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Abstract

We prove an essentially tight lower bound on the unbounded-error
communication complexity of every symmetric function, i.e., f (x, y) =

D(|x ∧ y|), where D : {0, 1, . . . , n} → {0, 1} is a given predicate and x, y
range over {0, 1}

n . Specifically, we show that the communication complexity
of f is between 2(k/ log5 n) and 2(k log n), where k is the number of value
changes of D in {0, 1, . . . , n}. Prior to this work, the problem was solved
only for the parity predicate D (Forster 2001).

Our proof is built around two new ideas. First, we show that a predicate
D gives rise to a rapidly mixing random walk on Zn

2, which allows us to
reduce the problem to communication lower bounds for “typical” predi-
cates. Second, we use Paturi’s approximation lower bounds (1992), suitably
generalized here to clusters of real nodes in [0, n] and interpreted in their
dual form, to prove that a typical predicate behaves analogous to the parity
predicate with respect to a smooth distribution on the inputs.
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1 Introduction

The unbounded-error model, due to Paturi and Simon [28], is a rich and elegant
model of communication. Fix a function f : X × Y → {0, 1}, where X and Y
are some finite sets. Alice receives an input x ∈ X, Bob receives y ∈ Y, and
their objective is to compute f (x, y). To this end, they exchange bits through a
shared communication channel according to a strategy, or protocol, established in
advance. Alice and Bob each have an unlimited private source of random bits
which they can use in deciding what messages to send. Eventually, Bob concludes
this process by sending Alice a single bit, which is taken to be the output of their
joint computation. Let the random variable P(x, y) ∈ {0, 1} denote the output bit
when the parties receive inputs x ∈ X and y ∈ Y. Alice and Bob’s protocol is said
to compute f if

P[P(x, y) = f (x, y)] >
1
2

for all x ∈ X, y ∈ Y. The cost of a given protocol is the worst-case number of bits
exchanged on any input (x, y). The unbounded-error communication complexity
of f, denoted U ( f ), is the least cost of a protocol that computes f.

The unbounded-error model occupies a special place in the study of communi-
cation because it is more powerful than any of the usual models (deterministic,
nondeterministic, randomized, quantum with or without entanglement). More
precisely, the unbounded-error complexity U ( f ) can be only negligibly greater
than the complexity of f in these other models—and often, U ( f ) is exponentially
smaller. For completeness, we provide precise quantitative statements in Sec-
tion 2.1. The power of the unbounded-error model resides in its very liberal success
criterion: it suffices to produce the correct output with probability greater than 1/2
(say, by an exponentially small amount). This contrasts with the more familiar
bounded-error models, in which the correct output is expected with probability at
least 2/3.

1.1 Motivation

The additional power of the unbounded-error model has a consequence that prov-
ing communication lower bounds in it requires richer mathematical machinery.
Furthermore, the resulting lower bounds will have applications that other commu-
nication models could not have. Before we state our results, we take a moment to
review a few of these applications.

Circuit complexity. Recall that a threshold gate g with Boolean inputs
x1, . . . , xn is a function of the form g(x) = sgn(a1x1 + · · · + anxn − θ), for some
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fixed reals a1, . . . , an, θ. Thus, a threshold gate generalizes the familiar majority
gate. A major unsolved problem in computational complexity is to exhibit a
Boolean function that requires a depth-2 threshold circuit of superpolynomial size.

Communication complexity has been crucial to the progress on this problem.
Via randomized communication complexity, many explicit functions have been
found [11, 10, 26, 35, 38] that require depth-2 majority circuits of exponential size.
By the reductions due to Goldman et al. [10], these lower bounds remain valid for
the broader class of majority-of-threshold circuits. This solves a special case of the
problem. The unbounded-error model solves another special case [8]: it supplies
exponential lower bounds against threshold-of-majority circuits, i.e., circuits with
a threshold gate at the top that receives inputs from majority gates.

Sign-rank and rigidity. Fix a real matrix M = [Mi j ] without zero entries. The
sign-rank of M, denoted rk±(M), is the least rank of a matrix A = [Ai j ] with
Mi j Ai j > 0 for all i, j. In other words, sign-rank measures the sensitivity of the
rank of M when its entries undergo sign-preserving perturbations. Sensitivity of
the rank is a well-studied subject in complexity theory. For example, much work
has focused on the closely related concept of matrix rigidity [23, 14].

Surprisingly, sign-rank and unbounded-error complexity turn out to be equiv-
alent notions. Specifically, Paturi and Simon [28] showed that every function
f : X × Y → {0, 1} satisfies U ( f ) = log2 rk±(M) ± O(1), where M =

[(−1) f (x,y)]x∈X, y∈Y .

PAC learning. In a seminal paper, Valiant [40] formulated the probably approx-
imately correct (PAC) model of learning, now a central model in computational
learning theory. Research has shown that PAC learning is quite difficult. (By
“PAC learning,” we mean PAC learning under arbitrary distributions.) Indeed,
the learning problem remains unsolved for such natural concept classes as DNF
formulas of polynomial size and intersections of two halfspaces, whereas hardness
results and lower bounds are abundant [15, 16, 20, 6, 21, 19].

There is, however, an important case when efficient PAC learning is possible.
Let C be a given concept class. For notational convenience, view the functions
in C as mappings {0, 1}

n
→ {−1, +1} rather than {0, 1}

n
→ {0, 1}. The

dimension complexity of C , denoted dc(C ), is the least r for which there exist
functions φ1, . . . , φr : {0, 1}

n
→ R such that every f ∈ C is expressible as

f (x) ≡ sgn(a1φ1(x) + · · · + arφr (x)) for some reals a1, . . . , ar . (The functions
φ1, . . . , φr themselves need not belong to C , but in practice they often do.) There is
a simple and well-known algorithm [18], based on linear programming, that PAC
learns C in time polynomial in dc(C ). To relate this discussion to sign-rank (or
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equivalently, to unbounded-error complexity), let MC = [ f (x)] f ∈C , x∈{0,1}n be the
characteristic matrix of C . A moment’s reflection reveals that dc(C ) = rk±(MC ),

i.e., the dimension complexity of a concept class is precisely the sign-rank of its
characteristic matrix.

Thus, the study of unbounded-error complexity yields nontrivial PAC learning
algorithms. Indeed, the current fastest algorithm for learning polynomial-size DNF
formulas in n variables [18] was obtained precisely by placing an upper bound
of 2Õ(n1/3) on the dimension complexity of that concept class. The dimension-
complexity paradigm captures many other efficient PAC learning algorithms de-
signed to date, with the notable exception of learning low-degree polynomials over
GF(p).

1.2 Our Result

To summarize, the unbounded-error model has applications to circuit complexity,
matrix analysis, and learning theory, in addition to its intrinsic appeal as a model
of communication. Despite this motivation, progress in understanding unbounded-
error complexity has been slow and difficult. Indeed, we are aware of only a few
nontrivial results on this subject. Alon et al. [1] obtained strong lower bounds
for random functions. In a breakthrough result, Forster [7] proved the first strong
lower bound for an explicit function. Forster’s proof has seen several extensions
and refinements [8, 9]. Subsequent to our work, Razborov and Sherstov [33] solved
an open problem regarding the comparative power of alternation (the classes 6cc

2
and 5cc

2 ) and unbounded-error communication, posed by Babai et al. [3].
This paper focuses on symmetric functions, i.e., functions f : {0, 1}

n
×

{0, 1}
n

→ {0, 1} of the form

f (x, y) = D(|x ∧ y|)

for a given predicate D : {0, 1, . . . , n} → {0, 1}. Here |x ∧ y| stands for the
number of positions where x and y both have a 1. Familiar examples of such
functions include DISJOINTNESS (determining if x and y intersect) and INNER

PRODUCT MODULO 2 (determining if x and y intersect in an odd number of
positions). Symmetric functions have seen much work in communication com-
plexity. An illustrative example is the DISJOINTNESS function, whose study
has led to considerable advances [13, 31, 29, 4] in randomized communication
complexity. Symmetric functions have also contributed to the progress in quantum
communication complexity, starting with the breakthrough result of Razborov [32]
and continuing with more recent work, e.g., [17, 37, 39].

