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LECTURE

4

Partitions and Covers

In previous lectures, we saw that every communication protocol induces a partition of the
domain into monochromatic rectangles, and learned two lower bound techniques for the
number of rectangles in such a partition. The techniques presented so far take into account
only the number of monochromatic rectangles in partitions of the space X×Y and ignore the
additional restriction that these partitions should correspond to some protocol. A natural
question is how tight these lower bound techniques are.

In addition, we are also interested in relaxing the need to partition the space X × Y
into f -monochromatic rectangles by allowing overlaps among rectangles. In other words,
we are interested in covering X × Y by monochromatic rectangles. Coverings are more
natural combinatorial objects than partitions and can sometimes be more efficient. This
raises the question of how much more efficient a cover can be than a partition. In this
lecture, we study the relations among these combinatorial measures and their relation to
communication complexity.

4.1 Key definitions

Definition 4.1. Let f : X × Y → {0, 1} be a function. Define CP (f) to be the smallest
number of leaves in any protocol tree for f . Define CD(f) to be the smallest number of
f -monochromatic rectangles in any partition of X × Y . Define C(f) to be the smallest
number of f -monochromatic rectangles in any cover of X × Y .

The following relationships hold among these quantities:

Theorem 4.2. For all f : X × Y → {0, 1}:

2Θ(D(f)) = CP (f) ≥ CD(f) ≥ C(f) ≥ 2Θ(
√
D(f))

The first and last inequalities are fundamental results and will be proved in this lecture.
The other inequalities are immediate from the definitions. In particular, we infer that
covers and partitions cannot be significantly more efficient than partitions that arise from
communication protocols.



4.2 Communication complexity versus protocol cover

Theorem 4.3. For all f : X × Y → {0, 1},

D(f) = Θ(logCP (f))

Proof. The maximum number of leaves in a binary tree with depth D(f) is 2D(f). Thus,
CP (f) ≤ 2D(f), on equivalently D(f) ≥ log2 C

P (f). For the upper bound on D(f), consider
a protocol for f with l leaves.
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Figure 4.1: Figure for finding target u.

Consider Figure 4.1. Alice and Bob identify a node u in the tree such that the subtree
rooted at u has between l

3 and 2l
3 leaves. To find such a node, we start at the root of the

tree and keep going to the child that has more than 2l
3 leaves in its subtree. This process

stops at some node v. By assumption, the subtrees rooted at v’s children each have at most
2l
3 leaves, and furthermore one of them must have at least l

3 leaves (since the subtree rooted

at v has more than 2l
3 leaves). Thus, one of v’s children is the desired node u. Note that

finding u requires no communication.
Since u is a node in the protocol tree, the set of inputs arriving at u is a rectangle; call

it Ru. Thus, with 2 bits of communication Alice and Bob are able to determine whether
(x, y) ∈ Ru. If (x, y) ∈ Ru, Alice and Bob recursively process the subtree rooted at u, which
has between l

3 and 2l
3 leaves. If (x, y) /∈ Ru, they recursively process the original tree with

u replaced by a terminal node 0 (the label actually does not matter).
In either case, the recursive step is applied to a tree with at most 2l

3 leaves, giving the
recurrence D(l) ≤ 2 +D(2l/3) where D(l) is the maximum communication complexity over
all functions f with CP (f) ≤ l. The recurrence solves to D(l) ≤ Θ(log l) as claimed.

4.3 Communication complexity versus cover size

Definition 4.4. Let f : X × Y → {0, 1} be a function. Define C0(f) to be the smallest
number of f -monochromatic rectangles needed to cover f−1(0). Define C1(f) to be the
smallest number of f -monochromatic rectangles needed to cover f−1(1).
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By definition, C(f) = C0(f) + C1(f). We will now show a bound on D(f) in terms of
C(f).

Theorem 4.5 (Aho, Ullman, Yannakakis [1]).

D(f) ≤ O(log2 C
0(f) log2 C

1(f)).

In particular,
D(f) ≤ O(log2 C(f)).

Proof. The proof relies on a simple property of rectangles. Let R and S denote f -
monochromatic rectangles in a cover of f−1(0) and f−1(1), respectively. As Figure 4.2
shows, R and S must be disjoint either in rows or columns or both.

Figure 4.2: Intersections in rows or columns

Fix an optimal cover of f−1(0) and f−1(1) by f -monochromatic rectangles. We now
describe a protocol for Alice and Bob. The idea is for them to look for a 1-rectangle that
contains the input (x, y). If they fail, the conclude that f(x, y) = 0. In each round the
players do the following:

1. Alice looks for a 1-rectangle Q that contains column x and is disjoint from at least
half of the rectangles in the cover of f−1(0). If she finds it, she sends its index to Bob,
using log2 C

1(f) bits, and the rectangles in the cover of f−1(0) that are disjoint from
Q are discarded.

2. If Alice fails, Bob looks for a 1-rectangle Q that contains row y and is disjoint from at
least half of the rectangles in the cover of f−1(0). If he finds it, he sends its index to
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Alice using log2 C
1(f) bits, and the rectangles in the cover of f−1(0) that are disjoint

from Q are discarded.

3. If both Alice and Bob failed, we know that f(x, y) = 0 and no further communication
is necessary.

4. If they find the desired rectangle, they recursively process the remaining rectangles in
the cover of f. When there are no 0-rectangle left, they return 1.

Each round reduces the number of 0-rectangles by a factor of at least 2, so there can be
at most log2 C

0(f) + 1 rounds. Therefore, the protocol costs O(log2 C
0(f) log2 C

1(f)) bits
in the worst case.

