You have 90 minutes to complete this exam. You may assume without proof any statement proved in class.

1. Give a simple verbal description of the language recognized by the following DFA.

2. Draw NFAs for the following languages, taking full advantage of nondeterminism:
 a. strings over alphabet \(\{0, 1, \ldots, 9\} \) where the final digit has appeared before;
 b. binary strings in which there is a pair of 0s separated by a number of positions that is a multiple of 4.
Prove that the following languages over the binary alphabet are regular:

(2 pts) a. strings in which the number of 0s and the number of 1s are both even;
(2 pts) b. strings with at most one occurrence of the substring 00 (the string 000 has two);
(2 pts) c. strings in which the 1000th symbol from the end is a 1.
Let L be a regular language over the binary alphabet. Consider the following language over the same alphabet: $L' = \{w : |w| = |u| \text{ for some } u \in L\}$. Prove that L' is regular.

Prove that at most $k^{2k+1}2^k$ languages over the binary alphabet can be recognized by a DFA with k states.
6 For a language $L \subseteq \Sigma^*$, define $\text{insert}(L) = \{uv\sigma : uv \in L, \sigma \in \Sigma\}$. Thus, $\text{insert}(L)$ is the set of all strings obtained by taking a string in L and inserting a new character at some position. Prove that if L is regular, so is $\text{insert}(L)$.

7 For a language L, define $\text{suffix}(L) = \{v : uv \in L \text{ for some } u\}$. Thus, $\text{suffix}(L)$ is the set of all suffixes of strings in L. Use the closure of regular languages under the reverse and prefix operations to prove that $\text{suffix}(L)$ is regular whenever L is regular.
SOLUTIONS
You have 90 minutes to complete this exam. You may assume without proof any statement proved in class.

1. Give a simple verbal description of the language recognized by the following DFA.

Solution. All binary strings that contain 0010.

2. Draw NFAs for the following languages, taking full advantage of nondeterminism:

(a) strings over alphabet \{0, 1, \ldots, 9\} where the final digit has appeared before;

(b) binary strings in which there is a pair of 0s separated by a number of positions that is a multiple of 4.
3. Prove that the following languages over the binary alphabet are regular:

(2 pts)
(a) strings in which the number of 0s and the number of 1s are both even;

(2 pts)
(b) strings with at most one occurrence of the substring 00 (the string 000 has two);

(2 pts)
(c) strings in which the 1000th symbol from the end is a 1.

Solution.

(a) The language is recognized by the following DFA:

(b) The complement of this language is recognized by the following NFA and is therefore regular:

Since regular languages are closed under complement, the original language is regular as well.

(c) To recognize this language, a DFA simply needs to keep track of the last 1000 symbols seen, and accept if and only if there is a 1 in position 1000. Formally, the language is recognized by the DFA

\[
\delta(w_1w_2w_3\ldots w_{1000}, \sigma) = w_2w_3\ldots w_{1000}\sigma.
\]
Let L be a regular language over the binary alphabet. Consider the following language over the same alphabet: $L' = \{w : |w| = |u| \text{ for some } u \in L\}$. Prove that L' is regular.

Solution. To obtain an NFA for L', start with a DFA for L and change all edge labels to “0, 1”.

Prove that at most $k^{2k+1}2^k$ languages over the binary alphabet can be recognized by a DFA with k states.

Solution. Simply count the number of distinct DFAs with k states. Name the states $1, 2, 3, \ldots, k$. Then a DFA is a tuple

$$\langle \{1, 2, 3, \ldots, k\}, \{0, 1\}, \delta, q_0, F \rangle,$$

where

$$q_0 \in \{1, 2, 3, \ldots, k\},$$

$$F \subseteq \{1, 2, 3, \ldots, k\},$$

$$\delta : \{1, 2, 3, \ldots, k\} \times \{0, 1\} \to \{1, 2, 3, \ldots, k\}.$$

Thus, the number of distinct ways to choose (q_0, F, δ) is

$$k \times 2^k \times k^{2k}.$$
6. For a language \(L \subseteq \Sigma^* \), define \(\text{insert}(L) = \{u\sigma v : uv \in L, \sigma \in \Sigma\} \). Thus, \(\text{insert}(L) \) is the set of all strings obtained by taking a string in \(L \) and inserting a new character at some position. Prove that if \(L \) is regular, so is \(\text{insert}(L) \).

Solution:

(3 pts)

![Diagram of DFA for L and NFA for insert(L)]

- Same as original DFA, but make all states reject
- Add arrows between every pair of corresponding states (for every \(\sigma \))
- Same as original DFA

7. For a language \(L \), define \(\text{suffix}(L) = \{v : uv \in L \text{ for some } u\} \). Thus, \(\text{suffix}(L) \) is the set of all suffixes of strings in \(L \). Use the closure of regular languages under the reverse and prefix operations to prove that \(\text{suffix}(L) \) is regular whenever \(L \) is regular.

Solution. To generate the suffixes of all strings in \(L \), one can reverse the strings in \(L \), generate all prefixes in the resulting language, and finally reverse the resulting strings. Thus,

\[
\text{suffix}(L) = \text{reverse(prefix(reverse(L)))}.
\]

Since \(L \) is regular and regular languages are closed under the prefix and reverse operations, it follows that \(\text{suffix}(L) \) is regular.