Our main result settles the unbounded-error complexity of every symmetric
function, to within logarithmic factors. The only symmetric function whose
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unbounded-error complexity was known prior to this work was INNER PRODUCT

MODULO 2, for which Forster [7] proved a tight lower bound of �(n). The general
result that we prove is in terms of the degree deg(D) of a given predicate D,

defined as the number of times D changes value in {0, 1, . . . , n}. In other words,
deg(D) = |{i : D(i) 6= D(i − 1)}|.

Theorem 1.1 (Main Result). Let D : {0, 1, . . . , n} → {0, 1} be given, k =

deg(D). Define f (x, y) = D(|x ∧ y|). Then

2(k/ log5 n) 6 U ( f ) 6 2(k log n).

For a somewhat stronger quantitative statement, see Theorem 6.3.
The upper bound in this result has a short and elementary demonstration (see

the proof of Theorem 6.3), and this paper is devoted entirely to the proof of the
lower bound. The lower bound uses a combination of techniques (random walks on
Zn

2, univariate approximation theory, linear programming duality), with Forster’s
general method as a starting point.

1.3 Proof Outline

Our proof consists of two independent parts. First, we reduce the original
problem to analyzing what we call dense predicates. These are predicates
D : {0, 1, . . . , n} → {0, 1} that change value frequently and at roughly regular
intervals. Dense predicates are highly structured and amenable to direct analysis,
unlike general predicates. With this reduction in hand, we complete the proof by
solving the problem for every dense predicate. We now describe the two technical
components in greater detail.

Reduction to dense predicates. Let D : {0, 1, . . . , n} → {0, 1} be a given pred-
icate that is not dense. Any communication protocol that computes D can clearly
compute the restriction of D to a given subinterval {i, i+1, . . . , j} ⊂ {0, 1, . . . , n}.

Now, let D denote the set of all restrictions of D to subintervals of a given length.
Using a probabilistic argument, we show that a dense predicate arises as the XOR
of a small number T of predicates from D (where T depends on the degree of D).
As a result, if the original predicate D has unbounded-error complexity � deg(D),

then some dense predicate will have disproportionately small unbounded-error
complexity. This is the desired reduction.

The technical challenge here is to show that a dense predicate can be obtained
as the XOR of a small number of predicates from D . To this end, we model the
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probabilistic argument as a random walk on Zn
2 and bound its mixing time. Our

analysis uses a known bound, due to Razborov [30], on the rate of convergence in
terms of the probability of a basis for Zn

2 (see Lemma 3.3).

Solution for dense predicates. Using Chebyshev polynomials and the Markov-
Bernstein inequalities, Paturi [27] determined the least degree of a polynomial that
approximates any given Boolean predicate on {0, 1, . . . , n} pointwise to within
1/3. A starting point in our analysis is a related approximation problem, in which
the nodes are no longer {0, 1, . . . , n} but are some arbitrary reals {a1, a2, . . . , an} ⊂

[0, n]. Provided that the nodes are not too clumped together, we are able to prove
strong lower bounds on the degree for a relevant class of approximation problems
f : {a1, a2, . . . , an} → {0, 1}. Paturi’s proof technique does not apply in this more
general setting, and we give a direct analysis using fundamentals of approximation
theory.

The next step is to show that computation of dense predicates corresponds to
the approximation problem just described, where the real nodes a1, a2, . . . , an are
allowed to form clusters but must still cover much of the interval [0, n]. Linear
programming duality now tells us that, in a well-defined technical sense, a dense
predicate behaves like the PARITY function with respect to a smooth distribution on
the inputs. This enables us to bound the spectral norm of relevant matrices using
the pattern matrix method [37]. In a final step, we invoke Forster’s generalized
theorem [8] to obtain our main result.

Comparison with related work. Alon et al. [1] introduced ideas from real
algebraic geometry to the study of the unbounded-error complexity of random
functions. Forster [7] used matrix analysis and a compactness argument to give
the first strong lower bound for an explicit function. Follow-up work gave several
matrix-analytic improvements [8, 9] on Forster’s method. The recent result due to
Razborov and Sherstov [33] is built around a new method of analyzing multivariate
forms p on Rn, whereby one projects p in several ways to a univariate polynomial,
analyzes these simpler objects, and recombines the results using Fourier-theoretic
tools.

Our approach is quite different from these works. To our knowledge, we
give the first application of random walks to unbounded-error complexity. This
technique generalizes beyond symmetric functions and, in fact, applies whenever
one seeks a lower bound on the unbounded-error complexity of a set F of
functions. The quality of the resulting communication lower bound will depend
on how fast a random XOR-walk on F mixes to a hard function.

The second part of our proof is also based on a new idea, which effectively
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allows us to treat a dense predicate as if it were the PARITY function. The insight
here is that Paturi’s approximation lower bounds [27], suitably generalized to
clusters of real nodes in [0, n] and examined in their dual form, show that a dense
predicate behaves analogous to PARITY with respect to a smooth distribution on the
inputs. We introduce the term smooth orthogonalizing distribution to describe this
technique. The smoothness property is crucial to applying Forster’s method [7].

1.4 Organization

Section 2 provides necessary technical background. Section 3 opens the proof
with the reduction to dense predicates. Section 4 solves a certain problem in
discrete approximation. Section 5 translates this approximation result, via linear
programming duality and the Fourier transform, into an existence proof of smooth
orthogonalizing distributions for every dense predicate. Section 6 combines the
above ingredients to give the final lower bounds on unbounded-error complexity.

2 Preliminaries

A Boolean function is a mapping X → {0, 1}, where X is a finite set. Typical
cases are X = {0, 1}

n and X = {0, 1}
n
×{0, 1}

n. The notation [n] stands for the set
{1, 2, . . . , n}. Throughout this manuscript, “log” refers to the logarithm to base 2.

The symbol Pk refers to the set of univariate polynomials of degree up to k.

For x ∈ {0, 1}
n, we define |x | = x1 + x2 + · · · + xn. For x, y ∈ {0, 1}

n, the
notation x ∧ y refers as usual to the component-wise AND of x and y. In particular,
|x ∧ y| stands for the number of positions where x and y both have a 1. At several
places in this manuscript, it will be important to distinguish between addition over
the reals and addition over GF(2). To avoid any confusion, we reserve the operator
+ for the former and ⊕ for the latter.

Random walks on Zn
2 play an important role in this work. In particular, it will

be helpful to recall the following fact.

Proposition 2.1 (Folklore). For an integer T > 1, let b1, b2, . . . , bT ∈ {0, 1} be
independent random variables, each taking on 1 with probability p. Then

E
[
b1 ⊕ b2 ⊕ · · · ⊕ bT

]
=

1
2

−
1
2
(1 − 2p)T .

Proof. Straightforward by induction on T .
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Predicates. A predicate is a mapping D : {0, 1, . . . , n} → {0, 1}. We say that a
value change occurs at index t ∈ {1, 2, . . . , n} if D(t) 6= D(t − 1). The degree of
D, denoted deg(D), is the total number of value changes of D. For example, the
familiar predicate PARITY(t) = t mod 2 has degree n, whereas a constant predicate
has degree 0. It is not hard to show [2] that deg(D) is the least degree of a real
univariate polynomial p such that sgn(p(t)) = (−1)D(t), t = 0, 1, . . . , n, hence
the term degree. Finally, given two predicates D1, D2 : {0, 1, . . . , n} → {0, 1},

recall that their XOR is the predicate D1 ⊕ D2 : {0, 1, . . . , n} → {0, 1} defined by
(D1 ⊕ D2)(t) = D1(t) ⊕ D2(t).

