2 +
π2

3m− π2
+

2

m− 2
· π

2

3

6 2 + 2ε,

where the last step holds because m > 8/ε. Now (A.1) is immediate.
It remains to examine the sign behavior of ω. Since ω vanishes outside S, the

requirement (A.2) holds trivially at those points. For t ∈ S, it follows from (A.4) that

sgnω(2) = −1,

sgnω(i2m) = (−1)i+1 (i = 1, 2, . . . , d).

Since m is odd, these equations yield sgnω(t) = (−1)t+1 for positive t ∈ S. This settles
(A.2) and completes the proof for n odd. The proof for n even is closely analogous,
with the difference that one works with the set S = {0} ∪ {i2m + 1 : i = 0, 1, 2, . . . }
for an odd integer m = Θ(1/ε).

We have reached the main result of this section, stated earlier as Theorem 2.9.

Theorem A.3. Let ε be given, 0 < ε < 1. Then for some δ = δ(ε) > 0 and every
n > 2, there exists an (explicitly given) function ω : {0, 1, 2, . . . , n} → R such that

ω(0) >
1− ε

2
· ‖ω‖1,(A.5)

(−1)n+tω(t) >
ε

4t2
· ‖ω‖1 (t = 1, 2, . . . , n),(A.6)

deg p <
√
δn =⇒ 〈ω, p〉 = 0.(A.7)

Proof. The cases n = 2 and n = 3 can be handled directly by taking δ = δ(ε) =
1/4 and defining

ω : (0, 1, 2) 7→
(

1

2
− ε

3
,−1

2
,
ε

3

)
,

ω : (0, 1, 2, 3) 7→
(

1

2
− ε

3
,
ε

4
,−1

2
,
ε

12

)
,

respectively. In the rest of the proof, we treat the complementary case n > 4.
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For some δ = δ(ε) > 0 and all n > 4, Lemma A.2 ensures the existence of functions
ω0 : {0, 1, 2, . . . , 2bn/4c} → R and ω1 : {0, 1, 2, . . . , n} → R such that

‖ω0‖1 = ‖ω1‖1 = 1,(A.8)

ω0(0) >
6− ε

12
,(A.9)

ω1(0) >
6− ε

12
,(A.10)

(−1)tω0(t) > 0, t > 0,(A.11)

(−1)n+tω1(t) > 0, t > 1,(A.12)

deg p <
√
δn =⇒ 〈ω0, p〉 = 〈ω1, p〉 = 0.(A.13)

For convenience, extend ω0 and ω1 to all of Z by defining these functions to be zero
outside their original domain. Define ω : {0, 1, 2, . . . , n} → R by

ω(t) = ω1(t) + ρ

bn/2c∑
i=1

(−1)i+n

i2
ω0(t− i) + ρ

n∑
i=bn/2c+1

(−1)i+n

i2
ω0(−t+ i),

where

ρ =
5ε

π2(1− ε)
.

We proceed to verify the three properties of ω claimed in the theorem statement.
To begin with,

‖ω‖1 6 ‖ω1‖1 + ρ

n∑
i=1

1

i2
‖ω0‖1 6 1 + ρ

∞∑
i=1

1

i2
= 1 + ρ · π

2

6

=
6− ε

6(1− ε)
,(A.14)

where the second inequality uses (A.8). Now (A.5) is immediate because ω(0) =
ω1(0) > (6− ε)/12 by (A.10).

Property (A.6) for t > 1 can be verified as follows:

(−1)n+tω(t) = |ω1(t)|+ ρ

bn/2c∑
i=1

|ω0(t− i)|
i2

+ ρ

n∑
i=bn/2c+1

|ω0(−t+ i)|
i2

> ρ · |ω0(0)|
t2

>
5ε

π2(1− ε)
· 6− ε

12t2

>
ε

4t2
· ‖ω‖1,

where the first step follows from (A.11) and (A.12), the third from (A.9), and the
fourth from (A.14).

The remaining property (A.7) is immediate from (A.13).
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