4.4 Lower bounds for covers and disjoint covers

We now revisit several lower bound techniques for deterministic communication complexity
and see which ones of them can directly bound quantities such as C(f) and CD(f). In the
statement to follow, we let FS(f) denote the size of the largest fooling set for f.

Theorem 4.6. For any f : X × Y → {0, 1} and any field F,

• C(f) ≥ FS(f);

• CD(f) ≥ rkF(Mf ).

Here, we sketch the proofs of these two statements.

Proof. Fix a fooling set S ⊆ X×Y for f, where f(S) = z. For every pair of (x1, y1), (x2, y2) ∈
S:

• f(x1, y1) = z

• f(x2, y2) = z

• Either f(x1, y2) 6= z or f(x2, y1) 6= z.

Therefore, (x1, y1) and (x2, y2) cannot occupy the same rectangle in a cover of f−1(z), so
that C(f) ≥ Cz(f) ≥ |S|.

For the second part, let R be a cover of X × Y by pairwise disjoint f -monochromatic
rectangles. Let R′ ⊆ R be the set of rectangles covering f−1(1). By the pairwise disjointness
of the rectangles, Mf =

∑
R∈R′MR, where the matrix MR is defined by MR(x, y) = 1 for

(x, y) ∈ R and MR(x, y) = 0 for (x, y) /∈ R. By the subadditivity of rank,

rkMf ≤
∑
R∈R′

rkMR ≤ |R| ≤ CD(f),

since the rank of each MR is at most 1.
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4.5 The rectangle size bound characterizes cover size

In this section we prove the rather surprising fact, due to Karchmer, Kushilevitz, and
Nisan [2], that the rectangle size bound nearly tightly characterizes the smallest cover size for
any given function. Recall that to use the rectangle size bound, we define some probability
distribution µ on, say, the 1-inputs of f . We then compute the largest µ(R), where R ranges
over all 1-monochromatic rectangles, and conclude that the reciprocal of that quantity is a
lower bound on C1(f).

Definition 4.7. For f : X × Y → {0, 1}, define

RS1(f) = min
µ on f−1(1)

max
R

µ(R),

where the minimum ranges over all probability distributions µ on f−1(1) and the maximum
over all f -monochromatic rectangles R ⊆ f−1(1). Analogously, let

RS0(f) = min
µ on f−1(0)

max
R

µ(R)

where the minimum ranges over all probability distributions µ on f−1(0) and the maximum
over all f -monochromatic rectangles R ⊆ f−1(0).

Recall that

C0(f) ≥ 1

RS0(f)
,

C1(f) ≥ 1

RS1(f)
.

We now prove matching upper bounds.

Theorem 4.8 (Karchmer, Kushilevitz, and Nisan [2]). For any function f : {0, 1}n ×
{0, 1}n → {0, 1}, one has

C0(f) ≤ O
(

n

RS0(f)

)
,

C1(f) ≤ O
(

n

RS1(f)

)
.

Proof. By symmetry, it suffices to prove the first statement. We do so by building a cover
for f−1(0) adaptively.

1. Let µi be a uniform distribution on those points in f−1(0) uncovered in previous i− 1
iterations. Thus, µ1 is the uniform distribution on f−1(0).

2. According to our definition of RS0(f), there exists a rectangle Ri ⊆ f−1(0) with
µi(Ri) ≥ RS0(f).

3. Remove the points covered by Ri.

Trivially, |f−1(0)| ≤ 4n. Each iteration covers at least an RS0(f) fraction of previously
uncovered points, so that after k iterations at most (1−RS0(f))k4n points remain uncovered.
It follows that all points will be covered in O(n/RS0(f)) iterations.
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These results still leave a small gap between the lower and upper bounds on C0(f) in
terms of RS0(f), corresponding to the factor of n in the theorem above. As the following
example shows, this gap cannot be narrowed further. We use the following observation:

Proposition 4.9. For all f : X × Y → {0, 1}, D(f) ≤ C0(f) + 1.

Proof. On input (x, y), Alice sends Bob a single bit for each rectangle in the cover of f−1(0),
indicating whether that rectangle intersects the row x. Bob checks the same for his input y.
Finally, he outputs 1 if and only if no rectangle in the cover of f−1(0) intersects both the
row x and the column y.

Example 4.10. Consider the equality function EQn : {0, 1}n × {0, 1}n → {0, 1}. From
previous lectures, we know that D(EQ) = n + 1, so that C0(f) ≥ n by the proposition
above. On the other hand, we claim that RS0(f) ≥ 1/4. Let µ be any distribution on
EQ−1

n (0). Consider a 0-monochromatic rectangle for EQn chosen at random as follows:
choose a random n-bit string r ∈ {0, 1}n and a random bit b, and let

Rr,b = {x : 〈x, r〉 = b} × {y : 〈y, r〉 6= b}.

For any fixed (x, y) with x 6= y, Pr[(x, y) ∈ Rr,b] = 1/4 by the properties of inner product.
It follows that EµPrr,b[(x, y) ∈ Rr,b] ≥ 1/4 whence

Er,b Prµ[(x, y) ∈ Rr,b]︸ ︷︷ ︸
=µ(Rr,b)

≥ 1/4.

Thus, there exists at least one 0-monochromatic rectangle Rr,b with µ(Rr,b) ≥ 1/4. Since
the choice of µ was arbitrary, we have RS0(EQn) ≥ 1/4.
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