Matrices. The symbol Rm×n refers to the family of all m × n matrices with real
entries. The (i, j)th entry of a matrix A is denoted by Ai j . We frequently use
“generic-entry” notation to specify a matrix succinctly: we write A = [F(i, j)]i, j

to mean that the (i, j)th entry of A is given by the expression F(i, j). In most
matrices that arise in this work, the exact ordering of the columns (and rows) is
irrelevant. In such cases we describe a matrix by the notation [F(i, j)]i∈I, j∈J ,

where I and J are some index sets. In specifying matrices, we will use the symbol
∗ for entries whose values are irrelevant, as in the proofs of Lemmas 3.2 and 3.5.
Recall that the spectral norm of a matrix A ∈ Rm×n is given by

‖A‖ = max
x∈Rn , ‖x‖2=1

‖Ax‖2,

where ‖ · ‖2 is the Euclidean norm on vectors.

Fourier transform over Zn
2. Consider the vector space of functions {0, 1}

n
→

R, equipped with the inner product

〈 f, g〉 = 2−n
∑

x∈{0,1}n

f (x)g(x).

For S ⊆ [n], define χS : {0, 1}
n

→ {−1, +1} by χS(x) = (−1)
∑

i∈S xi . Then
{χS}S⊆[n] is an orthonormal basis for the inner product space in question. As a
result, every function f : {0, 1}

n
→ R has a unique representation of the form

f (x) =

∑
S⊆[n]

f̂ (S) χS(x),

where f̂ (S) = 〈 f, χS〉. The reals f̂ (S) are called the Fourier coefficients of f. The
following fact is immediate from the definition of f̂ (S).
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Proposition 2.2. Let f : {0, 1}
n

→ R be given. Then

max
S⊆[n]

| f̂ (S)| 6 2−n
∑

x∈{0,1}n

| f (x)|.

Symmetric functions. Let Sn denote the group of permutations [n] → [n]. A
function φ : {0, 1}

n
→ R is called symmetric if φ(x) is uniquely determined by

x1 + · · ·+ xn. Equivalently, φ is symmetric if φ(x) = φ(xσ(1), . . . , xσ(n)) for every
x ∈ {0, 1}

n and every σ ∈ Sn. Observe that for every φ : {0, 1}
n

→ R (symmetric
or not), the derived function

φsym(x) =
1
n!

∑
σ∈Sn

φ(xσ(1), . . . , xσ(n))

is symmetric. Symmetric functions on {0, 1}
n are intimately related to univari-

ate polynomials, as demonstrated by Minsky and Papert’s symmetrization argu-
ment [24]:

Proposition 2.3 (Minsky and Papert). Let φ : {0, 1}
n

→ R be symmetric with
φ̂(S) = 0 for |S| > r. Then there is a polynomial p ∈ Pr with φ(x) = p(|x |) for
all x ∈ {0, 1}

n.

2.1 The Unbounded-Error Model of Communication

We continue the review started in the introduction. Readers with background in
communication complexity will note that the unbounded-error model is exactly the
same as the private-coin randomized model [22, Chap. 3], with one exception: in
the latter case the correct answer is expected with probability at least 2/3, whereas
in the former case the correctness probability need only exceed 1/2 (say, by an
exponentially small amount). This difference has far-reaching implications. For
example, the fact that the parties in the unbounded-error model do not have a shared
source of random bits is crucial: allowing shared randomness would make the
complexity of every function a constant, as one can easily verify. By contrast,
introducing shared randomness into the randomized model has minimal impact on
the complexity of any given function [25].

As one might expect, the weaker success criterion in the unbounded-error
model has a drastic impact on the complexity of certain functions. For example,
the well-known DISJOINTNESS function on n-bit strings has complexity 2(log n)

in the unbounded-error model (see Proposition 6.5) and 2(n) in the randomized
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model [13, 31]. Furthermore, explicit functions are known [5, 36] with unbounded-
error complexity O(log n) that require �(

√
n) communication in the randomized

model to even achieve advantage 2−
√

n/5 over random guessing.
More generally, the unbounded-error complexity of a function f : X × Y →

{0, 1} is never much more than its complexity in the other standard models. For
example, it is not hard to see that

U ( f ) 6 min{N 0( f ), N 1( f )} + O(1)

6 D( f ) + O(1),

where D, N 0, and N 1 refer to communication complexity in the deterministic,
co-nondeterministic, and nondeterministic models, respectively. Continuing,

U ( f ) 6 R1/3( f ) + O(1)

6 O
(

Rpub
1/3( f ) + log log [|X | + |Y |]

)
,

where R1/3 and Rpub
1/3 refer to the private- and public-coin randomized models,

respectively. As a matter of fact, one can show that

U ( f ) 6 O
(
Q∗

1/3( f ) + log log [|X | + |Y |]
)
,

where Q∗

1/3 refers to the quantum model with prior entanglement. An identical
inequality is clearly valid for the quantum model without prior entanglement.
See [22, 41] for rigorous definitions of these various models; our sole intention
was to point out that the unbounded-error model is at least as powerful.

A compelling aspect of the unbounded-error model is that it has an exact
interpretation in matrix-analytic terms. Specifically, let M = [Mi j ] be a real matrix
without zero entries. Define the sign-rank of M by:

rk±(M) = min
A

{rk A : Mi j Ai j > 0 for all i, j}.

In words, rk±(M) is the least rank of a real matrix A whose entries each have the
same sign as the corresponding entry of M. Paturi and Simon made the following
important observation [28, Thm. 2].

Theorem 2.4 (Paturi and Simon). Let X, Y be finite sets and f : X × Y → {0, 1}

a given function. Put M = [(−1) f (x,y)]x∈X,y∈Y . Then

U ( f ) = log rk±(M) ± O(1).
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Paturi and Simon’s original observation concerned X = Y = {0, 1}
n, but their

proof readily extends to arbitrary sets. In words, the unbounded-error complexity
of a function essentially equals the logarithm of the sign-rank of its communication
matrix. This equivalence is often helpful: sometimes it is more convenient to
reason in terms of communication protocols, and sometimes the matrix formulation
offers more insight.

The power of the unbounded-error model makes it a challenging model in
which to prove communication lower bounds. In a breakthrough result, Forster [7]
proved the first strong lower bound in the unbounded-error model for an explicit
function. Forster’s proof generalizes to yield the following result [8, Thm. 3],
which serves as a crucial starting point for our work.

Theorem 2.5 (Forster et al.). Let X, Y be finite sets and M = [Mxy]x∈X,y∈Y a real
matrix without zero entries. Then

rk±(M) >

√
|X | |Y |

‖M‖
min
x,y

|Mxy|.

We close this overview by discussing some closure properties of the
unbounded-error model. Given functions f, g : X × Y → {0, 1}, recall that
their XOR is the function f ⊕ g : X × Y → {0, 1} defined by ( f ⊕ g)(x, y) =

f (x, y) ⊕ g(x, y). We have:

Proposition 2.6 (Folklore). Let f, g : X × Y → {0, 1} be arbitrary. Then

U ( f ⊕ g) 6 U ( f ) + U (g).

Proof. Alice and Bob can evaluate f and g individually and output the XOR of
the two answers. It is straightforward to verify that this strategy is correct with
probability greater than 1/2.

In what follows, we will be interested primarily in the complexity of predicates
D : {0, 1, . . . , n} → {0, 1}. Specifically, we define U (D) to be the unbounded-
error communication complexity of the function f : {0, 1}

n
× {0, 1}

n
→ {0, 1}

given by f (x, y) = D(|x ∧ y|).

2.2 Pattern Matrices

Pattern matrices were introduced in [38, 37] and proved useful in obtaining strong
lower bounds on communication. Relevant definitions and results from [37] follow.
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Let t and n be positive integers with t | n. Split [n] into t contiguous blocks,
each with n/t elements:

[n] =

{
1, 2, . . . ,

n
t

}
∪

{
n
t

+ 1, . . . ,
2n
t

}
∪ · · · ∪

{
(t − 1)n

t
+ 1, . . . , n

}
.

Let V (n, t) denote the family of subsets V ⊆ [n] that have exactly one element in
each of these blocks (in particular, |V | = t). Clearly, |V (n, t)| = (n/t)t . For a bit
string x ∈ {0, 1}

n and a set V ∈ V (n, t), define the projection of x onto V by

x |V = (xi1, xi2, . . . , xit ) ∈ {0, 1}
t ,

where i1 < i2 < · · · < it are the elements of V .

Definition 2.7 (Pattern matrix). For φ : {0, 1}
t
→ R, the (n, t, φ)-pattern matrix

is the real matrix A given by

A =

[
φ(x |V ⊕ w)

]
x∈{0,1}n , (V,w)∈V (n,t)×{0,1}t

.

In words, A is the matrix of size 2n by 2t(n/t)t whose rows are indexed by strings
x ∈ {0, 1}

n, whose columns are indexed by pairs (V, w) ∈ V (n, t) × {0, 1}
t , and

whose entries are given by Ax,(V,w) = φ(x |V ⊕ w).

The logic behind the term “pattern matrix” is as follows: a mosaic arises from
repetitions of a pattern in the same way that A arises from applications of φ to
various subsets of the variables. We will need the following expression for the
spectral norm of a pattern matrix [37, Thm. 4.3].

Theorem 2.8 (Sherstov). Let φ : {0, 1}
t

→ R be given. Let A be the (n, t, φ)-
pattern matrix. Then

‖A‖ =

√
2n+t

(n
t

)t
max
S⊆[t]

{
|φ̂(S)|

(
t
n

)|S|/2
}

.

3 Reduction to Dense Predicates

For a predicate D, recall that U (D) stands for its unbounded-error communication
complexity. Let U (n, k) denote the minimum U (D) over the set of predicates
D : {0, 1, . . . , n} → {0, 1} with deg(D) = k. In this notation, our ultimate goal
will be to bound U (n, k) from below. This section takes a step in that direction.
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First, we reduce the task of analyzing U (n, k) to that of analyzing U (n, dαne),

where α > 1/4. This focuses our efforts on high-degree predicates. We then further
reduce the problem to dense predicates, i.e., high-degree predicates that change
value at more or less even intervals in {0, 1, . . . , n}. These reductions are essential
because dense predicates behave more predictably and are much easier to analyze
than arbitrary predicates. Dense predicates will be the focus of all later sections.

We start with some preparatory work. For a predicate D : {0, 1, . . . , n} →

{0, 1}, we define its flip vector v = (v0, v1, . . . , vn) ∈ {0, 1}
n+1 by

vi =

{
D(0) if i = 0,

D(i) ⊕ D(i − 1) if i = 1, 2, . . . , n.

Note that deg(D) = v1 + v2 + · · · + vn. Also, if D1 and D2 are predicates
with flip vectors v(1) and v(2), then D1 ⊕ D2 has flip vector v(1)

⊕ v(2). Fi-
nally, given a predicate D : {0, 1, . . . , n} → {0, 1}, consider a derived predicate
D′ : {0, 1, . . . , m} → {0, 1} given by D′(t) ≡ D(t + 1), where m > 1 and
1 > 0 are integers with m + 1 6 n. Then the flip vectors v and v′ of D and D′,

respectively, are related as follows: v′
= (v0 ⊕ · · · ⊕ v1, v1+1, . . . , v1+m). From

the standpoint of communication complexity, D′ can be computed by hardwiring
some inputs to a protocol for D:

D′

(∣∣∣x1x2 . . . xm

∧
y1 y2 . . . ym

∣∣∣)
= D

(∣∣∣x1x2 . . . xm110n−m−1
∧

y1 y2 . . . ym110n−m−1
∣∣∣).

Therefore, U (D′) 6 U (D).

3.1 Reduction from Arbitrary to High-Degree Predicates

We start with a technical lemma. Consider a Boolean vector v = (v1, v2, . . . , vn).

We show that there is a subvector (vi , vi+1, . . . , v j ) that is reasonably far from both
endpoints of v and yet contains many of the “1” bits present in v.

Lemma 3.1. Let v ∈ {0, 1}
n, v 6= 0n. Put k = v1 +· · ·+vn. Then there are indices

i, j with i 6 j such that

vi + · · · + v j >
1
14

k
1 + log(n/k)

(3.1)

and
min{i − 1, n − j} > j − i. (3.2)

12



Proof. By symmetry, we can assume that v1 + v2 + · · · + vm > 1
2 k for some index

m 6 dn/2e. Let α ∈ (0, 1
2) be a parameter to be fixed later. Let T > 0 be the

smallest integer such that

v1 + v2 + · · · + vbm/2T c < (1 − α)T (v1 + v2 + · · · + vm).

Clearly, T > 1. Since v1 + v2 + · · · + vbm/2T c 6 m/2T , we further obtain

1 6 T 6 1 +
1 + log(n/k)

log(2 − 2α)
.

Now,

vbm/2T c+1 + · · · + vbm/2T −1c = (v1 + · · · + vbm/2T −1c)︸ ︷︷ ︸
>(1−α)T −1(v1+v2+···+vm )

− (v1 + · · · + vbm/2T c)︸ ︷︷ ︸
<(1−α)T (v1+v2+···+vm )

>
1
2
α(1 − α)T −1k

>
1
2
α(1 − α(T − 1))k

>
1
2
α

(
1 − α ·

1 + log(n/k)

log(2 − 2α)

)
k. (3.3)

Set α = 0.23/(1 + log(n/k)), i = bm/2T
c + 1, and j = bm/2T −1

c. Then one
easily verifies (3.2), while (3.1) is immediate from (3.3).

We are now ready to prove the desired reduction to high-degree predicates.
Throughout this proof, we will freely use the opening remarks of Section 3, often
without mention.

Lemma 3.2 (Reduction from arbitrary to high-degree predicates). For all
integers n, k with 1 6 k 6 n,

U (n, k) >
5
6

K min
m=K ,...,n,

1/46α61

{
1
m

U (m, dαme)

}
,

where

K =

⌈
1
14

k
1 + log(n/k)

⌉
.

Proof. Let D : {0, 1, . . . , n} → {0, 1} be any predicate with deg(D) = k. As
outlined in the Introduction, the intuition is to express some complicated (i.e., high-
degree) predicate as the XOR of a small number of predicates derived from D. The
details follow.

13



Let v = (v0, v1, . . . , vn) be the flip vector of D. Apply Lemma 3.1 to
(v1, . . . , vn) and let i, j be the resulting indices, i 6 j. Put m = j − i + 1.

Since vi + · · · + v j > K , we have

K 6 m 6 n. (3.4)

Define predicates D−(m−1), . . . , D0, . . . , Dm−1, each a mapping {0, 1, . . . , m} →

{0, 1}, by Dr (t) ≡ D(t + i −1+r). Then (3.2) shows that each of these predicates
can be computed by taking a protocol for D and fixing all but the first m variables
to appropriate values. Thus,

U (D) > U (Dr ), r = −(m − 1), . . . , (m − 1). (3.5)

The flip vector of D0 is (∗, vi , . . . , v j ) for some ∗ ∈ {0, 1}, which means that
deg(D0) = vi + · · · + v j . If deg(D0) > m/2, then the theorem is true for D in
view of (3.4) and (3.5). Thus, we can assume the contrary:

K 6 vi + · · · + v j 6
1
2

m. (3.6)

If we write the flip vectors of D−(m−1), . . . , Dm−1 one after another as row
vectors, we obtain the following matrix A:

A =



∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ vi

∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ vi vi+1

∗ ∗ ∗ ∗ ∗ · · · ∗ vi vi+1 vi+2
...

...
...

...
...

...
...

...
...

∗ vi vi+1 vi+2 vi+3 · · · v j−3 v j−2 v j−1 v j
...

...
...

...
...

...
...

...
...

∗ v j−2 v j−1 v j ∗ · · · ∗ ∗ ∗ ∗

∗ v j−1 v j ∗ ∗ · · · ∗ ∗ ∗ ∗

∗ v j ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗


.

Let T be a suitably large integer to be named later, and let u(1), u(2), . . . , u(T ) be
independent random vectors, each selected uniformly from among the rows of A.

Put u = u(1)
⊕u(2)

⊕· · ·⊕u(T ). We will index the columns of A and the components
of all these vectors by 0, 1, . . . , m (left to right). Let pr stand for the fraction of 1s
in the r th column of A. Every column of A, except the zeroth, contains vi , . . . , v j

and some m − 1 additional values. One infers from (3.6) that

K
2m

6 pr 6
3
4
, r = 1, 2, . . . , m. (3.7)
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Therefore,

E
[
(u)1 + · · · + (u)m

]
=

m∑
r=1

E
[
(u(1))r ⊕ · · · ⊕ (u(T ))r

]
=

m∑
r=1

(
1
2

−
1
2
(1 − 2pr )

T
)

by Proposition 2.1

>
1
2

m
(

1 −
1

eT K/m

)
by (3.6), (3.7).

Fix T = d(ln 2)m/K e. Then by the last calculation, there is a vector u =

(u0, u1, . . . , um) that satisfies u1 + · · · + um > m/4 and is the XOR of some
T rows of A. In other words, there is a predicate D⊕ : {0, 1, . . . , m} → {0, 1}

that satisfies deg(D⊕) > m/4 and is the XOR of some T 6 6m
5K predicates

from among D−(m−1), . . . , Dm−1. This completes the proof in view of (3.5) and
Proposition 2.6.

3.2 Reduction from High-Degree to Dense Predicates

The proof in this section uses the same setup as Lemma 3.2, except the argument
is now more involved. The reason is that the previous averaging argument is not
strong enough to yield a dense predicate, which is a highly structured object. To
overcome this, we recast the previous argument as a random walk on Zn

2 and show
that it mixes rapidly. In particular, we will need the following lemma that bounds
the mixing time of a random walk [30, Lem. 1]; for an English translation, see
Jukna [12, Lem. 24.3].

Lemma 3.3 (Razborov). Fix a probability distribution µ on {0, 1}
n. Let

{v(1), v(2), . . . , v(n)
} be a basis for {0, 1}

n as a vector space over GF(2). Put

p = min
{
µ(0n), µ(v(1)), µ(v(2)), . . . , µ(v(n))

}
.

Let u(1), . . . , u(T ) be independent random vectors, each distributed according to µ.

Then for every v ∈ {0, 1}
n,∣∣P [

u(1)
⊕ · · · ⊕ u(T )

= v
]
− 2−n

∣∣ 6 e−2T p.

We are ready to formally define dense predicates and give the promised reduction.
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Definition 3.4 (Dense predicate). Let n, b be positive integers and d > 0 a real
number. A predicate D is called (n, b, d)-dense if D is a predicate {0, 1, . . . , n} →

{0, 1} with flip vector (v0, v1, . . . , vn) satisfying

vrb+1 + vrb+2 + · · · + v(r+1)b > d, r = 0, 1, 2, . . . ,
⌊n

b

⌋
− 1.

Lemma 3.5 (Reduction from high-degree to dense predicates). Let
D : {0, 1, . . . , n} → {0, 1} be a predicate with deg(D) > 1

4 n. Let b be any integer
with 1 6 b 6 1

350 n. Then

U (D) >
b

n log n
U (D′),

where D′ is some (m, dlog neb, 1
700 b)-dense predicate and 1

350 n 6 m 6 n.

Proof. Let (v0, v1, . . . , vn) be the flip vector of D. Apply Lemma 3.1 to
(v1, . . . , vn) and let i, ` be the resulting indices (i 6 `). It will be convenient
to work with a somewhat smaller subvector v = (vi , . . . , v j ), where we define
j ∈ {i, . . . , `} to be the largest integer so that b | ( j − i + 1). Since b 6 1

350 n and
vi + · · · + v` > 1

168 n, this gives:

vi + · · · + v j >
1

350
n. (3.8)

Defining m = j − i + 1, we infer that 1
350 n 6 m 6 n, as desired. We view

v = (vi , . . . , v j ) as composed of consecutive blocks, each b bits long:

v =

 vi , . . . , vi+b−1
block 1

, vi+b, . . . , vi+2b−1
block 2

, · · · · · · , v j−b+1, . . . , v j

block m/b

 . (3.9)

For r = 1, 2, . . . , b, define the r th layer of v, denoted z(r), to be the vector obtained
by taking the r th component from each of the above blocks:

z(r)
= (vi−1+r , vi−1+b+r , . . . , v j−b+r ) ∈ {0, 1}

m/b.

We say of a layer z that it is perfect if it does not have dlog ne consecutive
components equal to 0. If more than 1

700 b of the layers are perfect, take D′ to
be the predicate with flip vector (v0 ⊕ · · · ⊕ vi−1, vi , . . . , v j ). Clearly, D′ is
(m, dlog neb, 1

700 b)-dense. Furthermore, U (D′) 6 U (D), by the same argument
as in Lemma 3.2. As a result, the theorem holds in this case.

Thus, we may assume that at least (1 −
1

700)b of the layers are not perfect. In
view of (3.8), at most (1−

1
350)b layers can be zero vectors. Therefore, 1

700 b or more
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layers are nonzero and not perfect. These are the only layers we will consider in
the remainder of the proof.

Define predicates D−(m−b), D−(m−2b), . . . , D−b, D0, Db, . . . , Dm−2b, Dm−b,

each a mapping {0, 1, . . . , m} → {0, 1}, by Dr (t) ≡ D(t + i − 1 + r). These
are a subset of the predicates from the proof of Lemma 3.2, and again

U (D) > U (Dr ) for each r. (3.10)

Writing the flip vectors of these predicates one after another as row vectors yields
the following matrix B:

B =

∗ ∗ ∗ ∗ · · · ∗ ∗ block 1

∗ ∗ ∗ ∗ · · · ∗ block 1 block 2
...

...
...

...
...

...
...

∗ block 1 block 2 block 3 · · · block m
b − 2 block m

b − 1 block m
b

...
...

...
...

...
...

...

∗ block m
b − 1 block m

b ∗ · · · ∗ ∗ ∗

∗ block m
b ∗ ∗ · · · ∗ ∗ ∗


,

where the blocks refer to the partition in (3.9). Let T be a suitably large integer
to be named later, and let u(1), u(2), . . . , u(T ) be independent random vectors, each
selected uniformly from among the rows of B. Put u = u(1)

⊕u(2)
⊕· · ·⊕u(T ). We

will index the columns of B and the components of u by 0, 1, . . . , m (left to right).
Key to analyzing the distribution of u is the following claim.

Claim 3.5.1. Let T > (m/b) ln n. Let 1 ∈ {1, 2, . . . , b} be such that the layer z(1)

is nonzero and not perfect. Let s ∈ {0, b, 2b, 3b, . . . } be such that s + dlog neb 6
m. Then

P
[
(u)s+1 = (u)s+b+1 = · · · = (u)s+(dlog ne−1)b+1 = 0

]
6

2
n
.

Proof. Let B ′ be the matrix whose columns are the following columns of B: s +

1, s + b + 1, . . . , s + (dlog ne − 1)b + 1, in that order. Since z(1) is nonzero
and not perfect, z(1) has dlog ne + 1 consecutive components with values either
0, 0, . . . , 0, 1 or 1, 0, 0, . . . , 0. Consequently, B ′ must contain one of the following
submatrices, each of size (dlog ne + 1) × dlog ne:
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0 0 0 · · · 0 0

0
1

1

...

1
1

1
∗


or



∗
1

1

...

1
1

1
0

0 0 0 · · · 0 0


.

The claim now follows from Lemma 3.3, since 2−dlog ne
+ e−2T ·

b
2m 6 2/n.

We return to the proof of the lemma. Fix T = d(m/b) ln ne. Let s = 0 and
apply Claim 3.5.1 with every 1 ∈ {1, 2, . . . , b} for which the layer z(1) is nonzero
and not perfect. Since there are at least 1

700 b such choices for 1, we conclude by
the union bound that

P
[
(u)1 + (u)2 + · · · + (u)dlog neb <

1
700

b
]

6 b ·
2
n
.

The same calculation applies to the next set of dlog neb components of u (i.e.,
s = dlog neb), and so on. Applying a union bound across all these m/(dlog neb)

calculations, we find that with probability

1 −
m

dlog neb

(
b ·

2
n

)
> 0,

the predicate whose flip vector is u is (m, dlog neb, 1
700 b)-dense. Fix any such

predicate D′. Since D′ is the XOR of T 6 (n log n)/b predicates from among
D−(m−b), . . . , Dm−b, the lemma follows by (3.10) and Proposition 2.6.

4 Univariate Approximation with Clusters of Nodes

Crucial to our study of dense predicates are certain approximation problems to
which they give rise. Roughly speaking, the hardness of such an approximation
problem for low-degree polynomials translates into the communication hardness
of the associated predicate. This section carries out the first part of the program,
namely, showing that the approximation task at hand is hard for low-degree
polynomials. We examine this question in its basic mathematical form, with no
extraneous considerations to obscure our view. How communication fits in this
picture will become clear in the next two sections.
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For a finite set X ⊂ R, a function f : X → R, and an integer r > 0, define

ε∗( f, X, r) = min
p∈Pr

max
x∈X

|p(x) − f (x)|.

In words, ε∗( f, X, r) is the least error (in the uniform sense) to which a degree-
r polynomial can approximate f on X. The following well-known fact from
approximation theory is useful in estimating this error.

Fact 4.1 (see, e.g., [34, Thm. 1.15]). Let X = {x1, x2, . . . , xr+2} be given reals,
where x1 < x2 < · · · < xr+2. Let f : X → R be given. Put

ω(x) = (x − x1)(x − x2) · · · (x − xr+2).

Then

ε∗( f, X, r) =

∣∣∣∑r+2
i=1 [ f (xi )/ω

′(xi )]
∣∣∣∑r+2

i=1 [1/|ω′(xi )|]
.

To develop some intuition for the work in this section, consider the following
approximation problem. Let f : {0, 1, . . . , n} → {0, 1} be defined by

f (x) =

{
1 if x = bn/2c,

0 otherwise.

It is well-known that any polynomial that approximates f within 1/3 has degree
�(n). For example, this follows from work by Paturi [27]. The approximation
problem of interest to us is similar, except that our points need not be as evenly
spaced as 0, 1, . . . , n but rather may form clusters. As a result, Paturi’s results and
methods do not apply, and we approach this question differently, using the first-
principles formula of Fact 4.1. Specifically, our main result in this section is as
follows.

Lemma 4.2 (Inapproximability by low-degree polynomials). Let positive in-
tegers L , d and a real number B > d be given. Let {xi j : i = 1, . . . , L;

j = 1, . . . , d} be a set of Ld distinct reals, where xi j ∈ [(i − 1)B, i B] and

|xi j − xi ′ j ′ | > 1 for (i, j) 6= (i ′, j ′). (4.1)

Let x0 ∈ [ 1
4 L B, 3

4 L B]. Then any polynomial p with

p(x0) = 1, |p(xi j )| <
1
2

(
1

L B

)4d+1

for all i, j

has degree at least
( 1

2 L − 1
)

d.
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Proof. Define f (x) by

f (x) =

{
1 if x = x0,

0 if x = xi j for some i, j.

By symmetry, we can assume that x0 ∈ [ 1
4 L B, 1

2 L B]. Fix an integer ` 6 d
1
2 Le so

that x0 ∈ [(` − 1)B, `B]. Put

X = {x0} ∪ {xi j : i = 1, . . . , 2` − 1; j = 1, . . . , d}.

With ω(x) =
∏

y∈X (x − y), Fact 4.1 implies that

ε∗( f, X, |X | − 2) >
1

|X |

minx∈X |ω′(x)|

|ω′(x0)|
. (4.2)

We proceed to estimate the denominator and numerator of (4.2). Since x0 is
distinct from each xi j , the quantity

δ = min
i=1,...,2`−1,

j=1,...,d

|x0 − xi j |

satisfies δ > 0. We have:

|ω′(x0)| =

d∏
j=1

2`−1∏
i=1

|x0 − xi j | 6 δ

d∏
j=1

2`−1∏
i=1

B
⌈

|x0 − xi j |

B

⌉
︸ ︷︷ ︸

6|i−`|+1

6 δ ·
(
`! `! B2`−1)d

. (4.3)

On the other hand, every xi ′ j ′ ∈ X satisfies:

|ω′(xi ′ j ′)| =

∏
x∈X\{xi ′ j ′ }

|x − xi ′ j ′ |

> δ

d∏
j=1

∏
i=1,...,2`−1

i /∈{i ′−1,i ′,i ′+1}

|xi j − xi ′ j ′ | by (4.1)

> δ

d∏
j=1

∏
i=1,...,2`−1

i /∈{i ′−1,i ′,i ′+1}

B
⌊

|xi j − xi ′ j ′ |

B

⌋
︸ ︷︷ ︸

>|i−i ′|−1

> δ ·

(
`! `! B2`−4

`4

)d

. (4.4)
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Now (4.2) yields, in view of (4.3) and (4.4):

ε∗( f, X, |X | − 2) >
1
2

(
1

L B

)4d+1

,

which concludes the proof since |X | >
( 1

2 L − 1
)

d + 1.

5 Key Analytic Property of Dense Predicates

We now transition to the final ingredient of our proof, smooth orthogonalizing
distributions for a given predicate D. This informal term refers to a distribution
on {0, 1}

n that does not put too little weight on any point (the smooth part)
and under which (−1)D(x1+···+xn) is approximately orthogonal to all low-degree
characters χS (the orthogonalizing part). Our task is to establish the existence
of such distributions for every dense predicate. Once this is accomplished, we
will be able to treat a dense predicate as if it were the familiar PARITY function
(whose defining analytic property is precisely its orthogonality to the lower-order
characters under the uniform distribution). Crucial to the development below will
be the inapproximability result proved in Section 4.

For a polynomial p, a predicate D : {0, 1, . . . , n} → {0, 1}, and a number
N > 0, define the advantage of p in computing D by

adv(p, N , D) = N min
t=0,...,n

{
(−1)D(t) p(t)

}
+

n∑
t=0

(n
t

)
2n

(−1)D(t) p(t).

This quantity is conceptually close to the correlation of p and D with respect to
the binomial distribution. There is a substantial difference, however: if p and D
differ in sign at some point, this causes a penalty term to be subtracted. We will be
interested in values N � 1, when even a single error of p results in a large penalty.
Define

advr (N , D) = max
p

adv(p, N , D),

where the maximization is over p ∈ Pr with |p(t)| 6 1 for t = 0, 1, . . . , n. As we
now show, this quantity is closely related to smooth orthogonalizing distributions
for D.

Theorem 5.1 (Smooth distributions vs. approximation by polynomials). Fix a
predicate D : {0, 1, . . . , n} → {0, 1} and an integer r > 0. Then for every N > 1,

there is a distribution µ on {0, 1}
n such that µ(x) > 1

2n N for each x and∣∣∣E
x

[
(−1)D(|x |)µ(x) χS(x)

]∣∣∣ 6
1

2n N
advr (N − 1, D) for |S| 6 r .
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Proof. Put f (x) = (−1)D(|x |) and consider the following linear program:

variables: µ(x) for all x ; ε

minimize: ε

subject to:

∣∣∣∣∣∣
∑

x∈{0,1}n

µ(x) f (x) χS(x)

∣∣∣∣∣∣ 6 ε for |S| 6 r ,

∑
x∈{0,1}n

µ(x) = 1,

µ(x) >
1

2n N
for each x .

(LP1)

It suffices to show that the optimum of this program is at most 1
N advr (N − 1, D).

For this, we pass to the dual:

variables: αS (for |S| 6 r ); ξx (for all x); 1

maximize:
1
N

(N − 1)1 +
1
2n

∑
x∈{0,1}n

(1 + ξx)


subject to: f (x)

∑
|S|6r

αS χS(x) > 1 + ξx for all x,

∑
|S|6r

|αS| 6 1,

αS ∈ R for |S| 6 r ,

ξx > 0 for all x,

1 ∈ R.

(LP2)

The dual programs (LP1) and (LP2) are both feasible and thus have the same finite
optimum. Therefore, our task reduces to proving that the optimum of (LP2) is at
most 1

N advr (N − 1, D). Fix an optimal solution to (LP2). Then

f (x)
∑
|S|6r

αS χS(x) = 1 + ξx for all x, (5.1)

since in case of a strict inequality (>) we could increase the corresponding variable
ξx by a small amount to obtain a feasible solution with greater value. Furthermore,
we claim that

1 = min
x∈{0,1}n

 f (x)
∑
|S|6r

αS χS(x)

 . (5.2)
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Indeed, let m stand for the right-hand side of (5.2). Then 1 6 m because each ξx

is nonnegative. It remains to show that 1 > m. If we had 1 < m, then (5.1) would
imply that ξx > m−1 for all x . As a result, we could obtain a new feasible solution
ξ ′

x = ξx + (1 − m) and 1′
= m. This new solution satisfies 1′

+ ξ ′

x = 1 + ξx for
all x . Moreover, 1′ > 1, which results in a greater objective value and yields the
desired contradiction. In summary, 1 = m.

In view of (5.1) and (5.2), the optimum of (LP2) is

1
N

max
φ

{
(N − 1) min

x
{ f (x)φ(x)} +

1
2n

∑
x

f (x)φ(x)

}
, (5.3)

where the maximization is over functions φ of the form

φ(x) =

∑
|S|6r

αS χS(x), where
∑
|S|6r

|αS| 6 1. (5.4)

Fix φ that optimizes (5.3). By (5.4),

max
x∈{0,1}n

|φ(x)| 6 1.

Put
φsym(x) =

1
n!

∑
σ∈Sn

φ(xσ(1), . . . , xσ(n)).

Since f is symmetric, φ and φsym have the same objective value in (5.3). By
the symmetrization argument (Proposition 2.3), there is a univariate polynomial
p ∈ Pr with

φsym(x) = p(x1 + · · · + xn) for all x ∈ {0, 1}
n.

For t = 0, 1, . . . , n,

|p(t)| = |p(1 + · · · + 1︸ ︷︷ ︸
t times

+0 + · · · + 0)| 6 max
x∈{0,1}n

|φsym(x)| 6 max
x∈{0,1}n

|φ(x)| 6 1.

Replacing φ(x) by p(x1 + · · · + xn) in (5.3), we see that the optimum of (LP2) is
at most

1
N

max
p

{
(N − 1) min

t=0,...,n

{
(−1)D(t) p(t)

}
+

1
2n

n∑
t=0

(
n
t

)
(−1)D(t) p(t)

}
,

where the maximization is over p ∈ Pr with |p(t)| 6 1 for t = 0, 1, . . . , n. This
latter quantity is 1

N advr (N − 1, D), by definition.
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Theorem 5.1 states that a smooth orthogonalizing distribution for D exists
whenever low-degree polynomials have negligible advantage in computing D.

Accordingly, we proceed to examine the advantage achievable by low-degree
polynomials.

Lemma 5.2 (Each dense predicate induces a hard approximation problem).
Let D be an (n, B, 2d + 1)-dense predicate, where n, B, d are positive integers.
Assume that advr (N , D) > n2−n/6, where r < deg(D) and N > 0 are given.
Then there are b

n
B cd distinct reals {xi j : i = 1, . . . , b n

B c; j = 1, . . . , d} and a
polynomial p ∈ Pr such that:

xi j ∈ [(i − 1)B, i B] for all i, j,

|xi j − xi ′ j ′ | > 1 for all (i, j) 6= (i ′, j ′),

|p(xi j )| 6
√

n/N for all i, j,

p(x0) = 1 for some x0 ∈ [ 1
4 n, 3

4 n].

Proof. Fix q ∈ Pr with |q(t)| 6 1 for t = 0, 1, . . . , n and adv(q, N , D) =

advr (N , D). Fix k ∈ {0, 1, . . . , n} with(
n
k

)
(−1)D(k)q(k) = max

t=0,...,n

{(
n
t

)
(−1)D(t)q(t)

}
.

Since deg(q) < deg(D), the quantity
(n

t

)
(−1)D(t)q(t) is positive for at most n

values of t = 0, 1, . . . , n. Therefore,

adv(q, N , D) 6 n ·

(n
k

)
2n

(−1)D(k)q(k) 6 n ·

(n
k

)
2n

.

Recalling that adv(q, N , D) > n2−n/6, we infer that 1
4 n 6 k 6 3

4 n. Put

p(t) =
1

q(k)
q(t).

Taking x0 = k, we have 1
4 n 6 x0 6 3

4 n and p(x0) = 1, as desired. It remains to
find the points xi j . For this, we need the following claim.

Claim 5.2.1. Let a, b be integers with a < b and D(a) 6= D(b). Then |p(ξ)| 6
√

n/N for some ξ ∈ [a, b].
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Proof. If q vanishes at some point in [a, b], we are done. In the contrary case, q
is nonzero and has the same sign at every point of [a, b], which means that either
q(a)(−1)D(a) < 0 or q(b)(−1)D(b) < 0. Since adv(q, N , D) > 0, we have:

min{|q(a)|, |q(b)|} 6
n
N

max
t=0,...,n

{(n
t

)
2n

(−1)D(t)q(t)

}
=

n
N

·

(n
k

)
2n

· |q(k)|

6

√
n

N
|q(k)|,

and hence min{|p(a)|, |p(b)|} 6
√

n/N .

Fix an integer i = 1, 2, . . . , b n
B c. Since D is (n, B, 2d + 1)-dense, D changes

value at least 2d times in [(i − 1)B + 1, i B]. As a result, there are at least d pairs
of integers (a1, b1), . . . , (ad, bd) with

D(a1) 6= D(b1), D(a2) 6= D(b2), . . . , D(ad) 6= D(bd)

and
(i − 1)B + 1 6 a1 < b1 < a2 < b2 < · · · < ad < bd 6 i B.

In view of Claim 5.2.1, this provides the desired d points in [(i −1)B +1, i B].

We have reached the main result of this section.

Theorem 5.3 (Smooth orthogonalizing distributions for dense predicates). Let
D be an (n, B, 2d + 1)-dense predicate, where n, B, d are positive integers with
B | n and n > 3B. Then there is a distribution µ on {0, 1}

n such that:

µ(x) >
1
2n

1
3n4d+1.5

for each x,∣∣∣E
x

[
(−1)D(|x |)µ(x)χS(x)

]∣∣∣ 6 2−7n/6 for |S| <
nd
6B

.

Proof. Put N = 3n4d+1.5. In view of Theorem 5.1, it is sufficient to show that
advr (N − 1, D) < n2−n/6 for all r < nd

6B . So assume, for the sake of contradiction,
that advr (N − 1, D) > n2−n/6 for some r < nd

6B . Since deg(D) > n
B (2d + 1),

we have r < deg(D). Thus, Lemma 5.2 is applicable and yields nd
B distinct reals

{xi j : i = 1, . . . , n
B ; j = 1, . . . , d} and a polynomial p ∈ Pr such that:

xi j ∈ [(i − 1)B, i B] for all i, j,

|xi j − xi ′ j ′ | > 1 for all (i, j) 6= (i ′, j ′),

|p(xi j )| < 1
2

( 1
n

)4d+1
for all i, j,

p(x0) = 1 for some x0 ∈ [ 1
4 n, 3

4 n].
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Applying Lemma 4.2 with L =
n
B , we infer that r >

( 1
2

n
B − 1

)
d, which yields

r > nd
6B since n

B > 3. We have reached the desired contradiction to r < nd
6B .

6 Proof of the Main Result

This section consolidates the preceding developments into our main result, a near-
optimal lower bound on the unbounded-error communication complexity of every
symmetric function. As outlined earlier, we will first solve this problem for dense
predicates and then extend our work to the general case via the reductions of
Section 3.

Theorem 6.1 (Communication complexity of dense predicates). Let α > 0
be a sufficiently small absolute constant. Let D be an (m, bdlog ne, 1

700 b)-dense
predicate, where 1

350 n 6 m 6 n and b = bαn/ log2 nc. Then

U (D) > �

(
n

log n

)
.

Proof. Throughout the proof we will, without mention, use the assumption that n
is large enough. This will simplify the setting of parameters, the manipulation of
floors and ceilings, and generally make the proof easier to follow.

Fix an integer v ∈ [ 1
8 m, 1

4 m] with bdlog ne | v. Clearly, v � 3bdlog ne. Define
D′ : {0, 1, . . . , v} → {0, 1} by D′(t) ≡ D(t). Since D′ is (v, bdlog ne, 1

700 b)-
dense, Theorem 5.3 provides a distribution µ on {0, 1}

v with

µ(z) > 2−v 2
−αn/350 log n for each z ∈ {0, 1}

v, (6.1)∣∣∣∣Ez [
(−1)D(|z|)µ(z)χS(z)

]∣∣∣∣ 6 2−7v/6 for |S| <
v

6 · 1401dlog ne
. (6.2)

Define φ : {0, 1}
v

→ R by φ(z) = (−1)D(|z|)µ(z). Restating (6.2),

|φ̂(S)| 6 2−7v/6 for |S| <
v

6 · 1401dlog ne
. (6.3)

Furthermore, Proposition 2.2 reveals that

max
S⊆[v]

|φ̂(S)| 6 2−v. (6.4)

Let A be the (2v, v, 8−vφ)-pattern matrix. By (6.3), (6.4), and Theorem 2.8,

‖A‖ 6 4−v 2
−v/12·1401dlog ne . (6.5)
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By (6.1), every entry of A has absolute value at least 16−v 2
−αn/350 log n . Combining

this observation with (6.5) and Theorem 2.5,

rk±(A) > 2
v/12·1401dlog ne 2

−αn/350 log n .

Recall that v > 1
8 m > 1

8·350 n. Hence, for a suitably small constant α > 0,

rk±(A) > 2�(n/ log n).

It remains to relate the sign-rank of A to the communication complexity of D.

Let F be the (2v, v, f )-pattern matrix, where f (z) = (−1)D(|z|). Then rk±(A) =

rk±(F) because A and F have the same sign pattern. But F is a submatrix of the
communication matrix of D, namely,

M =

[
(−1)D(|x∧y|)

]
x∈{0,1}m ,y∈{0,1}m

.

Thus,
rk±(M) > rk±(F) = rk±(A) > 2�(n/ log n).

In view of Theorem 2.4, the proof is complete.

Corollary 6.2 (Communication complexity of high-degree predicates). Let
D : {0, 1, . . . , n} → {0, 1} be a predicate with deg(D) > 1

4 n. Then

U (D) > �

(
n

log4 n

)
.

Proof. Immediate from Lemma 3.5 and Theorem 6.1.

At last, we arrive at the main result of this paper, cf. Theorem 1.1 in the
Introduction.

Theorem 6.3 (Main Result). Let D : {0, 1, . . . , n} → {0, 1} be a nonconstant
predicate, k = deg(D). Then

�

(
k

{1 + log(n/k)} log4 n

)
6 U (D) 6 O

(
k log

2n
k

)
.
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Proof. The lower bound is immediate from Lemma 3.2 and Corollary 6.2. To
prove the upper bound, fix p ∈ Pk with sgn(p(t)) = (−1)D(t) for t = 0, 1, . . . , n.

Put
M =

[
(−1)D(|x∧y|)

]
x,y

, R =

[
p(x1 y1 + · · · + xn yn)

]
x,y

,

where the indices run as usual: x, y ∈ {0, 1}
n. Then Mxy Rxy > 0 for all x and y.

Thus, the sign-rank of M does not exceed
∑k

i=0

(n
i

)
. In view of Theorem 2.4, this

completes the proof.

Remark 6.4. Immediate consequences of Theorem 6.3 are near-tight lower bounds
on the size of threshold-of-majority and majority-of-threshold circuits for every
function f (x, y) = D(|x ∧ y|), where D : {0, 1, . . . , n} → {0, 1} is a given
predicate. Similarly, Theorem 6.3 yields near-tight lower bounds on the dimension
complexity of every concept class CD = { fD,y : y ∈ {0, 1}

n
}, where fD,y(x) =

D(|x ∧ y|) for a fixed predicate D : {0, 1, . . . , n} → {0, 1}. These applications
follow from well-known black-box arguments involving sign-rank [8, Lem. 5], and
we do not spell them out here.

On Logarithmic Factors in Theorem 6.3

It is natural to wonder whether the logarithmic factors in Theorem 6.3 can be
eliminated. The answer varies from one predicate to another. There are indeed
predicates D : {0, 1, . . . , n} → {0, 1} for which U (D) = 2(deg(D)). For exam-
ple, the conjunction predicate, given by ANDn(t) = 1 ⇔ t = n, has degree 1
and unbounded-error complexity 2(1), as one can verify from the representation
ANDn(|x ∧ y|) =

∏
xi ·

∏
yi . Similarly, the familiar predicate PARITYn(t) =

t mod 2 has degree n and unbounded-error complexity 2(n) by Forster’s result [7].
At the same time, there are predicates D for which a logarithmic gap exists between
deg(D) and U (D). One such predicate is disjointness, given by DISJn(t) = 1 ⇔

t = 0, which has degree 1 and unbounded-error complexity 2(log n):

Proposition 6.5. U (DISJn) = 2(log n).

Proof. The upper bound is immediate from Theorem 6.3. For the lower bound,
note that

n⊕
i=1

xi ∧ yi =

4n∨
i=1

fi (x1, . . . , xn) ∧ gi (y1, . . . , yn),

where fi , gi are suitable Boolean functions (in fact, conjunctions of literals). This
yields the inequality U (PARITYn) 6 U (DISJ4n ), which completes the proof since
U (PARITYn) = 2(n) by Forster’s result [7].
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The lower bound of Proposition 6.5 is of course valid for any predicate D that
contains disjointness or its negation as a subfunction. More precisely:

Proposition 6.6. Let D : {0, 1, . . . , n} → {0, 1} be a predicate with flip vector v.

If v contains the subvector (1, 0, 0, . . . , 0︸ ︷︷ ︸
m

), then U (D) > �(log m).

To illustrate, Proposition 6.6 shows that the majority predicate MAJn(t) = 1 ⇔

t > n/2 has degree 1 and unbounded-error complexity 2(log n). Other threshold
predicates can be handled analogously.
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